DOI: 10.24193/subbmath.2025.3.06

Results on ϕ -like functions involving Hadamard product

Hardeep Kaur (D), Richa Brar (D) and Sukhwinder Singh Billing (D)

Abstract. In this paper, we derive a differential subordination theorem involving convolution of normalized analytic functions. By selecting different dominants to our main result, we find certain sufficient conditions for ϕ -likeness and parabolic ϕ -likeness of functions in class \mathcal{A} .

Mathematics Subject Classification (2010): 30C80; 30C45.

Keywords: Analytic function, differential subordination, parabolic ϕ -like function, ϕ -like function.

1. Introduction

A function f is said to be analytic at a point z in a domain $\mathbb D$ if it is differentiable not only at z but also in some neighbourhood of the point z. A function f is said to be analytic in a domain $\mathbb D$ if it is analytic at each point of $\mathbb D$. Let $\mathcal H$ be the class of analytic functions in the open unit disk $\mathbb E=\{z\in\mathbb C:|z|<1\}$. For $a\in\mathbb C$ and $n\in\mathbb N$, let $\mathcal H[a,n]$ be the subclass of $\mathcal H$ consisting of the functions of the form

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots$$

Let \mathcal{A} be the class of functions f, analytic in the unit disk \mathbb{E} and normalized by the conditions f(0) = f'(0) - 1 = 0.

Let S denote the class of all analytic univalent functions f defined in the open unit disk \mathbb{E} which are normalized by the conditions f(0) = f'(0) - 1 = 0. The Taylor series expansion of any function $f \in S$ is

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots$$

Received 25 February 2025; Accepted 31 May 2025.

© Studia UBB MATHEMATICA. Published by Babes-Bolyai University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Let the functions f and g be analytic in \mathbb{E} . We say that f is subordinate to g written as $f \prec g$ in \mathbb{E} , if there exists a Schwarz function ϕ in \mathbb{E} (i.e. ϕ is regular in |z| < 1, $\phi(0) = 0$ and $|\phi(z)| \le |z| < 1$) such that

$$f(z) = g(\phi(z)), |z| < 1.$$

Let $\Phi: \mathbb{C}^2 \times \mathbb{E} \to \mathbb{C}$ be an analytic function, p an analytic function in \mathbb{E} with $(p(z), zp'(z); z) \in \mathbb{C}^2 \times \mathbb{E}$ for all $z \in \mathbb{E}$ and h be univalent in \mathbb{E} . Then the function p is said to satisfy first order differential subordination if

$$\Phi(p(z), zp'(z); z) \prec h(z), \ \Phi(p(0), 0; 0) = h(0). \tag{1.1}$$

A univalent function q is called dominant of the differential subordination (1.1) if p(0) = q(0) and $p \prec q$ for all p satisfying (1.1). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants q of (1.1), is said to be the best dominant of (1.1). The best dominant is unique up to a rotation of \mathbb{E} .

Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ be two analytic functions, then the

Hadamard product or convolution of f and g, written as f * g is defined by

$$(f * g)(z) = \sum_{k=0}^{\infty} a_k b_k z^k.$$

Ronning [8] and Ma and Minda [6] studied the domain Ω and the function q(z) defined below:

$$\Omega = \left\{ u + iv : u > \sqrt{(u-1)^2 + v^2} \right\}.$$

Clearly the function

$$q(z) = 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2$$

maps the unit disk \mathbb{E} onto the domain Ω . Let ϕ be analytic in a domain containing $f(\mathbb{E}), \ \phi(0) = 0$ and $\Re(\phi'(0)) > 0$. Then, the function $f \in \mathcal{A}$ is said to be ϕ - like in \mathbb{E} , if

$$\Re\left(\frac{zf'(z)}{\phi(f(z))}\right) > 0, \ z \in \mathbb{E}.$$

This concept was introduced by Brickman [4]. He proved that an analytic function $f \in \mathcal{A}$ is univalent if and only if f is ϕ - like for some analytic function ϕ . Later, Ruscheweyh [9] investigated the following general class of ϕ -like functions:

Let ϕ be analytic in a domain containing $f(\mathbb{E})$, where $\phi(0) = 0$, $\phi'(0) = 1$ and $\phi(w) \neq 0$ for some $w \in f(\mathbb{E}) \setminus \{0\}$, then the function $f \in \mathcal{A}$ is called ϕ -like with respect to a univalent function g, g(0) = 1, if

$$\frac{zf'(z)}{\phi(f(z))} \prec q(z), \ z \in \mathbb{E}.$$

A function $f \in \mathcal{A}$ is said to be parabolic ϕ - like in \mathbb{E} , if

$$\Re\left(\frac{zf'(z)}{\phi(f(z))}\right) > \left|\frac{zf'(z)}{\phi(f(z))} - 1\right|, \ z \in \mathbb{E}.$$
 (1.2)

Equivalently, condition (1.2) can be written as:

$$\frac{zf'(z)}{\phi(f(z))} \prec q(z) = 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}} \right) \right)^2.$$

In 2007, Shanmugham et al. [10] proved the following result for ϕ -like functions.

Theorem 1.1. Let $q(z) \neq 0$ be analytic and univalent in \mathbb{E} with q(0) = 1 such that $\frac{zq'(z)}{q(z)}$ is starlike univalent in \mathbb{E} . Let q(z) satisfy

$$\Re\left[1+\frac{\alpha q(z)}{\gamma}-\frac{zq'(z)}{q(z)}+\frac{zq''(z)}{q'(z)}\right]>0.$$

Let

$$\Psi(\alpha,\gamma,g;z) := \alpha \left\{ \frac{z(f*g)'(z)}{\phi(f*g)(z)} \right\} + \gamma \left\{ 1 + \frac{z(f*g)''(z)}{(f*g)'(z)} - \frac{z(\phi(f*g)(z))'}{\phi(f*g)(z)} \right\}.$$

If q satisfies

$$\Psi(\alpha, \gamma, g; z) \prec \alpha q(z) + \frac{\gamma z q'(z)}{q(z)},$$

then

$$\frac{z(f*g)'(z)}{\phi(f*g)(z)} \prec q(z)$$

and q is the best dominant.

