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New subclasses of univalent functions on the unit
disc in C

Eduard Ştefan Grigoriciuc

Abstract. In this paper we consider a differential operator Gk defined on the
family of holomorphic normalized functions H0(U) that can be used in the con-
struction of new subclasses of univalent functions on the unit disc U. These new
subclasses are closely related to the families of convex, respectively starlike func-
tions on U. We study general results related to these new subclasses, such as
growth and distortion theorems, coefficients estimates and duality results. We
also present examples of functions that belongs to the subclasses defined.
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1. Preliminaries

Let us denote by U = U(0; 1) the open unit disc in the complex plane C and
H(U) the family of all holomorphic functions on the unit disc U. Also, let us denote
by H0(U) the class of normalized holomorphic functions on U, i.e. f ∈ H(U) with
f(0) = 0 and f ′(0) = 1. An important class that will be used in our paper is the
class of normalized univalent (holomorphic and injective) functions on the unit disc
U, denoted by S. For more details about the holomorphic functions and the class of
normalized univalent functions, one may consult [2], [3], [5], [10] and [16].

Let us consider α ∈ [0, 1). In [17] Robertson introduced two important subclasses
of the class S, namely the family

S∗(α) =

{
f ∈ H0(U) : Re

[
zf ′(z)

f(z)

]
> α, z ∈ U

}
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770 Eduard Ştefan Grigoriciuc

of normalized starlike functions of order α, respectively the family

K(α) =

{
f ∈ H0(U) : Re

[
1 +

zf ′′(z)

f ′(z)

]
> α, z ∈ U

}
of normalized convex functions of order α. In particular, we obtain that S∗ = S∗(0)
and K = K(0) are the usual families of starlike, respectively convex functions on the
unit disc U. For more details about these families of univalent functions, one may
consult [2], [3], [5], or [16].

An important result related to the class S is due to Noshiro and Warschawski
(see e.g. [2, Theorem 2.16]) and present a sufficient condition of univalence, as follows:

Theorem 1.1. Let f ∈ H0(U). If Ref ′(z) > 0, for all z ∈ U, then f is univalent on U.

Strongly related to the family S is the class of normalized holomorphic functions
whose derivative has positive real part (of order α), denoted by

R(α) =
{
f ∈ H0(U) : Ref ′(z) > α, z ∈ U

}
, α ∈ [0, 1).

In view of Theorem 1.1 it is clear thatR(α) ⊂ S. For more details about the classR(α)
of univalent functions whose derivatives have positive real part, one may consult [6],
[11], [12] and [13] . In particular, the class R(0) = R was studied by T.H. MacGregor
in [13].

In the following sections of this paper we introduce a differential operator Gk
defined on H0(U) that is useful in the construction of new subclasses of univalent
functions on U (denoted by Ek, respectively E∗k) closely related to the class of convex,
respectively starlike functions on the unit disc U. An interesting property of these
subclasses is that we can obtain coefficient estimates of the form |an| ≤ 1

(n−k)! , for

n ≥ k, where k ∈ N and ak, ..., an are the coefficients from the Taylor series expansion
of the function f ∈ H0(U).

Remark 1.2. It is important to mention that the operator Gk can be defined also
in the case of several complex variables (see [8]). Although for n = 1 we have that
E0(U) = E∗1 (U) = K(U), in the case of several complex variables we can prove that
E∗1 (Bn) ∩ K(Bn) 6= ∅, but E∗1 (Bn) 6= K(Bn), where K(Bn) is the family of convex
mappings on the Euclidean unit ball Bn (for details about univalent mappings in
higher dimensions, one may consult [5] and [9]). Another interesting property of E∗k
studied in [8] is related to the Graham-Kohr extension operator (introduced by I.
Graham and G. Kohr in [4]).

2. The differential operator Gk
In this section we introduce the differential operator Gk defined on the family

H0(U) of normalized holomorphic functions on U. For this operator we present some
properties related to the linearity and univalence on the unit disc U and we discuss
about how the convolution product is preserved under the action of the operator Gk.
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Definition 2.1. Let k ∈ N = {0, 1, 2, ...} and let Gk : H0(U)→ H(U) be the differential
operator defined on the class of normalized holomorphic functions on U, as follows

(Gkf)(z) =

{
zkf (k)(z) + ak−1z

k−1 + ...+ a2z
2 + a1z + a0, k ≥ 1

f(z) k = 0,
(2.1)

for all f ∈ H0(U) and z ∈ U. Notice that, for k ≥ 1, a0, ..., ak−1 are the first k
coefficients from the Taylor series expansion of the function f ∈ H0(U).

Remark 2.2. In view of the above definition, it is easy to see that the operator G0 (of
order 0) is the identity operator, i.e. G0f = f . Another particular form of the operator
Gk is for k = 1 (of order 1). In this case, (G1f)(z) = zf ′(z), for all z ∈ U.

Remark 2.3. Let us denote id : U → C the identity function on U, given by id(z) = z,
for all z ∈ U. Then Gk(id) = id, for all k ∈ N.

The connection between two differential operators of consecutive orders k − 1,
respectively k, where k ∈ N with k ≥ 1, is given in the following result:

Proposition 2.4. Let f ∈ H0(U). Then for any k ∈ N∗ = {1, 2, ...} the following
relation holds

(Gkf)(z) = z(Gk−1f)′(z)− (k − 1)(Gk−1f)(z) +

k−1∑
n=0

(k − n)anz
n, z ∈ U. (2.2)

Proof. We prove relation (2.2) by mathematical induction. Assume that

P (k) : (Gkf)(z) = z(Gk−1f)′(z)− (k − 1)(Gk−1f)(z) +

k−1∑
n=0

(k − n)anz
n

is true for a fixed k ∈ N with k ≥ 2. Then

z(Gkf)′(z)− k(Gkf)(z) = zk+1f (k+1)(z) +

k−1∑
n=0

(n− k)anz
n, z ∈ U.

