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A—Summation Process in The Space of
Locally Integrable Functions
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Abstract. In this paper, using the concept of summation process, we
give a Korovkin type approximation theorem for a sequence of positive
linear operators acting from L, 4 (loc), the space of locally integrable
functions, into itself. We also study rate of convergence of these opera-
tors.

Mathematics Subject Classification (2010): 41A25, 41A36.

Keywords: summation process, positive linear operators, locally inte-
grable functions, Korovkin type theorem, modulus of continuity, rate of
convergence.

1. Introduction

Approximation theory has many connections with theory of polynomial ap-
proximation, functional analysis, numerical solutions of differential and inte-
gral equations, summability theory, measure theory and probability theory
([1], [14], [7]).

A Korovkin type theorem for positive linear operators acting from
L, (a,b) to L, (a,b) was studied in [5], [8], [11] and [20]. Note that all the re-
sults just mentioned are devoted to the case of a finite interval (a, b). Roughly
speaking a Korovkin type approximation theorem provides conditions for
whether a given sequence of positive linear operators converges strongly to
the identity operator ([1],[12] and [14]). These theorems exhibit a variety of
test functions which guarantee that convergence property holds on the whole
space provided it holds on them ([1], [14]). If the sequence of positive linear
operators does not converge, then it might be useful to use matrix summabil-
ity methods. The main aim of using summability methods has always been
to make a non-convergent sequence to converge. This was the motivation
behinde Fejer’s famous theorem showing that Cesaro method being effective
in making the Fourier series of a continuous periodic function to converge
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([22]) . Summability methods are also considered in physics ([6]) to make a
nonconvergent sequence to converge.

In this paper, using matrix summability methods which includes both
convergence and almost convergence, we obtain a Korovkin type approxima-
tion theorem of a function f in L, , (loc). We also give rate of convergence
in Ly, (loc) approximation by means of the modulus of continuity. We
recall that some results concerning the approximation in L, , (loc) may be
found in [9],[10], [18],[19], [21]. Also L, , approximation via Abel conver-
gence has been studied in [4]. We remark that matrix summability methods
are quite effective, in summing sequences of nonlinear integral operators ([2]) .

First of all, we recall some notation and basic definitions used in this

paper.
Let g(z) =1+ 2% ; —00 < & < 0o . For h > 0, by L, 4(loc) we will
denote the space of measurable functions f satisfying the inequality,

x+h 1/p
/|f(t)|pdt <M;q(z) ,—c0o<z<00 (1)
x—h

where p > 1 and My is a positive constant which depends on the function f.
It is known [13] that L, ,(loc) is a linear normed space with norm,

oth 1/p
<2lh J f(f)lpdt>
z—h
1fll,,= sup :

—oo<x <00 q (ZU)

2h

2)

where [ f||, , may also depend on h > 0. To simplify the notation, we need
the following. For any real numbers a and b put

b 1/p
1
i L0 (@), = | = [I70Fdt)

If; Lp (x = h,z + D)

fiLpq(a,b = sup Pq.
1f3 Lp,q (a,0)]],, , S @)

L z|>a = sup Pa

||f b,q (| ‘ )”p,q |z|>a q(x)

With this notation the norm in L, , (loc) may be written in the form

1/ Lp (x — h,z + h)|

q()

It is known [13] that Lz,q (loc) is the subspace of all functions f € L, 4 (loc)

for which there exists a constant k; such that
S = kg Ly (e = Bz B

fllp,q = sup
1 £1lp.q = sup

=0.
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As usual, if T is a positive linear operator from L, , (loc) into L, , (loc), then

the operator norm ||T|| is given by ||T|| := sup H”TfJ‘”al,q.
#0 Wlra

Let A : = {A(”)} = {a,(;;)} be a sequence of infinite matrices with
nonnegative real entries. A sequence {7} of positive linear operators from

Ly, 4 (loc) into itself is called a strong A—summation process in L, 4 (loc) if
{T; f} is strongly A—summable to f for every f € Ly, (loc), i.e.,

lilgnZakj IT5f = fll,, =0, uniformly in n.
j

Some results concerning strong summation processes in Ly 4 (loc) may be
found in [3].

