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Background

Securities trading (e.g. stocks, options, cryptocurrencies) is
increasingly an automatic, algorithmic-driven field. Three out
of four foreign currency exchange trades are automatic [1]

There is a strong interest in applying deep learning and
reinforcement learning to automatic trading, moving away
from euristhics [2, 3]

Eternal struggle of a data scientist: more quality data!

WeaMyL



Title
Purpose

Exploring Data
Latent Space

Generation
Integration

Results

Background
Approach

Approach

Autoencoder architecture is able to capture and model timeseries
in latent representation. [6]
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Exploring Data

We focus on
the AAPL
stock price,
sampled at
interval of 15
minutes
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Exploring Data
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Exploring Data

’Volume’ histogram before normalization
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Exploring Data

’Volume’ histogram after normalization
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Exploring Data

Split the dataset into TIME STEPS x 5 chunks

Two consecutive chunks will have TIME STEPS COMMON
common time steps

We obtain a dataset of roughly 25000 points
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The Latent Space

Autoencoder

The autoencoder includes best practices such as Dropout layers
and LeakyReLU activations [4, 5]
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The Latent Space

Latent Space

Hyperparameter tweaking concluded a latent space of dimension
10 offers the best loss - information tradeoff.
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The Latent Space

Latent Space

A ”majority” cluster can be observed; 3-dim PCA visualization
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Generated examples

WGAN

WGAN is an improvement over first-generation GAN architecture
[7]
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Generated latent points
Generated examples

Generated latent points

Figure: WGAN is able to generalize new interesting points in latent
space
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Generated examples

Generated latent points

Multivariate Wilcoxon test [8] indicates that the generated points
are actually different from non-majority points (p=0.0186)* Figure:

The correlation maps for minority and artificial are different:

Minority Artificial Absolute difference
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WGAN
Generated latent points
Generated examples

They’re not even half bad!
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Smoothing the points

GAN network samples from poorly-represented regions since it
maximizes critic’s confusion. It is unable to represent
constraints e.g. hight should be larger than colt ,
∀col ∈ {high, open, close, low}, closet == opent+1 for any
timestep t

We employ Bayesian search to find the closest latent point
that satisfies the constraints. Formally for each tuple
(opent , hight , lowt , closet) = tst of an arbitrary chunk we
identify the maximum of a black box function f which is

defined as:

{
−∞ invalid

1
‖tst−tsgen‖ valid

, minimising the distance over

all timesteps.
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Integrating the points

For each sample from the generated ones, tsfake we find two
consecutive time steps, ts1 and ts2, such that we minimize
‖closets1 − opentsfake ‖, ‖closetsfake − opents2
‖, ‖µ(volumets1)− µ(volumetsfake)‖, ‖µ(volumetsfake)−
µ(volumets2)‖
Each integrated fake sample is assumed to be real after
integration. Thus it is possible to have consecutive fake
chunks
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Results

We employ a benchmark trading algorithm [9] based on
reinforcement learning and apply it over both datasets

We observe a 5-7% percent improvement of the algorithm’s
performace. These are preliminary results.

We conclude that data augmentation is pheasible on
timeseries datasets. We hypothesise that our approach can
identify poorly represented intervals of a timeseries dataset.
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QA time!
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Théate, Thibaut, and Damien Ernst An Application of Deep
Reinforcement Learning to Algorithmic Trading. ArXiv:2004.06627,
Oct 2020

WeaMyL



Title
Purpose

Exploring Data
Latent Space

Generation
Integration

Results

References

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya
Sutskever, Ruslan R. Salakhutdinov Dropout: A Simple Way to
Prevent Neural Networks from Overfitting arXiv:1207.0580

Bing Xu, Naiyan Wang, Tianqi Chen, Mu Li Empirical Evaluation
of Rectified Activations in Convolutional Network arXiv:1505.00853

Neda Tavakoli, Sima Siami-Namini, Mahdi Adl Khanghah,
Fahimeh Mirza Soltani, Akbar Siami Namin Clustering Time Series
Data through Autoencoder-based Deep Learning Models
arXiv:2004.07296

Martin Arjovsky, Soumith Chintala, Léon Bottou Wasserstein GAN
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