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Four-dimensional Riemannian product manifolds
with circulant structures

Iva Dokuzova

Abstract. A 4-dimensional Riemannian manifold equipped with an additional
tensor structure, whose fourth power is the identity, is considered. This structure
has a circulant matrix with respect to some basis, i.e. the structure is circulant,
and it acts as an isometry with respect to the metric. The Riemannian product
manifold associated with the considered manifold is studied. Conditions for the
metric, which imply that the Riemannian product manifold belongs to each of
the basic classes of Staikova-Gribachev’s classification, are obtained. Examples of
such manifolds are given.
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1. Introduction

The study of Riemannian manifolds M with a metric g and an almost product
structure P is initiated by K. Yano in [15]. The classification of the almost prod-
uct manifolds (M, g, P ) with respect to the covariant derivative of P is made by
A. M. Naveira in [11]. The manifolds (M, g, P ) with zero trace of P are classified with
respect to the covariant derivative of P by M. Staikova and K. Gribachev in [14]. The
basic classes of this classification are W1,W2 and W3. Their intersection is the class
W0 of Riemannian P -manifolds. The class of the Riemannian product manifolds is
W1 ⊕ W2. It is formed by manifolds with an integrable structure P . The class W1

consists of the conformal Riemannian P -manifolds. Some of the recent studies of the
Riemannian almost product manifolds are made in [4], [5], [7], [8] and [12].

Problems of differential geometry of a 4-dimensional Riemannian manifold M
with a tensor structure Q of type (1, 1), which satisfies Q4 = id, Q2 6= ±id, are
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considered in [1], [2], [3], [10] and [13]. The matrix of Q in some basis is circulant and
Q is compatible with the metric g, so that an isometry is induced in any tangent space
on M . Such a manifold (M, g,Q) is associated with a Riemannian almost product
manifold (M, g, P ), where P = Q2 and trP = 0.

In the present work we continue studying the manifold (M, g,Q) and the as-
sociated manifold (M, g, P ). Our purpose is to determine their position, among the
well-known manifolds, by using the classifications in [11] and [14]. In Sect. 2, we re-
call some necessary facts about (M, g,Q) and about (M, g, P ). In Sect. 3, we obtain
the components of the fundamental tensor F , determined by the metric g and by
the covariant derivative of P . We establish that (M, g, P ) is a Riemannian product
manifold, i.e. (M, g, P ) belongs to the classW1⊕W2. We find necessary and sufficient
conditions under which (M, g, P ) belongs to each of the classes W0, W1 and W2. In
Sect. 4, we give some examples of the considered Riemannian product manifolds.

2. Preliminaries

Let M be a 4-dimensional Riemannian manifold equipped with a tensor structure
Q of type (1, 1). The structure Q has a circulant matrix, with respect to some basis,
as follows:

(Qk
j ) =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 . (2.1)

Then Q has the properties

Q4 = id, Q2 6= ±id.

Let the metric g and the structure Q satisfy

g(Qx,Qy) = g(x, y), x, y ∈ X(M).

The above condition and (2.1) imply that the matrix of g has the form:

(gij) =


A B C B
B A B C
C B A B
B C B A

 . (2.2)

Here A, B and C are smooth functions of an arbitrary point p(x1, x2, x3, x4) on M .
It is supposed that A > C > B > 0 in order g to be positive definite. The manifold
(M, g,Q) is introduced in [13].

Anywhere in this work, x, y, z will stand for arbitrary elements of the algebra
X(M) of the smooth vector fields on M . The Einstein summation convention is used,
the range of the summation indices being always {1, 2, 3, 4}.

