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Abstract. In our present investigation, we first introduce several new subclasses
of analytic and bi-univalent functions by using a certain q-integral operator in
the open unit disk U = {z : z ∈ Cand |z| < 1}. By applying the Faber polynomial
expansion method as well as the q-analysis, we then determine bounds for the
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these newly-defined analytic and bi-univalent function classes subject to a gap
series condition. We also highlight some known consequences of our main results.
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1. Introduction and definitions

Let A be the class of all functions f which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}
and normalized by

f(0) = 0 = f ′(0)− 1.

Thus, clearly, the function f ∈ A has the following Taylor-Maclaurin series represen-
tation:

f(z) = z +

∞∑
n=2

anz
n (z ∈ U) . (1.1)

Further, by S ⊂ A we shall denote the class of all functions which are univalent in U.
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For two functions f, g ∈ A, the function f is said to be subordinate to the function g
in U, denoted by

f (z) ≺ g (z) (z ∈ U) ,

if there exists a function

w ∈ B0 := {w : w ∈ A, w (0) = 0 and |w (z)| < 1 (z ∈ U)}

such that

f (z) = g
(
w (z)

)
(z ∈ U) .

In the case when the function g is univalent in U, we have the following equivalence:

f(z) ≺ g(z) (z ∈ U)⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

Next, for a function f ∈ A given by (1.1) and another function g ∈ A given by

g(z) = z +

∞∑
n=2

bnz
n (z ∈ U) ,

the convolution (or the Hadamard product) of the functions f and g is defined by

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n = (g ∗ f)(z). (1.2)

It is well known that every univalent function f has an inverse f−1, defined by

f−1
(
f(z)

)
= z = f

(
f−1(z)

)
(z ∈ U)

and

f
(
f−1(w)

)
= w

(
|w| < r0(f); r0(f) =

1

4

)
,

where

f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (1.3)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent
in U. We denote the class of all such functions by Σ. In recent years, the pioneering
work of Srivastava et al. [22] essentially revived the investigation of various subclasses
of the analytic and bi-univalent function class Σ. In fact, in a remarkably large number
of sequels to the pioneering work of Srivastava et al. [22], several different subclasses of
the analytic and bi-univalent function class Σ were introduced and studied analogously
by the many authors (see, for example, [5], [7], [9], [23], [24], [25], [28] and [29]).
However, only non-sharp estimates on the initial coefficients |a2| and |a3| in the Taylor-
Maclaurin series expansion (1.1) were obtained in these recent papers.

The Faber polynomials introduced by Faber [11] play an important rôle in various
areas of mathematical sciences, especially in Geometric Function Theory of Complex
Analysis (see, for details, [27]). Recently, several authors (see, for example, [13] and
[26]; see also [6], [8], [12] and [20]) investigated some interesting and useful properties
for analytic functions by applying the Faber polynomial expansion method. Motivated
by these and other recent works (see, for example, [1], [14] and [30]), here we make
use of the q-analysis in order to define new subclasses of analytic and bi-univalent
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functions in U and (by means of the Faber polynomial expansion method) we deter-
mine estimates for the general coefficient |an| (n = 3) in the Taylor-Maclaurin series
expansion (1.1) of functions in each of these subclasses.

We begin by recalling here some basic definitions and other concept details of
the q-calculus (0 < q < 1), which will be used in this paper.

Definition 1.1. Let q ∈ (0, 1) and define the q-number [κ]q by

[κ]q =


1− qκ

1− q
(κ ∈ C)

n−1∑
k=0

qk = 1 + q + q2 + · · ·+ qn−1 (κ = n ∈ N),

where N denotes the set of positive integers and N0 := N ∪ {0}.

Definition 1.2. Let q ∈ (0, 1) and define the q-factorial [n]q! by

[n]q! =


1 (n = 0)

n∏
k=1

[k]q (n ∈ N).

Definition 1.3. (see [15] and [16]) The q-derivative (or the q-difference) Dqf of a
function f is defined, in a given subset of C, by

(
Dqf

)
(z) =


f(z)− f(qz)

(1− q)z
(z 6= 0)

f ′(0) (z = 0),

(1.4)

provided that f ′(0) exists.

