COPLEXES IN ABELIAN CATEGORIES

FLAVIU POP

ABSTRACT. Starting with a pair F : A 2 B : G of additive and contravariant
functors which are adjoint on the right, between abelian categories, and with a
class U, we define the notion of (F,U)-coplex and, considering a reflexive object
U of A with F(U) = V projective object in B, we construct a natural duality
between the category of all (F,add(U))-coplexes in A and the subcategory of
B consisting in all objects in B which admit a projective resolution with all
terms in the class add(V).

1. INTRODUCTION

The study of dualities between subcategories of the module categories, induced
by Hom'’s contravariant functors associated to a given bimodule, is very important
in the Module Theory in order to compare some special classes of modules. Also,
is very useful to generalize such dualities, between module categories, to dualities
induced by a pair of adjoint functors between abelian (or, Grothendieck) categories,
because they could be applied to different pairs of adjoint functors. In [7], Castafio-
Iglesias generalized the notion of costar module, introduced by Colby and Fuller
in [8], to the notion of costar object in Grothedieck categories. In [5], the authors
extends the notion of f-cotilting module (see, for example, [16]) to the notion of
f-cotilting pair of contravariant functors. In [14], it is constructed a natural duality,
induced by a pair of adjoint contravariant functors between abelian categories and,
applying this result to some special classes of objects, the author generalizes some
of the results related to the notion of finitistic n-self cotilting module, introduced by
Breaz in [4]. A particular case of finitistic n-self cotilting module is also generalized
in [6]. Starting with a pair of adjoint covariant functors F : A = B : G, between
abelian categories, in [15] it is studied, inspired by some of the results obtained by
Fuller in [12] on module categories, some closure properties of some full subcate-
gories C and D such that the restrictions F : C &2 D : G induce an equivalence. In [1]
and [2], it is generalized the concepts of r-costar module and Co-+"-module to the
concepts of r-costar pair and Co-*"-tuple of contravariant functors between abelian
categories. Moreover, in [3], the author generalizes x*-modules and x"-modules to
*-tuples and x"-tuples of covariant functors between abelian categories.

In this paper, we extend the notion of G-coplex, introduced by Faticoni in [10]
(see also [11, Chapter 9]) in module categories to the notion of (F,U)-coplex in
arbitrary abelian categories. More exactly, starting with a pair F : A =2 B : G
of additive and contravariant functors, between two arbitrary abelian categories,
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which are adjoint on the right and with a class U, we define the notion of (F,U)-
coplex, associated to this pair of functors and to the considered class. Then, setting
the class U to be the class add(U), i.e. the class of all direct summands of finite
direct sums of copies of U, for some reflexive object U of A with F(U) = V being
projective object in B, we construct a natural duality between the category of all
(F,add(U))-coplexes in A and the subcategory of B consisting in all objects in B
which admit a projective resolution with all terms in the class add(V).

2. PRELIMINARIES

Throughout this paper, we consider a pair F : A 2 B : G of additive and
contravariant functors, between two abelian categories, which are adjoint on the
right with the natural transformations of right adjunction 6 : 14 — GF and ( :
1z — FG. We note that the natural transformations of right adjunction, § and
¢, satisfy the identities F(dx) o Cp(x) = lp(x) and G(Cy) o dg(y) = lg(y) for all
X € A and for all Y € B. Moreover, we mention that the functors F and G are left
exact.

The classical example of such a pair of functors is the following (see, for example,
[9, Chapter 4]).

Ezample 2.1. Let R and S be two unital associative rings and let U be an (S, R)-
bimodule. If we denote by Mod-R (respectively, by S-Mod) the category of all right
R- (respectively, left S-) modules, then the pair of Hom’s contravariant functors
induced by U,

A = Hompg(—,U) : Mod-R = S-Mod : Homg(—,U) = A’,
is a pair of right adjoint contravariant functors via the adjunction

Uxy : HOIIlR()(7 HOms(Y, U)) — HOIns(Y7 HOIHR(X, U))
with

pxy (F)y) : @ = f(2)(y)

where X € Mod-R,Y € S-Mod,z € X,y € Y, f € Homp(X,Homg(Y,U)). As-
sociated to this adjunction, the natural transformations J and ¢ are in fact the
evaluation maps

0x : X - Homg(Hompz(X,U),U);dx(x) : f — f(x)

and
Cy : Y = Homp(Homg(Y,U),U); ¢y (y) : g = 9(y),
where X € Mod-R, Y € S-Mod, z € X,y €Y, f € Homg(X,U),g € Homg (Y, U).
O

Castario-Iglesias, in [7], gives an example of a pair of right adjoint contravariant
functors between the categories of all G-graded unital right R-modules and of all
G-graded unital left S-modules, where G is a group and R and S are two G-graded
unital rings. Other examples of such pairs of functors could be found in [14].

