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Abstract. In this paper, we introduce a new class of degenerate Hermite
poly-Bernoulli polynomials with q-parameter and give some identities
of these polynomials related to the Stirling numbers of the second kind.
Some implicit summation formulae and general symmetry identities are
derived by using different analytical means and applying generating
functions. These results extend some known summations and identities
of degenerate Hermite poly-Bernoulli numbers and polynomials.
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1. Introduction

The special polynomials of more than one variable provide new means
of analysis for the solution of wide class of partial differential equations
often encountered in physical problems. The importance of multi-variable
Hermite polynomials has been recognized [5] and these polynomials have
been exploited to deal with quantum mechanical and optical beam transport
problems.

It happens very often that the solution of a given problem in physics or
applied mathematics requires the evaluation of infinite sums, involving spe-
cial functions. Problems of this type arise, for example, in the computation of
the higher-order moments of a distribution or to evaluate transition matrix
elements in quantum mechanics. In [7-9, 19-22], it has been shown that
the summation formulae of special functions, encountered in applications
ranging from electromagnetic process to combinatorics acn be written in
terms of Hermite polynomials of more than one variable.
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The 2-variable Kampe de Feriet generalization of the Hermite polyno-
mials [3] and [7] are defined as

Hn(x, y) = n!

[n2 ]∑
r=0

yrxn−2r

r!(n− 2r)!
. (1.1)

These polynomials are specified by the generating function:

ext+yt
2

=

∞∑
n=0

Hn(x, y)
tn

n!
(1.2)

and reduce to the ordinary Hermite polynomials Hn(x) (see [1]) when
y = −1 and x is replaced by 2x.

In (2016), Khan [13] introduced the degenerate Hermite polynomials of
two variables by means of the following generating function:

(1 + λt)
x
λ (1 + λt2)

y
λ =

∞∑
n=0

Hn(x, y;λ)
tn

n!
, (1.3)

where λ 6= 0. Since (1 + λt)
1
λ −→ et as λ −→ 0, it is evident that (1.3)

reduces to (1.2). That is Hn(x, y) limiting case of Hn(x, y;λ) when λ −→ 0.

The following representation of degenerate Hermite polynomials
Hn(x, y;λ) is given by

Hn(x, y;λ) = n!

[n2 ]∑
r=0

(−xλ )n−2r(− y
λ )r(−λ)n−r

r!(n− 2r)!
. (1.4)

Since limλ−→0Hn(x, y;λ) = Hn(x, y), (1.1) is a limiting case of (1.4).

For λ ∈ C, Carlitz introduced the degenerate Bernoulli polynomials by
means of the following generating function:

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

βn(x;λ)
tn

n!
, (see [4, 17, 18]) (1.5)

so that

βn(x;λ) =

m∑
n=0

(
n
m

)
βm(λ)(

x

λ
)n−m. (1.6)

When x = 0, βn(λ) = βn(0;λ) are called the degenerate Bernoulli numbers.

From (1.5), we note that
∞∑
n=0

lim
λ−→0

βn(x;λ)
tn

n!
= lim
λ−→0

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ

=
t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
, (1.7)
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where Bn(x) are called the Bernoulli polynomials (see [1-25]).

The classical polylogarithm function Lik(z) is

Lik(z) =

∞∑
m=1

zm

mk
, (k ∈ Z) (see [13 14, 16]) (1.8)

so for k ≤ 1,

Lik(z) = − ln(1− z), Li0(z) =
z

1− z
, Li−1(z) =

z

(1− z)2
, ...

The poly-Bernoulli polynomials are given by

Lik(1− e−t)
et − 1

ext =

∞∑
n=0

B(k)
n (x)

tn

n!
, (see [2, 12, 13]). (1.9)

For k = 1 in (1.9), we have

Li1(1− e−t)
et − 1

ext =
t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
. (1.10)

From (1.7) and (1.10), we have

B(1)
n (x) = Bn(x).

