Application of Ruscheweyh q-differential operator to analytic functions of reciprocal order

Shahid Mahmood^{A,*}, Saima Mustafa^B and Imran Khan^A

Abstract. The core object of this paper is to define and study new class of analytic function using Ruscheweyh q-differential operator. We also investigate a number of useful properties such as inclusion relation, coefficient estimates, subordination result, for this newly subclass of analytic functions.

Keywords: Analytic functions, Subordination, Functions with positive real part, Ruscheweyh q-differential operator, reciprocal order.

1. Introduction

Quantum calculus (q-calculus) is simply the study of classical calculus without the notion of limits. The study of q-calculus attracted the researcher due to its applications in various branches of mathematics and physics, see detail [1]. Jackson [2, 3] was the first to give some application of q-calculus and introduced the q-analogue of derivative and integral. Later on Aral and Gupta [5, 6, 7] defined the q-Baskakov Durrmeyer operator by using q-beta function while the author's in [8, 9, 10] discussed the q-generalization of complex operators known as q-Picard and q-Gauss-Weierstrass singular integral operators. Recently, Kanas and Răducanu [11] defined q-analogue of Ruscheweyh differential operator using the concepts of convolution and then studied some of its properties. The application of this differential operator was further studied by Mohammed and Darus [12] and Mahmood and Sokół [13]. The aim of the current paper is to define a new class of analytic functions of reciprocal order involving q-differetial operator.

Let \mathcal{A} be the class of functions having the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \tag{1.1}$$

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. Let $\mathcal{M}(\alpha)$ denote a subclass of \mathcal{A} consisting of functions which satisfy the inequality

$$\mathfrak{Re}\frac{zf'(z)}{f(z)}<\alpha\quad (z\in\mathbb{U})\,,$$

for some α ($\alpha > 1$). And let $\mathcal{N}(\alpha)$ be the subclass of \mathcal{A} consisting of functions f which satisfy the inequality:

$$\Re e \frac{(zf'(z))'}{f'(z)} < \alpha \quad (z \in \mathbb{U}),$$

for some α ($\alpha > 1$). These classes were studied by Owa et al. [4, 14]. Shams et al. [15] have introduced the k-uniformly starlike $\mathcal{SD}(k,\alpha)$ and k-uniformly convex $\mathcal{CD}(k,\alpha)$ of order α , for some k ($k \geq 0$) and α ($0 \leq \alpha < 1$). Using these ideas in above defined classes, Junichi et al. [16] introduced the following classes.

Definition 1.1. Let $f \in A$. Then f is said to be in class $\mathcal{MD}(k, \alpha)$ if it satisfies

$$\Re \frac{zf'(z)}{f(z)} < k \left| \frac{zf'(z)}{f(z)} - 1 \right| + \alpha \quad (z \in \mathbb{U}),$$

for some $\alpha (\alpha > 1)$ and $k (k \leq 0)$.

Definition 1.2. An analytic function f of the form (1.1) belongs to the class $\mathcal{ND}(k,\alpha)$, if and only if

$$\Re \mathfrak{e} \frac{\left(zf'(z)\right)'}{f'(z)} < k \left| \frac{\left(zf'(z)\right)'}{f'(z)} - 1 \right| + \alpha \quad (z \in \mathbb{U}) \,,$$

for some $\alpha (\alpha > 1)$ and $k (k \leq 0)$.

If f and g are analytic in \mathbb{U} , we say that f is subordinate to g, written as $f \prec g$ or $f(z) \prec g(z)$, if there exists a Schwarz function w, which is analytic in \mathbb{U} with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)). Furthermore, if the function g(z) is univalent in \mathbb{U} , then we have the following equivalence holds, see [17, 18].

$$f(z) \prec g(z) \quad (z \in \mathbb{U}) \iff f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$$

For two analytic functions

$$f(z) = \sum_{n=1}^{\infty} a_n z^n$$
 $g(z) = \sum_{n=1}^{\infty} b_n z^n$ $(z \in \mathbb{U})$,

For $t \in \mathbb{R}$ and q > 0, $q \neq 1$, the number [t, q] is defined in [13] as

$$[t,q] = \frac{1-q^t}{1-q}, \quad [0,q] = 0.$$

For any non-negative integer n the q-number shift factorial is defined by

$$[n,q]! = [1,q][2,q][3,q]\cdots[n,q], \quad ([0,q]! = 1).$$

We have $\lim_{q\to 1} [n,q] = n$. Throughout in this paper we will assume q to be fixed number between 0 and 1.