An object X in A (respectively, in B) is called J-faithful (respectively, ¢-faithful)
if 0x (respectively, (x) is a monomorphism and we will denote by Faiths (respec-
tively, by Faith¢) the class of all o-faithful (respectively, (-faithful) objects. An
object X in A (respectively, in B) is called d-reflexive (respectively, (-reflexive) if
0x (respectively, (x) is an isomorphism and we will denote by Refls (respectively,
by Refl.) the class of all é-reflexive (respectively, (-reflexive) objects.
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We have the following basic results related to the closure properties of the classes
of all faithful objects (see [5] for the proof).

Lemma 2.2. The following statements hold:
(a) F(A) C Faith¢ and G(B) C Faiths;
(b) The classes Faiths and Faithe are closed with respect to subobjects.

Recall that, for a given object X, add(X) denotes the class of all direct summands
of finite direct sums of copies of X. The following basic results are often used in
this paper.

Lemma 2.3. Let U be a d-reflexive object with F(U) = V. Then:
(a) V is (-reflexive;
(b) add(U) C Refls and add(V) C Refl¢;
(c¢) F(add(U)) = add(V) and G(add(V)) = add(U).

By Comp 4 will be denoted the category of all complexes in 4. We also denote
by H,(C) the n-th homology of C, for some complex C € Comp 4 and for some
integer n.

Definition 2.4. Let U be a class of objects in A. A complex C in Comp 4
CZC()i)CHgCgE)...

is called (F,U)-coplex if the following conditions are satisfied:

(1) Cr €U, for all k > 0;
(2) The induced complex

FC):... Ry " rer) " F(Cy)

is an exact sequence in B.

Now, for a class U of objects in A, we define the category of all (F,U)-coplexes,
denoted by (F,U)-coplex, as follows:

(A) the class of objects consists in the class of all (F,U)-coplexes C;
(B) the set of morphisms between two (F,U)-coplexes C and C’, consists in the
set of all homotopy classes of chain maps f:C — C’.

For the rest of the paper, we set a §-reflexive object U in A such that V = F(U)
is a projective object in B. Moreover, we suppose that all considered subcategories
of A and B are isomorphically closed.

Let Y and B be two objects in B and let n be a positive integer. A projective
resolution -+ — P = Py = Y — 0 of Y is called finitely-B-generated if P; €
add(B) for all i > 0. We will denote by gen®(B) the class of all objects X € B such
that there exists a finitely-B-generated projective resolution of X. A projective
resolution -+ = P41 - P, > Ppo1 — -+ = P — Py =Y — 0of Y is called
n-finitely-B-generated if P; € add(B) for all i = 0,n. We will denote by n-gen®(B)
the class of all objects X € B for which there exists an n-finitely-B-generated
projective resolution of X.

Lemma 2.5. Let C : Cp =5 C1 2 Cy 25 ... be a complex in Comp 4, with
Cr € add(U), for all k > 0. Then C is an (F,add(U))-coplez if and only if F(C) is
a finitely-V -generated projective resolution of Hy(F(C)).
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Proof. Suppose that C is an (F,add(U))-coplex. Then, by definition, the induced
sequence

) pen) Y B (Cy) =2 Coker(F(o1)) — 0
is an exact sequence in B. Since all Cy € add(U), we have, by Lemma 2.3, that
all F(Cy) € add(V). We also have that all F(C}) are projective in B, because V
is projective in B. Therefore F(C) is a finitely-V-generated projective resolution of
Coker(F(a1)).

Conversely, if the induced sequence F(C) is a finitely-V-generated projective
resolution of Coker(F(c1)), then F(C) is an exact sequence in B. From hypothesis,
C, € add(U), for all k£ > 0. It follows that C is an (F,add(U))-coplex. O

It is well known that, if f,g : C — C’ are two homotopic chain maps between
complexes C and C’, then Hy(F(f)) = Ho(F(g)).

Definition 2.6. The contravariant functor FY : (F,add(U))-coplex — gen®(V) is
defined as follows:
(A) On objects, we set FV(C) = Ho(F(C)), for each C € (F,add(U))-coplex.
(B) On morphisms, we take FU([f]) = Ho(F(f)), for each morphism [f] : C —
C' of (F,add(U))-coplexes.