Very recently, Khan [13] introduced the degenerate Hermite poly-

Bernoulli polynomials of two variables Hβ
(k)
n,q(x, y;λ) by means of the fol-

lowing generating function:(
Lik(1− e−t)
(1 + λt)

1
λ − 1

)α
(1 + λt)

x
λ (1 + λt2)

y
λ =

∞∑
n=0

Hβ
(k)
n (x, y;λ)

tn

n!
, (1.11)

so that

HB
(k)
n (x, y;λ) =

n∑
m=0

(
n
m

)
β
(k)
n−m(λ)Hm(x, y;λ). (1.12)

The Stirling number of the first kind is given by

(x)n = x(x− 1) · · · (x− n+ 1) =

n∑
l=0

S1(n, l)xl, (n ≥ 0), (1.13)

and the Stirling number of the second kind is defined by generating function:

(et − 1)n = n!

∞∑
l=n

S2(l, n)
tl

l!
. (1.14)

A generalized falling factorial sum σk(n;λ) can be defined by the gen-
erating function [25]

∞∑
k=0

σk(n;λ)
tk

k!
=

(1 + λt)
(n+1)
λ − 1

(1 + λt)
1
λ − 1

. (1.15)
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Note that
lim
λ−→0

σk(n;λ) = Sk(n).

The object of this paper as follows, we first give definition of the degener-

ate Hermite poly-Bernoulli polynomials Hβ
(k)
n,q(x, y;λ) with q-parameter and

then extend and illustrate how, a connection between Hermite and Bernoulli
polynomials can yield new expansions and representations. Some implicit
summation formulae and general symmetry identities are derived. These re-
sults establish a link between these families of polynomials (namely degener-
ate Hermite and degenerate q-poly-Bernoulli polynomials).

2. q-analogue of degenerate Hermite poly-Bernoulli
polynomials

In this section, we introduce q-analogue of degenerate of Hermite-poly-
Bernoulli numbers and polynomials and its properties.

Definition 2.1. For λ ∈ C, k ∈ Z and n ≥ 0, 0 ≤ q < 1, we introduce q-
analogue of degenerate Hermite poly-Bernoulli polynomials by means of the
following generating function:

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ =

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
, (2.1)

where Lik,q(t) =
∞∑
n=0

tn

[n]kq !
is the k-th q-polylogarithm function (see [6, 11. 23]).

When x = y = 0 in (2.1), β
(k)
n (λ) = Hβ

(k)
n (0, 0;λ) are called the

q-analogue of degenerate poly-Bernoulli numbers.

Note that

Hβ
(1)
n,q(x, y;λ) = Hβn,q(x, y;λ) and limλ−→0 Hβ

(k)
n,q(x, y;λ) = HB

(k)
n,q(x, y).

Remark 2.1. For y = 0 in (2.1), the result reduces to the q-analogue of
degenerate poly-Bernoulli polynomials of Jung and Ryoo [11.,p.32,Eq.(2.1)]
defined as

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

β(k)
n,q(x;λ)

tn

n!
, (k ∈ Z) (2.2)

Theorem 2.1. For λ ∈ C, k ∈ Z and n ≥ 0, 0 ≤ q < 1, we have

Hβ
(k)
n,q(x, y;λ) =

n∑
l=0

(
n
l

)
β
(k)
l,q (λ)Hn−l(x, y;λ). (2.3)

Proof. By using definition (2.1), we have
∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
=

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ
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=

∞∑
l=0

βkl,q(λ)
tl

l!

∞∑
n=0

Hn(x, y;λ)
tn

n!

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
=

∞∑
n=0

(
n∑
l=0

(
n
l

)
βkl,q(λ)Hn(x, y;λ)

)
tn

n!
.

Comparing the coefficients of tn

n! in both sides, we get (2.3).