Adding
∑k
n=0(k + 1− n)anz

n at the previous equality, we obtain

zk+1f (k+1)(z) +

k−1∑
n=0

(n− k)anz
n +

k∑
n=0

(k + 1− n)anz
n = (Gk+1f)(z),

for all z ∈ U and this completes the proof. �

Proposition 2.5. Let k ∈ N, α, β ∈ R and f, g ∈ H0(U). Then

Gk(αf + βg) = αGkf + βGkg. (2.3)

Proof. Let f, g ∈ H0(U) be such that f(z) = z+
∑∞
n=2 anz

n and g(z) = z+
∑∞
n=2 bnz

n,
for all z ∈ U, with a0 = b0 = 0 and a1 = b1 = 1. Then

Gk(αf + βg)(z) = zk(αf + βg)(k)(z) +

k−1∑
n=0

(αan + βbn)zn

= α(Gkf)(z) + β(Gkg)(z),

for all z ∈ U and α, β ∈ R. �
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Remark 2.6. For f ∈ H0(U), we can rewrite (2.1) as

(Gkf)(z) = z + a2z
2 + ...+ ak−1z

k−1 + k!akz
k + (k + 1)!ak+1z

k+1 + ...

...+
(k + n)!

n!
ak+nz

k+n + ...,

for all z ∈ U. In other words,

(Gkf)(z) = z +

∞∑
n=2

Anz
n, where An =

{
an, n ≤ k − 1
n!

(n−k)!an, n ≥ k,
(2.4)

for all z ∈ U.

Another interesting property of the operator Gk is related to the Hadamard
(convolution) product (for details, one may consult [2], [3], [5]). Let f, g ∈ H0(U) be
given by f(z) =

∑∞
n=0 anz

n and g(z) =
∑∞
n=0 bnz

n. We denote by

(f ∗ g)(z) =

∞∑
n=0

anbnz
n, z ∈ U (2.5)

the Hadamard (convolution) product of the functions f and g on U (see e.g. [2],
[3], [5]). There is a nice connection between the convolution product of two different
operators and the operator applied on a convolution product, as follows in the next
result.

Proposition 2.7. Let k ∈ N and f, g ∈ H0(U). Then

1. Gk(f ∗ g) = (Gkf) ∗ g = f ∗ (Gkg);
2. (Gkf) ∗ (Gkg) = Gk(Gk(f ∗ g)).

Proof. Let f, g ∈ H0(U) be such that f(z) = z+
∑∞
n=2 anz

n and g(z) = z+
∑∞
n=2 bnz

n,
for all z ∈ U, with a0 = b0 = 0 and a1 = b1 = 1. Then

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n,

for all z ∈ U. Moreover, taking into account Remark 2.6, we deduce that

Gk(f ∗ g)(z) = z +

k−1∑
n=2

anbnz
n +

∞∑
n=k

n!

(n− k)!
anbnz

n, z ∈ U. (2.6)

1. First, in view of (2.4) and the definition of the convolution product, we obtain

(
(Gkf) ∗ g

)
(z) =

(
z +

k−1∑
n=2

anz
n +

∞∑
n=k

n!

(n− k)!
anz

n

)
∗
(
z +

∞∑
n=2

bnz
n

)

= z +

k−1∑
n=2

anbnz
n +

∞∑
n=k

n!

(n− k)!
anbnz

n

= Gk(f ∗ g)(z)

for all z ∈ U. Similarly, we can prove that Gk(f ∗ g) = f ∗ (Gkg).
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2. For the second part, it is enough to consider relations (2.4) and (2.6). Then

Gk(Gk(f ∗ g))(z) = z +

k−1∑
n=2

anbnz
n +

∞∑
n=k

[
n!

(n− k)!

]2
anbnz

n

= (Gkf)(z) ∗ (Gkg)(z),

for all z ∈ U and this completes the proof.

�

Remark 2.8. Notice that we can obtain the second statement from Proposition 2.7 by
replacing f with Gkh (where h ∈ H0(U)) and using only the first part of the result.
Then

(Gkh) ∗ (Gkg) = f ∗ (Gkg) = Gk(f ∗ g) = Gk((Gkh) ∗ g) = Gk(Gk(h ∗ g))

and this completes the argument.

It is important that we can prove a sufficient condition of univalence for Gk (in
terms of modulus of coefficients an), as follows

Proposition 2.9. Let k ∈ N and f ∈ H0(U). Also, let σk be defined by

σk =



∞∑
n=2

n · n!

(n− k)!
|an|, k ≤ 2

k−1∑
n=2

n|an|+
∞∑
n=k

n · n!

(n− k)!
|an|, k ≥ 3.

(2.7)

If σk ≤ 1, then Gkf is univalent on the unit disc U. In particular, Gkf ∈ S.

Proof. It is easy to observe that (Gkf)(0) = 0, (Gkf)′(0) = 1 and Gkf is a holomorphic
function on U. In view of relation (2.7), we consider the following two cases:

• If k ≥ 3, then∣∣(Gkf)′(z)− 1
∣∣ =

∣∣∣∣1 +

k−1∑
n=2

nanz
n−1 +

∞∑
n=k

n!

(n− k)!
nanz

n−1 − 1

∣∣∣∣
≤ |z|

( k−1∑
n=2

n|an|+
∞∑
n=k

n!

