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On a certain subclass of analytic univalent
function defined by using Komatu integral
operator
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Abstract. In this paper a certain class of analytic univalent functions in the open
unit disk is defined. Some interesting results including inclusion relations argu-
ment properties and the effect of the certain integral operator to the elements of
this class are investigated.
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1. Introduction

(&)
Let A denote the class of functions of the form f(z) = z + Y apz*, which are
k=2

analytic in the open unit disk U = {z € C: |z| < 1}. Also let S denotes the subclass
of A consisting of univalent functions in U. A function f € A is said to be starlike of
order v (0 <~y <1)in U if

ro )

f(z)
We denote by S*(v), the class of all such functions. A function f € A is said to be
convex of order v (0 <~y < 1) in U if

Re (14080 >

Let K(7) denote the class of all those functions f € A which are convex of order ~y
in U. We have

>

feK(y) ifandonlyif zf'(2)e€ S*(y).
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Recently, Komatu [4] has introduced a certain integral operator L) (a > 0, A > 0)

ar

Lal(2) = 70y

1 1\ M1
/ o2 (log t) f(zt)dt, ze€U, a>0, A>0. (1.1)
0

Thus, if f € A is of the form f(z) = z + Y axz¥, it is easily seen form (1.1) that
k=2

oo A
Lif(z):z—i—Z(a_FZ_l) a2, a>0, A>0.
n=2

According to the above series expansion for L) one can define L for all real \. Using
the above relation, it is easy to verify that

2 LT (2)) = al) f(2) — (a— DLMf(2), a>0, A>0. (1.2)

We note that

(i) For a = 1, A = k (k is any integer number), the multiplier transformation
L} = I*, was studied by Flet [2] and Salagean [9];

(ii) For a = 1, A = —k (k € Ny = {0,1,2,...}), the differential operator L% =
D¥ was studied by Salagean [9];

(iii) For @ = 2, A = k (k is any integer number), the operator L5 = L*, was
studied by Uralegddi and Somantha [10];

(iv) For a = 2, the multiplier transformation L) = I, was studied by Jung et
all [3].

If f € A satisfies

!
arg(zf(z) )‘<72TB7 zelU, 0<n<1,0<p8<1,

-1
f(z)
then f is said to be strongly starlike of order 8 and type n in U. If f € A satisfies
1 1"
arg M—n <Eﬁ, zelU, 0<n<1,0<pB<1,
f'(2) 2

then f is said to be strongly convex of order § and type n in U. We denote by S*(3,7)
and K (B,n), respectively, the subclasses of a consisting of all strongly starlike and
strongly convex of order 8 and type n in U. We also note that S*(1,n7) = S*(n)
and K(1,n7) = K(n). We shall use S*(8) and K(5) to denote S*(3,0) and K(f3,0),
respectively, which are the classes of univalent starlike and univalent convex functions
of order 5 (0 < B < 1).

Let P denote the class of functions of the form

p(z) =1+ pn2",
n=1

which are analytic in U and satisfy the condition Re p(z) > 0. For two functions
f and g, analytic in U, we say that the function f is subordinate to g, and write
f(2) < g(2), if there exists a Schwarz function w in U, such that f(z) = g(w(z)).
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For a > 0, let S*(a,n, h) be the class of functions f € A satisfying the condition
1 (Z(Lﬁf(Z))'
L—n\ L3f(2)
For simplicity we write

—n)<h(z), 0<n<1, heP.

1+ A
SA <a,77, 1132) =S*a,n,A,B), -1<B<A<LI.