Theorem 2.2. For n ≥ 0, we have

Hβ
(2)
n,1(x, y;λ) =

n∑
m=0

(
n
m

)
Bm
m+ 1

Hβn−m(x, y;λ). (2.4)

Proof. Consider equation(2.1), we have
∞∑
n=0

Hβ
(k)
n,1(x, y;λ)

tn

n!
=

Lik,1(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ

=
(1 + λt)

x
λ (1 + λt2)

y
λ

(1 + λt)
1
λ − 1

∫ t

0

1

ez − 1

∫ t

0

1

ez − 1
· · · 1

ez − 1

∫ t

0

z

ez − 1︸ ︷︷ ︸
(k−2)−times

dz · · · dz.

For k = 2 in above equation, we have
∞∑
n=0

Hβ
(2)
n,1(x, y;λ)

tn

n!
=

(1 + λt)
x
λ (1 + λt2)

y
λ

(1 + λt)
1
λ − 1

∫ t

0

z

ez − 1
dz

=

( ∞∑
m=0

Bm
m+ 1

tm

m!

)
(1 + λt)

x
λ (1 + λt2)

y
λ

(1 + λt)
1
λ − 1

=

( ∞∑
m=0

Bm
m+ 1

tm

m!

)( ∞∑
n=0

Hβn(x, y;λ)
tn

n!

)
.

Replacing n by n−m in above equation, we have

=

∞∑
n=0

n∑
m=0

(
n
m

)
Bm
m+ 1

Hβn−m(x, y;λ)
tn

n!
.

On equating the coefficients of the like powers of t in the above equation, we
get the result (2.4).

Theorem 2.3. For n ≥ 0, we have

Hβ
(k)
n,q(x, y;λ) =

n∑
p=0

(
n
p

)(p+1∑
l=1

(−1)l+p+1l!S2(p+ 1, l)

[l]kq (p+ 1)

)
Hβn−p(x, y;λ).

(2.5)
Proof. From equation (2.1), we have
∞∑
n=0

Hβ
(k)
n (x, y;λ)

tn

n!
=

(
Lik,q(1− e−t)

t

)(
t(1 + λt)

x
λ (1 + λt2)

y
λ

(1 + λt)
1
λ − 1

)
. (2.6)
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Now

1

t
Lik,q(1− e−t) =

1

t

∞∑
l=1

(1− e−t)l

[l]kq
=

1

t

∞∑
l=1

(−1)l

lk
(1− e−t)l

=
1

t

∞∑
l=1

(−1)l

[l]kq
l!

∞∑
p=l

(−1)pS2(p, l)
tp

p!

=
1

t

∞∑
p=1

p∑
l=1

(−1)l+p

[l]kq
l!S2(p, l)

tp

p!

=

∞∑
p=0

(
p+1∑
l=1

(−1)l+p+1

[l]kq
l!
S2(p+ 1, l)

p+ 1

)
tp

p!
. (2.7)

From equations (2.6) and (2.7), we have

∞∑
n=0

Hβ
(k)
n (x, y;λ)

tn

n!
=

∞∑
p=0

(
p+1∑
l=1

(−1)l+p+1

[l]kq
l!
S2(p+ 1, l)

p+ 1

)
tp

p!

( ∞∑
n=0

Hβn(x, y;λ)
tn

n!

)
.

Replacing n by n − p in the r.h.s of above equation and comparing the
coefficients of tn, we get the result (2.5).