In [1], it is noted that the manifold (M, g, P ), where P = Q2, is a Riemann-
ian manifold with an almost product structure P , because P 2 = id, P 6= ±id and
g(Px, Py) = g(x, y). Moreover trP = 0. For such manifolds Staikova-Gribachev’s
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classification is valid [14]. This classification was made with respect to the tensor F
of type (0, 3) and the associated 1-form θ, which are defined by

F (x, y, z) = g((∇xP )y, z), θ(x) = gijF (ei, ej , x). (2.3)

Here ∇ is the Levi-Civita connection of g, and gij are the components of the inverse
matrix of (gij) with respect to an arbitrary basis {ei}. The tensor F has the following
properties

F (x, z, y) = F (x, y, z), F (x, Py, Pz) = −F (x, y, z). (2.4)

The manifolds (M, g, P ) with an integrable structure P are called Riemannian product
manifolds and they form the class W1 ⊕ W2. The characteristic conditions for the
classes W0, W1,W2 and W1 ⊕W2 are the following:

i) W0:
F (x, y, z) = 0, (2.5)

ii) W1:

F (x, y, z) =
1

4

(
(g(x, y)θ(z) + g(x, z)θ(y)

− g(x, Py)θ(Pz)− g(x, Pz)θ(Py)
)
,

(2.6)

iii) W2:

F (x, y, Pz) + F (y, z, Px) + F (z, x, Py) = 0, θ(z) = 0, (2.7)

iv) W1 ⊕W2:

F (x, y, Pz) + F (y, z, Px) + F (z, x, Py) = 0. (2.8)

In the next section, we obtain conditions under which (M, g, P ) belongs to each
of the classes i) – iv) and to some of their subclasses. Thus the following statements
are useful for the completeness of our research.

Theorem 2.1. [10] If the structure Q of (M, g,Q) satisfies ∇Q = 0, then ∇P = 0, i.e.
(M, g, P ) belongs to the class W0.

Theorem 2.2. [13] The structure Q of (M, g,Q) satisfies ∇Q = 0 if and only if the
following equalities are valid:

A3 = C1, A1 = C3, B3 = B1, 2B1 = C4 + C2,
B4 = B2, A2 = C4, A4 = C2, 2B2 = C1 + C3,

(2.9)

where Ai = ∂A
∂xi , Bi = ∂B

∂xi , Ci = ∂C
∂xi .

3. The fundamental tensor F on (M, g, P )

The components of Nijenhuis tensor N of the almost product structure P are
determined by the equalities

Nk
ij = P a

i (∂aP
k
j − ∂jP k

a )− P a
j (∂aP

k
i − ∂iP k

a ).

It is known from [14] that the vanishing of the Nijenhuis tensor N is equivalent to
the condition (2.8).
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Using (2.1), we get that the components of the almost product structure P = Q2

on (M, g, P ) are given by the matrix

(P k
j ) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 . (3.1)

Evidently the Nijenhuis tensor N of P vanishes, so we have the following

Lemma 3.1. The manifold (M, g, P ) belongs to the class W1 ⊕W2.

Further, we will consider each of the cases when the fundamental tensor F on
(M, g, P ) satisfies the identities (2.5), (2.6) or (2.7), since F satisfies (2.8). First we
calculate the components of F .

Lemma 3.2. The nonzero components Fijk = F (ei, ej , ek) of the fundamental tensor
F on the manifold (M, g, P ) are given by

F111 = −F133 = A3 − C1, 2F112 = −2F134 = A4 −B1 − C2 +B3,
F122 = −F144 = B4 −B2, 2F114 = −2F123 = A2 −B1 − C4 +B3,
F211 = −F233 = B3 −B1, 2F212 = −2F234 = A3 −B2 − C1 +B4,
F222 = −F244 = A4 − C2, 2F223 = −2F214 = A1 +B4 − C3 −B2,
F311 = −F333 = C3 −A1, 2F334 = −2F312 = A2 +B1 − C4 −B3,
F322 = −F344 = B4 −B2, 2F323 = −2F314 = A4 +B1 − C2 −B3,
F411 = −F433 = B3 −B1, 2F434 = −2F412 = A1 +B2 − C3 −B4,
F422 = −F444 = C4 −A2, 2F414 = −2F423 = A3 −B4 − C1 +B2.