Later in 2018, Brar and Billing [3] obtained the following result.

Theorem 1.2. Let $q(z) \neq 0$, be a univalent function in \mathbb{E} such that

(i)
$$\Re \left[1 + \frac{zq''(z)}{q'(z)} + (\gamma - 1) \frac{zq'(z)}{q(z)} \right] > 0 \text{ and }$$

$$(ii)\quad \Re\left[1+\frac{zq''(z)}{q'(z)}+(\gamma-1)\frac{zq'(z)}{q(z)}+\frac{\beta(1-\alpha)}{\alpha}\left(q(z)\right)^{\beta-\gamma}+\gamma\right]>0.$$

If f and $g \in \mathcal{A}$ satisfy

then

$$\frac{z(f*g)'(z)}{\phi(f*g)(z)} \prec q(z), \ z \in \mathbb{E},$$

where α , β , γ are complex numbers such that $\alpha \neq 0$, and q(z) is the best dominant.

In 2019, Adegani et al. [1] established sufficient subordination conditions for functions to be close-to-convex.

Moreover, this study is also motivated by the findings of Cho et al. [5] and Adegani et al. [2] who explored subordination conditions in geometric function theory.

The aim of the present investigation is to find sufficient conditions for parabolic ϕ -likeness and ϕ -likeness of analytic functions.

To prove our main result, we shall use the following lemma of Miller and Mocanu.

Lemma 1.3. ([7], Theorem 3.4h, p.132). Let q be univalent in \mathbb{E} and let θ and φ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$, with $\varphi(w) \neq 0$, when $w \in q(\mathbb{E})$. Set $Q(z) = zq'(z)\varphi[q(z)]$, $h(z) = \theta[q(z)] + Q(z)$ and suppose that either

- 1. h is convex, or
- 2. Q is starlike.

In addition, assume that

3.
$$\Re\left(\frac{zh'(z)}{Q(z)}\right) > 0 \text{ for all } z \in \mathbb{E}.$$

If p is analytic in \mathbb{E} , with p(0) = q(0), $p(\mathbb{E}) \subset \mathbb{D}$ and

$$\theta[p(z)] + zp'(z)\varphi[p(z)] \prec \theta[q(z)] + zq'(z)\varphi[q(z)], \ z \in \mathbb{E},$$

then $p(z) \prec q(z)$ and q is the best dominant.

2. A subordination theorem

In what follows, all the powers taken are principal ones.

Theorem 2.1. Let β and γ be complex numbers such that $\beta \neq 0$. Let $q(z) \neq 0$, be a univalent function in \mathbb{E} such that

$$\begin{split} (i)\Re\left[1+\frac{zq''(z)}{q'(z)}+\left(\frac{\gamma}{\beta}-1\right)\frac{zq'(z)}{q(z)}\right] > 0 \ \ and \\ (ii)\Re\left[1+\frac{zq''(z)}{q'(z)}+\left(\frac{\gamma}{\beta}-1\right)\frac{zq'(z)}{q(z)}+\frac{a}{c}\left(\frac{\gamma}{\beta}+1\right)q(z)+\frac{b}{c}\left(\frac{\gamma}{\beta}+2\right)q^2(z)\right] > 0, \ where \\ a, \ b \ and \ c \ are \ real \ numbers \ with \ c \neq 0. \ \ Let \ \phi \ be \ analytic \ function \ in \ the \ domain \ containing \ (f*g)(\mathbb{E}) \ such \ that \ \phi(0)=0=\phi'(0)-1 \ \ and \ \phi(w)\neq 0 \ \ for \ w\in (f*g)(\mathbb{E})\backslash\{0\}. \end{split}$$

taining
$$(f * g)(\mathbb{E})$$
 such that $\phi(0) = 0 = \phi'(0) - 1$
If $f, g \in \mathcal{A}, \frac{z(f * g)'(z)}{\phi((f * g)(z))} \neq 0, z \in \mathbb{E}, satisfy$

$$\left[\frac{z(f * g)'(z)}{\phi((f * g)(z))}\right]^{\gamma}.$$

$$\cdot \left\{ a \frac{z(f * g)'(z)}{\phi((f * g)(z))} + b \left[\frac{z(f * g)'(z)}{\phi((f * g)(z))} \right]^{2} + c \left[1 + \frac{z(f * g)''(z)}{(f * g)'(z)} - \frac{z(\phi((f * g)(z)))'}{\phi((f * g)(z))} \right] \right\}^{\beta} \\
 \prec [q(z)]^{\gamma} \left[aq(z) + bq^{2}(z) + c \frac{zq'(z)}{q(z)} \right]^{\beta}, \quad (2.1)$$

then

$$\frac{z(f*g)'(z)}{\phi((f*g)(z))} \prec q(z), \ z \in \mathbb{E},$$

and q(z) is the best dominant.

Proof. Define the function p by

$$p(z) = \frac{z(f * g)'(z)}{\phi((f * g)(z))}, \ z \in \mathbb{E}.$$

Then the function p is analytic in \mathbb{E} and p(0) = 1.