Theorem 2.3. For n ≥ 1, we have

Hβ
(k)
n,q(x+ 1, y;λ)− Hβ

(k)
n (x, y;λ)

=

n∑
p=1

(
n
p

)(p−1∑
l=0

(−1)l+p+1

[l + 1]kq
(l + 1)!S2(p, l + 1)

)
Hn−p(x, y;λ). (2.8)

Proof. Using the Definition (2.1), we have
∞∑
n=0

Hβ
(k)
n,q(x+ 1, y;λ)

tn

n!
−
∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

=
Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x+1
λ (1 + λt2)

y
λ − Lik,q(1− e−t)

(1 + λt)
1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ

= Lik,q(1− e−t)(1 + λt)
x
λ (1 + λt2)

y
λ

=

∞∑
l=0

(1− e−t)l+1

[l + 1]kq
(1 + λt)

x
λ (1 + λt2)

y
λ

=

∞∑
p=1

(
p−1∑
l=0

(−1)l+p+1

[l + 1]kq
(l + 1)!S2(p, l + 1)

)
tp

p!
(1 + λt)

x
λ (1 + λt2)

y
λ

=

( ∞∑
p=1

(
p−1∑
l=0

(−1)l+p+1

[l + 1]kq
(l + 1)!S2(p, l + 1)

)
tp

p!

)( ∞∑
n=0

Hn(x, y;λ)
tn

n!

)
Replacing n by n − p in the above equation and comparing the

coefficients of tn, we get the result (2.8).
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Theorem 2.4. For n ≥ 0, d ∈ N and k ∈ Z, we have

Hβ
(k)
n,q(x, y;λ) =

d−1∑
a=0

n∑
l=0

l+1∑
p=1

(
n
l

)
dn−l−1

(−1)l+p+1p!S2(l + 1, p)

pk[l + 1]kq
Hβn−l

(
l + x

d
, y;

λ

d

)
.

(2.9)
Proof. From equation (2.1), we can be written as

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
=

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ

=
Lik,q(1− e−t)
(1 + λt)

d
λ − 1

d−1∑
a=0

(1 + λt)
l+x
λ (1 + λt2)

y
λ

=

(
Lik,q(1− e−t)

t

)
1

d

d−1∑
a=0

dt

(1 + λt)
d
λ − 1

(1 + λt)
l+x
λ (1 + λt2)

y
λ

=

( ∞∑
l=0

(
l+1∑
p=1

(−1)l+p+1

pk
p!
S2(l + 1, p)

[l + 1]kq

)
tl

l!

)( ∞∑
n=0

dn−1
d−1∑
a=0

Hβn(
l + x

d
, y;

λ

d
)
tn

n!

)
.

Replacing n by n − l in above equation and comparing the coefficient of tn,
we get the result (2.9).

3. Summation formulae for degenerate Hermite poly-Bernoulli
polynomials with q-parameter

For the derivation of implicit formulae involving degenerate q-poly-Bernoulli

polynomials β
(k)
n,q(x;λ) and degenerate Hermite poly-Bernoulli polynomials

Hβ
(k)
n,q(x, y;λ) the same considerations as developed for the ordinary Hermite

and related polynomials in Khan [11] and Hermite-Bernoulli polynomials in
Pathan and Khan [21-26] holds as well. First we prove the following results
involving degenerate Hermite poly-Bernoulli polynomials with q-parameter

Hβ
(k)
n,q(x, y;λ).

Theorem 3.1. The following implicit summation formulae involving degener-

ate Hermite polynomials Hβ
[α,m−1]
n,q (λ, µ;x, y) holds true:

Hβ
(k)
m+n,q(x, y;λ)

=

m,n∑
r,s=0

(
m
r

)(
n
s

)
(x− v)r+s

[
1

λ
log(1 + λ)

]r+s
Hβ

(k)
m+n−r−s,q(v, y;λ).

(3.1)
Proof. Replacing t by t+u in (2.1) and rewrite the generating function (2.1)
as

Lik,q(1− e−(t+u))
(1 + λ(t+ u))

1
λ − 1

e
y(t+u)2

λ (log(1+λ))
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= e−
x(t+u)
λ (log(1+λ)

∞∑
m,n=0

Hβ
(k)
m+n,q(x, y;λ)

tm

m!

tn

n!
. (3.2)

Upon replacing x by v in the above equation, it is not difficult to observe
that
∞∑

m,n=0

Hβ
(k)
m+n,q(λ;x, y)

tm

m!

tn

n!
= e

x(t+u)(x−v)
λ log(1+λ)

∞∑
m,n=0

Hβ
[α,m−1]
m+n,q (λ; v, y)

tm

m!

tn

n!