(3.2)

Proof. The inverse matrix of (gij) has the form:

(gik) =
1

D


A B C B
B A B C
C B A B
B C B A

 , (3.3)

where

A =A(A+ C)− 2B2, B = B(C −A), C = 2B2 − C(A+ C),

D =(A− C)
(
(A+ C)2 − 4B2

)
.

(3.4)

The next formula for the Christoffel symbols Γ of ∇ is well known:

2Γk
ij = gak(∂igaj + ∂jgai − ∂agij).
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Then, using (2.2), (3.3) and (3.4), we calculate these coefficients. They are given
below:

Γi
ii =

1

2D

(
B(C −A)(4Bi −Aj −As) + 2B2(2Ci −Ai −Ak)

+A(A+ C)Ai − C(A+ C)(2Ci −Ak)
)
,

Γj
ii =

1

2D

(
B(C −A)(Ai + 2Ci −Ak) + 2B2(Aj −As)

+A(A+ C)(2Bi −Aj)− C(A+ C)(2Bi −As)
)
,

Γk
ii =

1

2D

(
B(C −A)(4Bi −Aj −As) + 2B2(Ai +Ak − 2Ci)

+A(A+ C)(2Ci −Ak)− C(A+ C)Ai

)
,

Γi
ij =

1

2D

(
B(C −A)(Ai + Ci +Bj −Bs) + 2B2(Bi + Cj −Bk −Aj) (3.5)

+A(A+ C)Aj − C(A+ C)(Bi + Cj −Bk)
)
,

Γk
ij =

1

2D

(
B(C −A)(Ai + Ci +Bj −Bs) + 2B2(Bk − Cj −Bi +Aj)

+A(A+ C)(Bi + Cj −Bk)− C(A+ C)Aj

)
,

Γj
ik =

1

2D

(
B(C −A)(Ai +Ak) + 2B2(Cj − Cs)

+A(A+ C)(Bi +Bk − Cj)− C(A+ C)(Bi +Bk − Cs)
)
,

Γi
ik =

1

2D

(
B(C −A)(2Bi + 2Bk − Cj − Cs) + 2B2(Ai −Ak)

+A(A+ C)Ak − C(A+ C)Ai)
)
.

In the equalities (3.5) it is assumed that i 6= j 6= k 6= s and the numbers in the pair
(i, k) (resp. in (j, s)) are simultaneously even or odd.

The matrix of the associated metric g̃, determined by g̃(x, y) = g(x, Py), is of the
type:

(g̃ij) =


C B A B
B C B A
A B C B
B A B C

 . (3.6)

Due to (2.3) the components of F are Fijk = ∇ig̃jk. The well-known are the following
identities for a Riemannian metric:

∇ig̃jk = ∂ig̃jk − Γa
ij g̃ak − Γa

ikg̃aj . (3.7)

Applying (3.5) and (3.6) into (3.7), and bearing in mind (2.3) and (2.4), we find the
nonzero components of F , given in (3.2). �

Immediately, we have the following
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Corollary 3.3. The components θk = gijF (ei, ej , ek) of the 1-form θ on the manifold
(M, g, P ) are expressed by the equalities

θ1 =
1

D

(
C(2C3 − 2A1) +B(4B3 − 4B1) +A(2A3 − 2C1)

)
,

θ2 =
1

D

(
A(2A4 − 2C2) +B(4B4 − 4B2) + C(2C4 − 2A2)

)
,

θ3 =
1

D

(
C(2C1 − 2A3) +B(4B1 − 4B3) +A(2A1 − 2C3)

)
,

θ4 =
1

D

(
A(2A2 − 2C4) +B(4B2 − 4B4) + C(2C2 − 2A4)

)
.