(n− k)!
n|an|

)
< 1,

for all z ∈ U and k ≥ 3. Hence, (Gkf)′(z) ∈ U(1; 1), for all z ∈ U and this implies
that Re(Gkf)′(z) > 0, for all z ∈ U.

• Similarly, for k ≤ 2, we have∣∣(Gkf)′(z)− 1
∣∣ =

∣∣∣∣1 +

∞∑
n=2

n · n!

(n− k)!
anz

n−1 − 1

∣∣∣∣
≤ |z|

∞∑
n=2

n · n!

(n− k)!
|an| < 1,
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for all z ∈ U and k ≥ 2. As we seen before, we obtain that (Gkf)′(z) ∈ U(1; 1)
which implies that Re(Gkf)′(z) > 0, for all z ∈ U.

Finally, according to the univalence criterion given in Theorem 1.1 we deduce that
Gkf ∈ S, for all k ∈ N and this completes the proof. �

Remark 2.10. In particular, for k = 0, we obtain the well-known univalence condition
for a holomorphic function on the unit disc (see for example [5, Exercise 1.1.4]): if∑∞
n=2 n|an| ≤ 1, then f is univalent on U.

3. Subclasses of univalent functions

Using the differential operator Gk defined above, we can construct some par-
ticular subclasses of univalent functions on the unit disc U in C. These subclasses,
denoted here by E∗k(α), respectively Ek(α), where α ∈ [0, 1), are related to the classes
of starlike, respectively convex functions of order α on U.

3.1. The subclass E∗k(α)

First, we present some general results about the subclass E∗k(α) and connections
of this class with another important classes of univalent functions (for example, the
class of starlike functions of order α or the class of univalent functions introduced by
Sălăgean in [18]).

Definition 3.1. Let α ∈ [0, 1) and k ∈ N. Let Gk be the differential operator defined
by formula (2.1). Then

E∗k(α) =
{
f ∈ S : Gkf ∈ S∗(α)

}
is the family of normalized univalent functions f on the unit disc such that Gkf is
starlike of order α. In particular, we denote by E∗k = E∗k(0).

Remark 3.2. It is clear that E∗0 (α) = S∗(α) is the family of normalized starlike
functions of order α on U.

Remark 3.3. Taking into account the definition of starlikeness of order α, we deduce
that

E∗k(α) =

{
f ∈ S : Re

[
z(Gkf)′(z)

(Gkf)(z)

]
> α, z ∈ U

}
. (3.1)

Indeed, if f ∈ S, then Gkf ∈ H(U), (Gkf)(0) = 0 and (Gkf)′(0) = 1. Together with

the condition Re
[ z(Gkf)′(z)

(Gkf)(z)
]
> α, for all z ∈ U, all the assumptions from the definition

of starlikeness of order α are satisfied.

Proposition 3.4. Let α ∈ [0, 1). Then E∗1 (α) = K(α).

Proof. Indeed, according to the previous definition and Remark 2.2, we have that

E∗1 (α) =

{
f ∈ S : Re

[
z(G1f)′(z)

(G1f)(z)

]
> α, z ∈ U

}
=

{
f ∈ S : Re

[
1 +

zf ′′(z)

f ′(z)

]
> α, z ∈ U

}
= K(α),

for every α ∈ [0, 1) and this completes the proof. �
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Remark 3.5. As a consequence of the previous two remarks, we obtain that E∗0 = S∗

and E∗1 = K. It is important to mention here that the second equality is no longer
true in the case of several complex variables (see [8]).

Remark 3.6. It is very important to mention here that

E∗0 (α) = S0(α) and E∗1 (α) = S1(α),

where S0(α) and S1(α) are particular forms of the class Sn(α) introduced by Sălăgean
in [18] for α ∈ [0, 1). These equalities holds because

D0f(z) = f(z) = (G0f)(z) and D1f(z) = zf ′(z) = (G1f)(z),

for all z ∈ U, where Dn is the differential operator introduced by Sălăgean. However,
for n = k ≥ 2, we have that

E∗k(α) 6= Sn(α),

since the Sălăgean differential operator Dnf (see [18]) is different from the operator
Gkf , for every n = k ≥ 2. For example, if n = 2, then

D2f(z) = D(Df(z)) = z2f ′′(z) + zf ′(z) 6= z2f ′′(z) + z = (G2f)(z),

for all z ∈ U. Hence, the common results from this thesis and the ones obtained by
Sălăgean in [18] are only for the particular cases k = 0 and k = 1 (which are already
well-known, as reduces to the classes S∗(α), respectively K(α)).

Using a similar argument as in Proposition 2.9, we can prove the following result.
We mention here that this result is a general form of the theorem proved by Merkes,
Robertson and Scott in [14].

Theorem 3.7. Let α ∈ [0, 1), k ∈ N and f ∈ S. Also, let σk,α be defined by

σk,α =



∞∑
n=2

(n− α) · n!

(n− k)!
|an|, k ≤ 2

k−1∑
n=2

(n− α)|an|+
∞∑
n=k

(n− α) · n!

(n− k)!
|an|, k ≥ 3.

(3.2)

If σk,α ≤ 1− α, then f ∈ E∗k(α).