Therefore, from equation (2.1), we get:

$$\left[p(z)\right]^{\gamma} \left[ap(z) + bp^2(z) + c\frac{zp'(z)}{p(z)}\right]^{\beta} \prec \left[q(z)\right]^{\gamma} \left[aq(z) + bq^2(z) + c\frac{zq'(z)}{q(z)}\right]^{\beta}$$

or

$$a [p(z)]^{\frac{\gamma}{\beta}+1} + b [p(z)]^{\frac{\gamma}{\beta}+2} + c [p(z)]^{\frac{\gamma}{\beta}-1} z p'(z)$$

$$\prec a [q(z)]^{\frac{\gamma}{\beta}+1} + b [q(z)]^{\frac{\gamma}{\beta}+2} + c [q(z)]^{\frac{\gamma}{\beta}-1} z q'(z)$$

Let the functions θ and φ be defined as:

$$\theta(w) = aw^{\frac{\gamma}{\beta}+1} + bw^{\frac{\gamma}{\beta}+2} \text{ and } \varphi(w) = cw^{\frac{\gamma}{\beta}-1}$$

Clearly, the functions θ and φ are analytic in domain $\mathbb{D} = \mathbb{C} \setminus \{0\}$ and $\varphi(w) \neq 0$ in \mathbb{D} . Therefore,

$$Q(z) = \varphi[q(z)]zq'(z) = c[q(z)]^{\frac{\gamma}{\beta} - 1}zq'(z)$$

and

$$h(z) = \theta[q(z)] + Q(z) = a[q(z)]^{\frac{\gamma}{\beta} + 1} + b[q(z)]^{\frac{\gamma}{\beta} + 2} + c[q(z)]^{\frac{\gamma}{\beta} - 1} z q'(z)$$

On differentiating, we get

$$\frac{zQ'(z)}{Q(z)} = 1 + \frac{zq''(z)}{q'(z)} + \left(\frac{\gamma}{\beta} - 1\right) \frac{zq'(z)}{q(z)}$$

and

$$\frac{zh'(z)}{Q(z)} = 1 + \frac{zq''(z)}{q'(z)} + \left(\frac{\gamma}{\beta} - 1\right)\frac{zq'(z)}{q(z)} + \frac{a}{c}\left(\frac{\gamma}{\beta} + 1\right)q(z) + \frac{b}{c}\left(\frac{\gamma}{\beta} + 2\right)q^2(z).$$

In view of the given conditions (i) and (ii), we see that Q is starlike and

$$\Re\left(\frac{zh'(z)}{Q(z)}\right) > 0.$$

Therefore, the proof, now follows from Lemma [1.3].

For
$$g(z) = \frac{z}{1-z}$$
 in Theorem 2.1, we have

Theorem 2.2. Let β and γ be complex numbers such that $\beta \neq 0$. Let $q(z) \neq 0$, be a univalent function in \mathbb{E} which satisfy conditions (i) and (ii) of Theorem 2.1. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and

$$\phi(w) \neq 0 \text{ for } w \in f(\mathbb{E}) \setminus \{0\}. \text{ If } f \in \mathcal{A}, \ \frac{zf'(z)}{\phi(f(z))} \neq 0, \ z \in \mathbb{E}, \text{ satisfy}$$

where a, b and c are real numbers with $c \neq 0$, then

$$\frac{zf'(z)}{\phi(f(z))} \prec q(z), \ z \in \mathbb{E},$$

and q(z) is the best dominant.

3. Applications to parabolic ϕ -like functions

Remark 3.1. Selecting $q(z) = 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2$, $\beta = \gamma = 1$ in Theorem 2.2, then after having some calculations,

$$q'(z) = \frac{4}{\pi^2 \sqrt{z} (1-z)} \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}} \right)$$

$$\frac{q'(z)}{q(z)} = \frac{\frac{4}{\pi^2 \sqrt{z} (1-z)} \left[\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}} \right) \right]}{1+\frac{2}{\pi^2} \left[\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}} \right) \right]^2}$$

$$\frac{q''(z)}{q'(z)} = \frac{3z-1}{2z(1-z)} + \frac{1}{\sqrt{z}(1-z) \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}} \right)}.$$

Thus the conditions (i) and (ii) of Theorem 2.1 becomes

$$1 + \frac{zq''(z)}{q'(z)} + \left(\frac{\gamma}{\beta} - 1\right) \frac{zq'(z)}{q(z)} = 1 + \frac{zq''(z)}{q'(z)} = \frac{1+z}{2(1-z)} + \frac{\sqrt{z}}{(1-z)\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}$$

and

$$\begin{split} 1 + \frac{zq''(z)}{q'(z)} + \left(\frac{\gamma}{\beta} - 1\right) \frac{zq'(z)}{q(z)} + \frac{a}{c} \left(\frac{\gamma}{\beta} + 1\right) q(z) + \frac{b}{c} \left(\frac{\gamma}{\beta} + 2\right) q^2(z) \\ &= 1 + \frac{zq''(z)}{q'(z)} + \frac{2a}{c} q(z) + \frac{3b}{c} q^2(z) \\ &= \frac{1+z}{2(1-z)} + \frac{\sqrt{z}}{(1-z)\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)} + \frac{2a}{c} \left[1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2\right] \\ &+ \frac{3b}{c} \left[1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2\right]^2. \end{split}$$

Therefore, for real numbers a, b, c with $c \neq 0$ and $\frac{a}{c}$, $\frac{b}{c} \geq 0$, we notice that q(z) satisfy conditions (i) and (ii) of Theorem 2.1. Thus, we derive the following result from Theorem 2.2.