2. A—summation process in L, , (loc)

The main aim of the present work is to study a Korovkin type approxima-
tion theorem for a sequence of positive linear operators acting on the space
Ly, 4 (loc) by using matrix summability method which includes both conver-
gence and almost convergence. We also present an example of positive linear
operators which verifies our Theorem 4 but does not verify the classical one
( see Theorem 1 below).

Let A : = {A(”)} = {al(;;.)} be a sequence of infinite matrices with
nonnegative real entries. A sequence {7} of positive linear operators from

Ly, 4 (loc) into itself is called an A—summation process in Ly 4 (loc) if {1} f}
is A—summable to f for every f in L, 4 (loc), i.e.,

lilgn Z ap; Tif — f =0, uniformly in n, (3)
J P,

where it is assumed that the series converges for each k,n and f. Some results
concerning summation processes on some other spaces may be found in [16],
[17] and [20].

The next result establishes a relationship between strong summation
process and summation process in L, 4 (loc) .

Proposition 1. Let A : = {A(")} = {a,(;;)} be a sequence of infinite

matrices with nonnegative real entries and assume that
S (n) _
h]?lblrllpzakj =1
J

Let {T;} be a sequence of positive linear operators from L, , (loc) into it-
self If {T;} is a strong A—summation process in L, 4 (loc) then {T}} is an
A—summation process in Ly, 4 (loc) .

Proof. The proof may be obtained by using the idea given in [16].



4 Nilay Sahin Bayram and Cihan Orhan

Throughout the paper let
Bl(cn) (f) B(n) fa Zakj

where we assume that the series on the rlght is convergent for each k,n € N
and f € L, , (loc).

We recall the following result of [13] that we need in the sequel.

Theorem 1. Let {T;} be a sequence of positive linear operators from
L, 4 (loc) into itself and satisfy the conditions

i) The sequence (T}) is uniformly bounded, that is, | T}|| < C < oo,
where C' is a constant independent of j,

ii) For f; (y) = v* i =0,1,2;

fim IT; (fisx) = fi (@)l],,, = O.
Then

for each function f € L  (loc), (see [13]).
We show that the Korovkin type theorem holds in the subspace
L’;’ (loc) . First we give the following

Lemma 1. Let A: = {A(”)} {akj)} be a sequence of infinite matri-

ces with nonnegative real entries. Let {I;} be a sequence of positive linear
operators from L, , (loc) into itself satisfying the condition

lim sup HB;(C")(fi; z) — fi (z)
n
Then, for any continuous and bounded function f on the real axis, we have

li]gnsglp HB;(JL)(f;x) —f(@);Lpg (aab)H =0

=0.

p,q

where a and b are any real numbers.
Proof. By the uniform continuity of f on the interval [a,b] and by the posi-
tivity and linearity of T}, we may write that

[B( @032) = 1 @)L @0 < B 0+ £ @) - £ @)i0) = £ @)
<||Bas 0 - £ @) s)|

b,q
+1f (@) “B;i")(l;x) -1
b,q
<5+—HB %) - 2|
p,q
+ 2 B
p.q
2Mc?
+< 626 +e +M) HB(") (12 —1H

Hence the proof is completed.

p.q
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Theorem 2. Let A : :{A(")} = {afg)} be a sequence of infinite

matrices with nonnegative real entries. Let {7} be a sequence of positive
linear operators from L, 4 (loc) into itself. Assume that

H:= suEZaZ’j 1T < oc. (4)
e

Then {7} is an A — summation process in L’;,q (loc) ,i.e. for any function
fe L’;’q (loc)
lim sup HB,(Cn)(f;J;) —f (x)” =0
ko n psq
if and only if
=0

p,q

B (fi52) - £ @)

where f; (y) = y* for i = 0,1,2.

