Integral solution to a parabolic equation involving the fractional p-Laplacian operator

Authors

DOI:

https://doi.org/10.24193/subbmath.2025.4.07

Keywords:

fractional Laplacian, integral solutions, L^1 data, subdifferential

Abstract

The aim of this work is to study the existence and uniqueness of integral solutions for a class of non-local parabolic equations. There are two main results. First, we use a subdifferential technique to verify the existence and uniqueness of weak solutions when the initial data belong to \(L^2\). Secondly, the existence and uniqueness of an integral solution is demonstrated by extending the study to initial data in \(L^1\) space. To overcome the difficulties caused by non-local terms, the proposed strategy combines new approaches with sophisticated strategies derived from the theory of accretive operators. Non-local evolution equations and their applications are better understood thanks to these results.

References

Akagi, G. and Matsuura, K., Nonlinear diffusion equations driven by the p(x)-Laplacian, Nonlinear Differ. Equ. Appl., 20(2013), 37–64.

Alaa, N. E., Charkaoui, A., El Ghabi, M., and El Hathout, M., Integral solution for a parabolic equation driven by the p(x)-Laplacian operator with nonlinear boundary conditions and L¹ data, Mediterr. J. Math., 20(2023), no. 5.

Alberti, G. and Bellettini, G., A nonlocal anisotropic model for phase transitions. I. The optimal profile problem, Math. Ann., 310(1998), 527-560.

Antontsev, S. and Shmarev, S., Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions, Nonlinear Anal., 65(2006), 728-761.

Applebaum, D., Lévy processes-from probability to finance quantum groups, Notices Amer. Math. Soc., 51(2004), no. 11, 1336–1347.

Bendaida, F., Karami, F., and Meskine, D., Nonlocal p-Laplacian involving a nonlinear fractional reaction-diffusion system applied to image restoration, Comput. Math. Appl., 152(2023).

Brasco, L., Lindgren, E., and Strömqvist, M., Continuity of solutions to a nonlinear fractional diffusion equation, J. Evol. Equ., 21(2021), no. 4, 4319-4381.

Brasco, L., Lindgren, E., and Parini, E., The fractional Cheeger problem, Interfaces Free Bound., 16(2014), 419-458.

Brézis, H., Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, Math. Studies, 1973.

Cabré, X. and Sola-Morales, J., Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math., 58(2005), 1678–1732.

Caffarelli, L., Nonlocal equations, drifts and games, Nonlinear Partial Differ. Equ. Abel Symp., 7(2012), 37-52.

Caffarelli, L., Roquejoffre, J. M., and Sire, Y., Variational problems in free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12(2010), 1151–1179.

Caffarelli, L. and Vasseur, A., Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math. (2), 171(2010), 1903–1930.

Craig, W., Schanz, U., and Sulem, C., The modulational regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14(1997), 615-667.

Craig, W. and Groves, M., Hamiltonian long-wave approximations to the water-wave problem, Wave Motion, 19(1994), 367-389.

Iannizzotto, A., Mosconi, S., and Squassina, M., Global Hölder regularity for the fractional p-Laplacian, Rev. Mat. Iberoam., 32(2016), 1353–1392.

Kindermann, S., Osher, S., and Jones, P. W., Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., 4(2005), no. 4, 1091–1115.

Leonori, T., Peral, I., Primo, A., and Soria, F., Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35(2015), no. 12, 6031-6068.

Liao, N., Hölder regularity for parabolic fractional p-Laplacian, Calc. Var., 63(2024).

Liu, Q., Zhang, Z., and Guo, Z., On a fractional reaction-diffusion system applied to image decomposition and restoration, Comput. Math. Appl., 78(2019), no. 5, 1739–1751.

Majda, A. and Tabak, E., A two-dimensional model for quasigeostrophic flow: Comparison with the two-dimensional Euler flow, Phys. D, 98(1996), 515-522.

Mazón, J. M., Rossi, J. D., and Toledo, J., Fractional p-Laplacian evolution equations, J. Math. Pures Appl., 105(2016), 810-844.

Metwali, M. M. A., On some properties of Riemann-Liouville fractional operator in Orlicz spaces and applications to quadratic integral equations, Filomat, 36(2022), no. 17, 6009-6020.

Di Nezza, E., Palatucci, G., and Valdinoci, E., Hitchhiker's guide to fractional Sobolev spaces, Bull. Sci. Math., 136(2012), 521–573.

Fu, Y., Pucci, P., On solutions of space-fractional diffusion equations by means of potential wells, Electron. J. Qual. Theory Differ. Equ., 70(2016), 1–17.

Puhst, D., On the evolutionary fractional p-Laplacian, Appl. Math. Res. Express, 2(2015), 253-273.

Rockafeller, R. T., Characterization of the subdifferentials of convex functions, Pac. J. Math., 17(1966), 497-510.

Roubicek, T., Nonlinear heat equation with L¹-data, Nonlinear Differ. Equ. Appl., 5(1998), 517-527.

Signorini, A., Questioni di elasticità non linearizzata e semilinearizzata, Rendiconti di Matematica e delle sue applicazioni, 18(1959), 95–139.

Sire, Y. and Valdinoci, E., Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256(2009), 1842-1864.

Stoker, J. J., Water Waves: The Mathematical Theory with Applications, Pure Appl. Math., Interscience Publishers, New York, 1957.

Teng, K., Zhang, C., and Zhou, S., Renormalized and entropy solutions for the fractional p-Laplacian evolution equations, J. Evol. Equ., 19(2019), 559-584.

Toland, J., The Peierls-Nabarro and Benjamin-Ono equations, J. Funct. Anal., 145(1997), 136–150.

Vázquez, J. L., The evolution fractional p-Laplacian equation in ℝᴺ. Fundamental solution and asymptotic behaviour, Nonlinear Anal., 199(2020).

Vázquez, J. L., The Dirichlet problem for the fractional p-Laplacian evolution equation, J. Differ. Equ., 260(7)(2016), 6038–6056.

Zeidler, E., Nonlinear functional analysis and its applications, III. Variational Methods and Optimization, Springer, New York, 1985-1990.

Zineddaine, G., Kassidi, A. and Melliani, S., Existence of periodic solutions to fractional p (z)-Laplacian parabolic problems, Studia Universitatis Babeş-Bolyai Mathematica, 70(1)(2025), No. 1, 69–82.

Downloads

Published

2025-12-04

Issue

Section

Articles

Similar Articles

61-70 of 263

You may also start an advanced similarity search for this article.