∞∑
m,n=0

Hβ
(k)
m+n,q(λ, µ;x, y)

tp

p!

tq

q!

=

∞∑
N=0

[x(t+u)(x−v)λ log(1 + λ)]N

N !

∞∑
p,q=0

Hβ
[α,m−1]
p+q (λ, µ; v, y)

tp

p!

tq

q!
.

Now, by applying the following known series identity [24,p.52,Eq.1.6(2)]:

∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
p,q=0

f(n+m)
xp

p!

yq

q!

∞∑
m,n=0

Hβ
(k)
m+n,q(λ;x, y)

tm

m!

tn

n!

=

∞∑
r,s=0

(x− v)r+s[
1

λ
log(1 + λ)]r+s

tr

r!

us

s!

∞∑
m,n=0

Hβ
(k)
m+n,q(λ; v, y)

tm

m!

tn

n!
.

On replacing m by m− r and n by n− s in above equation, we get

∞∑
m,n=0

Hβ
(k)
m+n,q(λ;x, y)

tm

m!

tn

n!

=

∞∑
m,n=0

p,q∑
r,s=0

(x−v)r+s[
1

λ
log(1+λ)]r+sHβ

(k)
m+n−r−s,q(λ; v, y)

tm

(m− r)!r!
tn

(n− s)!s!
.

Comparing the coefficients of tm

m! and tn

n! , we get the result (3.1).

Theorem 3.2. For x, y ∈ R and n ≥ 0. Then

Hβ
(k)
n,q(x+ u, y + w;λ) =

n∑
m=0

(
n
m

)
Hβ

(k)
n−m,q(x, y;λ)Hm(u,w;λ). (3.3)

Proof. By the definition of q-degenerate poly-Bernoulli polynomials and the
definition (1.3), we have

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1+λt)
x+u
λ (1+λt2)

y+w
λ =

( ∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

)( ∞∑
m=0

Hm(u,w;λ)
tm

m!

)
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Now replacing n by n−m and comparing the coefficients of tn, we get
the result (3.3).

Theorem 3.3. For x, y ∈ R and n ≥ 0. Then

Hβ
(k)
n,q(x, y;λ) =

n−2j∑
m=0

[n2 ]∑
j=0

β(k)
m,q(λ)(−x

λ
)n−m−2j(−λ)n−m−j(− y

λ
)j

n!

m!j!(n− 2j −m)!
.

(3.4)

Proof. Applying the definition (2.1) to the term
Lik,q(1−e−t)
(1+λt)

1
λ

−1
and expanding

the function (1 + λt)
x
λ (1 + λt2)

y
λ at t = 0 yields

Lik,q(1− e−t)
(1 + λt)

1
λ−1

(1 + λt)
x
λ (1 + λt2)

y
λ

=

( ∞∑
m=0

β(k)
m,q(λ)

tm

m!

)( ∞∑
n=0

(−x
λ

)n
(−λt)n

n!

) ∞∑
j=0

(− y
λ

)j
(−λt2)j

j!


=

∞∑
n=0

(
n∑

m=0

(
n
m

)
β(k)
m,q(λ)(−x

λ
)n−m(−λ)n−m

)
tn

n!

 ∞∑
j=0

(− y
λ

)j
(−λt2)j

j!

 .

Replacing n by n− 2j, we have
∞∑
n=0

Hβ
(k)
n (x, y;λ)

tn

n!

=

∞∑
n=0

n−2j∑
m=0

[n2 ]∑
j=0

(
n− 2j
m

)
β(k)
m (λ)(−x

λ
)n−m−2j(−λ)n−m−j(− y

λ
)j

 tn

(n− 2j)!j!
.