Proof. We follow [13] up to a certain stage. If f € L’;yq (loc) then f —
krq € Lg’q (loc). So it is sufficient to prove the theorem for the function
feLy, (loc). For e > 0, there exists a point 20 such that the inequality

lim sup
kn

z+h 1/p

o [ fora) <@ o)
r—h

holds for all z, || > x¢. By the well known Lusin theorem, there exists a
continuous function ¢ on the finite interval [—z¢ — h, o + h] such that the
inequality

If =3 Lp (o, x0)|| < (6)
is fulfilled. Setting
2heP
] ine———.,h 7
<mm{MP(x0)7 }a (7)
where M (x¢) = max {I ‘rilax . lo ()], 1}, we define a continuous function g
z|<zo+
by
(@), if [z <zo+h
g(x)= 0 ,if |zl > a0+ h+6
linear , otherwise.
Then by (5), (6), (7) and the Minkowski inequality, we obtain
1f =gl <e ®)

for any € > 0 (see [13]).
Now we can find a point x; > zg such that

q(z1) > M (z)

and g (z) =0 for |z| > x4, 9)
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where M (x¢) is defined above. Then by (6), (7), (8) and by Lemma 1 we get

B (550) - 1 @)

N

S LA e
R a9 1f=all,,

<52a 1511, —&-8—&-HBkg g

p,q

<e | S al 1Tl + 1) + || B9 = g Ly (—o1, 1)
J

+||B"g = 91 Ly (12l = 1)

<e Zakj 151, +2 ) + || B 95 Ly (2] = 20)|

(10)

Since |g (z)| < M (xp) for all z € R, we can write
|B7g: Ly (12l > zl)Hp M () | BT Ly 1 2 o)

< M (w0) | B{V1 = 13 Ly (fo] 2 2)|
+ M (o) |15 Lp,q (|| = z1)||
M (z,
+ Mwo)
P,q Q(Il)

< M (z,)||B™M1 -1

Considering hypothesis and (9) we get by (10) that

=0.
P\q

The next result shows that Korovkin type theorem does not hold in the whole
space Ly, 4 (loc).

Theorem 3. Let A : ={AM} = {ag;.)} be a sequence of infinite

matrices with nonnegative real entries. Let {1} be a sequence of positive
linear operators from L, , (loc) into itself satisfying

hm sup Z akj i(fisz) — fi(x) =0.

p,q

Then there exists a function f* in L, , (loc) for which

hmbup Za Tf - f > 217, (11)

p,q
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Proof. We consider the sequence of operators 7; given in [13]
(for j=1,2,,..)

Tj(f;;v):{ ol @+ h) e el(2 -1 h (25 +1)h)

f(x) , otherwise.

As observed in [13] that T} : L, 4 (loc) = Ly 4 (loc) . Assume now that A :

{A(”)} = {al(g.)} is a sequence of infinite matrices defined by

™ — % msjsntk
kj 0 , otherwise.

It is shown in [13] that
ijfi_\ﬂHpﬂ — 0, (asj<—>co).

Now it is easy to verify that, for each ¢ = 0,1, 2

1 k4+n 1 k4+n 1 k4+n
T T;fi — [i =\l7— Tifi— —— i
k+1Z:Jf / k+1Z:Jf k+1z;f

J=n P,q J=n = lpg
1 k+n
=l\l77 Tifi — fi
i1 (im0
J=n P:q
1 k+n
S hr- 1T5fi = fill, 4
j=n

=0 (k— oo, uniformly in n).

Consider the following function f* given in [13] :

2 ifxe [J[(2k— 1)k, 2kh)
k=1

@) =93 _22  ifae ()[2kh (2k+1)h)
0 Lifz<o

7
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Then f* € L, 4 (loc) and we get

1 k+n
J=n p,q
1
1 x+h 1 k+n p P
a S em X T f| dt
x—h j=n
> sup
2€[(2n—1)h.2(n+k)h] q(z)
) 2nh+h | ki o P %
s | w2 @€ ) = ()] dE
2nh—h j=n
>

- q(2nh)
1
(;gp«2n—1)m%vgp
1+ 4n2h?
2175 (20— 1) A2
 1+4n2h2

On applying the operator liin sup on both sides one can see that
n

k+n
1
li . T, f* _ f* > 2171/;0
pae| P z_: it = -
7=n P.q

Therefore the theorem is proved.
In the whole space Ly, 4 (loc) we have the following

