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Stone-Weierstrass theorems for random functions
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Abstract. We present several generalizations of the Stone-Weierstrass theorem
concerning the approximation of continuous functions on a compact set by using
functions from a subalgebra to the case of random functions and random variables
in the space of continuous functions. The continuity of the random functions is
allowed to be only with respect to a metric, hence including the case of stochas-
tically continuous random functions. These results could be cornerstones for the
general theory of approximation for random functions.
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1. Introduction

It is well known that approximation theory plays an important role in the math-
ematical investigation of deterministic equations and for other problems. Therefore
it seems to be natural that approximation theory should also play a similar impor-
tant role in the investigation of different types of random equations. Moreover in
recent time an increased use of stochastic models and a very intensive investigation
of random and stochastic differential equations can be observed. So the systematic
investigation of approximation procedures and possibilities for random mathematical
objects seems to be useful, leading possibly to the development of an approximation
theory for random functions and random variables in function spaces.

One fundamental result in deterministic approximation theory is the Stone-
Weierstrass theorem about the uniform closure of a subalgebra of continuous functions
in the space of all continuous functions on a compact set. This result is a generaliza-
tion of the classical theorem of Weierstrass about the denseness (with respect to the
norm of uniform convergence) of polynomials in the space of continuous functions on
a closed interval of the real line.

This paper has been presented at the fourth edition of the International Conference on Numerical
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The presented work deals with analogous questions for random functions. Hereby
different generalizations can be considered, due for example to the use of different
norms or metrics in spaces of random variables.

In the remaining part of this section a short remainder on deterministic Stone-
Weierstrass theorems together with some needed definitions is given. The following
section is devoted to different theorems of Stone-Weierstrass type for random func-
tions or random variables with values in function spaces.

The following notations and concepts are used throughout the article.

• T denotes a compact Hausdorff topological space.
• K = R or K = C denotes the scalar field (of real or complex numbers),

N∗ = {1, 2, 3, . . .} is the set of positive natural numbers.
• C(T,K) denotes the linear space of continuous K-valued functions on T , endowed

with the maximum norm (this way it becomes a Banach space and moreover a
Banach algebra).

• 1S denotes the indicator function of the set S (also called characteristic function)
with values 1 for elements from S and 0 otherwise.

• A set A of K-valued functions on T is called an algebra if it holds

f, g ∈ A,α ∈ K ⇒ f + g ∈ A, αf ∈ A, f · g ∈ A .

The classical theorem of Weierstrass about the approximation of real continuous
functions by algebraic polynomials can be formulated as follows.

Theorem 1.1. The set (algebra) of polynomials with real coefficients is dense in the
space of real-valued continuous functions on a finite interval [a, b] ⊂ R, endowed with
the maximum norm.

Analogous results hold for complex-valued functions and for functions defined
on [a1, b1]× . . .× [ad, bd] ⊂ Rd (d ∈ N∗) .

The approximability of continuous functions by algebraic polynomials is strongly
related to the approximability of periodic functions by trigonometric polynomials.

Theorem 1.2. The set (algebra) of trigonometric polynomials with real coefficients is
dense in the space of real-valued 2π−periodic continuous functions on the interval
[0, 2π] ⊂ R, endowed with the maximum norm.

Analogous results hold for complex-valued functions, for periodic functions de-
fined on [0, 2π]d ⊂ Rd (d ∈ N∗) and for periodic functions with other periods.

One generalization of this result, namely a version of the theorem of Stone-
Weierstrass can be given as follows.

Theorem 1.3. A subalgebra A ⊂ C(T,K) is dense in C(T,K), if and only if

(i) A separates the points of T (A is point-separating on T ), i.e.,

∀ t1 6= t2 ∈ T ∃ f ∈ A : f(t1) 6= f(t2);

(ii) A is not point-vanishing on T , i.e., ∀ t ∈ T ∃ f ∈ A : f(t) 6= 0;
(iii) A is self-adjoint in the case K = C, i.e., ∀ f ∈ A ⇒ f ∈ A.
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These theorems can be found in many textbooks for analysis or approximation
theory. Other versions of the Stone-Weierstrass theorem, different proofs, etc. can be
found for example in Prolla [6].