Theorem 3.2. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{\phi(f(z))} \neq 0$, $z \in \mathbb{E}$, satisfy

$$a\left(\frac{zf'(z)}{\phi(f(z))}\right)^{2} + b\left(\frac{zf'(z)}{\phi(f(z))}\right)^{3}$$

$$+cz\left\{\frac{\left[\phi(f(z))\right]\left[zf''(z) + f'(z)\right] - zf'(z)\left[\phi(f(z))\right]'}{\left[\phi(f(z))\right]^{2}}\right\}$$

$$\prec a\left[1 + \frac{2}{\pi^{2}}\left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}\right]^{2} + b\left[1 + \frac{2}{\pi^{2}}\left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}\right]^{3}$$

$$+\frac{4c\sqrt{z}}{\pi^{2}(1-z)}\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right),$$

where a, b, c are real numbers such that $c \neq 0$ and $\frac{a}{c}$, $\frac{b}{c} \geq 0$, then

$$\frac{zf'(z)}{\phi(f(z))} \prec 1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^2, \ z \in \mathbb{E}.$$

Hence f is parabolic ϕ -like.

Remark 3.3. Selecting $q(z) = 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2$, $\beta = 1$ and $\gamma = 0$ in Theorem 2.2, then after having some calculations, we have

$$q'(z) = \frac{4}{\pi^2 \sqrt{z} (1-z)} \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}} \right)$$

$$\frac{q'(z)}{q(z)} = \frac{\frac{4}{\pi^2 \sqrt{z} (1-z)} \left[\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}} \right) \right]}{1+\frac{2}{\pi^2} \left[\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}} \right) \right]^2}$$

$$\frac{q''(z)}{q'(z)} = \frac{3z-1}{2z(1-z)} + \frac{1}{\sqrt{z} (1-z) \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}} \right)}.$$

Thus the conditions (i) and (ii) of Theorem 2.1 becomes

$$1 + \frac{zq''(z)}{q'(z)} + \left(\frac{\gamma}{\beta} - 1\right) \frac{zq'(z)}{q(z)} = 1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}$$

$$= \frac{1+z}{2(1-z)} + \frac{\sqrt{z}}{(1-z)\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)} - \frac{\frac{4\sqrt{z}}{\pi^2(1-z)}\left[\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right]}{1 + \frac{2}{\pi^2}\left[\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right]^2}$$

and
$$1 + \frac{zq''(z)}{q'(z)} + \left(\frac{\gamma}{\beta} - 1\right) \frac{zq'(z)}{q(z)} + \frac{a}{c} \left(\frac{\gamma}{\beta} + 1\right) q(z) + \frac{b}{c} \left(\frac{\gamma}{\beta} + 2\right) q^{2}(z)$$

$$= 1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \frac{a}{c} q(z) + \frac{2b}{c} q^{2}(z)$$

$$= \frac{1+z}{2(1-z)} + \frac{\sqrt{z}}{(1-z)\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)} - \frac{\frac{4\sqrt{z}}{\pi^{2}(1-z)}\left[\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right]}{1 + \frac{2}{\pi^{2}}\left[\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right]^{2}}$$

$$+ \frac{a}{c} \left[1 + \frac{2}{\pi^{2}}\left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}\right] + \frac{2b}{c} \left[1 + \frac{2}{\pi^{2}}\left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}\right]^{2}.$$

Therefore, for real numbers a, b, c with $c \neq 0$ and $\frac{a}{c}$, $\frac{b}{c} \geq 0$, we notice that q(z) satisfy conditions (i) and (ii) of Theorem 2.1. Thus, we derive the following result from Theorem 2.2.

Theorem 3.4. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{\phi(f(z))} \neq 0$, $z \in \mathbb{E}$, satisfy

$$a\frac{zf'(z)}{\phi(f(z))} + b\left(\frac{zf'(z)}{\phi(f(z))}\right)^2 + c\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z)))'}{\phi(f(z))}\right)$$

$$\prec a\left[1 + \frac{2}{\pi^2}\left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2\right] + b\left[1 + \frac{2}{\pi^2}\left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2\right]^2$$

$$+ \frac{\frac{4c\sqrt{z}}{\pi^2(1-z)}\left[\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right]}{1 + \frac{2}{\pi^2}\left[\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right]^2},$$

where a, b, c are real numbers such that $c \neq 0$ and $\frac{a}{c}$, $\frac{b}{c} \geq 0$, then

$$\frac{zf'(z)}{\phi(f(z))} \prec 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}} \right) \right)^2, \ z \in \mathbb{E}.$$

Hence f is parabolic ϕ -like.

4. Applications to ϕ -like functions

Remark 4.1. By taking q(z) = 1 + tz, $0 < t \le 1$, $\beta = \gamma = 1$ in Theorem 2.2, then after having some calculations we have

$$1 + \frac{zq''(z)}{q'(z)} = 1$$

and

$$1 + \frac{zq''(z)}{q'(z)} + \frac{2a}{c}q(z) + \frac{3b}{c}q^2(z) = 1 + \frac{2a}{c}(1+tz) + \frac{3b}{c}(1+tz)^2.$$

Thus for real numbers a, b and $c \neq 0$ such that $0 \leq \frac{a}{c} \leq 1$,

 $0 \le \frac{b}{c} \le 1$, we observe that q(z) satisfy conditions (i) and (ii) of Theorem 2.1. Therefore, we immediately, arrive at the following result from Theorem 2.2.

Theorem 4.2. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{\phi(f(z))} \neq 0$, $z \in \mathbb{E}$, satisfy

$$a\left(\frac{zf'(z)}{\phi(f(z))}\right)^{2} + b\left(\frac{zf'(z)}{\phi(f(z))}\right)^{3} + cz\left\{\frac{\left[\phi(f(z))\right]\left[zf''(z) + f'(z)\right] - zf'(z)\left[\phi(f(z))\right]'}{\left[\phi(f(z))\right]^{2}}\right\} - a(1+tz)^{2} + b(1+tz)^{3} + ct$$

where a, b, c are real numbers such that $c \neq 0$, $0 \leq \frac{a}{c} \leq 1$ and $0 \leq \frac{b}{c} \leq 1$, then

$$\frac{zf'(z)}{\phi(f(z))} \prec 1 + tz, \ 0 < t \le 1, \ z \in \mathbb{E}.$$

Therefore, f is ϕ -like in \mathbb{E} .