We note from Definition 1.3 that

lim
q→1−

(
Dqf

)
(z) = lim

q→1−

f(z)− f(qz)

(1− q)z
= f ′(z)

for a function f which is differentiable in a given subset of C. It is readily deduced
from (1.1) and (1.4) that (

Dqf
)
(z) = 1 +

∞∑
n=2

[n]q anz
n−1.

Definition 1.4. The q-Pochhammer symbol [κ]n,q (κ ∈ C; n ∈ N0) is defined as
follows:

[κ]n,q =
(qκ; q)n
(1− q)n

:=

 1 (n = 0)

[κ]q[κ+ 1]q[κ+ 2]q · · · [κ+ n− 1]q (n ∈ N).

Moreover, the q-gamma function Γq(z) is defined by the following recurrence relation:

Γq(z + 1) = [z]q Γq(z) and Γq(1) = 1.
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Definition 1.5. [17] For f ∈ A, let the Ruscheweyh q-derivative operator be defined
as follows:

Iλq f(z) = f(z) ∗ Fq,λ+1(z) (z ∈ U; λ > −1),

where

Fq,λ+1(z) = z +

∞∑
n=2

Γq(λ+ n)

[n− 1]q!Γq(λ+ 1)
zn = z +

∞∑
n=2

[λ+ 1]q,n−1

[n− 1]q!
zn

in terms the Hadamard product (or convolution) given by (1.2).

We next define a certain q-integral operator by using the same technique as that
used by Noor [19].

Definition 1.6. For f ∈ A, let the q-integral operator Fq,λ be defined by

F−1
q,λ+1(z) ∗ Fq,λ+1(z) = zDqf(z).

Then

Iλq f(z) = f(z) ∗ F−1
q,λ+1(z)

= z +

∞∑
n=2

Ψn−1 anz
n (z ∈ U; λ > −1), (1.5)

where

F−1
q,λ+1(z) = z +

∞∑
n=2

Ψn−1 z
n

and

Ψn−1 =
[n]q!Γq(λ+ 1)

Γq(λ+ n)
=

[n]q!

[λ+ 1]q,n−1
.

Clearly, we have

I0
q f(z) = zDqf(z) and I1

q f(z) = f(z).

We note also that, in the limit case when q → 1−, the q-integral operator Fq,λ given
by Definition 1.6 would reduce to the integral operator which was studied by Noor
[18].

The following identity can be easily verified:

zDq

(
Iλ+1
q f(z)

)
=

(
1 +

[λ]q
qλ

)
Iλq f(z)− [λ]q

qλ
Iλ+1
q f(z). (1.6)

When q → 1−, this last identity (1.6) implies that

z
(
Iλ+1f(z)

)′
= (1 + λ) Iλf(z)− λIλ+1f(z),

which is the well-known recurrence relation for the above-mentioned integral operator
which studied by Noor [18].

The above-defined q-calculus provides valuable tools that have been extensively
used in order to examine several subclasses of A. Even though Ismail et al. [14]
were the first to use the q-derivative operator Dq in order to study a certain q-
analogue of the class S∗ of starlike functions in U, yet a rather significant usage of
the q-calculus in the context of Geometric Function Theory of Complex Analysis was
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basically furnished and the basic (or q-) hypergeometric functions were first used in
Geometric Function Theory in a book chapter by Srivastava (see, for details, [21, pp.
347 et seq.]; see also [23]).

We now introduce the following subclasses of the analytic and bi-univalent func-
tion class Σ.

Definition 1.7. For a function f ∈ Σ, we say that

f ∈ Rq (Σ, α, γ) (0 5 α < 1; γ = 0)

if and only if ∣∣∣∣Dqf(z) + γzD2
qf(z)− 1− αq

1− q

∣∣∣∣ < 1− α
1− q

(z ∈ U)

and ∣∣∣∣Dqg(w) + γwD2
qg(w)− 1− αq

1− q

∣∣∣∣ < 1− α
1− q

(w ∈ U) .