Proof. Let α ∈ [0, 1). Using (3.2) and Proposition 2.9, we obtain that Gkf is a nor-
malized univalent function on U. Morevoer,∣∣z(Gkf)′(z)− (Gkf)(z)

∣∣− (1− α)
∣∣(Gkf)(z)

∣∣ =

=

∣∣∣∣z +

∞∑
n=2

nAnz
n − z −

∞∑
n=2

Anz
n

∣∣∣∣− (1− α)

∣∣∣∣z +

∞∑
n=2

Anz
n

∣∣∣∣
≤
∞∑
n=2

(n− 1)|An||z|n − (1− α)

(
|z| −

∞∑
n=2

|An||z|n
)

≤ |z|
( ∞∑
n=2

(n− α)|An| − (1− α)

)
≤ 0,
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where An is given by relation (2.4). Since (Gkf)(z) 6= 0 for z 6= 0 and in view of
relation ∣∣z(Gkf)′(z)− (Gkf)(z)

∣∣− (1− α)
∣∣(Gkf)(z)

∣∣ ≤ 0,

we deduce that ∣∣∣∣z(Gkf)′(z)

(Gkf)(z)
− 1

∣∣∣∣ ≤ 1− α, (3.3)

for all z ∈ U. Therefore

Re

[
z(Gkf)′(z)

(Gkf)(z)

]
> α, z ∈ U

which implies Gkf ∈ S∗(α). According to Definition 3.1, we conclude that f ∈ E∗k(α)
and this completes the proof. �

In the next corollary we present two particular cases of the previous theorem
(results proved by Merkes, Robertson and Scott in [14]; see also [5]).

Corollary 3.8. Let f ∈ H0(U) and k ∈ {0, 1}.
1. If σ0,α =

∑∞
n=2(n− α)|an| ≤ 1− α, then f ∈ E∗0 (α) = S∗(α).

2. If σ1,α =
∑∞
n=2(n− α)n|an| ≤ 1− α, then f ∈ E∗1 (α) = K(α).

Remark 3.9. It is clear that for α = 0, we obtain the classical conditions for starlike-
ness, respectively convexity on the unit disc (see e.g. [2], [3], [5]).

In this subsection we present some results regarding to coefficient estimates and
distortion theorems for the class E∗k(α). For the proof of our first result, we use the
coefficient estimates for the class S∗(α) given by Robertson in [17] (see also [5]).

Theorem 3.10. Let α ∈ [0, 1), k ∈ N and f ∈ E∗k(α). Then

|an| ≤
(n− k)!

(n− 1)! · n!

n∏
m=2

(m− 2α), n ≥ k ≥ 2. (3.4)

Proof. Let f ∈ E∗k(α). Then f ∈ S and Gkf ∈ S∗(α). According to Remark 2.6 and
the coefficient bounds for the class S∗(α) given in [17] (see also [5]), we know that

|An| ≤
1

(n− 1)!

n∏
m=2

(m− 2α), (3.5)

for all n ≥ 2, where An are the coefficients of Gkf defined by relation (2.4). Since

|An| =

{
|an|, n ≤ k − 1
n!

(n−k)! |an|, n ≥ k,

we obtain that

|an| ≤
(n− k)!

(n− 1)! · n!

n∏
m=2

(m− 2α), n ≥ k.

Taking into account the product considered in the last relation, we impose the con-
dition n ≥ k ≥ 2 and this completes the proof. �
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Corollary 3.11. Let k ∈ N and f ∈ E∗k . Then

|an| ≤
n

n(n− 1)(n− 2) · ... · (n− k + 1)
=
n · (n− k)!

n!
, n ≥ k. (3.6)

Proof. In view of Theorem 3.10 for α = 0. �

Remark 3.12. As a consequence of the previous Corollary, we obtain the following
well-known results (see e.g. [2], [3], [5], [16]):

1. If k = 0, then E∗0 = S∗ and |an| ≤ n, for all n ≥ 0.
2. If k = 1, then E∗1 = K and |an| ≤ 1, for all n ≥ 1.

Following the idea presented by Duren in [2] and treated by Goodman in [3]
(also by Grigoriciuc in [7]), we can prove a general distortion result for the class E∗k .
In fact, we obtain upper bounds for the m-th derivative of a function f ∈ E∗k , where
m ∈ N such that m ≥ k.

Remark 3.13. Based on [7, Remark 2.5], we have that

1

(1− r)k
=

∞∑
n=0

(k + n− 1)!

n!(k − 1)!
rn, k ∈ N, r ∈ [0, 1).

Theorem 3.14. Let k ∈ N. If f ∈ E∗k , then∣∣f (m)(z)
∣∣ ≤ [m+ (1− k)|z|

]
· (m− k)!

(1− |z|)m−k+2
, (3.7)

for all m ≥ k and z ∈ U.

Proof. Let f ∈ E∗k . Then f ∈ S and Gkf ∈ S∗. Moreover, for m ∈ N, we have that

f (m)(z) =

∞∑
n=0

(m+ n)!

n!
am+nz

n, z ∈ U. (3.8)

Let r = |z| < 1. In view of relation (3.6), we obtain∣∣f (m)(z)
∣∣ =

∣∣∣∣ ∞∑
n=0

(m+ n)!

n!
am+nz

n

∣∣∣∣ ≤ ∞∑
n=0

(m+ n)!

n!
|am+n||z|n

=

∞∑
n=0

(m+ n)(m+ n− k)!

n!
rn

In view of Remark 3.13 and elementary computations we deduce that∣∣f (m)(z)
∣∣ ≤ ∞∑

n=0

(m+ n)(m+ n− k)!

n!
rn =

(m− k)!
[
m+ r(1− k)

]
(1− r)m−k+2

,

where r = |z| < 1. Finally, we conclude that∣∣f (m)(z)
∣∣ ≤ [m+ (1− k)|z|

]
· (m− k)!

(1− |z|)m−k+2
, z ∈ U,

for all m ≥ k ≥ 0 and this completes the proof. �
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Remark 3.15. Obviously, for k ∈ {0, 1} we obtain the classical results proved by
Goodman in [3].