The q-derivative operator or q-difference operator for $f \in \mathcal{A}$ is defined as

$$\partial_q f(z) = \frac{f(qz) - f(z)}{z(q-1)}, \ z \in \mathbb{U}.$$

It can easily be seen that for $n \in \mathbb{N} := \{1, 2, 3, \ldots\}$ and $z \in \mathbb{U}$

$$\partial_q z^n = [n, q] z^{n-1}, \quad \partial_q \left\{ \sum_{n=1}^{\infty} a_n z^n \right\} = \sum_{n=1}^{\infty} [n, q] a_n z^{n-1}.$$

The q-generalized Pochhammer symbol for $t \in \mathbb{R}$ and $n \in \mathbb{N}$ is defined as

$$[t,q]_n = [t,q][t+1,q][t+2,q]\cdots[t+n-1,q],$$

and for t > 0, let q-gamma function is defined as

$$\Gamma_q(t+1) = [t, q] \Gamma_q(t)$$
 and $\Gamma_q(1) = 1$.

Definition 1.3. [?] For a function $f(z) \in A$, the Ruscheweyh q-differential operator is defined as

$$\mathfrak{D}_{q}^{\mu}f(z) = \phi(q, \mu + 1; z) * f(z) = z + \sum_{n=2}^{\infty} \Phi_{n-1}a_{n}z^{n}, \quad (z \in \mathbb{U} \text{ and } \mu > -1),$$
(1.2)

where

$$\phi(q, \mu + 1; z) = z + \sum_{n=2}^{\infty} \Phi_{n-1} z^n, \tag{1.3}$$

and

$$\Phi_{n-1} = \frac{\Gamma_q (\mu + n)}{[n-1, q]! \Gamma_q (\mu + 1)} = \frac{[\mu + 1, q]_{n-1}}{[n-1, q]!}.$$
 (1.4)

From (1.2), it can be seen that

$$L_q^0 f(z) = f(z)$$
 and $L_q^1 f(z) = z \partial_q f(z)$,

and

$$\begin{split} L_q^m f(z) &= \frac{z \partial_q^m \left(z^{m-1} f(z) \right)}{[m,q]!}, \quad (m \in \mathbb{N}) \,. \\ &\lim_{q \to 1^-} \phi \left(q, \mu + 1; z \right) = \frac{z}{(1-z)^{\mu+1}}, \end{split}$$

and

$$\lim_{q \to 1^{-}} \mathfrak{D}_{q}^{\mu} f(z) = f(z) * \frac{z}{(1-z)^{\mu+1}}.$$

This shows that in case of $q \to 1^-$, the Ruscheweyh q-differential operator reduces to the Ruscheweyh differential operator $D^{\delta}(f(z))$ (see [19]). From (1.2) the following identity can easily be derived.

$$z\partial\mathfrak{D}^{\mu}_{q}f(z) = \left(1 + \frac{[\mu, q]}{q^{\mu}}\right)\mathfrak{D}^{\mu}_{q}f(z) - \frac{[\mu, q]}{q^{\mu}}\mathfrak{D}^{\mu}_{q}f(z). \tag{1.5}$$

If $q \to 1^-$, then

$$z\left(\mathfrak{D}_q^{\mu}f(z)\right)' = (1+\mu)\,\mathfrak{D}_q^{\mu}f(z) - \mu\mathfrak{D}_q^{\mu}f(z).$$

Now using the Ruscheweyh q-differential operator, we define the following class.

Definition 1.4. Let $f \in \mathcal{A}$. Then f is in the class $\mathcal{KD}_q(k, \alpha, \gamma)$ if

$$\Re \left\{1 + \frac{1}{\gamma} \left(\frac{z \partial_q \mathfrak{D}_q^\mu f(z)}{\mathfrak{D}_q^\mu f(z)} - 1\right)\right\} < k \left|\frac{1}{\gamma} \left(\frac{z \partial_q \mathfrak{D}_q^\mu f(z)}{\mathfrak{D}_q^\mu f(z)} - 1\right)\right| + \alpha,$$

for some $k (k \le 0)$, $\alpha (\alpha > 1)$ and for some $\gamma \in \mathbb{C} \setminus \{0\}$.

