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Computational approaches for nowcasting

Computational approaches: Numerical Weather Prediction
methods, optical flow algorithms

Deep learning methods
provide a data-driven approach:

minimal assumptions about the physical system
learn patterns from the data itself

model nowcasting as a spatio-temporal prediction problem →
convolutional and recurrent networks
learn a mapping from weather states in a geographical region
at timestamps t − k , t − k + 1 ..., t to the state at that
location at timestamps t + 1, t + 2, ... t + p, where k, p ≥ 1
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Literature review of deep learning nowcasting models

Two categories of deep learning approaches:

recurrent neural networks: ConvLSTMs [10, 12, 13], TrajGRUs
[11, 7]
fully convolutional neural networks (i.e. convolutions applied
on concatenated timestamps): U-Net [3, 14, 4], 3D
convolutions [9], causal convolutions [5]
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Literature review of deep learning nowcasting models

Neural networks can be trained by optimizing:

pixel-wise loss functions (Mean Squared Error, Root Mean
Squared Error, Mean Absolute Error)

similarity losses [13]

weighted loss functions [11, 7]
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Challenges and limitations of current deep learning models

Underestimation of high values ← highly imbalanced data sets

Blurry predictions when training with traditional methods

Predictions for large areas are difficult to obtain

Lack of interpretability
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Our Approach

The aim of our research is to improve the weather nowcasting
solutions using deep learning techniques.
Approaches developed in the project so far:

AutoNowP

NowcastX
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Radar Data Sources

Radar data available on the MET Norway THREDDS data server

Composite reflectivity
https://thredds.met.no/thredds/catalog/remotesensing/
reflectivity-nordic/catalog.html

Reflectivity on multiple elevations, corrected and uncorrected
+ velocity
https://thredds.met.no/thredds/catalog/weamyl/Radar/
catalog.html
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Data analysis

Figure: Visualization of composite reflectivity. From MET Norway
THREDDS Data server [1]
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AutoNowP classification model

binary classification model

predicts whether a point will have a value greater or smaller
than a given threshold using the neighbours of that point at a
previous timestamp

uses two convolutional autoencoders - one for each class -
trained to learn the characteristics of that class
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AutoNowP classification model

Figure: Overview of the AutoNowP approach.
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Loss function

MSEgreater (X ,X ′) =
1

d2

∑
1≤i ,j≤d
xij>τ

(xij − x ′ij)
2

MSEsmaller (X ,X ′) =
1

d2

∑
1≤i ,j≤d
xij≤τ

(xij − x ′ij)
2

L(X ,X ′) = α ·MSEgreater (X ,X ′) + (1− α) ·MSEsmaller (X ,X ′)

where X = (xij)1≤i ,j ,≤d is the point neighbourhood,
X ′ = (x ′ij)1≤i ,j ,≤d is the reconstructed neighbourhood
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Data set

Product # % of “+” % of “-” Entropy
of interest instances instances instances
Composite 6,607,836 31.97% 68,03% 0.904
reflectivity

Table: Description of the data set gathered from MET Norway
THREDDS data server for a threshold of 10.
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Evaluation metrics

Critical success index: CSI = TP
TP+FN+FP

False alarm rate: FAR = FP
TP+FP

Probability of detection: POD = TP
TP+FN

True skill statistic: TSS = TP·TN−FP·FN
(TP+FN)·(FP+TN)

Positive predictive value: PV = TP
TP+FP

Negative predictive value: NPV = TN
TN+FN

Specificity: Spec = TN
TN+FP

Area Under the ROC Curve

Area Under the Precision-Recall Curve
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Results

τ CSI TSS POD PPV NPV Spec AUC AUPRC

10 0.681 0.740 0.872 0.757 0.936 0.867 0.870 0.814
± ± ± ± ± ± ± ±

0.014 0.009 0.019 0.027 0.005 0.026 0.005 0.008
15 0.566 0.626 0.675 0.793 0.920 0.951 0.813 0.734

± ± ± ± ± ± ± ±
0.05 0.09 0.12 0.08 0.03 0.03 0.05 0.029

20 0.401 0.500 0.536 0.710 0.947 0.963 0.750 0.623
± ± ± ± ± ± ± ±

0.090 0.223 0.269 0.173 0.026 0.046 0.111 0.048

Table: Experimental results for a 3-fold cross-validation evaluation
procedure. 95% CIs are used for the results.

performance decreases with the increase of the threshold
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Comparison with other classifiers