Definition 2.7. The contravariant functor GY : gen®(V) — (F,add(U))-coplex is
defined as follows:

(A) On objects. Let Y € gen®(V'). Then Y has a finitely-V-generated projective
resolution

PY):... 2P 2 p 2 e 2y S
Applying the functor G, we obtain the following complex in A

GP(Y)) : G(y) Y G(p) % Gpy) “Y
Since P(Y') is finitely-V-generated, we have Pj, € add(V), for all k¥ > 0, and, since
¢ : Laaavy — FG is a natural isomorphism, the following diagram is commutative
with the vertical maps isomorphisms

O3 P2 Do Pl o1 PO
Cpy [ (@29
FG(0: FG(O FG(0,
) pa(py) 2% pap) SO pa(py)

Since the top row is an exact sequence, it follows that the bottom row is an exact
sequence. By Lemma 2.3, G(Py) € add(U), for all £ > 0. Thus G(P(Y)) is a
complex in A with all G(Py) € add(U) and the induced sequence FG(P(Y)) is an
exact sequence. Therefore G(P(Y)) is an (F,add(U))-coplex. We set

GY(Y) = G(P(Y)).
(B) On morphisms. Let ¢ € Homgeqe(v)(Y,Y”). Then ¢ lifts to a chain map
f = ( . '7f23f17f0) : P(Y) - P(Y/)
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where P(Y) and P(Y”) are finitely-V-generated projective resolutions associated
to Y and Y’, respectively.

03 o) o1 9o

P, P, Py v 0
f2 f1 fo ®
, / . ;o :
0. 0, 7] 0,
* >Pj—2 P —— P Y 0

Applying the functor G, we get a chain map in A,
G(f) = (G(fo),G(f1), G(f2),...) : G(P(Y")) = G(P(Y))

illustrated in the following diagram

G(9o] G(9) G (0
G(Pé) (01) G(Pll) (03) G(PQ/) (03)
G(fo) G(f1) G(f2)
G(0: G(0:
G(Po) G(01) G(Pl) (92) G(PQ) (9s)

Since G(P(Y)) and G(P(Y”’)) are (F,add(U))-coplexes, it follows that the homo-
topy class [G(f)] is a morphism in the category (F,add(U))-coplex. We set

GY(9) = [G(f)].
3. MAIN RESULT
The main result of the paper is the following theorem.
Theorem 3.1. The functors FU and GV induce the following duality
FY : (F,add(U))-coplex = gen®(V) : GY
Proof. Firstly, we show that the composition FU o GU is natural isomorphic to the
identity functor lgepe(v)-
Let Y € gen®(V). Then Y has a finitely-V-generated projective resolution
PY):... 2P 2 p 2 ey S

Applying the functor G, we obtain the following (F,add(U))-coplex
GP(YV)): G(Py) YN a(P) 2% a(py) €Y
and then GU(Y ) = G(P(Y)). Applying the functor F, we have the exact sequence

FGP(Y)): ... S pa(p,) "8%) ra(p) "C% FQ(Py) =% Coker(FG(D1)) — 0

and then FY(G(P(Y))) = Coker(FG(9)). Thus (FY o GY)(Y) = Coker(FG(9)).
Since all P, € add(V) and since ¢ : 1,44(v) — FG is a natural isomorphism, the
following diagram is commutative with the vertical maps isomorphisms.

FG(01)

03 P, 92 P o Py % Y 0
h
Cpy Cpy CPo By e
el G(o
bGPy 9L bGP S FG(Ry) — % Coker(FG(0))) ——> 0
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Since (g9 0 (p,) 001 = 0 and Y is the cokernel of 0y, there is a unique morphism
By : Y — Coker(FG(d:)) such that g o (g, = By o 8. Also, since (9 o (p)') o
FG(01) = 0, there is a unique morphism 7y : Coker(FG(0;)) — Y such that
o OCJS(,l =7y ogg. It it easy to see that By oy = lcoker(Fa(ay)) and vy o fy = ly.
Thus By : Y — (FY o GY)(Y) is an isomorphism.

Let ¢ € Homgepe(v)(Y,Y”). Then ¢ lifts to a chain map f : P(Y) — P(Y’),
where P(Y) and P(Y”) are the finitely-V-generated projective resolutions of ¥ and
Y, respectively, as we see in the following diagram:

03 2 o1 o

PY):... P, P, Py Y 0
f2 A o ¢
o (A S R
PY):... PP > Py 0

By definition, we have GY(¢) = [G(f)] : GY(Y") — GY(Y).