2. Stone-Weierstrass theorems for random functions and random
variables with values in a function space

In the following all random objects are assumed to be defined on a probabil-
ity space (Ω,F ,P). The corresponding expectation operator is denoted by E. L0(K)
denotes the linear space of equivalence classes of random variables with values in
K (and analogously for other ranges). For K-valued random variables the stochastic
convergence is connected to the concept of metric, one possible metric is

dp(η1, η2) = E

[
|η1 − η2|

1 + |η1 − η2|

]
, η1, η2 ∈ L0(K) ,

with analogous expression in the case of a (semi-)normed space as range instead of K.
As usual Lp(K) is the linear space of equivalence classes of K-valued random variables
with finite moment of order p, endowed with the corresponding norm (1 ≤ p <∞) or
metric (0 < p < 1).

Stochastic generalizations of the Stone-Weierstrass theorem can be derived

• for random variables (random elements) with values in C(T,K) or
• for K-valued random functions (ξt)t∈T , continuous in some sense.

Further generalizations can be given for example for random functions with values in
separable Banach spaces.

The approximating set is often the linear span (which is not necessarily an
algebra)

span{ηf : η ∈ V ⊆ L0(K) , f ∈ A ⊆ C(T,K)}
with suitable sets V and A.

The notion or type of convergence for (generalized) sequences of random vari-
ables or random functions can be generated by norms or metrics or otherwise. In case
of norms many theorems can be generalized straightforwardly. More difficult is the
study of these results and definitions in the context of a metric (which is for example
valid for the case of stochastic convergence).

As a first generalization of the deterministic Stone-Weierstrass theorem a result
for random variables in the space of continuous functions and stochastic convergence
is given.

Theorem 2.1. Assume that X is a separable Banach space with norm ‖ · ‖ or more
generally a complete separable metrizable locally convex space with metric ‖ · ‖X over
the field K, T is a compact metric space with metric r and A ⊆ C(T,K) is a self-
adjoint algebra, which is point-separating and not point-vanishing on T . Then

S := span{ηf : η ∈ L0(X) , f ∈ A}
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is dense with respect to the stochastic convergence in L0(C(T,X)), i.e.,

∀ ε > 0 ∀ ξ ∈ L0(C(T,X)) ∃ ζ ∈ S : P(max
t∈T
‖ξt − ζt‖X > ε) < ε.

Proof. Convergence in a complete separable metrizable locally convex space is equiva-
lent to the convergence for each of an at most countable defining system of half-norms
(see, e.g. Rudin [9], Theorem 1.24, Remarks 1.38). So the proof is given for the case
of a separable Banach space X with norm ‖ · ‖ and it is identical for each of the
half-norms in the locally convex spaces.

In this case the asserted property is equivalent to

∀ ε > 0 ∀ ξ ∈ L0(C(T,X)) ∃ ζ ∈ S : E

[
maxt∈T ‖ξt − ζt‖

1 + maxt∈T ‖ξt − ζt‖

]
< ε.

C(T,X) is separable if T is a compact metric space. Hence for each ε > 0 there exists a
compact set K ⊂ C(T,X) with P(ξ ∈ K) > 1− ε/3 (see, e.g. Billingsley [1], Theorem
1.4).

Define ξ′ := ξ · 1{ξ∈K}, so that P(maxt∈T ‖ξt − ξ′t‖ > 0) < ε/3 and hence

E

[
maxt∈T ‖ξt − ξ′t‖

1 + maxt∈T ‖ξt − ξ′t‖

]
< ε/3.