Equivalently, by using the principle of subordination between analytic functions, we
can write the above conditions as follows (see, for details, [30]):

Dqf(z) + γzD2
qf(z) ≺ 1 + [1− α(1 + q)] z

1− qz
(z ∈ U)

and

Dqg(w) + γwD2
qg(w) ≺ 1 + [1− α(1 + q)]w

1− qw
(w ∈ U) ,

respectively, where g(w) = f−1(w) is given by (1.3).

Definition 1.8. For a function f ∈ Σ, we say that

f ∈ Rq (Σ, α, γ, λ) (0 5 α < 1; γ = 0; λ = 0)

if and only if

DqIλq f (z) + γzD2
qIλq f (z) ≺ 1 + [1− α(1 + q)] z

1− qz
(z ∈ U)

and

DqIλq g(w) + λwD2
qIλq g(w) ≺ 1 + [1− α(1 + q)]w

1− qw
(w ∈ U) ,

where g(w) = f−1(w) is given by (1.3).

2. The Faber polynomial expansion method and its applications

In this section, by using the Faber polynomial expansion of a function f ∈ A of
the form (1.1), we observe that the coefficients of its inverse map g = f−1 may be
expressed as follows (see [4]; see also [13] and [26]):

g(w) = f−1(w) = w +

∞∑
n=2

1

n
K−nn−1 (a2, a3, · · · , an)wn, (2.1)
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where

K−nn−1 =
(−n)!

(−2n+ 1)!(n− 1)!
an−1

2 +
(−n)!

(2(−n+ 1))!(n− 3)!
an−3

2 a3

+
(−n)!

(−2n+ 3)!(n− 4)!
an−4

2 a4

+
(−n)!

(2(−n+ 2))!(n− 5)!
an−5

2

[
a5 + (−n+ 2)a2

3

]
+

(−n)!

(−2n+ 5)!(n− 6)!
an−6

2 [a6 + (−2n+ 5)a3a4]

+
∑
j=7

an−j2 Vj . (2.2)

Here, and in what follows, such expressions as (for example) (−n)! occurring in (2.2)
are to be interpreted symbolically by

(−n)! ≡ Γ(1− n) := (−n)(−n− 1)(−n− 2) · · ·
(
n ∈ N0

)
and Vj (7 5 j 5 n) is a homogeneous polynomial in the variables a2, a3, · · · , an.
In particular, the first three terms of K−nn−1 are given below:

K−2
1 = −2a2, K−3

2 = 3
(
2a2

2 − a3

)
and

K−4
3 = −4

(
5a3

2 − 5a2a3 + a4

)
.

In general, an expansion of Kp
n is given by (see, for details, [3])

Kp
n = pan +

p(p− 1)

2
E2
n +

p!

(−3)!3!
E3
n + · · ·+ p!

(p− n)!n!
Enn (p ∈ Z),

where Z := {0,±1,±2, · · · } and

Ep
n = Ep

n (a2, a3, · · · ) .
It is clearly seen that

Enn(a1, a2, · · · , an) = an1 .

and

Emn−1(a2, · · · , an) =

∞∑
n=2

m!(a2)µ1 · · · (an)µn−1

µ1!, · · · , µn−1!
(m 5 n) .

We also have (see [2])
En−1
n−1 (a2, · · · , an) = an−1

2

and

Emn (a1, a2, · · · , an) =
∑(

m!

µ1! · · ·µn!

)
aµ1

1 · · · aµn
n (m 5 n),

where a1 = 1 and the sum is taken over all non-negative integers µ1, · · · , µn satisfying
the following conditions:

µ1 + µ2 + · · ·+ µn = m

and
µ1 + 2µ2 + · · ·+ nµn = n.
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By a similar argument, we note that

Enn(a1, · · · , an) = En1

and that the first and the last polynomials are given by

Enn = an1 and E1
n = an.

We now state and prove our main results. Throughout our discussion, the parameters
L and M are given by

L := [1− α(1 + q)] and M := −q.