We note that $\mathcal{LD}_2^0(1,1,\alpha) = \mathcal{M}(\alpha)$ and $\mathcal{LD}_1^0(1,1,\alpha) = \mathcal{N}(\alpha)$, the classes introduced by Owa et al. [4, 14]. When we take $\gamma = 1, 2, c = 1$, and a = 1 the class $\mathcal{KD}_q(k,\alpha,\gamma)$ reduces to the classes $\mathcal{MD}(k,\alpha)$ and $\mathcal{ND}(k,\alpha)$ (see [16]). For $1 < \alpha < 4/3$ the classes $\mathcal{M}(\alpha)$ and $\mathcal{N}(\alpha)$ were investigated by Uralegaddi et al. [20].

2. Preliminary Results

Lemma 2.1. [21] For a positive integer t, we have

$$\sigma \sum_{j=1}^{t} \frac{(\sigma)_{j-1}}{(j-1)!} = \frac{(\sigma)_t}{(t-1)!}.$$
 (2.1)

Proof. Consider

$$\begin{split} & \sigma \sum_{j=1}^{t} \frac{(\sigma)_{j-1}}{(j-1)!} \\ & = \ \sigma \left(1 + \frac{\sigma}{1} + \frac{(\sigma)_2}{2!} + \frac{(\sigma)_3}{3!} + \frac{(\sigma)_4}{4!} + \dots + \frac{(\sigma)_{t-1}}{(t-1)!} \right) \\ & = \ \sigma (1+\sigma) \left(1 + \frac{\sigma}{2} + \frac{\sigma(\sigma+2)}{2\times 3} + \dots + \frac{\sigma(\sigma+2)\cdots(\sigma+t-2)}{2\times \cdots \times (t-1)} \right) \\ & = \ \sigma (1+\sigma) \frac{(\sigma+2)}{2} \left(1 + \frac{\sigma}{3} + \dots + \frac{\sigma(\sigma+3)\cdots(\sigma+t-2)}{3\times 4\times \cdots \times (t-1)} \right) \\ & = \ \sigma (1+\sigma) \frac{(\sigma+2)}{2} \frac{(\sigma+3)}{3} \left(1 + \frac{\sigma}{4} + \dots + \frac{\sigma(\sigma+4)\cdots(\sigma+t-2)}{4\times \cdots \times (t-1)} \right) \\ & = \ \sigma (1+\sigma) \frac{(\sigma+2)}{2} \frac{(\sigma+3)}{3} \frac{(\sigma+4)}{4} \left(1 + \frac{\sigma}{5} + \dots + \frac{\sigma\cdots(\sigma+t-2)}{5\times 6\times \cdots \times (t-1)} \right) \\ & = \ \sigma (1+\sigma) \frac{(\sigma+2)}{2} \frac{(\sigma+3)}{3} \frac{(\sigma+4)}{4} \cdots \left(1 + \frac{\sigma}{t-1} \right) \\ & = \ \sigma (1+\sigma) \frac{(\sigma+2)}{2} \frac{(\sigma+3)}{3} \frac{(\sigma+4)}{4} \cdots \left(\frac{\sigma+(t-1)}{t-1} \right) \\ & = \ \frac{(\sigma)_t}{(t-1)!}. \end{split}$$

3. Main Results

With the help of the definition of $\mathcal{KD}_q(k,\alpha,\gamma)$, we prove the following results.

Theorem 3.1. If $f(z) \in \mathcal{KD}_q(k, \alpha, \gamma)$, then

$$f(z) \in \mathcal{KD}_q\left(0, \frac{\alpha - k}{1 - k}, \gamma\right).$$

Proof. Because $k \leq 0$, we have

$$\begin{split} \Re \mathfrak{e} \left\{ 1 + \frac{1}{\gamma} \left(\frac{z \partial_q \mathfrak{D}_q^\mu f(z)}{\mathfrak{D}_q^\mu f(z)} - 1 \right) \right\} & < \quad k \left| \frac{1}{\gamma} \left(\frac{z \partial_q \mathfrak{D}_q^\mu f(z)}{\mathfrak{D}_q^\mu f(z)} - 1 \right) \right| + \alpha, \\ & \leq \quad k \Re \mathfrak{e} \left(\frac{1}{\gamma} \left(\frac{z \partial_q \mathfrak{D}_q^\mu f(z)}{\mathfrak{D}_q^\mu f(z)} - 1 \right) \right) + \alpha - k, \end{split}$$

which implies that

$$(1-k)\,\mathfrak{Re}\frac{1}{\gamma}\left(\frac{z\partial_q\mathfrak{D}_q^\mu f(z)}{\mathfrak{D}_q^\mu f(z)}-1\right)<\alpha-k.$$

After simplification, we obtain

$$\Re \left[1 + \frac{1}{\gamma} \left(\frac{z \partial_q \mathfrak{D}_q^\mu f(z)}{\mathfrak{D}_q^\mu f(z)} - 1\right)\right] < \frac{\alpha - k}{1 - k}, (k \le 0, \ \alpha > 1 \ \text{and} \). \tag{3.1}$$

This completes the proof.