2. Preliminaries

Lemma 2.1. [1] For 8,7 € C let h be conver univalent in U with h(0) = 1 and
Re (Bh(2) + ) > 0, if p is analytic in U with p(0) = 1, then

2/ (2)
p(2) + ———— < h(2),
A TE R
implies that p(z) < h(z).
Lemma 2.2. [5] Let h be conver univalent in U and w be analytic in U with Rew(z) >
0. If p is analytic in U and p(0) = h(0), and
p(2) + 2w(2)p'(2) < h(2),
then p(z) < h(z).
Lemma 2.3. [7] Let p be analytic in U with p(0) = 1 and p(z) # 0 for all z € U.
Suppose that there exists a point zg € U such that

s
|argp(z)] < Sa. |2l < Jeol,

and -
|arg p(z0)| = 5% 0<a<l,

then we have

/

zop’ (20) — ika,
p(20)
where
P> 1 + 1 h (20) = =
25 lat ), when argp(z)=ga
1 1
k< ~3 (a—i— a) ,  when argp(zg) = —ga,
and

p(z0)% = ia.
Lemma 2.4. [8] The function
(1—2)" =exp(ylog(l —2)), v#0,

is univalent if only if v is either in the closed disk |y — 1| < 1 or in the closed disk
|y +1] < 1.
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Lemma 2.5. [6] Let g be analytic in U and let © and ¢ be analytic in a domain D
containing q(U) with ¢(w) # 0 when w € q(U). Set

Q(2) = 2q'(2)$(q(2)), h(z) = O(q(2)) + Q(2),
and suppose that
(1) Q 1s starlike; either

(2) h is convex;

LG (9 | Q)
o me G =T (Gt * a0y ) > ©
If p is analytic in U with p(0) = ¢(0) and p(U) C D, and
O(p(2)) + 2p'(2)d(p(2)) < O(q(2)) + 2¢'(2)$a(2)) = h(2),
then p(z) < q(z), and q is the best dominant.

3. Main results
Theorem 3.1. S*(a,n, h) C S***(a,n, h), where

Re (1 =n)h(z) +n+(a—1)) > 0.
Proof. Suppose that f € S*(a,n, h), set

1 (2L f(2)
p(Z):].—’ﬂ( Lé\+1f(2) —77)7 Z€U70§77<17
where p is analytic function with p(0) = 1. By using the equation
ALy f(2)) = alyf(2) = (a = DL f(2), a>0, A>0, (3.1)
we have
L)\-i-l /
(a—l)—l—n—l—(l—n)p(z):(a—l)—i—W. (3.2)
Hence from (3.1) and (3.2) we have
Laf
(a—1)+n+ {1 —n)pz) = a[é\_‘_l](;l). (3.3)

Differentiating logarithmically derivatives in both sides of (3.3) and using (3.1) we
have

1 <Z(L¢/>f(z))/ Zp/(Z) +p(2), 0<n<1, zeUl.

1-n\ Laf(2) _77> ~(a=D+n+1-np(z)
Since Re ((1 —=n)h(z) + n+ (a — 1)) > 0, applying Lemma 2.1, it follows that p(z) <

h(z), that is
1 (2L f(2))
=T L7 f(2) -n) <
and f € S*(a,n,h). O
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Taking h(z) = iigz (-1 < B < A <1)in Theorem 3.1, we have the following
Corollary:

Corollary 3.2. The inclusion relation S*(a,n, A, B) C S’ 1(a,n, A, B) holds for any
a > 0.

Letting « = 1, A = 0 and h(z) = (1%£)? in Theorem 3.1 and using
S*1(a,n,h) € S*(a,n, h) we have the following inclusion relation:

Corollary 3.3. K(8,n) C S*(8,7).