(3.8)

Proof. The equalities (3.8) follow by direct computations from (3.2), (3.3) and (3.4).
�

Having in mind Lemma 3.1, Lemma 3.2 and Corollary 3.3 we obtain the next
statements.

Theorem 3.4. The manifold (M, g, P ) belongs to the class W0 if and only if the fol-
lowing equalities are valid:

A3 = C1, A1 = C3, B3 = B1, B4 = B2, A2 = C4, A4 = C2. (3.9)

Proof. Due to (3.2) we get that (2.5) is satisfied if and only if (3.9) holds true. �

Theorem 3.5. The manifold (M, g, P ) belongs to the class W1 if and only if the fol-
lowing equalities are valid:

(A+ C)(B4 −B2) = B(A4 − C2 + C4 −A2),

(A+ C)(B3 −B1) = B(A3 − C1 + C3 −A1).
(3.10)

Proof. Using (2.2), (3.1), (3.2), (3.6), (3.8) and (3.10) we obtain

Fkij =
1

4

(
gkjθi + gkiθj − g̃kj θ̃i − g̃kiθ̃j

)
, θ̃i = P a

i θa, (3.11)

which is equivalent to (2.6).
Vice versa, if (3.11) holds true, then (2.2), (3.1), (3.2), (3.6) and (3.8) imply

(3.10). �

In [14], it is proved thatW1 =W3⊕W6, whereW3 andW6 are two basic classes
of Naveira’s classification. These classes have the following characteristic conditions
([6], [9]):

W3 : F (x, y, z) =
1

4

((
g(x, y) + g(x, Py)

)
θ(z)

+
(
g(x, z) + g(x, Pz)

)
θ(y)

)
, θ(Pz) = −θ(z).

(3.12)

W6 : F (x, y, z) =
1

4

((
g(x, y)− g(x, Py)

)
θ(z)

+
(
g(x, z)− g(x, Pz)

)
θ(y)

)
, θ(Pz) = θ(z).

(3.13)
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Corollary 3.6. The manifold (M, g, P ) belongs to the class W3 if and only if the
following equalities are valid:

A4 − C2 = C4 −A2, (A+ C)(B4 −B2) = 2B(A4 − C2),
A3 − C1 = C3 −A1, (A+ C)(B3 −B1) = 2B(A3 − C1).

(3.14)

Proof. The local form of (3.12) is

Fkij =
1

4

(
(gki + g̃ki)θj + (gkj + g̃kj)θi

)
, θ̃i = −θi. (3.15)

Taking into account (3.8) and (3.10), we get that (3.15) is satisfied if and only if (3.14)
holds true. �

Corollary 3.7. The manifold (M, g, P ) belongs to the class W6 if and only if the
following equalities are valid:

A4 − C2 = A2 − C4, B4 = B2, A3 − C1 = A1 − C3, B3 = B1. (3.16)

Proof. The local form of (3.13) is

Fkij =
1

4

(
(gki − g̃ki)θj + (gkj − g̃kj)θi

)
, θ̃i = θi. (3.17)

Having in mind (3.8) and (3.10), we get that (3.17) is satisfied if and only if (3.16)
holds true. �

Theorem 3.8. The manifold (M, g, P ) belongs to the class W2 if and only if the fol-
lowing equalities are valid:

(A+ C)(C3 −A1) = 2B(B3 −B1), C3 −A1 = A3 − C1,
(A+ C)(C4 −A2) = 2B(B4 −B2), C4 −A2 = A4 − C2.

(3.18)

Proof. From (2.7) and (3.8) we have

C(2C3 − 2A1) +B(4B3 − 4B1) +A(2A3 − 2C1) = 0,

A(2A4 − 2C2) +B(4B4 − 4B2) + C(2C4 − 2A2) = 0,

C(2C1 − 2A3) +B(4B1 − 4B3) +A(2A1 − 2C3) = 0,

A(2A2 − 2C4) +B(4B2 − 4B4) + C(2C2 − 2A4) = 0.