Theorem 3.2. If $f(z) \in \mathcal{KD}_q(k, \alpha, \gamma)$ and if f(z) has the form (1.1), then

$$|a_n| \le \frac{(\sigma)_{n-1}}{(n-1)!\Phi_{n-1}},$$
(3.2)

where

$$\sigma = \frac{2|\gamma|(\alpha - 1)}{q(1 - k)}. (3.3)$$

Proof. Let us define a function

$$p(z) = \frac{(\alpha - k) - (1 - k) \left[1 + \frac{1}{\gamma} \left(\frac{z \partial_q \mathfrak{D}_q^n f(z)}{\mathfrak{D}_q^n f(z)} - 1 \right) \right]}{\alpha - 1}.$$
 (3.4)

Then p(z) is analytic in \mathbb{U} , p(0)=1 and $\mathfrak{Re}\{p(z)\}>0$ for $z\in\mathbb{U}$. We can write

$$\left[1 + \frac{1}{\gamma} \left(\frac{z \partial_q \mathfrak{D}_q^{\mu} f(z)}{\mathfrak{D}_q^{\mu} f(z)} - 1 \right) \right] = \frac{(\alpha - k) - (\alpha - 1)p(z)}{1 - k}$$
(3.5)

If we take $p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$, then (3.5) can be written as

$$z\partial_q\mathfrak{D}_q^\mu f(z) - \mathfrak{D}_q^\mu f(z) = -\frac{\gamma\left(\alpha-1\right)}{1-k}\left(\mathfrak{D}_q^\mu f(z)\right)\left(\sum_{n=1}^\infty p_n z^n\right).$$

this implies that

$$\left[\sum_{n=2}^{\infty} q\left[n-1\right] \Phi_{n-1} a_n z^n\right] = -\frac{\gamma(\alpha-1)}{1-k} \left(\sum_{n=1}^{\infty} \Phi_{n-1} a_n z^n\right) \left(\sum_{n=1}^{\infty} p_n z^n\right).$$

Using Cauchy product $\left(\sum_{n=1}^{\infty} x_n\right) \cdot \left(\sum_{n=1}^{\infty} y_n\right) = \sum_{j=1}^{\infty} \sum_{k=1}^{j} x_k y_{k-j}$, we obtain

$$q[n-1]\Phi_{n-1}a_n z^n = -\frac{\gamma(\alpha-1)}{1-k} \sum_{n=2}^{\infty} \left(\sum_{j=1}^{n-1} \Phi_{j-1} a_j p_{n-j} \right) z^n.$$

Comparing the coefficients of *nth* term on both sides, we obtain

$$a_n = \frac{-\gamma(\alpha - 1)}{q[n-1]\Phi_{n-1}(1-k)} \sum_{j=1}^{n-1} \Phi_{j-1} a_j p_{n-j}.$$

By taking absolute value and applying triangle inequality, we get

$$|a_n| \le \frac{|\gamma| (\alpha - 1)}{q [n - 1] \Phi_{n-1} (1 - k)} \sum_{j=1}^{n-1} \Phi_{j-1} |a_j| |p_{n-j}|.$$

Applying the coefficient estimates $|p_n| \leq 2 \ (n \geq 1)$ for Caratheodory functions [17], we obtain

$$|a_{n}| \leq \frac{2|\gamma|(\alpha-1)}{q[n-1]\Phi_{n-1}(1-k)} \sum_{j=1}^{n-1} \Phi_{j-1}|a_{j}|$$

$$= \frac{\sigma}{[n-1]\Phi_{n-1}} \sum_{j=1}^{n-1} \psi_{j-1}|a_{j}|, \qquad (3.6)$$

where $\sigma = 2|\gamma|(\alpha - 1)/q(1 - k)$. To prove (3.2) we apply mathematical induction. So for n = 2, we have from (3.6)

