Deep learning models for composite reflectivity prediction

Albu Alexandra Babeş-Bolyai University

WeADL 2021 Workshop

The workshop is organized under the umbrella of WeaMyL, project funded by the EEA and Norway Grants under the number RO-NO-2019-0133.

Contract: No 26/2020.

Working together for a green, competitive and inclusive Europe

4 Conclusions and future directions of research

ロト 4回 ト 4 目 ト 4 目 ト つんの

Computational approaches for nowcasting

- Computational approaches: Numerical Weather Prediction methods, optical flow algorithms
- Deep learning methods
 - provide a data-driven approach:
 - minimal assumptions about the physical system
 - learn patterns from the data itself
 - model nowcasting as a spatio-temporal prediction problem \rightarrow convolutional and recurrent networks
 - learn a mapping from weather states in a geographical region at timestamps t - k, $t - k + 1 \dots$, t to the state at that location at timestamps t + 1, t + 2, \dots t + p, where $k, p \ge 1$

- Two categories of deep learning approaches:
 - recurrent neural networks: ConvLSTMs [10, 12, 13], TrajGRUs [11, 7]
 - fully convolutional neural networks (i.e. convolutions applied on concatenated timestamps): U-Net [3, 14, 4], 3D convolutions [9], causal convolutions [5]

Neural networks can be trained by optimizing:

- pixel-wise loss functions (Mean Squared Error, Root Mean Squared Error, Mean Absolute Error)
- similarity losses [13]
- weighted loss functions [11, 7]

- Underestimation of high values \leftarrow highly imbalanced data sets
- Blurry predictions when training with traditional methods
- Predictions for large areas are difficult to obtain
- Lack of interpretability

The aim of our research is to improve the weather nowcasting solutions using deep learning techniques. Approaches developed in the project so far:

- AutoNowP
- NowcastX

Radar data available on the MET Norway THREDDS data server

- Composite reflectivity https://thredds.met.no/thredds/catalog/remotesensing/ reflectivity-nordic/catalog.html
- Reflectivity on multiple elevations, corrected and uncorrected + velocity https://thredds.met.no/thredds/catalog/weamyl/Radar/ catalog.html

Data analysis

Figure: Visualization of composite reflectivity. From MET Norway THREDDS Data server $\left[1\right]$

- binary classification model
- predicts whether a point will have a value greater or smaller than a given threshold using the neighbours of that point at a previous timestamp
- uses two convolutional autoencoders one for each class trained to learn the characteristics of that class

AutoNowP classification model

Figure: Overview of the AutoNowP approach.

$$MSE_{greater}(X, X') = \frac{1}{d^2} \sum_{\substack{1 \le i, j \le d \\ x_{ij} > \tau}} (x_{ij} - x'_{ij})^2$$
$$MSE_{smaller}(X, X') = \frac{1}{d^2} \sum_{\substack{1 \le i, j \le d \\ x_{ij} \le \tau}} (x_{ij} - x'_{ij})^2$$

$$\mathcal{L}(X, X') = \alpha \cdot MSE_{greater}(X, X') + (1 - \alpha) \cdot MSE_{smaller}(X, X')$$

where $X = (x_{ij})_{1 \le i,j, \le d}$ is the point neighbourhood, $X' = (x'_{ij})_{1 \le i,j, \le d}$ is the reconstructed neighbourhood

Product	#	% of "+"	% of "-"	Entropy
of interest	instances	instances	instances	
Composite reflectivity	6,607,836	31.97%	68,03%	0.904

Table: Description of the data set gathered from MET Norway THREDDS data server for a threshold of 10.

Evaluation metrics

- Critical success index: $CSI = \frac{TP}{TP+FN+FP}$
- False alarm rate: $FAR = \frac{FP}{TP+FP}$
- Probability of detection: $POD = \frac{TP}{TP+FN}$
- True skill statistic: $TSS = \frac{TP \cdot TN FP \cdot FN}{(TP + FN) \cdot (FP + TN)}$
- Positive predictive value: $PV = \frac{TP}{TP+FP}$
- Negative predictive value: $NPV = \frac{TN}{TN+FN}$
- Specificity: $Spec = \frac{TN}{TN+FP}$
- Area Under the ROC Curve
- Area Under the Precision-Recall Curve

