Hermite-Hadamard type inequalities for F-convex functions involving generalized fractional integrals
DOI:
https://doi.org/10.24193/subbmath.2022.1.11Keywords:
Hermite-Hadamard inequality, F-convex, general fractional integral.Abstract
In this paper, we firstly summarize some properties of the family F and F-convex functions which are defined by B. Samet. Utilizing generalized fractional integrals new Hermite-Hadamard type inequalities for F-convex functions have been provided. Some results given earlier works are also as special cases of our results.
References
bibitem{Ali2} M.A. Ali, H. Budak, M. Abbas, M.Z. Sarikaya, and A. Kashuri,
textit{Hermite-Hadamard type inequalities for $h$-convex functions via
generalized fractional integrals}, Submitted, (2019).
bibitem{budak} H. Budak, M.Z. Sarikaya, and M.K. Yildiz, textit{%
Hermite--Hadamard type inequalities for }$mathit{F}$textit{-convex
function involving fractional integrals} Filomat 32(16) (2018), 5509--5518.
bibitem{budak2} H. Budak and M.Z. Sarikaya, textit{On Ostrowski type
inequalities for }$mathit{F}$textit{-convex function}, AIP Conference
Proceedings, 1833, 020057 (2017), doi: 10.1063/1.4981705.
bibitem{budak3} H. Budak, T. Tunc{c}, and M.Z. Sarikaya, textit{On
Hermite-Hadamard type inequalities for }$mathit{F}$textit{-convex functions%
}, Miskolc Math. Notes, 20(1) (2019), 169--191.
bibitem{definetti} B. Defnetti, textit{Sulla strati cazioni convesse},
Ann. Math. Pura. Appl. 30 (1949), 173--183.
bibitem{dragomir} S.S. Dragomir and C.E.M. Pearce, textit{Selected topics
on Hermite--Hadamard inequalities and applications}, RGMIA Monographs,
Victoria University, (2000).
bibitem{dragomir2} S.S. Dragomir and R.P. Agarwal, textit{Two inequalities
for differentiable mappings and applications to special means of real
numbers and to trapezoidal formula}, Appl. Math. Lett. 11(5) (1998), 91--95.
bibitem{Gorenflo} R. Gorenflo and F. Mainardi, textit{Fractional calculus:
integral and differential equations of fractional order}, Springer Verlag,
Wien (1997), 223--276.
bibitem{hudzik} H. Hudzik and L. Maligranda, textit{Some remarks on }$s$%
textit{-convex functions}, Aequationes Math. 48 (1994), 100--111.
bibitem{hyers} D.H. Hyers and S.M. Ulam, textit{Approximately convex
functions}, Proc. Amer. Math. Soc. 3 (1952), 821--828.
bibitem{kilbas} A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, textit{%
Theory and Applications of Fractional Differential Equations}, North-Holland
Mathematics Studies, 204 (2006).
bibitem{kirmaci} U.S. Kirmaci, textit{Inequalities for differentiable
mappings and applications to special means of real numbers and to midpoint
formula}, Appl. Math. Comput. 147 (2004), 91--95.
bibitem{man} O.L. Mangasarian, textit{Pseudo-convex functions}, SIAM
Journal on Control. 3 (1965), 281--290.
bibitem{Miller} S. Miller and B. Ross, textit{An introduction to the
Fractional Calculus and Fractional Differential Equations}, John Wiley &
Sons, USA, (1993), pp. 2.
bibitem{mohammed} P.O. Mohammed and M.Z. Sarikaya,textit{Hermite--Hadamard
type inequalities for} $F$textit{-convex function involving fractional
integrals}, J. Inequal. Appl., 2018(359) (2018).
bibitem{pecaric} J.E. Pev{c}ari'{c}, F. Proschan, and Y.L. Tong, textit{%
Convex functions, partial orderings and statistical applications}, Academic
Press, Boston, (1992).
bibitem{pearce} C.E.M. Pearce and J. Pecaric, textit{Inequalities for
differentiable mappings with application to special means and quadrature
formula}, Appl. Math. Lett. 13 (2000), 51--55.
bibitem{Podlubni} I. Podlubni, textit{Fractional Differential Equations},
Academic Press, San Diego, (1999).
bibitem{polyak} B. T. Polyak, textit{Existence theorems and convergence of
minimizing sequences in extremum problems with restrictions}, Soviet Math.
Dokl. 7 (1966), 72--75.
bibitem{samet} B. Samet, textit{On an implicit convexity concept and some
integral inequalities}, J. Inequal. Appl., 2016(308) (2016).
bibitem{sarikaya} M.Z. Sarikaya and F. Ertuu{g}ral, textit{On the
generalized Hermite-Hadamard inequalities}, Annals of the University of
Craiova--Mathematics and Computer Science Series, In Press.
bibitem{sarikaya2} M.Z. Sarikaya, A. Saglam, and H. Yildirim, textit{New
inequalities of Hermite-Hadamard type for functions whose second derivatives
absolute values are convex and quasi-convex}, Int. J. Open Probl. Comput.
Sci. Math., IJOPCM, 5(3) (2012), 1--14.
bibitem{sarikaya1} M.Z. Sarikaya and N. Aktan, textit{On the
generalization some integral inequalities and their applications,} Math.
Comput. Modelling, 54(9-10) (2011), 2175--2182.
bibitem{sarikaya3} M.Z. Sarikaya, A. Saglam, and H. Yildirim, textit{On
some Hadamard-type inequalities for }$h-$textit{convex functions}, J. Math.
Inequal., 2(3) (2008), 335--341.
bibitem{sarikaya4} M.Z. Sarikaya, E. Set, H. Yaldiz, and N. Basak, textit{%
Hermite--Hadamard's inequalities for fractional integrals and related
fractional inequalities}, Math. Comput. Modelling, 57 (2013), 2403--2407.
bibitem{sarikaya5} M.Z. Sarikaya, T. Tunc{c}, and H. Budak, textit{%
Simpson's type inequality for} $mathit{F}$textit{-convex function}. Facta
Univ., Ser. Math. Inf., 32(5) (2018), 747--753.
bibitem{set} E. Set and I. Mumcu, textit{Hermite--Hadamard type
inequalities for} $F$textit{-convex functions via Katukampola fractional
integral}, Submitted, (2018).
bibitem{varo} S. Varosanec, textit{On} $h$textit{-convexity}, J. Math.
Anal. Appl. 326(1) (2007), 303--311.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.