The functions in K and hence the realizations of ξ′ are bounded and equicontinuous
(see, e.g., Rudin [9], Theorems A 4, A 5, Dieudonné [3], Theorem 7.5.7). Hence there
exists δ > 0 with ‖ξ′t(ω)− ξ′s(ω)‖ < ε/3 for all ω ∈ Ω if r(t, s) < δ. The compact set T
can be covered by a finite number of δ−neighbourhoods of points ti ∈ T, i = 1, . . . , n.
Assume (zi, i = 1, . . . , n) is a partition of unity subordinate to this open cover (see,
e.g., Rudin [8], Theorem 2.13). Defining

ξ̂t :=

n∑
i=1

ξ′tizi(t), t ∈ T,

it holds for arbitrary t ∈ T and ω ∈ Ω

‖ξ̂t(ω)− ξ′t(ω)‖ ≤
n∑
i=1

‖ξ′ti − ξ
′
t‖zi(t) ≤

n∑
i=1

ε

3
zi(t) =

ε

3
.

This means that the set span{ηf : η ∈ L0(X) , f ∈ C(T,K)} is dense with respect to
the stochastic convergence in L0(C(T,X)). It remains to approximate the functions
zi ∈ C(T,K) uniformly by functions from A ⊆ C(T,K), which is possible using the
deterministic Stone-Weierstrass Theorem 1.3. �

Corollary 2.2. Assume that T is a compact metric space with metric r and A ⊆
C(T,K) is a self-adjoint algebra, which is point-separating and not point-vanishing on
T . Then S := span{ηf : η ∈ L0(K) , f ∈ A} is dense with respect to the stochastic
convergence in L0(C(T,K)), i.e.,

∀ ε > 0 ∀ ξ ∈ L0(C(T,K)) ∃ ζ ∈ S : P(max
t∈T
|ξt − ζt| > ε) < ε.

Remark 2.3. In relation to the above theorem one can remark the following.
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• One can find for every ξ ∈ L0(C(T,X)) a sequence (ζn)n∈N∗ ⊂ S, which converges
almost surely to ξ.

• Analogous results hold for Lp(C(T,X)) (1 ≤ p < ∞) with convergence in p−th
mean.

• C(T,K) is separable iff T is a compact metric space (see, e.g., Rolewicz [7],
Proposition 1.6.6). The investigation of random variables with values in non-
separable normed spaces is much more complicated, so we restrict ourselves to
the case of a separable Banach space C(T,K).

Now we consider the case of K-valued random functions (ξt)t∈T which are con-
tinuous in some sense. Correspondig results can be found in the literature for example
in Dugué [4] (T ⊂ R finite interval, approximation of a random function (ξt)t∈T , which
is continuous in probability, by random polynomials with respect to the uniform sto-
chastic convergence), Onicescu, Istrăţescu [5] (T ⊂ Rd (d ∈ N∗) convex compact set,
uniform stochastic approximation by multivariate random polynomials) and Ryabykh,

Tokmakova, Yablonskĭi [10] (T ⊂ Rd (d ∈ N∗) compact set, uniform stochastic approx-
imation by elements of a subalgebra of random functions). It can be remarked, that,
in general, spaces of random variables endowed with the topology of stochastic con-
vergence are not locally convex spaces, so that generalizations of Stone-Weierstrass
theorems for locally convex spaces (see, e.g. Timofte [11]) are not applicable in this
situation.

A stochastic generalization of Stone-Weierstrass theorem is easy to obtain if a
topology in the space of random variables induced by a norm is used.

Theorem 2.4. Assume (V, ‖ · ‖) is a normed subspace of L0(K) and A ⊆ C(T,K) is a
self-adjoint algebra, which is point-separating and not point-vanishing on the compact
Hausdorff topological space T . Then

S := span{ηf : η ∈ V , f ∈ A}

is dense in C(T, V ) with respect to the uniform ‖ · ‖−convergence on T .

Proof. For ξ ∈ C(T, V ) and ε > 0 consider the open cover of T defined by sets
Ut := {s ∈ T : ‖ξs − ξt‖ < ε/2}. Due to the compactness one can choose a finite
open subcover of T with sets Uti , where ti ∈ T , i = 1, . . . , n ∈ N∗, are points which
are pairwise disjoint. Assume (zi, i = 1, . . . , n) is a partition of unity subordinate to
this open subcover and define

ξ̂t :=

n∑
i=1

ξtizi(t), t ∈ T.