$$|a_2| \le \frac{\sigma}{\Phi_1} = \frac{(\sigma)_{2-1}}{[2-1]!\Phi_{2-1}},$$
 (3.7)

which shows that (3.2) holds for n = 2. For n = 3, we have from (3.6)

$$|a_3| \le \frac{\sigma}{|3-1|\Phi_{3-1}} \left\{ 1 + \Phi_1 |a_2| \right\},$$

using (3.7), we have

$$|a_3| \le \frac{\sigma}{[2]\Phi_2} (1+\sigma) = \frac{(\sigma)_{3-1}}{[3-1]\Phi_{3-1}},$$

which shows that (3.2) holds for n = 3. Let us assume that (3.2) is true for $n \le t$, that is,

$$|a_t| \le \frac{(\sigma)_{t-1}}{[t-1]!\Phi_{t-1}} \quad j = 1, 2, \dots, t.$$
 (3.8)

Using (3.6) and (3.8), we have

$$|a_{t+1}| \leq \frac{\sigma}{t\Phi_t} \sum_{j=1}^t \Phi_{j-1} |a_j|$$

$$\leq \frac{\sigma}{t\Phi_t} \sum_{j=1}^t \psi_{j-1} \frac{(\sigma)_{j-1}}{[j-1]!\Phi_{j-1}}$$

$$= \frac{\sigma}{t\Phi_t} \sum_{j=1}^t \frac{(\sigma)_{j-1}}{[j-1]!}.$$

Applying (2.1), we have

$$|a_{t+1}| \leq \frac{1}{t\Phi_t} \frac{(\sigma)_t}{[t-1]!}$$
$$= \frac{1}{\Phi_t} \frac{(\sigma)_t}{[t]!}.$$

Consequently, using mathematical induction, we have proved that (3.2) holds true for all $n, n \ge 2$. This completes the proof.

Theorem 3.3. If a function $f \in \mathcal{KD}_q(k, \alpha, \gamma)$, then

$$\frac{z\partial_q \mathfrak{D}_q^{\mu} f(z)}{\mathfrak{D}_q^{\mu} f(z)} \prec 1 + 2\left(\alpha_1 - 1\right) - \frac{2\left(\alpha_1 - 1\right)}{1 - z} \quad (z \in \mathbb{U}), \tag{3.9}$$

$$\alpha_1 = \frac{\alpha - k}{1 - k}.\tag{3.10}$$

Proof. If $f(z) \in \mathcal{KD}_q(k, \alpha, \gamma)$, then by (3.1)

$$\Re\left\{1 + \frac{1}{\gamma} \left(\frac{z\partial_q \mathfrak{D}_q^{\mu} f(z)}{\mathfrak{D}_q^{\mu} f(z)} - 1\right)\right\} < \alpha_1. \tag{3.11}$$

Then there exists a Schwarz function w(z) such that

$$\frac{\alpha_1 - \left\{ 1 + \frac{1}{\gamma} \left(\frac{z \partial_q \mathfrak{D}_q^{\mu} f(z)}{\mathfrak{D}_q^{\mu} f(z)} - 1 \right) \right\}}{\alpha_1 - 1} = \frac{1 + w(z)}{1 - w(z)},\tag{3.12}$$

and

$$\Re \left\{\frac{1+w(z)}{1-w(z)}\right\}>0, \quad (z\in \mathbb{U}).$$

Therefore, from (3.12), we obtain

$$\frac{z\partial_{q}\mathfrak{D}_{q}^{\mu}f(z)}{\mathfrak{D}_{q}^{\mu}f(z)}=1+\gamma\left(\alpha_{1}-1\right)\left(1-\frac{1+w(z)}{1-w(z)}\right).$$

This gives

$$\frac{z\partial_{q}\mathfrak{D}_{q}^{\mu}f(z)}{\mathfrak{D}_{q}^{\mu}f(z)} = 1 + 2\gamma\left(\alpha_{1} - 1\right) - \frac{2\gamma\left(\alpha_{1} - 1\right)}{1 - w(z)}$$

and hence

$$\frac{z\partial_q \mathfrak{D}_q^{\mu} f(z)}{\mathfrak{D}_q^{\mu} f(z)} \prec 1 + 2\gamma \left(\alpha_1 - 1\right) - \frac{2\gamma \left(\alpha_1 - 1\right)}{1 - z} \quad (z \in \mathbb{U}).$$

which was required in (3.9).