Based on the previous theorem and the result proved in [7], we propose the
following conjecture (already proved for the particular cases k = 0, α = 0 and α = 1

2 ):

Conjecture 3.16. Let α ∈ [0, 1) and m, k ∈ N. If f ∈ E∗k(α), then∣∣f (m)(z)
∣∣ ≤ [m+ (1− k)(1− 2α)|z|

]
·B(m− k, α)

(1− |z|)m−k+2−2α , (3.9)

for all m ≥ k + 1 and z ∈ U, where

B(m− k, α) =


1
m (m− k)!, α = 1

2

1

1− 2α

m−k∏
j=1

(j − 2α), α 6= 1
2 .

(3.10)

Remark 3.17. It is clear that for k = 0, Conjecture 3.16 reduces to [7, Theorem 3.4].
Moreover, for α = 0, the previous Conjecture reduces to Theorem 3.14 proved in this
section.

Remark 3.18. If α = 1
2 , then (3.9) can be written as∣∣f (m)(z)

∣∣ ≤ (m− k)!

(1− |z|)m−k+1
,

for all m ≥ k + 1 and z ∈ U. Following a similar proof as in Theorem 3.14, we obtain
that∣∣f (m)(z)

∣∣ =

∣∣∣∣ ∞∑
n=0

(m+ n)!

n!
am+nz

n

∣∣∣∣ ≤ ∞∑
n=0

(m+ n)!

n!
|am+n||z|n

≤
∞∑
n=0

(m+ n)!(m+ n− k)!rn

n!(m+ n− 1)!(m+ n)!

m+n∏
j=2

(j − 1)

=
(m− k)!

(1− r)m−k+1
,

where r = |z| < 1. Hence, Conjecture 3.16 is true for α = 1
2 as we proposed above.

Remark 3.19. The main idea of the results presented in this section is that starting
from an index n ≥ k we can obtain better estimations for the coefficients an of
f ∈ E∗k(α), respectively upper bounds for the modulus of the m-th derivative of the
function f ∈ E∗k(α).

3.2. The subclass Ek(α)

Similarly as in the previous section, we can use the operator Gk to define the class
Ek(α) of holomorphic functions on the unit disc for which Gkf is a convex function
of order α on U. In the first part, we present some general results for the class Ek(α)
related to coefficient estimates and general distortion results. The final part of this
section is dedicated to the particular case k = 1.
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In this subsection we introduce the subclass Ek(α) together with some general
properties of it.

Definition 3.20. Let α ∈ [0, 1) and k ∈ N. Let Gk be the differential operator defined
by formula (2.1). Then

Ek(α) =
{
f ∈ S : Gkf ∈ K(α)

}
is the family of normalized univalent functions f on the unit disc such that Gkf is
convex of order α. In particular, we denote by Ek = Ek(0).

Remark 3.21. Taking into account the definition of convexity of order α (see [5], [17],
[16]), we deduce that

Ek(α) =

{
f ∈ S : Re

[
1 +

z(Gkf)′′(z)

(Gkf)′(z)

]
> α, z ∈ U

}
. (3.11)

It is clear that E0(α) = K(α) is the family of normalized convex functions of order α
on U.

Taking into account Theorem 3.7, we can prove a similar criteria for the family
Ek(α), as follows

Theorem 3.22. Let α ∈ [0, 1), k ∈ N and f ∈ S. Also, let σk,α be defined by

σk,α =



∞∑
n=2

n(n− α) · n!

(n− k)!
|an|, k ≤ 2

k−1∑
n=2

n(n− α)|an|+
∞∑
n=k

n(n− α) · n!

(n− k)!
|an|, k ≥ 3.

(3.12)

If σk,α ≤ 1− α, then f ∈ Ek(α).

Proof. Similar to the proof of Theorem 3.7. �

Remark 3.23. If k = 0, then E0(α) = K(α) and we obtain the sufficient condition for
convexity of order α (one may consult [5] or [14]).

Similar with Theorem 3.10, we can obtain some bounds for the coefficients of a
function f ∈ Ek(α), as follows

Theorem 3.24. Let α ∈ [0, 1), k ∈ N and f ∈ Ek(α). Then

|an| ≤
(n− k)!

n! · n!

n∏
j=2

(j − 2α), n ≥ k ≥ 2. (3.13)

Proof. Let f ∈ Ek(α). Then f ∈ S and Gkf ∈ K(α). According to Remark 2.6 and
the estimations proved by Robertson in [17] (see also [5]), we deduce that

|An| ≤
1

n!

n∏
j=2

(j − 2α), (3.14)



780 Eduard Ştefan Grigoriciuc

for all n ≥ 2, where An are the coefficients of Gkf defined by relation (2.4). Since

|An| =

{
|an|, n ≤ k − 1
n!

(n−k)! |an|, n ≥ k,

we obtain that

|an| ≤
(n− k)!

n! · n!

n∏
j=2

(j − 2α), n ≥ k.

Taking into account the product considered in the last relation, we impose the con-
dition n ≥ k ≥ 2 and this completes the proof. �

Corollary 3.25. Let k ∈ N and f ∈ Ek. Then

|an| ≤
1

n(n− 1)(n− 2) · ... · (n− k + 1)
=

(n− k)!

n!
, n ≥ k. (3.15)

Proof. In view of Theorem 3.24 for α = 0. �

Remark 3.26. If k = 0, then E0 = K and we obtain the classical result related to the
coefficient estimates for convex functions (see e.g. [2]).