Theorem 2.1. For 0 5 α < 1 and γ = 0, let f ∈ Rq (Σ, α, γ) . If

am = 0 (2 5 m 5 n− 1),

then

|an| 5
|1− α+ q(1− α)|

[n]q + γ [n]q [n− 1]q
(n = 3). (2.3)

Proof. For the function f ∈ Rq (Σ, α, γ) of the form (1.1), we have

Dqf(z) + γzD2
qf(z) = 1 +

∞∑
n=2

(
[n]q + γ [n]q [n− 1]q

)
anz

n−1 (2.4)

and, for its inverse map g = f−1, we get

Dqg(w) + γwD2
qg(w) = 1 +

∞∑
n=2

(
[n]q + γ [n]q [n− 1]q

)
bnw

n−1, (2.5)

where

bn =
1

[n]q
K−nn−1 (a2, a3, · · · , an) .

Since both the function f and its inverse map g = f−1 are in Rq (Σ, α, γ) , by the
definition of subordination, there exist two Schwarz functions p(z) and q(w) given by

p(z) =

∞∑
n=1

cnz
n and q(w) =

∞∑
n=1

dnw
n (z, w ∈ U),

so that we have

Dqf(z) + γzD2
qf(z) =

1 + Lp(z)
1 +Mp(z)

= 1−
∞∑
n=1

(L −M)K−1
n (c1, c2, · · · , cn,M) zn (2.6)

and

Dqg(w) + γwD2
qg(w) =

1 + Lq(w)

1 +Mq(w)

= 1−
∞∑
n=1

(L −M)K−1
n (d1, d2, · · · , dn,M)wn. (2.7)
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In general, for any p ∈ N and n = 2, we have the following expansion of
Kp
n(k1, k2, · · · , kn,M) (see [3] and [4]):

Kp
n(k1, k2, · · · , kn,M)

=
p!

(p− n)!n!
kn1Mn−1 +

p!

(p− n+ 1)!(n− 2)!
kn−2

1 k2Mn−2

+
p!

(p− n+ 2)!(n− 3)!
· kn−3

1 k3Mn−3

+
p!

(p− n+ 3)!(n− 4)!
kn−4

1

[
k4Mn−4 +

p− n+ 3

2
k2

3M
]

+
p!

(p− n+ 4)!(n− 5)!
kn−5

1

[
k5Mn−5 + (p− n+ 4)k3k4M

]
+
∑
j=6

kn−1
1 Xj , (2.8)

where Xj is a homogeneous polynomial of degree j in the variables k1, k2, · · · , kn.
For the coefficients of the Schwarz functions p(z) and q(w), we have (see [10])

|cn| 5 1 and |dn| 5 1.

Thus, upon comparing with the corresponding coefficients in (2.4) and (2.6), we find
that (

[n]q + γ [n]q [n− 1]q

)
an = −(L −M)K−1

n−1(c1, c2, · · · , cn−1,M). (2.9)

Similarly, in view of the corresponding coefficients in (2.5) and (2.7), we have(
[n]q + γ [n]q [n− 1]q

)
bn = −(L −M)K−1

n (d1, d2, · · · , dn,M). (2.10)

We note for

am = 0 (2 5 m 5 n− 1) and bn = −an,
that (

[n]q + γ [n]q [n− 1]q

)
an = −(L −M)cn−1 (2.11)

and

−
(

[n]q + γ [n]q [n− 1]q

)
an = −(L −M)dn−1. (2.12)

Taking the moduli in (2.11) and (2.12), we thus obtain

|an| 5
|L −M|

[n]q + γ [n]q [n− 1]q
|cn−1|

=
|L −M|

[n]q + γ [n]q [n− 1]q
|dn−1| .

Therefore, we have

|an| 5
|1− α+ q(1− α)|

[n]q + γ [n]q [n− 1]q
(n = 3),

which completes the proof of the assertion (2.3) of Theorem 2.1. �
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If we let q → 1− in Theorem 2.1 above, we obtain the following known result
given by Srivastava et al. [26].