Theorem 3.4. If function $f \in \mathcal{KD}_q(k, \alpha, \gamma)$, then we have

$$\frac{1 - [1 + 2\gamma(\alpha_1 - 1)] r}{1 - r} \le \Re \left\{ \frac{z \partial_q \mathfrak{D}_q^{\mu} f(z)}{\mathfrak{D}_q^{\mu} f(z)} \right\} \le \frac{1 + [1 + 2\gamma(\alpha_1 - 1)] r}{1 + r},$$
(3.13)

for |z| = r < 1 and α_1 is defined by (3.10).

Proof. By the virtue of Theorem (3.3), let us take the function $\phi(z)$ defined by

$$\phi(z) = 1 + 2\gamma (\alpha_1 - 1) - \frac{2\gamma(\alpha_1 - 1)}{1 - z} \quad (z \in \mathbb{U}).$$

Letting $z = re^{i\theta} (0 \le r < 1)$, we see that

$$\Re \epsilon \phi(z) = 1 + 2\gamma \left(\alpha_1 - 1\right) + \frac{2\gamma \left(1 - \alpha_1\right) \left(1 - r\cos\theta\right)}{1 + r^2 - 2r\cos\theta}.$$

Let us define

$$\psi(t) = \frac{1 - rt}{1 + r^2 - 2rt} \quad (t = \cos \theta).$$

Since $\psi'(t) = \frac{r(1-r^2)}{(1+r^2-2rt)^2} \ge 0$, because r < 1. Therefore we get

$$1+2\gamma\left(\alpha_{1}-1\right)-\frac{2\gamma\left(\alpha_{1}-1\right)}{1-r}\leq\mathfrak{Re}\phi(z)\leq1+2\gamma\left(\alpha_{1}-1\right)-\frac{2\gamma\left(\alpha_{1}-1\right)}{1+r}.$$

After simplification, we have

$$\frac{1-\left[1+2\gamma\left(\alpha_{1}-1\right)\right]r}{1-r}\leq\Re\epsilon\phi(z)\leq\frac{1+\left[1+2\gamma\left(\alpha_{1}-1\right)\right)\right]r}{1+r}.$$

Since we note that $\frac{z\partial_q \mathfrak{D}_q^{\mu} f(z)}{\mathfrak{D}_q^{\mu} f(z)} \prec \phi(z), (z \in \mathbb{U})$ by Theorem 3.3 and $\phi(z)$ is analytic in \mathbb{U} , we proved the inequality (3.13).

Theorem 3.5. If $f \in A$ satisfies

$$\left| \frac{z \partial_q \mathfrak{D}_q^{\mu} f(z)}{\mathfrak{D}_q^{\mu} f(z)} - 1 \right| < \frac{(\alpha - 1)|\gamma|}{(1 - k)} \quad z \in \mathbb{U}, \tag{3.14}$$

for some $k (k \leq 0)$, $\alpha (\alpha > 1)$ and $\gamma \in \mathbb{C} \setminus \{0\}$. Then $f \in \mathcal{KD}_q(k, \alpha, \gamma)$.

Proof.

$$\begin{split} & \left| \frac{z \partial_q \mathfrak{D}_q^\mu f(z)}{\mathfrak{D}_q^\mu f(z)} - 1 \right| < \frac{(\alpha - 1) |\gamma|}{(1 - k)} \\ \Rightarrow & \left| \frac{1}{\gamma} \left(\frac{z \partial_q \mathfrak{D}_q^\mu f(z)}{\mathfrak{D}_q^\mu f(z)} - 1 \right) \right| < \frac{\alpha - 1}{1 - k} \\ \Rightarrow & \left(1 - k \right) \left| \frac{1}{\gamma} \left(\frac{z \partial_q \mathfrak{D}_q^\mu f(z)}{\mathfrak{D}_q^\mu f(z)} - 1 \right) \right| + 1 < \alpha \\ \Rightarrow & \left| \frac{1}{\gamma} \left(\frac{z \partial_q \mathfrak{D}_q^\mu f(z)}{\mathfrak{D}_q^\mu f(z)} - 1 \right) \right| + 1 < k \left| \frac{1}{\gamma} \left(\frac{z \partial_q \mathfrak{D}_q^\mu f(z)}{\mathfrak{D}_q^\mu f(z)} - 1 \right) \right| + \alpha \\ \Rightarrow & \Re \left\{ 1 + \frac{1}{\gamma} \left(\frac{z \partial_q \mathfrak{D}_q^\mu f(z)}{\mathfrak{D}_q^\mu f(z)} - 1 \right) \right\} + 1 < k \left| \frac{1}{\gamma} \left(\frac{z \partial_q \mathfrak{D}_q^\mu f(z)}{\mathfrak{D}_q^\mu f(z)} - 1 \right) \right| + \alpha \\ \Rightarrow & f \in \mathcal{L} \mathcal{D}_b^k(a, c, \beta) \end{split}$$