Then it holds ξ̂ ∈ span{ηf : η ∈ V , f ∈ C(T,K)} and for all t ∈ T

‖ξ̂t − ξt‖ ≤
n∑
i=1

‖ξti − ξt‖zi(t) < ε/2,

because it holds zi(t) > 0 only for points t ∈ Uti . It remains to approximate the
functions zi ∈ C(T,K) uniformly by functions z̃i ∈ A ⊆ C(T,K), which is possible by
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the deterministic Stone-Weierstrass Theorem 1.3, in such a way that

max
t∈T
|zi(t)− z̃i(t)| < ε/(2nM), i = 1, . . . , n,

where M := maxt∈T ‖ξt‖ <∞. Then for

ξ̃t :=

n∑
i=1

ξti z̃i(t), t ∈ T,

it holds ξ̃ ∈ span{ηf : η ∈ V , f ∈ A} and for all t ∈ T

‖ξ̃t − ξ̂t‖ ≤
n∑
i=1

‖ξti‖ · |z̃i(t)− zi(t)| < ε/2.

Now from the triangle inequality the assertion follows. �
This result is valid for arbitrary functions with values in a (half-)normed space,

defined on a compact set and can be deduced easily also for example from Theorem
1 in Chapter 2 of Prolla [6].

Measuring the nearness of random variables with the help of a metric it is desir-
able that V ⊆ L0(K) is a metric linear space, i.e., the linear operations are continuous.
Then from general theory it follows (see, e.g., Rolewicz [7], Theorems 1.1.1 and 1.2.2)
that there exists a translation-invariant non-decreasing metric (an ”F -norm” denoted
by ‖ · ‖), which is equivalent to the given metric. Basic properties of an F -norm on
L0(K) are

(F 1) ‖1Ω‖ <∞ .
(F 2) ‖ξ‖ = 0⇔ ξ = 0 a. s.
(F 3) ‖αξ‖ ≤ ‖ξ‖ for all α ∈ K with |α| ≤ 1.
(F 4) ‖ξ + η‖ ≤ ‖ξ‖+ ‖η‖.
(F 5) ‖anξ‖ → 0, if an → 0 (n→∞).

In certain cases further properties of the F -norm are imposed.

(F 6) |ξ| ≤ |η| a.s. and ‖η‖ <∞ ⇒ ‖ξ‖ ≤ ‖η‖.
(F 7) For each sequence (Fn)n∈N∗ , Fn ∈ F with P(Fn)→ 0 and every ξ ∈ L0(K) with

‖ξ‖ <∞ it holds ‖ξ1Fn
‖ → 0 (n→∞).

(F 8) There exists a constant κ = κ(c) > 0 such that for arbitrary random variables ξ
with P(|ξ| ≤ c) = 1 for a real number c > 0 and for arbitrary a ∈ R it holds

‖aξ‖ ≤ |a|κ(c)‖ξ‖.
The F -norm generating the stochastic convergence is ‖ξ‖p = dp(ξ, 0) and fulfills

all the properties (F 1)-(F 7) from above and also (F 8) as is proven below in Lemma
2.9.

Some further properties related to F -norms are stated now.

Lemma 2.5. Let (V, ‖ · ‖) be an F−normed subspace of L0(K), such that the basic
and the additional properties (F 1)-(F 7) of F -norms are fulfilled and let (ξn)n∈N be a
sequence of elements from V which converges stochastically to ξ ∈ V and such that
for a random variable η ∈ V it holds P(|ξn| ≤ η) = 1 for all n ∈ N. Then it holds also
‖ξn − ξ‖ → 0 for n→∞.
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Proof. One shows that from each subsequence (ξn′) a subsubsequence (ξn′′), {n′′} ⊆
{n′}, can be chosen such that ‖ξn′′ − ξ‖ → 0 for n′′ →∞. Then the assertion follows.