Corollary 2.2. (see [26]) Let f given by (1.1) be in the class

Rα,γΣ (0 5 α < 1; γ = 0).

If

am = 0 (2 5 m 5 n− 1),

then

|an| 5
2 (1− α)

n [1 + γ(n− 1)]
(n ∈ N \ {1, 2}).

Theorem 2.3. For 0 5 α < 1 and 0 5 γ, let f ∈ Rq (Σ, α, γ). Then

|a2| 5 min

 |1− α+ q(1− α)|
[2]q + γ [2]q [1]q

,

√√√√2(1 + q) |1− α+ q(1− α)|

[2]q

(
[3]q + γ [3]q [2]q

)
 ,

|a3| 5 min

{
|1− α+ q(1− α)|

[1]q + [1]q

(
[2]q |1− α+ q(1− α)|(

[2]q + γ [2]q [1]q
)2 +

2

[3]q + γ [3]q [2]q

)
,

2 (q + 2) |1− α+ q(1− α)|(
[1]q + [1]q

)(
[3]q + γ [3]q [2]q

)} ,
∣∣∣a3 − [2]q a

2
2

∣∣∣ 5 (1 + q) |1− α+ q(1− α)|
[3]q + γ [3]q [2]q

and ∣∣∣∣a3 −
[2]q

[1]q + [1]q
a2

2

∣∣∣∣ 5 2 |1− α+ q(1− α)|∣∣∣([1]q + [1]q
)(

[3]q + γ [3]q [2]q
)∣∣∣ .

Proof. Upon setting n = 2 and n = 3 in (2.9) and (2.10), respectively, we get(
[2]q + γ [2]q [1]q

)
a2 = −(L −M)c1, (2.13)

(
[3]q + γ [3]q [2]q

)
a3 = −(L −M)(Mc21 − c2), (2.14)

−
(

[2]q + γ [2]q [1]q

)
a2 = −(L −M)d1 (2.15)

and (
[3]q + γ [3]q [2]q

)(
[2]q a

2
2 − a3

)
= −(L −M)(Md2

1 − d2). (2.16)
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From (2.13) and (2.15), we have

|a2| 5
|L −M|

[2]q + γ [2]q [1]q
|c1|

=
|L −M|

[2]q + γ [2]q [1]q
|d1|

5
|1− α+ q(1− α)|

[2]q + γ [2]q [1]q
. (2.17)

Adding (2.14) and (2.16), we find that

[2]q

(
[3]q + γ [3]q [2]q

)
a2

2 = −(L −M)
[
M
(
c21 + d2

1

)
− (c2 + d2)

]
, (2.18)

which, upon taking the moduli on both sides, yields

|a2|2 =
2 |L −M| (|M|+ 1)

[2]q

(
[3]q + γ [3]q [2]q

) .
This last equation can be written as follows:

|a2| 5

√√√√2(1 + q) |1− α+ q(1− α)|

[2]q

(
[3]q + γ [3]q [2]q

) . (2.19)

Now, in order to find |a3| , by subtracting (2.16) from (2.14), we obtain

a3 =
(L −M)

[
M
(
d2

1 − c21
)
− (c2 − d2)

]
([1]q + [1]q)

(
[3]q + γ [3]q [2]q

) +
[2]q

([1]q + [1]q)
a2

2. (2.20)

Taking the moduli in (2.20) and using the fact that d2
1 = c21, we have

|a3| 5
2 |L −M|

([1]q + [1]q)
(

[3]q + γ [3]q [2]q

) +
[2]q

[1]q + [1]q
|a2|2 . (2.21)

Using (2.17) in (2.21), we obtain

|a3| 5
|1− α+ q(1− α)|

[1]q + [1]q

·

 [2]q |1− α+ q(1− α)|(
[2]q + γ [2]q [1]q

)2 +
2

[3]q + γ [3]q [2]q

 . (2.22)

Again, by using the equation (2.19) in (2.21), we have

|a3| 5
2 (q + 2) |1− α+ q(1− α)|

([1]q + [1]q)
(

[3]q + γ [3]q [2]q

) . (2.23)

We also find from (2.16) that∣∣∣a3 − [2]q a
2
2

∣∣∣ 5 (1 + q) |1− α+ q(1− α)|
[3]q + γ [3]q [2]q

.