Theorem 4. Let A : = {A(")} = {ag;)} be a sequence of infinite matrices

with nonnegative real entries for which (4) holds. Let {T}} be a sequence of
positive linear operators from L, 4 (loc) into itself. Assume that

lim sup HB;(C")(fi;x) — fi (x)H =0

p.q

where f; (y) = y' for i = 0,1,2. Then for any functions f € L, , (loc) we have

=0

1B = iy (@ = bz h)|
liin sup | sup

n zER q* (Jf)

where ¢* is a weight function such that lim Ltz® _ )
|| =00 a*(z)

Proof. By hypothesis, given € > 0, there exists x¢ such that for all x with
|z| > o we have

1+ 22
q* (z)

<e. (12)
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Let f € L, 4 (loc). Then, for all n, k we get
o = B - 5Ly (2] > o)

<|B&r-1

p,q

<> a T,y + 11,
7

<Nl | Dol Ty, +1 | < N, say
J

Hence we have sup ’y,(cn) < 00. By Lusin’s theorem we can find a continuous

n,k
function ¢ on [—x, — h,zo + h] such that
|f —o; Ly (—x0 — h,z0 + h)|| < e. (13)
Now we consider the function G defined in [13] given by

o(=zo—h) ,x<—-x0—h
G(z):= @(xo) |zl <wzoth
ol@o+h) , z>x0+h

We see that G is continuous and bounded on the whole real axis. Now let
f € Lyq(loc). Then we get for all n, k that

615:n) = Zal(cz)TJf = fiLp,q (=0, x0)
J

< Hf - G; Ly, (_330 —h,zo + h)‘

S a7, + 1
J

+ Zal(cr,?TjG -G Ly, (_anxO)
J

Hence by the hypothesis and Lemma 1 we have
lillcn sup 5,2") =0. (14)
On the other hand, a simple calculation shows that

= YAl f
J

*

p.q

(n) q(@) q(x)
<p sup — + sup —

b |z|<zo 4 (Jf) k |z|>x0 4 (l‘)

< 5](6")]\/[ —|—;—;"y](€n), (for some M > 0). (15)
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It follows from (12), (13), (14), (15) and Lemma 1 that

ug” < q(@o) IIf = G5 Lyg (=m0 — hyzo + D) | Y o) [Ty, , +1
J

+ q(x0) Za,ﬁ?}Y}G—G;LP7q(—xo,zo) +eN
J

= Ke + q(x0) Z a,(;LJ?TjG —G; Ly ¢ (—x0,20)
J

where K := Mq (x9) + N and M := H + 1. By Lemma 1 we get

HBl(ﬁn)f_f?Lp (x —h,z+h)

p,q =0

limsup | sup
k n z€R q* (I)

Remark 1. We now present an example of a sequence of positive linear
operators which satisfies Theorem 4 but does not satisfy Theorem 1. Assume

now that A := {A(”)} = {a,(;;f)} is a sequence of infinite matrices defined by

4 = sn<ji<n+k
k.j 0o ., otherwise.

In this case A—summability method reduces to almost convergence, ([15]).
Let T : Ly 4 (loc) — L, 4 (loc) be given by

Tj(f;x)z{ (aiizhﬁﬂx*'h) €2 —1)h, (2j+1)h)

f(x) , otherwise.

The sequence {7} } satisfies Theorem 1 in [13]. It is also shown in [13] that for
all j €N, [T f]l,, <4l fll,,- Hence {T}} is an uniformly bounded sequence
of positive linear operators from L, , (loc) into itself. Also

B (f0) — fi(@)| =0

p.q

lillcn Sl:;p
where f; (y) =y for i =0, 1,2. Now we define {P;} by
Py (f;2) = (L+uy) T; (f;2)
where

{1 ,j=2" neN
Y%= o0 otherwise.