Remark 4.3. When we select $q(z) = e^z$, $\beta = \gamma = 1$ in Theorem 2.2, a little calculation yields that

$$1 + \frac{zq''(z)}{q'(z)} = 1 + z$$

and

$$1 + \frac{zq''(z)}{q'(z)} + \frac{2a}{c}q(z) + \frac{3b}{c}q^2(z) = 1 + z + \frac{2a}{c}e^z + \frac{3b}{c}e^{2z}.$$

For real numbers a, b, c such that $c \neq 0$, $\frac{a}{c} \geq 0.4$ and $\frac{b}{c} = 1$, we see that q(z) satisfy conditions (i) and (ii) of Theorem 2.1. Hence, we obtain the following result from Theorem 2.2.

Theorem 4.4. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{\phi(f(z))} \neq 0$, $z \in \mathbb{E}$, satisfy

$$a\left(\frac{zf'(z)}{\phi(f(z))}\right)^{2} + b\left(\frac{zf'(z)}{\phi(f(z))}\right)^{3} + cz\left\{\frac{\left[\phi(f(z))\right]\left[zf''(z) + f'(z)\right] - zf'(z)\left[\phi(f(z))\right]'}{\left[\phi(f(z))\right]^{2}}\right\}$$

$$de^{2z} + be^{3z} + cze^{z}$$

where a, b, c are real numbers such that $c \neq 0$, $\frac{a}{c} \geq 0.4$ and $\frac{b}{c} = 1$, then

$$\frac{zf'(z)}{\phi(f(z))} \prec e^z, \ z \in \mathbb{E},$$

i.e. f is ϕ -like.

Remark 4.5. By selecting $q(z) = 1 + \frac{2}{3}z^2$, $\beta = \gamma = 1$ in Theorem 2.2, we have

$$1 + \frac{zq''(z)}{q'(z)} = 2$$

and

$$1 + \frac{zq''(z)}{q'(z)} + \frac{2a}{c}q(z) + \frac{3b}{c}q^2(z) = 2 + \frac{2a}{c}\left(1 + \frac{2}{3}z^2\right) + \frac{3b}{c}\left(1 + \frac{2}{3}z^2\right)^2.$$

For real numbers a, b, c such that $c \neq 0$, $\frac{a}{c} \geq -0.6$ and $\frac{b}{c} \geq 0$, we notice that q(z) satisfy conditions (i) and (ii) of Theorem 2.1. Hence, we obtain the following result from Theorem 2.2.

Theorem 4.6. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{\phi(f(z))} \neq 0$, $z \in \mathbb{E}$, satisfy

$$\begin{split} a \left(\frac{zf'(z)}{\phi(f(z))}\right)^2 + b \left(\frac{zf'(z)}{\phi(f(z))}\right)^3 \\ + cz \left\{\frac{\left[\phi(f(z))\right]\left[zf''(z) + f'(z)\right] - zf'(z)\left[\phi(f(z))\right]'}{\left[\phi(f(z))\right]^2}\right\} \\ \prec a \left(1 + \frac{2}{3}z^2\right)^2 + b \left(1 + \frac{2}{3}z^2\right)^3 + \frac{4}{3}cz^2, \end{split}$$

where a, b, c are real numbers such that $c \neq 0$, $\frac{a}{c} \geq -0.6$ and $\frac{b}{c} \geq 0$, then

$$\frac{zf'(z)}{\phi(f(z))} \prec 1 + \frac{2}{3}z^2, \ z \in \mathbb{E}.$$

Thus f is ϕ -like.

Remark 4.7. By taking $q(z) = \left(\frac{1+z}{1-z}\right)^{\delta}$; $0 < \delta \le 1$, $\beta = \gamma = 1$ in Theorem 2.2, we get

$$1 + \frac{zq''(z)}{q'(z)} = \frac{1 + 2\delta z + z^2}{1 - z^2}$$

and

$$1 + \frac{zq''(z)}{q'(z)} + \frac{2a}{c}q(z) + \frac{3b}{c}\ q^2(z) = \frac{1 + 2\delta z + z^2}{1 - z^2} + \frac{2a}{c}\left(\frac{1 + z}{1 - z}\right)^{\delta} + \frac{3b}{c}\left(\frac{1 + z}{1 - z}\right)^{2\delta}.$$

For real numbers a, b, c such that $c \neq 0$, b = 0 and $\frac{a}{c} \geq 0$, we notice that q(z) satisfy conditions (i) and (ii) of Theorem 2.1. Hence, we obtain the following result from Theorem 2.2.

Theorem 4.8. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{\phi(f(z))} \neq 0$, $z \in \mathbb{E}$, satisfy

$$a\left(\frac{zf'(z)}{\phi(f(z))}\right)^{2} + b\left(\frac{zf'(z)}{\phi(f(z))}\right)^{3}$$

$$+cz\left\{\frac{\left[\phi(f(z))\right]\left[zf''(z) + f'(z)\right] - zf'(z)\left[\phi(f(z))\right]'}{\left[\phi(f(z))\right]^{2}}\right\}$$

$$\prec a\left(\frac{1+z}{1-z}\right)^{2\delta} + b\left(\frac{1+z}{1-z}\right)^{3\delta} + cz\left(\frac{2\delta}{1-z^{2}}\right)\left(\frac{1+z}{1-z}\right)^{\delta},$$

where a, b, c are real numbers such that $c \neq 0$, b = 0 and $\frac{a}{c} \geq 0$, then

$$\frac{zf'(z)}{\phi(f(z))} \prec \left(\frac{1+z}{1-z}\right)^{\delta}; \ 0 < \delta \le 1, \ z \in \mathbb{E}.$$