The Faber polynomial expansion method and its application 429

From (2.20) and using the fact that d2
1 = c21, we have

a3 −
[2]q

[1]q + [1]q
a2

2 =
(L −M) (c2 − d2)

([1]q + [1]q)
(

[3]q + γ [3]q [2]q

) . (2.24)

Finally, by taking the moduli in (2.24), we finally obtain∣∣∣∣a3 −
[2]q

[1]q + [1]q
a2

2

∣∣∣∣ 5 2 |1− α+ q(1− α)|∣∣∣([1]q + [1]q)
(

[3]q + γ [3]q [2]q

)∣∣∣ .
The proof of Theorem 2.3 is thus completed. �

In the limit case when q → 1−, Theorem 2.3 yields the following bounds on |a2|
and |a3| given by Srivastava et al. [26].

Corollary 2.4. (see [26]) Let f given by (1.1) be in the class

Rα,γΣ (0 5 α < 1; γ = 0).

Then

a2 5



√
2(1− α)

3(1 + 2γ)

(
0 5 α 5

1 + 2γ − 2γ2

3(1 + 2γ)

)
1− α
1 + γ

(
1 + 2γ − 2γ2

3(1 + 2γ)
5 α < 1

)
and

a3 5
2(1− α)

3(1 + 2γ)
.

Theorem 2.5. For 0 5 α < 1 and 0 5 γ, let f ∈ Rq (Σ, α, γ, λ). If

am = 0 (2 5 m 5 n− 1),

then

|an| 5
|1− α+ q(1− α)| [λ+ 1]q,n−1(

[n]q + γ [n]q [n− 1]q

)
[n]q!

(n = 3). (2.25)

Proof. For the function f ∈ Rq (Σ, α, γ, λ) of the form (1.1), we have

DqIλq f (z) + γzD2
qIλq f (z)

= 1 +

∞∑
n=2

(
[n]q + γ [n]q [n− 1]q

)
Ψn−1anz

n−1. (2.26)

Also, for its inverse mapping g = f−1, we have

DqIλq g(w) + γwD2
qIλq g(w)

= 1 +

∞∑
n=2

(
[n]q + γ [n]q [n− 1]q

)
Ψn−1bnw

n−1, (2.27)



430 H.M. Srivastava, S. Khan, Q.Z. Ahmad, N. Khan and S. Hussain

where

bn =
1

[n]q
K−nn−1 (a2, a3, · · · , an) .

Since, both f and its inverse g = f−! are in the function class Rq (Σ, α, γ, λ) , by the
definition of subordination, there exist two Schwarz functions p(z) and q(w) given by

p(z) =

∞∑
n=1

cnz
n and q(w) =

∞∑
n=1

dnw
n (z, w ∈ U),

so that we have

DqIλq f (z) + γzD2
qIλq f (z)

=
1 + Lp(z)
1 +Mp(z)

= 1−
∞∑
n=1

(L −M)K−1
n (c1, c2, · · · , cn,M) zn (2.28)

and

DqIλq g(w) + γwD2
qIλq g(w)

=
1 + Lq(w)

1 +Mq(w)

= 1−
∞∑
n=1

(L −M)K−1
n (d1, d2, · · · , dn,M)wn. (2.29)

In general, for any p ∈ N and n = 2, an expansion of

Kp
n (k1, k2, · · · , kn,M)

is given by (2.8) (see [3] and [4]). Moreover, the coefficients of the Schwarz functions
p(z) and q(w) are constrained by (see [10])

|cn| 5 1 and |dn| 5 1.