Corollary 3.6. Let $f \in A$ be of the form (1.1) and satisfies

$$\left| \frac{\sum_{n=2}^{\infty} [n-1] \Phi_{n-1} a_n z^{n-1}}{1 + \sum_{n=2}^{\infty} \Phi_{n-1} a_n z^{n-1}} \right| < \frac{(\alpha - 1) |\gamma|}{q(1-k)} \quad z \in \mathbb{U}, \tag{3.15}$$

for some $k (k \leq 0)$, $\beta (\beta > 1)$ and for some $b \in \mathbb{C} \setminus \{0\}$. Then $f \in \mathcal{KD}_q(k,\alpha,\gamma)$..

Proof. We have

$$\mathfrak{D}_q^{\mu} f(z) = z + \sum_{n=2}^{\infty} \Phi_{n-1} a_n z^n$$

and by (1.5)

$$z\partial \mathfrak{D}_q^{\mu} f(z) = z + \sum_{n=2}^{\infty} [n] \Phi_{n-1} a_n z^n.$$

Therefore, (3.14) follows immediately (3.15).

Theorem 3.7. Let $f \in A$ be of the form (1.1) and satisfies

$$\sum_{n=2}^{\infty} ([n-1] + y) |\Phi_{n-1}| |a_n| < y \quad z \in \mathbb{U},$$
(3.16)

for some $k (k \leq 0)$, $\beta (\beta > 1)$ and for some $b \in \mathbb{C} \setminus \{0\}$ and where

$$y = \frac{(\alpha - 1)|\gamma|}{q(1 - k)} > 0.$$

Then $f \in \mathcal{KD}_q(k, \alpha, \gamma)$.

Proof. We have

$$\sum_{n=2}^{\infty} ([n-1]+y) |\Phi_{n-1}| |a_n| < y$$

$$\Rightarrow \sum_{n=2}^{\infty} ([n-1]+y) |\Phi_{n-1}| |a_n| < y - y \sum_{n=2}^{\infty} |\Phi_{n-1}| |a_n|$$

$$\Rightarrow 0 < y - y \sum_{n=2}^{\infty} |\Phi_{n-1}| |a_n|$$

$$\Rightarrow 0 < y - y \sum_{n=2}^{\infty} |\Phi_{n-1}| |a_n| |z^{n-1}|$$

$$\Rightarrow 0 < y \left| 1 + \sum_{n=2}^{\infty} \Phi_{n-1} a_n z^{n-1} \right|$$
(3.17)

We have

$$\begin{split} &\sum_{n=2}^{\infty} \left([n-1] + y \right) |\Phi_{n-1}| |a_n| < y \\ \Rightarrow &\sum_{n=2}^{\infty} \left([n-1] + y \right) |\Phi_{n-1}| |a_n| |z^{n-1}| < y \\ \Rightarrow &\sum_{n=2}^{\infty} \left[[n-1] |\Phi_{n-1}| |a_n| |z^{n-1}| < y - y \sum_{n=2}^{\infty} |\Phi_{n-1}| |a_n| |z^{n-1}| \\ \Rightarrow &\left| \sum_{n=2}^{\infty} \left[[n-1] |\Phi_{n-1}| |a_n| |z^{n-1}| \right| < y \left| 1 + \sum_{n=2}^{\infty} |\Phi_{n-1}| |a_n| |z^{n-1}| \right| \\ \Rightarrow &\left| \frac{\sum_{n=2}^{\infty} \left[[n-1] |\Phi_{n-1}| |a_n| |z^{n-1}| \right|}{1 + \sum_{n=2}^{\infty} |\Phi_{n-1}| |a_n| |z^{n-1}|} \right| < y, \end{split}$$

because of (3.17). By (3.15) it follows $f \in \mathcal{LD}_b^k(a, c, \beta)$.

Competing interests

The authors declare that they have no competing interests.