τ	CSI	TSS	POD	PPV	NPV	Spec	AUC	AUPRC
10	0.681	0.740	0.872	0.757	0.936	0.867	0.870	0.814
	±	±	±	±	±	+ ±	±	±
	0.014	0.009	0.019	0.027	0.005	0.026	0.005	0.008
15	0.566	0.626	0.675	0.793	0.920	0.951	0.813	0.734
	±	±	±	±	±	±	±	±
	0.05	0.09	0.12	0.08	0.03	0.03	0.05	0.029
20	0.401	0.500	0.536	0.710	0.947	0.963	0.750	0.623
	±	+ ±	±	±	±	±	±	±
	0.090	0.223	0.269	0.173	0.026	0.046	0.111	0.048

Table: Experimental results for a 3-fold cross-validation evaluation procedure. 95% Cls are used for the results.

• performance decreases with the increase of the threshold

Comparison with other classifiers

Model	CSI	TSS	POD	PPV	NPV	Spec	AUC	AUPRC
AutoNowP	0.681	0.740	0.872	0.757	0.936	0.867	0.870	0.814
	±	±	±	±	±	±	±	±
	0.014	0.009	0.019	0.027	0.005	0.026	0.005	0.008
Logistic	0.760	0.796	0.853	0.875	0.932	0.943	0.898	0.864
regression	±	±	±	±	±	±	±	±
	0.006	0.002	0.001	0.007	0.003	0.002	0.001	0.004
Linear SVC	0.761	0.798	0.858	0.870	0.934	0.940	0.899	0.864
	±	±	±	±	±	±	±	±
	0.006	0.002	0.001	0.007	0.003	0.003	0.001	0.004
Decision	0.670	0.710	0.804	0.801	0.908	0.906	0.855	0.803
tree	±	±	±	±	±	±	±	±
	0.010	0.004	0.005	0.009	0.003	0.002	0.002	0.007
Nearest Centroid	0.681	0.728	0.831	0.791	0.919	0.897	0.864	0.811
Classification	±	±	±	±	±	±	±	±
	0.009	0.005	0.009	0.007	0.001	0.006	0.003	0.007

Table: Comparative results between *AutoNowP* and other classifiers. 95% Cls are used for the results.

highest POD and NPV among all classifiers

- encoder-decoder convolutional neural network
- based on the Xception architecture [6]

Figure: Convolution versus Depth-wise separable convolution. Picture taken from [8]

- Channel-wise concatenated past timestamps
- Single-step prediction
- Regression problem \rightarrow RMSE loss

Architecture drawn using PlotNeuralNet [2]

• Composite reflectivity

• 10 days with meteorological events, selected from CAP warnings available at https:

 $//{api.met.no/weatherapi/metalerts/1.1?show}{=}all\&lang{=}en$

- 8 days used for training, 1 for validation, 1 for testing
- time resolution: 5 minutes
- 200x200 region around Oslo

Base Reflectivity

Preliminary experiments:

- uncorrected reflectivity on first level
- 321 days with no missing timestamps
- 128 days for training, 33 for validation, 160 for testing
- time resolution: 10 minutes
- 400x400 square (center of the radar grid)

Figure: Histogram of composite reflectivity values in the 10-days dataset.

Goal

- evaluate the impact of the temporal context
- Training configuration
 - multiple past timestamps concatenated channel-wise
- Evaluation measures
 - CSI, FAR, POD metrics at multiple thresholds

NowcastX - preliminary results

Figure: CSI metric for multiple timestamps and thresholds.

• performance increases up to 20-25 minutes, then stagnates or starts decreasing

NowcastX - preliminary results

Figure: POD metric for multiple timestamps and thresholds.

NowcastX - preliminary results

Figure: FAR metric for multiple timestamps and thresholds.

NowcastX - sample predictions

Figure: Predictions using the best model on the 10 days dataset.

NowcastX - sample predictions

Figure: Predictions using the best model on the 321 days dataset.