Due to the stochastic convergence of (ξn′) to ξ one can choose a subsubsequence
(ξn′′) which converges almost surely to ξ. By the Theorem of Egorov (see, e.g. Bogachev
[2], Theorem 2.2.1) it follows that for every ε > 0 there exists Bε ∈ F with P(Ω\Bε) <
ε and uniform convergence of (ξn′′) to ξ on Bε. In

‖ξn′′ − ξ‖ ≤ ‖(ξn′′ − ξ)1Bε
‖+ +‖(ξn′′ − ξ)1Ω\Bε

‖
the first summand on the right hand side converges for each ε > 0 for n′′ → ∞ to
zero due to the uniform convergence and properties (F 5) and (F 6). From property
(F 7) it follows hat the second summand on the right hand side converges for ε → 0
to zero. �

Corollary 2.6. Let (V, ‖ · ‖) be an F−normed subspace of L0(K), such that the basic
and the additional properties (F 1)-(F 7) of F -norms are fulfilled and let T be a set.
Assume (ξnt , t ∈ T )n∈N is a sequence of functions with values in V such that there
exists η ∈ V with P(|ξnt | ≤ η) = 1 for all t ∈ T and n ∈ N. Then it holds for a random
function (ξt)t∈T with values in V

lim
n→∞

sup
t∈T
‖ξnt − ξt‖p = 0 ⇒ lim

n→∞
sup
t∈T
‖ξnt − ξt‖ = 0.

Proof. Denote Vη = {ξ ∈ V : |ξ| ≤ η}. The assertion follows from the fact that the
identity operator from (Vη, ‖ · ‖p) to (Vη, ‖ · ‖) is continuous by Lemma 2.5. �

Lemma 2.7. Let (V, ‖ · ‖) be an F−normed subspace of L0(K), such that the basic
properties (F 1)-(F 5) of F -norms are fulfilled, ξ ∈ V and let be given fn ∈ C(T,K),
n ∈ N∗, such that fn → f (n→∞) in C(T,K). Then it holds also

lim
n→∞

sup
t∈T
‖ξ (fn(t)− f(t)) ‖ = 0.

Proof. This follows directly from property (F 5) and the assumptions. �
For a real-valued random variable ξ and a real number c > 0 its truncation is

defined by ξ(c) := sup{−c, inf{ξ, c}} (and analogously for the real and imaginary part
in the complex-valued case). So it follows that P(|ξ(c)| ≤ c) = 1.

Lemma 2.8. Assume T is a compact Hausdorff topological space, (V, ‖ · ‖) is an
F−normed subspace of L0(K), such that the basic and the additional properties (F 1)-
(F 7) of F -norms are fulfilled and such that ∀c > 0 ξ ∈ V ⇒ ξ(c) ∈ V . Furthermore
let ξ = (ξt)t∈T be a continuous function with values in V .

(i) (ξ
(c)
t )t∈T is continuous in (V, ‖ · ‖) for arbitrary c > 0.

(ii) limc→∞ supt∈T ‖ξ
(c)
t − ξt‖ = 0.

Proof. (i) The assertion follows from property (F 6).
(ii) For ξ ∈ C(T, V ) and ε > 0 consider the open cover of T defined by sets

Ut := {s ∈ T : ‖ξs − ξt‖ < ε/3}.
Due to the compactness one can choose a finite open subcover of T with sets Uti ,
where ti ∈ T , i = 1, . . . , n ∈ N∗, are points which are pairwise disjoint. Then for each
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t ∈ T one has ‖ξti − ξt‖ < ε/3 for one ti and consequently by property (F 6) also

‖ξ(c)
ti − ξ

(c)
t ‖ < ε/3 for arbitrary c > 0. Property (F 7) allows us to find c > 0 such

that for all i = 1, . . . , n it holds ‖ξ(c)
ti − ξti‖ < ε/3. Then it follows

‖ξ(c)
t − ξt‖ ≤ ‖ξ

(c)
t − ξ

(c)
ti ‖+ ‖ξ(c)

ti − ξti‖+ ‖ξti − ξt‖ < ε. �

Lemma 2.9. Let ξ be a random variable with P(|ξ| ≤ c) = 1 for a real number c > 0.
Then ‖ · ‖p fulfills (F 8), in particular it holds for arbitrary a ∈ R

‖aξ‖p ≤ |a|(c+ 1)‖ξ‖p.