References

- [1] A. Aral, V. Gupta & R.P. Agarwal, Applications of q-calculus in operator theory, Springer, New York, NY, USA, (2013).
- [2] F.H. Jackson, "On q-functions and a certain difference operator", Trans. Royal Soc. Edinburgh, 46(2)(1909), 253-281.
- [3] F.H. Jackson, "On q-definite integrals", The Quarterly J. Pure Appl. Math., 41(1910), 193-203.
- [4] J. Nishiwaki, & S. Owa, "Coefficient estimates for certain classes of analytic functions", J. Inequal. Pure Appl. Math. 3(2002), 1–5.

- [5] A. Aral & V. Gupta, "On q-Baskakov type operators", Demonstratio Mathematica, 42(1)(2009), 109-122.
- [6] A. Aral & V. Gupta, "On the Durrmeyer type modification of the q-Baskakov type operators", Non-linear Anal. Theory, Methods and Appl., 72(3-4)(2010), 1171-1180.
- [7] A. Aral & V. Gupta, "Generalized q-Baskakov operators", Math. Slovaca, 61(4)(2011), 619-634.
- [8] G.A. Anastassiu & S.G. Gal, "Geometric and approximation properties of some singular integrals in the unit disk", J. Ineq. Appl., Vol. 2006, Article ID 17231, 19 pages.
- [9] G.A. Anastassiu & S.G. Gal, "Geometric and approximation properties of generalized singular integrals", J. Korean Math. Soci., 23(2)(2006), 425-443.
- [10] A. Aral, "On the generalized Picard and Gauss Weierstrass singular integrals", J. Compu. Anal. Appl., 8(3)(2006), 249-261.
- [11] S. Kanas & D. Raducanu, "Some class of analytic functions related to conic domains", Math. Slovaca, 64(5)(2014), 1183-1196.
- [12] H. Aldweby & M. Darus, "Some subordination results on q-analogue of Ruscheweyh differential operator", Abstr. Appl. Anal., Vol. 2014, Article ID 958563, 6 pages.
- [13] S. Mahmmod & J. Sokół, "New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator", J. Results Math, 71 (2017), 1345–1357.
- [14] S. Owa & H. M. Srivastava, "Some generalized convolution properties associated with cerain subclasses of analytic functions", J. Inequal. Pure Appl. Math., 3(3)(2002), 1–13.
- [15] S. Shams, S. R. Kulkarni, & J. M. Jahangiri, "Classes of uniformly starlike and convex functions", Int. J. Math. Math. Sci., 55(2004), 2959–2961.
- [16] J. Nishiwaki & S. Owa, "Certain classes of analytic functions concerned with uniformly starlike and convex functions", Appl. Math. Comp., 187(2007), 350– 355.
- [17] A.W. Goodman, "Univalent Functions, Vol. I, II", Polygonal Publishing House, Washington, New Jersey, (1983).
- [18] S. S. Miller, & P. T. Mocanu, "Differential Subordinations Theory and Applications", Marcel Decker Inc., New York (2000).
- [19] St. Ruscheweyh, "New criteria for univalent functions", Proc. Amer. Math. Soc., 49(1975), 109-115.
- [20] B.A. Uralegaddi, M.D. Ganigi & S.M. Sarangi, "Univalent functions with positive coefficients", Tamkang J. Math., 25(1994), 225–230.
- [21] M. Arif, S. Mahmood, J. Sokoł & J. Dziok, "New subclass of analytic functions in conical domain associated with a linear operator", Acta Math Sci, 36B(3)(2016), 1–13.
- [22] M. Arif, S. Umar, S. Mahmood & J. Sokoł, "New reciprocal class of analytic functions associated with linear operator", Iran. JSci. Technol. Trans. Sci., 42(2)(2018), 881–886.

Shahid Mahmood A,*

 A Department of Mechanical Engineering, Sarhad University of Science & I. T Landi Akhun Ahmad, Hayatabad Link. Ring Road, Peshawar, Pakistan

e-mail: shahidmahmood757@gmail.com (S. Mahmood)

Saima Mustafa $^{\!B}$

 $^B \mbox{Deptt.}$ of Statistics & Mathematics, PMAS-Arid Agriculture University, Rawalpindi

e-mail: saimamustafa28@gmail.com (S. Mustafa)

 $Imran Khan^A$

e-mail: ikhanqau1@gmail.com (I. Khan)