Model CSI TSS POD PPV NPV Spec AUC AUPRC

AutoNowP 0.681 0.740 0.872 0.757 0.936 0.867 0.870 0.814
± ± ± ± ± ± ± ±

0.014 0.009 0.019 0.027 0.005 0.026 0.005 0.008
Logistic 0.760 0.796 0.853 0.875 0.932 0.943 0.898 0.864

regression ± ± ± ± ± ± ± ±
0.006 0.002 0.001 0.007 0.003 0.002 0.001 0.004

Linear SVC 0.761 0.798 0.858 0.870 0.934 0.940 0.899 0.864
± ± ± ± ± ± ± ±

0.006 0.002 0.001 0.007 0.003 0.003 0.001 0.004
Decision 0.670 0.710 0.804 0.801 0.908 0.906 0.855 0.803

tree ± ± ± ± ± ± ± ±
0.010 0.004 0.005 0.009 0.003 0.002 0.002 0.007

Nearest Centroid 0.681 0.728 0.831 0.791 0.919 0.897 0.864 0.811
Classification ± ± ± ± ± ± ± ±

0.009 0.005 0.009 0.007 0.001 0.006 0.003 0.007

Table: Comparative results between AutoNowP and other classifiers.
95% CIs are used for the results.

highest POD and NPV among all classifiers
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NowcastX

encoder-decoder convolutional neural network

based on the Xception architecture [6]

Figure: Convolution versus Depth-wise separable convolution. Picture
taken from [8]
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NowcastX
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Channel-wise concatenated past timestamps

Single-step prediction

Regression problem → RMSE loss

Architecture drawn using PlotNeuralNet [2]
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Data sets

Composite reflectivity
10 days with meteorological events, selected from CAP
warnings available at https:
//api.met.no/weatherapi/metalerts/1.1?show=all&lang=en
8 days used for training, 1 for validation, 1 for testing
time resolution: 5 minutes
200x200 region around Oslo

Base Reflectivity
Preliminary experiments:

uncorrected reflectivity on first level
321 days with no missing timestamps
128 days for training, 33 for validation, 160 for testing
time resolution: 10 minutes
400x400 square (center of the radar grid)
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Data analysis

Figure: Histogram of composite reflectivity values in the 10-days dataset.
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NowcastX - temporal context analysis

Goal

evaluate the impact of the temporal context

Training configuration

multiple past timestamps concatenated channel-wise

Evaluation measures

CSI, FAR, POD metrics at multiple thresholds
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NowcastX - preliminary results

(a) 10 days data set (b) 321 days data set

Figure: CSI metric for multiple timestamps and thresholds.

performance increases up to 20-25 minutes, then stagnates or
starts decreasing
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NowcastX - preliminary results

(a) 10 days data set (b) 321 days data set

Figure: POD metric for multiple timestamps and thresholds.
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NowcastX - preliminary results

(a) 10 days data set (b) 321 days data set

Figure: FAR metric for multiple timestamps and thresholds.
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NowcastX - sample predictions

Figure: Predictions using the best model on the 10 days dataset.
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NowcastX - sample predictions

Figure: Predictions using the best model on the 321 days dataset.
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Alternative loss function

Model limitation: performance decreases for larger thresholds
→ the network fails to predict extreme values, which are
relevant for nowcasting

Proposed solution: use a weighted loss which puts more
emphasis on errors obtained for high values [11]
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Alternative loss function

Model limitation: performance decreases for larger thresholds
→ the network fails to predict extreme values

Proposed solution: use a weighted loss which puts more
emphasis on errors obtained for high values [11]

Lw (X ,X ′) =
1

n2

∑
1≤i ,j≤n

w(xij) · (xij − x ′ij)
2

where X = (xij)1≤i ,j ,≤n is the ground truth radar image,
X ′ = (x ′ij)1≤i ,j ,≤n is the prediction and w is a step function which
assigns higher weights to the errors corresponding to higher pixel
values.
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Alternative loss - preliminary results

Threshold Loss CSI FAR POD

5 RMSE 0.828 0.086 0.897
Lw 0.822 0.087 0.891

10 RMSE 0.797 0.087 0.863
Lw 0.790 0.096 0.863

15 RMSE 0.737 0.092 0.796
Lw 0.739 0.117 0.812

20 RMSE 0.613 0.097 0.656
Lw 0.629 0.125 0.691

Table: Comparative results with RMSE and weighted loss function for 5
timestamps using the 10 days data set, obtained using a step function
with 5 intervals.

the weighted loss provided higher CSI and POD than the
RMSE for higher thresholds
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Conclusions and future directions of research

Accurate nowcasting of severe events is challenging

Future directions:

multi-step prediction

using an adaptive weighted loss

quantifying uncertainty in our predictions
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Thank you!
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