(3.5)
Equating their coefficients of tn, we get the result (3.4).

Theorem 3.4. For x, y ∈ R and n ≥ 0. Then

Hβ
(k)
n,q(x, y;λ) =

n∑
m=0

(
n
m

)
(− z
λ

)n−m(−λ)n−mHβ
(k)
m,q(x− z, y;λ). (3.6)

Proof. By exploiting the generating function (2.1), we can write the equation

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
=

Lik,q(1− e−t)
(1 + λt)

1
λ−1

(1 + λt)
x−z
λ (1 + λt2)

y
λ (1 + λt)

z
λ . (3.7)

=

( ∞∑
m=0

Hβ
(k)
m,q(x− z, y;λ)

tm

m!

)( ∞∑
n=0

(− z
λ

)n
(−λt)n

n!

)
.

Replacing n by n−m in above equation and equating their coefficients
of tn leads to formula (3.6).
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Theorem 3.5. The following implicit summation formula involving degenerate

Hermite poly-Bernoulli polynomials with q-parameter Hβ
(k)
n,q(x, y;λ) holds

true:

Hβ
(k)
n,q(x+ 1, y;λ) =

n∑
r=0

(
n
r

)
(− 1

λ
)r(−λ)rHβ

(k)
n−r,q(x, y;λ). (3.8)

Proof. By the definition of degenerate Hermite poly-Bernoulli polynomials
with q-parameter, we have

∞∑
n=0

Hβ
(k)
n,q(x+ 1, y;λ)

tn

n!
+

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

=
Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ ((1 + λt)

1
λ + 1)

=

( ∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

)( ∞∑
r=0

(− 1

λ
)r

(−λt)r

r!

)
+

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

=

∞∑
n=0

n∑
r=0

Hβ
(k)
n−r,q(x, y;λ)(− 1

λ
)r(−λ)r

tn

(n− r)!r!
+

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
.

Finally, equating the coefficients of the like powers of tn, we get (3.8).

4. General symmetry identities

In this section, we establish symmetry identities for the q-degenerate poly-

Bernoulli polynomials β
(k)
n,q(x;λ) and the degenerate Hermite poly-Bernoulli

polynomials with q-parameter Hβ
(k)
n,q(x, y;λ) by applying the generating

function(2.1) and (2.2). The results extend some known identities of Khan
[13-16], Pathan and Khan [19-22].

Theorem 4.1. Let a, b > 0 and a 6= b. For x, y ∈ R, n ≥ 0, 0 ≤ q < 1, then
the following identity holds true:

n∑
m=0

(
n
m

)
bman−mHβ

(k)
n−m,q(bx, b

2y;λ)Hβ
(k)
m,q(ax, a

2y;λ)

=

n∑
m=0

(
n
m

)
ambn−mHβ

(k)
n−m,q(ax, a

2y;λ)Hβ
(k)
m,q(bx, b

2y;λ). (4.1)

Proof. Start with

G(t) =

(
Lik,q(1− e−at)Lik,q(1− e−bt)

((1 + λt)
a
λ − 1)((1 + λt)

b
λ − 1)

)
(1 + λt)

abx
λ (1 + λt2)

a2b2y
λ . (4.2)

Then the expression for G(t) is symmetric in a and b and we can expand G(t)
into series in two ways to obtain

G(t) =

∞∑
n=0

Hβ
(k)
n,q(bx, b

2y;λ)
(at)n

n!

∞∑
m=0

Hβ
(k)
m,q(ax, a

2y;λ)
(bt)m

m!



Degenerate Hermite poly-Bernoulli numbers and polynomials with q-parameter11

=

∞∑
n=0

(
n∑

m=0

(
n
m

)
an−mbmHβ

(k)
n−m,q(bx, b

2y;λ)Hβ
(k)
m,q(ax, a

2y;λ)

)
tn

n!
.