Remark 4.9. When we put $q(z) = \frac{1 + (1 - 2\eta)z}{1 - z}$; $0 \le \eta < 1$, $\beta = \gamma = 1$ in Theorem 2.2, a little calculation yields that

$$1 + \frac{zq''(z)}{q'(z)} = \frac{1+z}{1-z}$$

and

$$1 + \frac{zq''(z)}{q'(z)} + \frac{2a}{c}q(z) + \frac{3b}{c} q^2(z) = \frac{1+z}{1-z} + \frac{2a}{c} \left[\frac{1+(1-2\eta)z}{1-z} \right] + \frac{3b}{c} \left[\frac{1+(1-2\eta)z}{1-z} \right]^2.$$

For real numbers a, b, c such that $c \neq 0$, b = 0 and $\frac{a}{c} \geq 0$, we see that q(z) satisfy conditions (i) and (ii) of Theorem 2.1. Therefore, we obtain the following result from Theorem 2.2.

Theorem 4.10. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{\phi(f(z))} \neq 0$, $z \in \mathbb{E}$, satisfy

$$a \left(\frac{zf'(z)}{\phi(f(z))}\right)^{2} + b \left(\frac{zf'(z)}{\phi(f(z))}\right)^{3} + cz \left\{\frac{[\phi(f(z))][zf''(z) + f'(z)] - zf'(z)[\phi(f(z))]'}{[\phi(f(z))]^{2}}\right\}$$

$$\prec a \left[\frac{1 + (1 - 2\eta)z}{1 - z} \right]^2 + b \left[\frac{1 + (1 - 2\eta)z}{1 - z} \right]^3 + cz \left[\frac{2(1 - \eta)}{(1 - z)^2} \right],$$

where a, b, c are real numbers such that $c \neq 0$, b = 0 and $\frac{a}{c} \geq 0$, then

$$\frac{zf'(z)}{\phi(f(z))} \prec \frac{1 + (1 - 2\eta)z}{1 - z}, \ z \in \mathbb{E}, \ 0 \le \eta < 1,$$

i.e. f is ϕ -like in \mathbb{E} .

Remark 4.11. When we select $q(z) = \frac{\alpha'(1-z)}{\alpha'-z}$; $\alpha' > 1$, $\beta = \gamma = 1$ in Theorem 2.2, after a little calculation, we obtain

$$1 + \frac{zq''(z)}{q'(z)} = \frac{\alpha' + z}{\alpha' - z}$$

and

$$\begin{split} 1 + \frac{zq''(z)}{q'(z)} + \frac{2a}{c}q(z) + \frac{3b}{c}\ q^2(z) &= \frac{\alpha' + z}{\alpha' - z} + \frac{2a}{c}\left[\frac{\alpha'(1-z)}{\alpha' - z}\right] \\ &+ \frac{3b}{c}\left[\frac{\alpha'(1-z)}{\alpha' - z}\right]^2. \end{split}$$

For real numbers a, b, c such that $c \neq 0$, b = 0 and $\frac{a}{c} \geq 0$, we see that q(z) satisfy conditions (i) and (ii) of Theorem 2.1. Thus, we get the following Theorem from Theorem 2.2.

Theorem 4.12. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{\phi(f(z))} \neq 0$, $z \in \mathbb{E}$, satisfy

$$a\left(\frac{zf'(z)}{\phi(f(z))}\right)^{2} + b\left(\frac{zf'(z)}{\phi(f(z))}\right)^{3} + cz\left\{\frac{\left[\phi(f(z))\right]\left[zf''(z) + f'(z)\right] - zf'(z)\left[\phi(f(z))\right]'}{\left[\phi(f(z))\right]^{2}}\right\}$$

$$\prec a\left[\frac{\alpha'(1-z)}{\alpha'-z}\right]^{2} + b\left[\frac{\alpha'(1-z)}{\alpha'-z}\right]^{3} + cz\left[\frac{\alpha'(1-\alpha')}{(\alpha'-z)^{2}}\right],$$

where a, b, c are real numbers such that $c \neq 0$, b = 0 and $\frac{a}{c} \geq 0$, then

$$\frac{zf'(z)}{\phi(f(z))} \prec \frac{\alpha'(1-z)}{\alpha'-z}, \ z \in \mathbb{E}, \ \alpha' > 1,$$

i.e. f is ϕ -like.

Remark 4.13. By taking q(z) = 1 + tz, $0 < t \le 0.8$, $\beta = 1$ and $\gamma = 0$ in Theorem 2.2, then after having some calculations we have

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} = \frac{1}{1+tz}$$

and

$$1+\frac{zq^{\prime\prime}(z)}{q^{\prime}(z)}-\frac{zq^{\prime}(z)}{q(z)}+\frac{a}{c}q(z)+\frac{2b}{c}~q^{2}(z)=\frac{1}{1+tz}+\frac{a}{c}\left(1+tz\right)+\frac{2b}{c}\left(1+tz\right)^{2}.$$

Thus for real numbers a, b, c such that $c \neq 0$ and $\frac{a}{c}$, $\frac{b}{c} \geq 0$, we observe that q(z) satisfy conditions (i) and (ii) of Theorem 2.1. Therefore, we immediately, arrive at the following result from Theorem 2.2.