Proof. It holds

‖aξ‖p = E

[
|aξ|

1 + |aξ|

]
≤ |a|E

[
1 + |ξ|
1 + |aξ|

|ξ|
1 + |ξ|

]
and

P

(
1 + |ξ|
1 + |aξ|

≤ 1 + c

)
= 1. �

Theorem 2.10. Assume T is a compact Hausdorff topological space, (V, ‖ · ‖) is an
F−normed subspace of L0(K), such that the basic and the additional properties (F 1)-
(F 8) of F -norms are fulfilled and A ⊆ C(T,K) is a self-adjoint algebra, which is point-
separating and not point-vanishing on T . Then the set S := span{ηf : η ∈ V , f ∈ A}
is dense with respect to the uniform ‖ · ‖−convergence on T , i.e., in C(T, V ).

Proof. First it is proved that span{ηf : η ∈ V , f ∈ C(T,K)} is dense in C(T, V ).
One can use the truncation procedure. From Lemma 2.8 (ii) it follows

lim
c→∞

sup
t∈T
‖ξ(c)
t − ξt‖ = 0,

hence for some c > 0 it holds supt∈T ‖ξ
(c)
t − ξt‖ < ε/3. One constructs as in the proof

of Theorem 2.4 using (F 8)

ξ̂
(c)
t :=

n∑
i=1

ξ
(c)
ti zi(t)

with ξ̂c ∈ span{ηf : η ∈ V,P(|η| ≤ c) = 1, f ∈ C(T,K)} and

sup
t∈T
‖ξ̂(c)
t − ξ

(c)
t ‖ < ε/3.

For finishing the proof it again remains to approximate the functions zi ∈ C(T,K)
by functions z̃i(t) ∈ A ⊆ C(T,K) which is possible by the deterministic Stone-
Weierstrass Theorem 1.3. Based on (F 3) and (F 5) on finds δ > 0 such that

‖ξ(c)
ti ∆‖ < ε/(3n) for i = 1, . . . , n and ∆ ≤ δ. Then for suitable z̃i(t) ∈ A ⊆ C(T,K)

with supt∈T |zi(t)− z̃i(t)| < δ one gets

sup
t∈T
‖ξt −

n∑
i=1

ξ
(c)
ti z̃i(t)‖

≤ sup
t∈T
‖ξt − ξ(c)

t ‖+ sup
t∈T
‖ξ(c)
t − ξ̂

(c)
t ‖+

n∑
i=1

sup
t∈T
‖ξ̂cti(zi(t)− z̃i(t))‖ < ε. �
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Due to Lemma 2.9 this theorem includes the case of uniform stochastic convergence
on T .

Theorem 2.11. If T ⊂ Rd (d ∈ N∗) is a compact set, the additional properties (F 6)-
(F 8) of the F -norm in the previous theorem are not needed.

This is due to the fact that there exist open covers of T , such that each point of
T is an element of at most 2d open sets from this cover. Analogous results can also
be stated for periodic random functions.

Theorem 2.12. Theorem 2.5 and Theorem 2.6 remain true if one considers instead
of scalar-valued random variables random variables with values in a separable Hilbert
space X and corresponding F−normed subspaces of L0(X).

This can be shown again by using norms instead of absolute values in the proofs.
The truncation procedure can also be adapted. To see this remark that the set of
distributions of the random variables of (ξt ; t ∈ T ) is a relatively compact set. Then
by the Theorem of Prokhorov (see, e.g., Billingsley [1], Theorem 6.2) there exist for
each ε > 0 a compact set Kε ⊂ X with P(ξt ∈ Kε) > 1 − ε for all t ∈ T . This set
can also be assumed to be convex. Then the orthogonal projection on this set can be
used for the truncation procedure.

3. Conclusions

Several generalizations of the Stone-Weierstrass theorem about the possibility
of approximation of certain continuous random functions on compact sets by some
random functions from some subset are presented. Also the case of random variables
in the space of continuous functions is considered.

References

[1] Billingsley, P., Convergence of Probability Measures, John Wiley & Sons, New York,
1968.

[2] Bogachev, V.I., Measure Theory, Springer, Berlin, 2007.
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