(3.19)

The equalities (3.4) and (3.19) imply (3.18).

Vice versa. We apply (3.18) into (3.8) and we get that (2.7) holds true. �

4. Examples of manifolds (M, g, P )

In this section we give a solution of each system of differential equations (3.9),
(3.10), (3.14), (3.16) and (3.18), in order to get examples of (M, g, P ) of the classes
considered.
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4.1. An example in W0

Let (M, g, P ) be a manifold with

A = (x1)2 + (x2)2 + (x3)2 + (x4)2, B = x1 + x2 + x3 + x4,

C = 2x1x3 + 2x2x4,
(4.1)

where xi > 1.

Evidently A > C > B > 0 are valid. We check directly that the functions (4.1)
and their derivatives satisfy the equalities (3.9).

Thus we have the following

Proposition 4.1. The manifold (M, g, P ) with (4.1) belongs to W0.

Remark 4.2. We note that the functions (4.1) do not satisfy (2.9). Then we have
∇Q 6= 0 for (M, g, P ), where P = Q2. An example of a manifold (M, g,Q) with
∇Q = 0 is given in [13].

4.2. An example in W3

Let (M, g, P ) be a manifold with

A = a(x1 + x2 − x3 − x4), B = b(x1 + x2 − x3 − x4),

C = c(x1 + x2 − x3 − x4),
(4.2)

where a, c, b ∈ R, a > c > b > 0, x1 + x2 − x3 − x4 > 0.

The inequalities A > C > B > 0 hold true. The functions (4.2) and their
derivatives satisfy the equalities (3.14) and do not satisfy the conditions (3.9).

Therefore, we establish the following

Proposition 4.3. The manifold (M, g, P ) with (4.2) belongs to W3 but does not belong
to W0.

4.3. An example in W6

Let (M, g, P ) be a manifold with

A = a(x1 + x2 + x3 + x4), B = b(x1 + x2 + x3 + x4),

C = c(x1 + x2 + x3 + x4),
(4.3)

where a, c, b ∈ R, a > c > b > 0, x1 + x2 + x3 + x4 > 0.

The inequalities A > C > B > 0 are satisfied. The functions (4.3) and their
derivatives satisfy the equalities (3.16) and do not satisfy the conditions (3.9).

Immediately, we state the following

Proposition 4.4. The manifold (M, g, P ) with (4.3) belongs to W6 but does not belong
to W0.
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4.4. An example in W1

Let (M, g, P ) be a manifold with

A =a exp(x1 − x2), C = c exp(x4 − x3),

B =a exp(x1 − x2)− c exp(x4 − x3),
(4.4)

where a, c ∈ R+, ln
c

a
< x1 − x2 + x3 − x4 < ln

2c

a
.

Then A > C > B > 0 are valid. The functions (4.4) satisfy the equalities (3.10)
but do not satisfy any of the conditions (3.14) and (3.16).

Therefore, we establish the following

Proposition 4.5. The manifold (M, g, P ) with (4.4) belongs to W1 but does not belong
to W3 or to W6.

4.5. An example in W2

Let (M, g, P ) be a manifold with

A = exp (x1 + x2 − x3 − x4), B = sinh(x1 + x2 − x3 − x4),

C = exp (x3 + x4 − x1 − x2),
(4.5)

where 0 < x1 + x2 − x3 − x4 < ln
√

3.
The inequalities A > C > B > 0 are satisfied. The functions from (4.5) give a

solution to (3.18) but do not give a solution to (3.9).
Consequently we have the following

Proposition 4.6. The manifold (M, g, P ) with (4.5) belongs to W2 but does not belong
to W0.

5. Conclusion

In this paper we classify the 4-dimensional Riemannian product manifolds
(M, g, P ), associated with the Riemannian manifolds with circulant structures
(M, g,Q), using the well-known classifications in [11] and [14].
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