- Model limitation: performance decreases for larger thresholds
 → the network fails to predict extreme values, which are
 relevant for nowcasting
- Proposed solution: use a weighted loss which puts more emphasis on errors obtained for high values [11]

- Model limitation: performance decreases for larger thresholds \rightarrow the network fails to predict extreme values
- Proposed solution: use a weighted loss which puts more emphasis on errors obtained for high values [11]

$$\mathcal{L}_{w}(X, X') = \frac{1}{n^{2}} \sum_{1 \leq i,j \leq n} w(x_{ij}) \cdot (x_{ij} - x'_{ij})^{2}$$

where $X = (x_{ij})_{1 \le i,j, \le n}$ is the ground truth radar image, $X' = (x'_{ij})_{1 \le i,j, \le n}$ is the prediction and w is a step function which assigns higher weights to the errors corresponding to higher pixel values.

Alternative loss - preliminary results

Threshold	Loss	CSI	FAR	POD
5	RMSE	0.828	0.086	0.897
	\mathcal{L}_{w}	0.822	0.087	0.891
10	RMSE	0.797	0.087	0.863
	\mathcal{L}_{w}	0.790	0.096	0.863
15	RMSE	0.737	0.092	0.796
	\mathcal{L}_{w}	0.739	0.117	0.812
20	RMSE	0.613	0.097	0.656
	\mathcal{L}_{w}	0.629	0.125	0.691

Table: Comparative results with RMSE and weighted loss function for 5 timestamps using the 10 days data set, obtained using a step function with 5 intervals.

• the weighted loss provided higher CSI and POD than the RMSE for higher thresholds

• Accurate nowcasting of severe events is challenging Future directions:

- multi-step prediction
- using an adaptive weighted loss
- quantifying uncertainty in our predictions

Thank you!

MET Norway Thredds data server. https://thredds.met.no/thredds/catalog.html. Accessed: 2021-05-07.

PlotNeuralNet.

https://github.com/Harislqbal88/PlotNeuralNet. Accessed: 2021-05-25.

 S. Agrawal, L. Barrington, C. Bromberg, J. Burge, C. Gazen, and J. Hickey.
Machine learning for precipitation nowcasting from radar images.

arXiv preprint arXiv:1912.12132, 2019.

Bibliography II

G. Ayzel, T. Scheffer, and M. Heistermann. Rainnet v1. 0: a convolutional neural network for radar-based precipitation nowcasting.

Geoscientific Model Development, 13(6):2631–2644, 2020.

R. Castro, Y. M. Souto, E. Ogasawara, F. Porto, and E. Bezerra.

Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting.

Neurocomputing, 426:285-298, 2021.

F. Chollet.

Xception: Deep Learning with Depthwise Separable Convolutions.

In 2017 IEEE Conference on Computer Vision and Pattern *Recognition (CVPR)*, pages 1800–1807, 2017.

G. Franch, D. Nerini, M. Pendesini, L. Coviello, G. Jurman, and C. Furlanello.

Precipitation nowcasting with orographic enhanced stacked generalization: Improving deep learning predictions on extreme events.

Atmosphere, 11(3), 2020.

- Y. Guo, Y. Li, L. Wang, and T. Rosing.

Depthwise convolution is all you need for learning multiple visual domains.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 8368-8375, 2019.

L. Han, J. Sun, and W. Zhang.

Convolutional neural network for convective storm nowcasting using 3-d doppler weather radar data.

IEEE Transactions on Geoscience and Remote Sensing, 58(2):1487–1495, 2020.

X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo.

Convolutional lstm network: A machine learning approach for precipitation nowcasting.

arXiv preprint arXiv:1506.04214, 2015.

Bibliography V

 X. Shi, Z. Gao, L. Lausen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo.
Deep learning for precipitation nowcasting: A benchmark and a new model.

arXiv preprint arXiv:1706.03458, 2017.

 C. K. Sønderby, L. Espeholt, J. Heek, M. Dehghani, A. Oliver, T. Salimans, J. Hickey, S. Agrawal, and N. Kalchbrenner. Metnet: A neural weather model for precipitation forecasting. *arXiv*, pages 1–17, 2020.

🔋 Q.-K. Tran and S.-k. Song.

Computer vision in precipitation nowcasting: Applying image quality assessment metrics for training deep neural networks. *Atmosphere*, 10(5):244, 2019.

K. Trebing, T. Staczyk, and S. Mehrkanoon.

Smaat-unet: Precipitation nowcasting using a small attention-unet architecture.

Pattern Recognition Letters, 145:178–186, 2021.