Thus, upon comparing the corresponding coefficients in (2.26) and (2.28), we find
that (

[n]q + γ [n]q [n− 1]q

)
Ψn−1an

= −(L −M)K−1
n−1 (c1, c2, · · · , cn−1,M) . (2.30)

Similarly, by comparing the corresponding coefficients in (2.27) and (2.29), we have(
[n]q + γ [n]q [n− 1]q

)
Ψn−1bn

= −(L −M)K−1
n (d1, d2, · · · , dn,M) . (2.31)

We note also that, for

am = 0 (2 5 m 5 n− 1) and bn = −an,
we have (

[n]q + γ [n]q [n− 1]q

)
Ψn−1an = −(L −M)cn−1 (2.32)
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and

−
(

[n]q + γ [n]q [n− 1]q

)
Ψn−1an = −(L −M)dn−1. (2.33)

Finally, by taking the moduli in (2.32) and (2.33), we obtain

|an| 5
|L −M|(

[n]q + γ [n]q [n− 1]q

)
Ψn−1

|cn−1|

=
|L −M|(

[n]q + γ [n]q [n− 1]q

)
Ψn−1

|dn−1| .

Consequently, we have

|an| 5
|1− α+ q(1− α)| [λ+ 1]q,n−1(

[n]q + γ [n]q [n− 1]q

)
[n]q!

(n = 3),

which completes the proof of the assertion (2.25) of Theorem 2.5. �

Theorem 2.6. For 0 5 α < 1 and γ = 0, let f ∈ Rq (Σ, α, γ, λ). Then

|a2| 5 min

 |1− α+ q(1− α)| [λ+ 1]q,1(
[2]q + γ [2]q [1]q

)
[2]q!

,

√√√√2(1 + q) |1− α+ q(1− α)| [λ+ 1]q,2

[2]q

(
[3]q + γ [3]q [2]q

)
[3]q!

 , (2.34)

|a3| 5 min

{
|1− α+ q(1− α)|

[1]q + [1]q

(
([λ+ 1]q,1)

2
[2]q |1− α+ q(1− α)|

([2]q!)
2
(

[2]q + γ [2]q [1]q

)2

+
2[λ+ 1]q,2(

[3]q + γ [3]q [2]q

)
[3]q!

)
,

2 (q + 2) |1− α+ q(1− α)| [λ+ 1]q,2

([1]q + [1]q)
(

[3]q + γ [3]q [2]q

)
[3]q!

}
, (2.35)

∣∣∣a3 − [2]q a
2
2

∣∣∣ 5 (1 + q) |1− α+ q(1− α)| [λ+ 1]q,2(
[3]q + γ [3]q [2]q

)
[3]q!

(2.36)

and ∣∣∣∣a3 −
(

[2]q
[1]q + [1]q

)
a2

2

∣∣∣∣ 5 2 |1− α+ q(1− α)| [λ+ 1]q,2∣∣∣([1]q + [1]q)
(

[3]q + γ [3]q [2]q

)∣∣∣ [3]q!
. (2.37)
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Proof. Upon setting n = 2 and n = 3 in (2.30) and (2.31), respectively, we have(
[2]q + γ [2]q [1]q

)
Ψ1a2 = −(L −M)c1, (2.38)(

[3]q + γ [3]q [2]q

)
Ψ2a3 = −(L −M)(Mc21 − c2), (2.39)

−
(

[2]q + γ [2]q [1]q

)
Ψ1a2 = −(L −M)d1 (2.40)

and (
[3]q + γ [3]q [2]q

)
Ψ2

(
[2]q a

2
2 − a3

)
= −(L −M)(Md2

1 − d2). (2.41)

Making use of (2.38) and (2.40), we find that

|a2| 5
|L −M|(

[2]q + γ [2]q [1]q

)
Ψ1

|c1|

=
|L −M|(

[2]q + γ [2]q [1]q

)
Ψ1

|d1|

5
|1− α+ q(1− α)| [λ+ 1]q,1(

[2]q + γ [2]q [1]q

)
[2]q!