Following the remarks presented before Theorem 3.14, we can prove the following
general distortion result:

Theorem 3.27. Let k ∈ N. If f ∈ Ek, then∣∣f (m)(z)
∣∣ ≤ (m− k)!

(1− |z|)m−k+1
, (3.16)

for all m ≥ k and z ∈ U.

Proof. Let f ∈ Ek. Then f ∈ S and Gkf ∈ K. Moreover, for m ∈ N, we have that

f (m)(z) =

∞∑
n=0

(m+ n)!

n!
am+nz

n, z ∈ U.

Let r = |z| < 1. In view of relation (3.15), we obtain∣∣f (m)(z)
∣∣ =

∣∣∣∣ ∞∑
n=0

(m+ n)!

n!
am+nz

n

∣∣∣∣ ≤ ∞∑
n=0

(m+ n)!

n!
|am+n||z|n

≤
∞∑
n=0

(m+ n)!(m+ n− k)!rn

n!(m+ n)!
rn

= (m− k)!

∞∑
n=0

(m+ n− k)!

n!(m− k)!
rn

= (m− k)! · 1

(1− r)m−k+1
,

according to Remark 3.13. Finally, we conclude that∣∣f (m)(z)
∣∣ ≤ (m− k)!

(1− |z|)m−k+1
, z ∈ U,
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for all m ≥ k ≥ 0 and this completes the proof. �

Remark 3.28. It is clear that for k = 0 we obtain the result proved by Goodman in
[3, Theorem 9, Chapter 8].

3.2.1. The particular case k = 1 and α = 0. The next section is dedicated to the
study of a special form (k = 1 and α = 0) of the class Ek(α). Because we consider
such a particular case, we obtain some nice results and examples related to classical
properties of univalent functions on the unit disc. According to Definition 3.20, we
have that E1 is defined by

E1 =
{
f ∈ S : G1f ∈ K

}
,

where G1f(z) = zf ′(z), for all z ∈ U.

Remark 3.29. In view of the analytical characterization of convexity, we have the
following equivalent definition

E1 =

{
f ∈ S : Re

[
1 +

z2f ′′′(z) + 2zf ′′(z)

f ′(z) + zf ′′(z)

]
> 0, z ∈ U

}
. (3.17)

Indeed, f ∈ S implies that G1f ∈ H(U). Moreover, according to the analytical char-
acterization of convexity (see for example [5], [16]), it follows that (G1f)′(0) 6= 0 (in

fact, (G1f)′(0) = 1) and Re
[
1 + z(G1f)′′(z)

(G1f)′(z)
]
> 0, for all z ∈ U. In view of Definition

2.1, we have that

Re

[
1 +

z(G1f)′′(z)

(G1f)′(z)

]
= Re

[
1 +

z2f ′′′(z) + 2zf ′′(z)

f ′(z) + zf ′′(z)

]
> 0,

for all z ∈ U, which leads to the definition of E1 given by (3.17).

Example 3.30. Let f : U → C be given by f(z) = − log(1 − z), for all z ∈ U, where
log is the principal branch of the complex logarithm. Then f ∈ E1.

Proof. Indeed, f ∈ S and f ′(z) = 1
1−z , for all z ∈ U. Moreover,

G1f(z) = zf ′(z) =
z

1− z
, z ∈ U.

Then G1f ∈ S and G1f(U) =
{
w ∈ C : Rew > − 1

2

}
is a convex domain in C. Hence,

G1f ∈ K and this completes the proof. �

Next, we present an important result that establishes the connection between
classes E1 and K(1/2). In particular, we obtain that every function from E1 is also
convex. This proof of this result was given by the author and is based on the proof of
[5, Theorem 2.3.2] given by Suffridge.

Proposition 3.31. If f ∈ E1, then f ∈ K(1/2). This result is sharp.

Proof. Let f ∈ E1. Then f ∈ S and G1f ∈ K. Taking into account a classical result
given by Sheil-Small (see [19]) and Suffridge (see [20]; also, one may consult [5]), we
know that

G1f ∈ K ⇔ Re

[
2z(G1f)′(z)

(G1f)(z)− (G1f)(ζ)
− z + ζ

z − ζ

]
≥ 0,
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for all z, ζ ∈ U. In particular, for ζ = 0, we obtain that G1f ∈ K is equivalent to

Re

[
z(G1f)′(z)

(G1f)(z)

]
≥ 0, z ∈ U.

In view of (2.1) and the minimum principle for harmonic functions, we deduce that

Re

[
z2f ′′(z) + zf ′(z)

zf ′(z)

]
= Re

[
1 +

zf ′′(z)

f ′(z)

]
> 0, (3.18)

for all z ∈ U. Hence, according to the definition of the convex functions of order α,
we conclude that f ∈ K(1/2). In order to prove that the result is sharp, it suffices to
consider the function f : U→ C, given by f(z) = − log(1−z), for all z ∈ U, where log
is the principal branch of the complex logarithm and this completes the proof. �

Remark 3.32. In order to prove that the inclusion E1 $ K(1/2) is strict, we can use
the example given in the proof of Theorem 3 from [8]. If we consider f : U→ C given
by f(z) = z + 1

6z
2, for all z ∈ U, then f ∈ K(1/2) \ E1.

Proof. Indeed, the main idea of the proof (cf. [8]) is the following: according to Corol-
lary 3.8 we have that f ∈ K(1/2). However, it is easy to prove that G1f 6∈ K, where
(G1f)(z) = zf ′(z), for all z ∈ U. Hence, f 6∈ E1 and this completes the proof. �

Proposition 3.33. If f ∈ E1, then f ∈ R(1/2), i.e. Ref ′(z) > 1/2, for all z ∈ U.