Theorem 4.14. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{\phi(f(z))} \neq 0$, $z \in \mathbb{E}$, satisfy

$$a\frac{zf'(z)}{\phi(f(z))} + b\left(\frac{zf'(z)}{\phi(f(z))}\right)^{2} + c\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z)))'}{\phi(f(z))}\right)$$
$$\prec a(1+tz) + b(1+tz)^{2} + \frac{ctz}{1+tz},$$

where a, b, c are real numbers such that $c \neq 0$ and $\frac{a}{c}$, $\frac{b}{c} \geq 0$, then

$$\frac{zf'(z)}{\phi(f(z))} \prec 1 + tz, \ 0 < t \le 0.8, \ z \in \mathbb{E}.$$

Therefore, f is ϕ -like.

Remark 4.15. When we select $q(z) = e^z$, $\beta = 1$ and $\gamma = 0$ in Theorem 2.2, a little calculation yields that

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} = 1$$

and

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \frac{a}{c}q(z) + \frac{2b}{c} \ q^2(z) = 1 + \frac{a}{c}e^z + \frac{2b}{c}e^{2z}.$$

For real numbers a, b, c such that $c \neq 0$, $\frac{a}{c} \geq 0$ and $0 \leq \frac{b}{c} \leq 0.8$, we see that q(z) satisfy conditions (i) and (ii) of Theorem 2.1. Hence, we obtain the following result from Theorem 2.2.

Theorem 4.16. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{\phi(f(z))} \neq 0$, $z \in \mathbb{E}$, satisfy

where a, b, c are real numbers such that $c \neq 0$, $\frac{a}{c} \geq 0$ and $0 \leq \frac{b}{c} \leq 0.8$, then

$$\frac{zf'(z)}{\phi(f(z))} \prec e^z, \ z \in \mathbb{E},$$

i.e. f is ϕ -like.

Remark 4.17. By selecting $q(z) = 1 + \frac{2}{3}z^2$, $\beta = 1$ and $\gamma = 0$ in Theorem 2.2, we have

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} = \frac{6}{3 + 2z^2}$$

and

$$\begin{split} 1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \frac{a}{c}q(z) + \frac{2b}{c}\ q^2(z) &= \frac{6}{3 + 2z^2} + \frac{a}{c}\left(1 + \frac{2}{3}z^2\right) \\ &\quad + \frac{2b}{c}\left(1 + \frac{2}{3}z^2\right)^2. \end{split}$$

For real numbers a, b, c such that $c \neq 0$, $\frac{a}{c} \geq 0.6$ and $0 \leq \frac{b}{c} \leq 0.7$, we notice that q(z) satisfy conditions (i) and (ii) of Theorem 2.1. Hence, we obtain the following result from Theorem 2.2.

Theorem 4.18. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{\phi(f(z))} \neq 0$, $z \in \mathbb{E}$, satisfy

$$a\frac{zf'(z)}{\phi(f(z))} + b\left(\frac{zf'(z)}{\phi(f(z))}\right)^2 + c\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z)))'}{\phi(f(z))}\right)$$
$$\prec a\left(1 + \frac{2}{3}z^2\right) + b\left(1 + \frac{2}{3}z^2\right)^2 + \frac{4cz^2}{3 + 2z^2},$$

where a, b, c are real numbers such that $c \neq 0$, $\frac{a}{c} \geq 0.6$ and

$$0 \le \frac{b}{c} \le 0.7$$
, then

$$\frac{zf'(z)}{\phi(f(z))} \prec 1 + \frac{2}{3}z^2, \ z \in \mathbb{E}.$$

Thus f is ϕ -like.

Remark 4.19. By taking $q(z)=\left(\frac{1+z}{1-z}\right)^{\delta}$; $0<\delta\leq 0.5,\ \beta=1$ and $\gamma=0$ in Theorem 2.2, we get

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} = \frac{1+z^2}{1-z^2}$$

and

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \frac{a}{c}q(z) + \frac{2b}{c} \ q^2(z) = \frac{1+z^2}{1-z^2} + \frac{a}{c} \left(\frac{1+z}{1-z}\right)^{\delta} + \frac{2b}{c} \left(\frac{1+z}{1-z}\right)^{2\delta}.$$

For real numbers a, b, c such that $c \neq 0$ and $\frac{a}{c}$, $\frac{b}{c} \geq 0$, we notice that q(z) satisfy conditions (i) and (ii) of Theorem 2.1. Hence, we obtain the following result from Theorem 2.2.

Theorem 4.20. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{\phi(f(z))} \neq 0$, $z \in \mathbb{E}$, satisfy

$$\begin{split} a\frac{zf'(z)}{\phi(f(z))} + b\left(\frac{zf'(z)}{\phi(f(z))}\right)^2 + c\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z)))'}{\phi(f(z))}\right) \\ \prec a\left(\frac{1+z}{1-z}\right)^{\delta} + b\left(\frac{1+z}{1-z}\right)^{2\delta} + \frac{2\delta cz}{1-z^2}, \end{split}$$

where a, b, c are real numbers such that $c \neq 0$ and $\frac{a}{c}$, $\frac{b}{c} \geq 0$, then

$$\frac{zf'(z)}{\phi(f(z))} \prec \left(\frac{1+z}{1-z}\right)^{\delta}; \ 0 < \delta \le 0.5, \ z \in \mathbb{E}.$$

Remark 4.21. When we put $q(z) = \frac{1 + (1 - 2\eta)z}{1 - z}$; $0 \le \eta < 1$, $\beta = 1$ and $\gamma = 0$ in Theorem 2.2, a little calculation yields that

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} = \frac{1+z}{1-z} - \frac{2z(1-\eta)}{(1-z)\left[1 + (1-2\eta)z\right]}$$

and

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \frac{a}{c}q(z) + \frac{2b}{c} q^2(z) = \frac{1+z}{1-z} - \frac{2z(1-\eta)}{(1-z)\left[1+(1-2\eta)z\right]} + \frac{a}{c} \left[\frac{1+(1-2\eta)z}{1-z}\right] + \frac{2b}{c} \left[\frac{1+(1-2\eta)z}{1-z}\right]^2.$$

For real numbers a, b, c such that $c \neq 0$, b = 0 and $\frac{a}{c} \geq 0$, we see that q(z) satisfy conditions (i) and (ii) of Theorem 2.1. Therefore, we obtain the following result from Theorem 2.2.