G(o! G 8’ G(8!,
Gy 2 a(pp S22 gy S
G(fo) G(f1) G(f2)
G(01 G(0: G(0:
G(Py) 2 (P 22 Ry S

Since e[ o FG(fy) oFG(01) = 0, there is a unique morphism « : Coker(FG(d1)) —
Coker(FG(8})) such that e o FG(fy) = a oep. Then FV([G(f)]) = a, and thus
(FV 0 GV)(0) = o

Py P Py Y 0
\\ \\\
oy || CPy oy oo | [ ¢Po || By \
FG(o: FG(82) FG(o
PO papy) —E% pap) 0L pa(P) —\—> Coker(FG(8)) 0
\
\ |
k G(f2) ‘FG(fl) (fo) | fo o IW
FG(04 FG(0, FG(0] €/ /
%) papy) —% papny 4 o py) ° » Coker(FG( /4> 0
Cpy 4;; Cp g;l} Cpy c;(i/ By
% : % , 5 ,/ %
P, P| P Y, 0

From the fact that ¢ : 13 — FG is a natural transformation, we have FG(fy) o
Cp, = Cpy © fo. It follows that we have the following equalities

aoflyody=aoegyo(p, =
€00 FG(fo) o Cp, =cpolpy 0 fo =
By 0y 0 fo =Py o¢odo.
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Hence a0 By = By’ o ¢, because Jy is an epimorphism. Therefore we have the
equality (FY o GY)(¢) o By = By~ o ¢, i.e. the following diagram is commutative

Y d Y’

By By’

(FU o GU)(y)(FO—G)(f)(FU o GU)(Y/)

Secondly, we show that the composition GV o FV is natural isomorphic with the
ldentlty functor 1(F,add(U))-COp16X'
Let C € (F,add(U))-coplex. Then

CZCOL)012>CQE>...

is a complex in A, with Cy € add(U), for all k¥ > 0, and the induced sequence

F(o3)

F(C):... %% floy) floy)

F(Cy) " F(cr) Y F(Cy) =% Coker(F(o1)) — 0

is a finitely-V-generated projective resolution of Coker(F(oy)). By definition FV (C) =
Coker(F(o1)). Moreover, GY(Coker(F(o1))) = GF(C), hence (GY o FY)(C) =
GF(C).

Since 6 : 14 — GF is a natural transformation, we have that

dc = (6cys0cy50Cs;---)
is a chain map between (F,add(U))-coplexes C and GF(C), hence we have [0c] €
Hom (g add(t))-coplex(C; GF(C)). On the other hand, since Cy € add(U), the mor-
phisms é¢,, : Cr — GF(C}) are isomorphisms, hence

5t = (0505000 --)

is a chain map between (F,add(U))-coplexes GF(C) and C and thus we have [0 '] €
Hom(F,add(U))—coplex(GF(C)7 C)

g1 o3

Cy C Cy
e écy dcy
GF(Co) =27 ar(cy) 2272 ar(cy) &
55; 5511 5521

Co z C z C, —2=

Since 552 o0d¢c, = l¢, and d¢, o 65; = lgr(c,) in A, for all & > 0, we have
[0c'] o [6c] = [lc] and [d¢] o [0z '] = [Lgr(e)] in (F,add(U))-coplex, hence [5c] : C —
(GY o FY)(C) is an isomorphism in (F,add(U))-coplex.

Let [f] € Homp aqd(u))-coplex(C,C’). Then

f:(f()vflaf%-u)lcg)cl
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is a chain map between (F,add(U))-coplexes C and C’, as illustrated below:

CO o1 Cl o2 02 o3
fo f1 f2

It follows that
F(f) = (..., F(f2),F(f1),F(fo)) : F(C) = F(C)

is a chain map between exact sequences F(C') and F(C)

F(ol F(o! F(o! /
o) F(C3) ) F(CY) @) F(CY) i Coker(F(a})) ——0
F(f2) F(f1) F(fo) o
. . ) /
FO2) p(Cy) 72 p(0y) 27 F(Cy) ——> Coker(F(01)) —— 0

Since (g9 o F(fo)) o F(o]) = 0, there is a unique morphism ¢ : Coker(F(c}
Coker(F(oy)) in B such that egoF(fo) = ¢oe) and then, by definition, FV([f])
Moreover, by definition of GV, we have GY(¢) = [GF(f)]. Thus (GY o FY)([f])
[GF(f)].

Since ¢ : 14 — GF is a natural transformation, we have GF(f)od¢, = 5(;,2 o fx,
for all k > 0, hence [GF(f) o 5c] = [5(;/ o f] Thus [GF(f)] o [5(;] = [6@] o [f] and
therefore (GY oFY)([f])o[dc] = [dc/]o[f]. So, the following diagram is commutative

c [/] o
[6c] [6¢c/]
UopU
(GU o FU)(C)(%J)(GU ° FU)(C')

O
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