Proof. Let f ∈ E1. Then f ∈ S and G1f ∈ K, where (G1f)(z) = zf ′(z), for all z ∈ U.
In view of a result due to Marx and Strohhäcker (see for example [5]), we have that

1

2
< Re

[
(G1f)(z)

z

]
= Re

[
zf ′(z)

z

]
= Ref ′(z),

for all z ∈ U. Hence, Ref ′(z) > 1
2 , for all z ∈ U and this completes the proof. �

Theorem 3.34. Let f ∈ E1. Then

log(1 + |z|) ≤ |f(z)| ≤ − log(1− |z|) (3.19)

and
1

1 + |z|
≤ |f ′(z)| ≤ 1

1− |z|
, (3.20)

for all z ∈ U. All of these estimates are sharp.

Proof. Since f ∈ E1, we have that f ∈ S and G1f ∈ K, where (G1f)(z) = zf ′(z), for
all z ∈ U. According to distortion theorem for the class K (see e.g. [5], [16]), we know
that

r

1 + r
≤
∣∣zf ′(z)∣∣ ≤ r

1− r
,

where |z| = r. Then
1

1 + r
≤
∣∣f ′(z)∣∣ ≤ 1

1− r
, (3.21)

where |z| = r < 1 and we obtain the distortion result for the class E1. The up-
per bound in (3.19) follows easily by integrating the upper bound in (3.20) and the
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lower bound in (3.19) can be obtained using the arguments presented in the proof of
Theorem 2.2.8 from [5]. Hence,

log(1 + r) ≤ |f(z)| ≤ − log(1− r),

where |z| = r < 1. The sharpness of all of these estimates is ensured by the function
defined in Example 3.30. �

Corollary 3.35. If f ∈ E1, then f(U) contains the open disc Uln 2.

Proof. The result follows from the lower estimate in relation (3.19) on letting
r → 1. �

3.3. Connections between E∗k and Ek

Based on the Alexander’s duality theorem between convex and starlike functions
on U (see [1], [2], [16]), we prove in this section similar duality results for the subclasses
E∗k and Ek.

Lemma 3.36. Let k ∈ N and f, g ∈ S be such that g(z) = zf ′(z), for all z ∈ U. Then

z(Gkf)′(z) = (Gkg)(z), z ∈ U. (3.22)

Proof. It is clear that for k = 0, relation (3.22) reduces to the definition of g. Let us
consider k ≥ 1 and f, g ∈ S such that g(z) = zf ′(z), for all z ∈ U. By (2.1) we have

(Gkf)(z) = zkf (k)(z) + ak−1z
k−1 + ...+ a1z + a0,

for all z ∈ U, where a1 = 1 and a0 = 0. Then

z(Gkf)′(z) = zk+1f (k+1)(z) + kzkf (k)(z) +

k−1∑
n=1

nanz
n, (3.23)

for all z ∈ U. According to Leibniz’s formula, we deduce that

(Gkg)(z) = zkg(k)(z) + bk−1z
k−1 + ...+ b2z

2 + b1z + b0

= zk+1f (k+1)(z) + kzkf (k)(z) + bk−1z
k−1 + ...+ b2z

2 + b1z + b0

= zk+1f (k+1)(z) + kzkf (k)(z) +

k−1∑
n=1

nanz
n, (3.24)

for all z ∈ U. Finally, in view of (3.23) and (3.24) we obtain that

z(Gkf)′(z) = (Gkg)(z), z ∈ U

and this completes the proof. �

Based on the previous lemma, we can obtain an Alexander type theorem for the
families E∗k and Ek.

Theorem 3.37. Let k ∈ N and f, g ∈ S. Then f ∈ Ek if and only if g ∈ E∗k , where
g(z) = zf ′(z), for all z ∈ U.
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Proof. Let f ∈ Ek. According to the definition of the class Ek, we have that

f ∈ Ek ⇔ f ∈ S and Gkf ∈ K.
Moreover,

Gkf ∈ K ⇔ z(Gkf)′(z) ∈ S∗,
for all z ∈ U, in view of the Alexander’s duality theorem. Using Lemma 3.36 we can
rewrite the previous equivalence as

Gkf ∈ K ⇔ z(Gkf)′(z) = (Gkg)(z) ∈ S∗,
for all z ∈ U. Then

f ∈ Ek ⇔ Gkf ∈ K ⇔ Gkg ∈ S∗ ⇔ g ∈ E∗k ,
where g(z) = zf ′(z), for all z ∈ U, and this completes the proof. �

Remark 3.38. Since Theorem 3.37 is based on the Alexander’s duality theorem, it is
clear that for k = 0, we have that

f ∈ E0 = K ⇔ g ∈ E∗0 = S∗,

where g(z) = zf ′(z), for all z ∈ U.

Remark 3.39. Another interesting remark is that, taking into account Definition 2.1,
we can rewrite Theorem 3.37 as follows

f ∈ Ek ⇔ G1f ∈ E∗k , (3.25)

for all k ∈ N, where G1f is given by (2.1).

Theorem 3.40. Let k ∈ N. If f ∈ Ek, then f ∈ E∗k(1/2).

Proof. Let f ∈ Ek. Then f ∈ S and Gkf ∈ K. According to a result given by Sheil-
Small and Suffridge (see e.g. [5]), we know that

Re

[
z(Gkf)′(z)

(Gkf)(z)

]
> 0, z ∈ U.