Theorem 3.4. Let 0 < p < 1, v # 1 and a > 1 be a real number satisfying either
[2avp — 1| <1 or |2avp + 1| < 1. If f € A satisfies the condition

Re (1+M)>1—p, zeU, (3.4)
then L
(ZaflLéﬁLlf(z))’y =< ql(Z) = W,

where q1 is the best dominant.
Proof. Denoting p(z) = (247 L)T1f(2))7, it follows that

() Laf(2)
o) TG o
Combing (3.4) and (3.5), we find that

2p'(2) - 1+ (2p—1)z

1 3.6
* ayp(z) 1—2z 7 (3:6)
and if we set O(w) = 1, ¢p(w) = wc%w’ and ¢q1(z) = m, then by the assumption

of the theorem and making use of Lemma 2.5, we know that ¢; is univalent in U. It
follows that

Q) = ()l () = T,
and
M) = Ol () + Q) = L2

If we consider D such that

1 1
a(U) = {w: wt = 1] < Jwi|, € =29pa} c D,
then it is easy to check that the conditions (i) and (ii) of Lemma 2.5 hold true. Thus,
the desired result of Theorem 3.4 follows from (3.6). O

Theorem 3.5. Let h be convex univalent function in U and
Re (c+n+ (1 —n)h(z)) >0, zeU.
If f € A satisfies the condition

1 <Z(Léf(2))’
L—-n\ L3yf(2)

—n)<h<z>, 0<n<l,
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then \
1 (z2(LaFe(f)(2)
= (TR ) e osa<t
where F, is the integral operator defined by
RE = 2 [ e (3.7
(& - ZC 0 . .
Proof. From (3.7), we have
ALaFe(f)(2)) = (e + DLy f(2) — Ly Fe(f)(2). (3.8)
Let
_ 1 (ALF()(R)
=15 (Rrne ) )
where p is analytic function with p(0) = 1. Then, using (3.8) we get
_ Laf(2)
ctn+ 1 —np(z)=(c+ 1)m. (3.10)
Differentiating logarithmically in both sides of (3.10) and multiplying by z, we have
zp'(2) _ 1 (AL fR)
K e~ e R )
Since Re (¢ + 1+ (1 —n)p(2)) > 0 thus by Lemma 2.1, we have
1 (2LaF()()
o= (R G ) <)
g

Letting h(z) = {342 (-1 < B < A < 1) in the Theorem 3.5, we have the
following Corollary.

Corollary 3.6. If f € S*(a,n, A, B), then F.(f) € SMa,n, A, B), where F.(f) is the
integral operator defined by (3.7).

Theorem 3.7. Let f€ A, 0<6<1,a>1and0<~<1. If

e (Z%g((j))y ) ”)‘ <30

for some g € S*(a,n, A, B). Then
2Lt f(2)) ) ’ ™
arg | —2———- — < —a.
° ( gz )2

where a (0 < a < 1) is the solution of the equation

acos Ftp

[ V)

Oé+;+ — y B?é—l,
§ = %—l—n—i—(a—l)—i—asin%tl (3.11)

a, B=-1,
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and

2 .
f = o avesin <<1 (A —AB) + (+a—1)(1 - B2

Proof. Let

p(2)

1 <Z(L2“f(2))’ )
=7\ La*lg(z)
Using (1.2), it is easy to see that

(L=7)p(2) +7) Lot g(2) = aLy f(2) — (a — 1)Lyt f(2).

Differentiating (3.13) and multiplying by z, we obtain
(1 =)2p'(2) Ly g(2) + (1 = 7)p(2) +7) 2(La T g(2))
= az(La f(2)) — (a = 1)z(La* f(2))".

Since g € S*(a,n, A, B), by Theorem 3.1, we have g € S*(a,n, A, B). Let

o) = <z<Lz+lg<z>>' ).

BRI
Then by using (1.2) once again, we have
Lag(2))
a)A=n)+n+(a—-1)=a—7"—.
Lattg(2)
From (3.14) and (3.15), we obtain
2p' (2 1 2(LMLf(2))
8 R Ry EU AT
q(z)1=n)+n+(a—1) L=\ La7g(2)
Since ¢(z) < }I—gi (-1 < B < A<1), we have
1—-AB A-B
’q(z)_l_Bz <1_B27 ZerB#_]-v
and
1-A

TSReq(z)7 zeU, B#—1.