. (2.42)

Also, by adding (2.39) and (2.41), we have

[2]q

(
[3]q + γ [3]q [2]q

)
Ψ2a

2
2 = −(L −M)

[
M
(
c21 + d2

1

)
− (c2 + d2)

]
. (2.43)

Now, if we take the moduli in both sides of (2.43), we obtain

|a2|2 =
2 |L −M| (|M|+ 1)

[2]q

(
[3]q + γ [3]q [2]q

)
Ψ2

,

so that

|a2| 5

√√√√2(1 + q) |1− α+ q(1− α)| [λ+ 1]q,2

[2]q

(
[3]q + γ [3]q [2]q

)
[3]q!

. (2.44)

In order to find |a3| , we subtract (2.41 ) from (2.39), We thus obtain

a3 =
(L −M)

[
M
(
d2

1 − c21
)
− (c2 − d2)

]
([1]q + [1]q)

(
[3]q + γ [3]q [2]q

)
Ψ2

+

(
[2]q

([1]q + [1]q)

)
a2

2, (2.45)

which, after taking the moduli and using the fact that

d2
1 = c21,

yields

|a3| 5
2 |L −M|

([1]q + [1]q)
(

[3]q + γ [3]q [2]q

)
Ψ2

+

(
[2]q

[1]q + [1]q

)
|a2|2 . (2.46)
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Using (2.42) in (2.46), we have

|a3| 5
|1− α+ q(1− α)|

[1]q + [1]q

 ([λ+ 1]q,1)
2

[2]q |1− α+ q(1− α)|

([2]q!)
2
(

[2]q + γ [2]q [1]q

)2

+
2[λ+ 1]q,2(

[3]q + γ [3]q [2]q

)
[3]q!

 . (2.47)

Again, by using (2.44) in (2.46), we get

|a3| 5
2 (q + 2) |1− α+ q(1− α)| [λ+ 1]q,2

([1]q + [1]q)
(

[3]q + γ [3]q [2]q

)
[3]q!

.

It follows from (2.41) that∣∣∣a3 − [2]q a
2
2

∣∣∣ 5 (1 + q) |1− α+ q(1− α)| [λ+ 1]q,2(
[3]q + γ [3]q [2]q

)
[3]q!

.

Using the fact that

d2
1 = c21

in (2.45), we have

a3 −
(

[2]q
[1]q + [1]q

)
a2

2 =
(L −M) (c2 − d2)

([1]q + [1]q)
(

[3]q + γ [3]q [2]q

)
Ψ2

. (2.48)

By taking the moduli on both sides of (2.48), we finally obtain∣∣∣∣a3 −
(

[2]q
([1]q + [1]q)

)
a2

2

∣∣∣∣ 5 2 |1− α+ q(1− α)| [λ+ 1]q,2∣∣∣([1]q + [1]q)
(

[3]q + γ [3]q [2]q

)∣∣∣ [3]q!
,

which completes the proof of Theorem 2.6. �

3. Concluding remarks and observations

Here, in our present investigation, we have successfully applied the Faber polyno-
mial expansion method as well as the q-analysis in our study of several new subclasses
of analytic and bi-univalent functions by using a certain q-integral operator in the open
unit disk U. We have derived bounds for the nth coefficient in the Taylor-Maclaurin
series expansion for functions in each of these newly-defined analytic and bi-univalent
function classes subject to a gap series condition. By means of corollaries of our main
theorems, we have also highlighted some known consequences of our main results,
which were given recently by Srivastava et al. [26].
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[26] Srivastava, H.M., Sümer Eker, S., Ali, R.M., Coefficient bounds for a certain class of
analytic and bi-univalent functions, Filomat, 29(2015), 1839–1845.

[27] Todorov, P.G., On the Faber polynomials of the univalent functions of class Σ, J. Math.
Anal. Appl., 162(1991), 268–276.

[28] Xu, Q.-H., Gui, Y.-C., Srivastava, H.M., Coefficient estimates for a certain subclass of
analytic and bi-univalent functions, Appl. Math. Lett., 25(2012), 990–994.

[29] Xu, Q.-H., Xiao, H.-G., Srivastava, H.M., A certain general subclass of analytic and bi-
univalent functions and associated coefficient estimate problems, Appl. Math. Comput.,
218(2012), 11461–11465.
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