It is easy to see that {u;} is almost convergent to zero. Therefore the sequence
of positive linear operators {P;} satisfies Theorem 4 but does not satisfy
Theorem 1.
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3. Rates of Convergence For A—Summation Process in
L, , (loc)

In this section, using the modulus of continuity, we study rates of convergence
of operators given in Theorem 4.
We consider the following modulus of continuity:

w(f,0)= sup |f(y)—f()

|z—y|<é

where § is a positive constant, f € L, , (loc). It is easy to see that, for any
c>0andall feLy,(loc),

w(f,ed) < (14 [d)w(f,5), (16)
where [¢] is defined to be the greatest integer less than or equal to c.
We first need the following lemma
Lemma 2. Let A : = {A ”)} = {alc } be a sequence of infinite matrices with

nonnegative real entries. Let {T 7} be a sequence of positive linear operators
from L, 4 (loc) into itself. Then for each j € N and 6 > 0, and for every
function f that is continuous and bounded on the whole real axis, we have

|BE s = £i L ()| < w (£:0) [ B fo = fo

b,q

+2w (f;0) +C1 HB’En)fO N fOHp,q

where fo (t) = 1,0, (t) i= (t —2)°,C1 = sup |f («)] and
a<z<b

0= al(cn) = HBI(gn)‘Poc

P.q
Proof. Let f be any continuous and bounded function on the real axis, and

let x € [a,b] be fixed. Using linearity and monotonicity of T; and for any
0 >0, by (16), we get
B <f;x>—f<x>] SB;i”)(If(t — F@i2) +1f @ B (foi2) — fo (@)
o (v (857 2
+1f @) \Bk’” (foi ) = fo (@)
o (1+]57]
+1f (@ \B“” foi @) = fo (@)
< w(£,0)| B (fos0) = fo @)+ w(/,9)

(f J) ‘B(n) )| ’B](C") (fo;z) — fo (2)|.
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Now let C; = sup |f (z)] and § := a,(fn) = HBJSL)‘PI . Then we have
a<z<b p,q
|Bs =1 < w G o)||BY (o)~ o @) +2w(s9)

+C1||BY (fosw) = fo ()

p,q

Theorem 5. Let A : = {A(")} = {ag;)} be a sequence of infinite matrices

with nonnegative real entires. Let {1} be a sequence of positive linear opera-
tors from Ly, 4 (loc) into itself. Assume that for each continuous and bounded
function f on the real line, the following coonditions hold:

() limsup | B (foi2) — fo ()] =0,
n p,q
(i) liin supw (f,d) = 0.

Then we have
limsupHB,(Cn)f—fH =0.
k n P,q

Proof. Using Lemma 2 and considering (i) and (i7) , we have

lilgnsup )B,(Cn)f — fi Ly 4 (a, b)H =0

n

for all continuous and bounded functions on the real axis.

Theorem 6. Let A : = {A(")} = a,(;;-) be a sequence of infinite matrices
with nonnegative real entries for which (4) holds. Let {7} be a sequence of
positive linear operators from L, , (loc) into itself. For a given f € L, , (loc)
assume that

lim sup ‘B,(cn) (fisz) — fi () =0
Eon P:q
where f; (y) = y' for i =0,1,2. If
(i) timswp || B (foiw) = fo (@) =0,

(i1) liin supw (G,9) =0

where G is given as in the proof of Teorem 4. Then we have

0

B = 1Ly (@ = how - n)|
lilgnsup sup =

n z€R q* (.T)
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1er2

*(z)

where ¢* is a weight function such that lim
|| =00

Proof. It is known from Theorem 4 that

Q

uf” < q(@o) IIf = G Lyg (=m0 = hyzo + D)) | D af? [Ty, +1
J

+q(w0) [ B{G = Gi Ly g (—0,0)|| + &N
— Ke +q(x0) HB;”G — G Ly g (~0, xO)H

where K := Mq(x0)+ N and M := H+1. Then by Lemma 2 and Theorem
5 we get

u" < K+ q(w0) w(G;0) || B (fosw) = fo )|+ 20 (w0) w (G0)

Py
+4(20) €L |[B (ora) = fo )|
where C; := sup |G (z)| and the proof is completed.
—zro<x<TQ
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