Therefore, from (3.16) and (3.17), for B # —1, we obtain
1-7n)(1—AB
o)1) 40+ (a—1) - LZDEZAD)

For B # —1, we have

- (-1 <

Re ((2)(1—n) + 1+ (a— 1)) > L2
Let

o) =)0+ (o= 1) = rewp (i3 ).

where
(1—n)(1—A4)
1-B

(1-=md+A4)

-1
+n+a-1)<r< 1+ B

(L—n)(A-B) )

+n+(a—1).

33

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(1-n)(A-B)
1- B2

—‘1-77-‘1-(@—1), -t <P < ty,
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and t1 is given by (3.12), and

(1-—nd-A4)

5 +n+(a—1)<r<oc.

We note that p is analytic in U with p(0) = 1, so by applying the assumption and
Lemma 2.2 with

1
q(z)(1=n)+n+(a—1)

w(z) =

we have Re w(z) > 0. Set

2(LA f(2))
o) - 11 (L)

- , 0<~y<1.
11—\ Lg(2) 'O =7

At first, suppose that p(zg)= = ia(a > 0). For B # —1 we have

=ar 2op'(%0)
arg Qeo) = g(a%X1 m+n+w—1f”“)>

= ga + arg (1 + ika (rexp (Z;(P)
” B
=Tq + arg <1 + e (exp (@)))
2 T 2

kasin — (1
2

Y

7T
—a + arctan
2 r + ko cos & (1—<I>)

™
@ cos —t1
2

Y

m
§a+arctan (1 —77)(1+A)

4+ (a—1)+asin—t
a — Q S1n —
1+ B K 2"

™
~
27

where § and ¢; are given by (3.11) and (3.12), respectively.

Similarly, for the case B = —1, we have
arg Q(z) = arg ( z0p/(0) +p(zo)> >Ta
q(z0)(1 =) +n+(a—1) T2

These results obviously contradict the assumption.
Next, suppose that p(zg)= = —ia (a > 0), B = —1 and 2, € U. Applying the same
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method we have

o 201 (20) ]
arg Q(z0) — arg <q<z0)<1 ) 0)>

) -1
= %ﬂa + arg <1 —ika <rexp (Z;T(I)>> )

B kevsin ~ (1 — @)
< 70[ — arctan 2 pyem
r + kacos 5(1 - )
i
- acos —t
< — — arctan
2 %jtnﬂa—lwasingtl
-7
=—9
2 )
where 0 and t; are given by (3.11) and (3.12) respectively.
Similarly, for the case B = —1, we have
zop’ (20) > -
arg Q(z —arg( + p(z < —aq,
e Ve e R R VA A

which contradicts the assumption of Theorem 3.7. Therefore, the proof of Theorem
3.7 is completed. O

Theorem 3.8. Let f€ A,0<6<1,a>1,0<vy<1andRe (c+n(l—n)h(z)) > 0.

if
e (z%g;((;)y -)| < e

for some g € S*(a,n, A, B). Then
2Ly F()(2)
"‘“g ( LYTF9)(2) ”>

where F, is defined by (3.8), and a (0 < o < 1) is the solution of the equation given
by (3.11).

Proof. Let

™
< 50&,

o) — ! <z<L3F6<f><z>>/ ).

1=\ LaFu(9)(2)
Since g € S*(a,n, A, B), so Theorem 3.5 implies that F.(g) € S*(a,n, A, B). Using
(3.9) we have
(1 =)p(2) + NLaFelg)(2) = 2(La Fe(f)(2))"-
Now, by a simple calculation, we get

ALy f(2)

(1=7)2p(=) + (1= 2)p(=) +7) (0 + (1= m)a(2) = (e D320 S0
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where

1 (2(LaF(9)(2))
( L) F.(9)(2) ”)'
Hence we have

1 (2(Laf(2)  \ _ ; zp'(2)
< Lag(z) 7) = )+q(z)(17n)+n+c'

L=~
The remaining part of the proof in Theorem 3.8 is similar to that Theorem 3.7 and
so we omit it. O
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