Hence, since f ∈ S and Gkf ∈ S∗(1/2), it follows that f ∈ E∗k(1/2) and this completes
the proof. �

Remark 3.41. It is clear that Theorem 3.40 is a generalization of Proposition 3.31
(where k = 1). On the other hand, if k = 0, then Theorem 3.40 reduces to [5,
Theorem 2.3.2] due to Marx and Strohhäcker.

Finally, we end this section with some questions related to the subclasses Ek
and E∗k studied above. First question is a generalization of Proposition 3.31:

Question 3.42. Is it true that Ek+1 ⊂ Ek, for all k ∈ N?

Clearly, a similar question can be formulated also for the subclass E∗k . Another
important property of these subclasses is the compactness. Hence, one may ask

Question 3.43. Is it true that the subclasses Ek and E∗k are compact in H(U)?

Since E∗k and Ek are subclasses of the class S, it would be interesting to study
also other geometric and analytic properties of them.
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3.4. The subclass EN

Let k ∈ N and f ∈
⋂
k∈N

Ek. Then, for every k ∈ N, we have that f ∈ Ek.

Moreover, according to Corollary 3.25, it follows that for every k ∈ N

|an| ≤
(n− k)!

n!
, n ≥ k.

In particular, for n = k we obtain that |ak| ≤ 1
k! , for every k ∈ N. Let us denote by

EN =

{
f ∈ S : |an| ≤

1

n!
, n ≥ 2

}
. (3.26)

Then, we obtain the following remark

Remark 3.44. Let EN be the set defined by (3.26). Then
⋂
k∈NEk $ EN, i.e. the

intersection of all subclasses Ek is included in EN, but it is not equal with EN.

Indeed, we can construct an example of a function f ∈ S that belongs to the
family EN, but not to

⋂
k∈NEk (in fact, we prove that f 6∈ E1), as follows

Example 3.45. Let f : U → C be defined by f(z) = z + az2, for all z ∈ U, where
a = 1/2. Then f ∈ EN, but f 6∈

⋂
k∈NEk.

Proof. It is clear that f ∈ S and |a2| = |a| ≤ 1
2 . Hence, in view of relation (3.26) we

deduce that f ∈ EN. On the other hand,

(G1f)(z) = zf ′(z) = z(1 + 2az) = z + 2az2, z ∈ U, a = 1/2.

Let us denote

h(z) = 1 +
z(G1f)′′(z)

(G1f)′(z)
= 1 +

4az

1 + 4az
=

1 + 8az

1 + 4az
,

for all z ∈ U, where a = 1/2. Then h is a Möbius function on U such that h(0) = 1,
h(1) = 5

3 , h(i) = 9
5 + 2

5 i and h(−i) = 9
5 −

2
5 i. In other words, we obtain that

h(U) = C \ U
(
7/3, 2/3

)
=

{
x+ iy ∈ C :

(
x− 7

3

)2

+ y2 >

(
2

3

)2}
,

i.e., h(U) is the complementary part of the closed disc U
(
7
3 ,

2
3

)
of center w0 = 7

3 and

radius r = 2
3 . Moreover, for every point w ∈ h(U)∩

{
x+ iy ∈ C : x < 0

}
we have that

Rew < 0, i.e. there exists z0 ∈ U such that Reh(z0) < 0. For example, if z0 = − 1
3 ,

then z0 ∈ U and simple computations show that

Reh(z0) = Re

[
1 +

z0(G1f)′′(z0)

(G1f)′(z0)

]
= −1 < 0.

Hence, according to the behavior of the function h on U and the analytical charac-
terization of convexity (see for example [3] or [5]), we deduce that G1f 6∈ K.

Since f ∈ S, but G1f 6∈ K, we obtain (according to Definition 3.20) that f 6∈ E1.
Now, it is clear that f 6∈

⋂
k∈NEk and this completes the proof. �

Another interesting example (considered also in [15]) which generates important
remarks about the class EN is the following
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Example 3.46. Let f : U→ C be given by f(z) = ez − 1, for all z ∈ U. Then f ∈ EN.

Proof. Indeed, f ∈ S and

f(z) = ez − 1 =

∞∑
n=0

zn

n!
− 1 = z +

z2

2
+
z3

6
+ ... = z +

∞∑
n=2

anz
n,

where an = 1
n! , for all n ≥ 2. Hence, f ∈ EN. �

Taking into account relation (3.8), we can prove the following result

Proposition 3.47. Let m ∈ N. If f ∈ EN, then
∣∣f (m)(z)

∣∣ ≤ e|z|, for all z ∈ U.

Proof. Let f ∈ EN and |z| = r < 1. Then f ∈ S and in view of (3.8) we have that∣∣f (m)(z)
∣∣ =

∣∣∣∣ ∞∑
n=0

(m+ n)!

n!
am+nz

n

∣∣∣∣ ≤ ∞∑
n=0

(m+ n)!

n!
|am+n||z|n =

∞∑
n=0

rn

n!
= er,

where |z| = r < 1. Hence, we obtain that∣∣f (m)(z)
∣∣ ≤ e|z|,

for z ∈ U and this completes the proof. �

It is clear that Proposition 3.47 has the following consequence (for the particular
case z = 0):

Corollary 3.48. Let m ∈ N. If f ∈ EN, then |f (m)(0)| ≤ 1, for all m ∈ N.
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[18] Sălăgean, G.Ş., Subclasses of Univalent Functions, Lecture Notes in Math., 1013(1983),
Springer Verlag, Berlin, 362–372.

[19] Sheil-Small, T., On convex univalent functions, J. London Math. Soc., 1(1969), 483–492.

[20] Suffridge, T.J., Some remarks on convex maps of the unit disc, Duke Math. J., 37(1970),
775–777.
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