On the similar lines we can show that

G(t) =

∞∑
n=0

Hβ
(k)
n,q(ax, a

2y;λ)
(bt)n

n!

∞∑
m=0

Hβ
(k)
m,q(bx, b

2y;λ)
(at)m

m!

=

∞∑
n=0

(
n∑

m=0

(
n
m

)
ambn−mHβ

(k)
n−m,q(ax, a

2y;λ)Hβ
(k)
m,q(bx, b

2y;λ)

)
tn

n!
.

Comparing the coefficients of tn

n! on the right hand sides of the last two
equations, we arrive at the desired result.

Remark 4.1. For b = 1, Theorem 4.1 reduces to

Corollary 4.1. The following identity holds true:

n∑
m=0

(
n
m

)
an−mHβ

(k)
n−m,q(x, y;λ)Hβ

(k)
m,q(ax, a

2y;λ)

=

n∑
m=0

(
n
m

)
amHβ

(k)
n−m,q(ax, a

2y;λ)Hβ
(k)
m,q(x, y;λ). (4.3)

Theorem 4.2. For all integers a > 0, b > 0 and n ≥ 0, 0 ≤ q < 1, the following
identity holds true:
n∑

m=0

(
n
m

)
an−mbmHβ

(k)
n−m,q

(
bx, b2z;λ

) m∑
i=0

(
m
i

)
σi(a−1;λ)β

(k)
m−i,q(ay;λ)

=

n∑
m=0

(
n
m

)
ambn−mHβ

(k)
n−m,q

(
ax, a2z;λ

) m∑
i=0

(
m
i

)
σi(b−1;λ)β

(k)
m−i,q(by;λ),

(4.4)
where generalized falling factorial sum σk(n;λ) is given by (1.15).

Proof. We now use

H(t) =
Lik,q(1− e−at)Lik,q(1− e−bt)((1 + λt)

ab
λ − 1)(1 + λt)

ab(x+y)
λ (1 + λt2)

a2b2z
λ

((1 + λt)
a
λ − 1)((1 + λt)

b
λ − 1)2

to find that

g(t) =

(
Lik,q(1− e−at)
(1 + λt)

a
λ − 1

)
(1 + λt)

abx
λ (1 + λt2)

a2b2z
λ

(
(1 + λt)

ab
λ − 1

(1 + λt)
b
λ − 1

)

×

(
Lik,q(1− e−bt)
(1 + λt)

b
λ − 1

)
(1 + λt)

aby
λ
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=

∞∑
n=0

Hβ
(k)
n,q

(
bx, b2z;λ

) (at)n

n!

∞∑
n=0

σn(a− 1;λ)
(bt)n

n!

∞∑
n=0

β(k)
n,q(ay;λ)

(bt)n

n!
.

(4.5)
Using a similar plan, we get

g(t) =

∞∑
n=0

Hβ
(k)
n,q

(
ax, a2z;λ

) (bt)n

n!

∞∑
n=0

σn(b− 1;λ)
(at)n

n!

∞∑
n=0

β(k)
n,q(by;λ)

(at)n

n!
.

(4.6)
By comparing the coefficients of tn on the right hand sides of the last two
equations, we arrive at the desired result.

5. Conclusion

The degenerate Hermite-poly-Bernoulli polynomials with q-parameter

Hβ
(k)
n,q(x, y;λ) plays a major role in obtaining new expansions, identities and

representations. We can introduce and study a class of related generalized
polynomials by defining degenerate Gould-Hopper-poly-Bernoulli polynomi-
als with q-parameter

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λtr)

y
λ =

∞∑
n=0

Hβ
(k,r)
n,q (x, y;λ)

tn

n!
. (5.1)

The equation (2.1) may be derived from (5.1) for r = 2.

This process can easily be extended to establish degenerate multi-
variable Hermite-poly-Bernoulli polynomials with q-parameter and Apostle
type Bernoulli polynomials.
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