Theorem 4.22. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{\phi(f(z))} \neq 0$, $z \in \mathbb{E}$, satisfy

$$a\frac{zf'(z)}{\phi(f(z))} + b\left(\frac{zf'(z)}{\phi(f(z))}\right)^2 + c\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z)))'}{\phi(f(z))}\right)$$

$$\prec a\left[\frac{1 + (1 - 2\eta)z}{1 - z}\right] + b\left[\frac{1 + (1 - 2\eta)z}{1 - z}\right]^2 + cz\left[\frac{2(1 - \eta)}{(1 - z)(1 + (1 - 2\eta)z)}\right],$$

where a, b, c are real numbers such that $c \neq 0$, b = 0 and $\frac{a}{c} \geq 0$, then

$$\frac{zf'(z)}{\phi(f(z))} \prec \frac{1 + (1 - 2\eta)z}{1 - z}, \ z \in \mathbb{E}, \ 0 \le \eta < 1,$$

i.e. f is ϕ -like.

Remark 4.23. When we select $q(z) = \frac{\alpha'(1-z)}{\alpha'-z}$; $\alpha' > 1$, $\beta = 1$ and $\gamma = 0$ in Theorem 2.2, after a little calculation, we obtain

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} = \frac{\alpha' - z^2}{(1 - z)(\alpha' - z)}$$

and

$$\begin{split} 1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \frac{a}{c}q(z) + \frac{2b}{c}\ q^2(z) &= \frac{\alpha'-z^2}{(1-z)(\alpha'-z)} + \frac{a}{c}\left[\frac{\alpha'(1-z)}{\alpha'-z}\right] \\ &\quad + \frac{2b}{c}\left[\frac{\alpha'(1-z)}{\alpha'-z}\right]^2. \end{split}$$

For real numbers $a,\ b,\ c$ such that $c\neq 0,\ \frac{a}{c}\geq 0$ and $\frac{b}{c}\geq 0$, we see that q(z) satisfy conditions (i) and (ii) of Theorem 2.1. Thus, we get the following Theorem from Theorem 2.2.

Theorem 4.24. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{\phi(f(z))} \neq 0$, $z \in \mathbb{E}$, satisfy

$$a\frac{zf'(z)}{\phi(f(z))} + b\left(\frac{zf'(z)}{\phi(f(z))}\right)^2 + c\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z)))'}{\phi(f(z))}\right)$$
$$\prec a\left[\frac{\alpha'(1-z)}{\alpha'-z}\right] + b\left[\frac{\alpha'(1-z)}{\alpha'-z}\right]^2 + \frac{(1-\alpha')cz}{(1-z)(\alpha'-z)},$$

where a, b, c are real numbers such that $c \neq 0$, $\frac{a}{c} \geq 0$ and $\frac{b}{c} \geq 0$, then

$$\frac{zf'(z)}{\phi(f(z))} \prec \frac{\alpha'(1-z)}{\alpha'-z}, \ z \in \mathbb{E}, \ \alpha' > 1,$$

i.e. f is ϕ -like.

5. Conclusion

Using the differential subordination technique involving convolution, we derived new conditions under which normalized analytic functions exhibit ϕ -likeness and parabolic ϕ -likeness. These results contribute to a deeper understanding of geometric function theory and open pathways for further applications.

References

- [1] Adegani, E.A., Bulboaca, T. and Motamednezhad, A., Simple sufficient subordination conditions for close-to-convexity, Mathematics, 7(3)(2019), 241.
- [2] Adegani, E.A., Motamednezhad, A., Bulboaca, T. and Lecko A., On a logarithmic coefficients inequality for the class of close-to-convex functions, Proceedings of the Romanian Academy, Series A: Mathematics, 2023.

- [3] Brar, R. and Billing, S. S., Certain results on ϕ -like and starlike functions in a parabolic region, Int. J. Open Problems Complex Analysis, 9(2)(2017), 30-41.
- [4] Brickman, L., φ-like analytic functions, I, Bull. Amer. Math. Soc., 79(1973), 555-558.
- [5] Cho, N.E., Srivastava, H.M., Adegani, E.A. and Motamednezhad, A., Criteria for a certain class of the Carathéodory functions and their applications, J. Inq. and App., 85(2020).
- [6] Ma, W. C. and Minda, D., Uniformly convex functions, Ann. Polon. Math., 57(2)(1992), 165-175.
- [7] Miller, S. S. and Mocanu, P. T., Differential Subordinations: Theory and Applications, Marcel Dekker, New York and Basel (2000).
- [8] Ronning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1993), 189-196.
- [9] Ruscheweyh, St., A subordination theorem for φ-like functions, J. London Math. Soc., 2(13)(1976), 275-280.
- [10] Shanmugam, T. N., Sivasubramanian, S. and Darus, Maslina, Subordination and superordination results for ϕ -like functions, J. Inq. Pure and App. Math., 8(1)(2007).

Hardeep Kaur (b)
"Department of Mathematics" (UIS),
Chandigarh University,
Mohali – 140413, Punjab, India.
e-mail: kaurhardeep959@gmail.com

Richa Brar (D)
"Sri Guru Granth Sahib World" University,
Department of Mathematics
Fatehgarh Sahib,
140407, Punjab, India
e-mail: richabrar4@gmail.com

Sukhwinder Singh Billing
"Sri Guru Granth Sahib World" University,
Department of Mathematics
Fatehgarh Sahib,
140407, Punjab, India
e-mail: ssbilling@gmail.com