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On the stability of KdV equation with
time-dependent delay on the boundary
feedback in presence of saturated source term

Toufik Ennouari and Ahmat Mahamat Taboye

Abstract. The current paper investigate the question of stabilizability of the
Korteweg-de Vries equation with time-varying delay on the boundary feedback
in the presence of a saturated source term. Under specific assumptions regarding
the time-varying delay, we have established that the studied system is well-posed.
Moreover, using an appropriate Lyapunov functional, we prove the exponential
stability result. Finally, we give some conclusions.
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1. Introduction

In recent years a lot of work has come out on the study of Korteweg-de Vries
equation with time-delay (see e.g. [25, 2, 36]). The Korteweg-de Vries equation (KdV)

ut + ux + uxxx + uux = 0 (1.1)

is a nonlinear one dimensional equation, more precisely the KdV equation is a mathe-
matical model of waves on shallow water surfaces. In recent decades, the study of the
Korteweg-de Vries equation has yielded intriguing results, particularly with regard to
its controllability and stabilizability properties. This studies can be attributed to the
efforts made by Russell and Zhang in [32]. Subsequently, significant research efforts
have been dedicated to the examination of both controllability and stabilizability. For
a comprehensive review of these studies, interested readers can refer to various works
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(such as [31, 37]), as well as the following references [3, 9, 5]. In the majority of these
papers, the following system have been studied:

ut(t, x) + ux(t, x) + uxxx(t, x) + f = 0, t ≥ 0, x ∈ [0, L];

u(t, 0) = u(t, L) = ux(t, L) = 0, t ≥ 0;

u(0, x) = u0(x),

(1.2)

In a general context, the feedback control f in (1.2) is chosen to fulfill specific objec-
tives. As a result, it must consistently adhere to predefined constraints. In particular,
equation (1.2) has been the subject of investigation, with two distinct approaches
studied in the literature: one involving distributed control (as examined in [29, 27])
and another involving boundary control (as discussed in [18, 4]). Notably, in [29],
the authors demonstrate that the linear feedback control f(t, x) = a(x)u(t, x), where
a = a(x) is a nonnegative function that satisfies certain conditions, makes the origin
exponentially stable. It’s worth mentioning as well that when a equals zero, the au-
thors also prove that the linear Korteweg-de Vries (KdV) equation without control is

exponentially stable under the conditions L /∈
{

2π
√

k2+n2+kn
3 | n, k ∈ N∗

}
.

One of the most well-known constraints that can affect the proper functioning
of the control system is the saturation constraint, which has been discussed in various
works (see, for instance, [20, 24, 16, 17, 10, 6]. The issue of input saturation in the
control system is inevitable. Physical constraints or practical limitations can cause the
restriction of input signal amplitudes, leading to unfavorable and even catastrophic
outcomes for the control system.

In the literature, there are several articles that studies the stability result of
KdV equation with input saturation (see e.g. [20, 34, 19]. In particular, [34] looks at
the study of the following KdV equation:

ut(t, x) + ux(t, x) + uxxx(t, x) + sat(a(x)u(t, x) = 0, t ≥ 0, x ∈ [0, L];

u(t, 0) = u(t, L) = ux(t, L) = 0, t ≥ 0;

u(0, x) = u0(x),

(1.3)

where a = a(x) ∈ L∞([0, L]) satisfying a1 ≥ a = a(x) ≥ a0 > 0 on ω ⊆ [0, L] (ω
is a nonempty open subset of [0, L]), and the saturation function sat(.) is defined as
follows

sat(t) =

t, if ‖t‖L2(0,L) ≤ 1
t

‖t‖L2(0,L)
, if ‖t‖L2(0,L) ≥ 1

(1.4)

The well-posedness of the closed-loop system for the linear KdV equation (1.3)
has been proved through the application of nonlinear semigroup theory. Moreover,
the authors have demonstrated that the origin of the KdV equation (1.3) in closed-
loop system with the saturated control (1.4) is exponentially stable. The asymptotic
stability of KdV equation with a saturated internal control has been studied by [19].
In their work , they considered the system (1.2) with

f(t, x) = asat(u),
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where a is a positive constant and the saturation function is defined as follows

sat(t) =


−u0, if t ≤ −u0
t, if − u0 ≤ t ≤ u0
u0, if t ≥ u0

(1.5)

where u0 represent a positive constant. The authors prove the well-posedness by
applying nonlinear semigroup theory. Additionally, using Lyapunov theory for infinite-
dimensional systems, they also establish that the origin is asymptotically stable.

In this paper, we are interested in the study of time-varying delay on the bound-
ary of the Korteweg-de Vries equation in the presence of a saturated source term.
That is to say, we consider the same problem as in [34] with time-varying delay on
the boundary feedback.

In general, the presence of delay in scientific phenomena is a multifaceted con-
sideration. It is widely acknowledged that even a minor delay in the feedback mecha-
nism can potentially induce instability in a system, as discussed in various references
[12, 7, 21]. Alternatively, delays can be used as a tool to improve performance by in-
troducing beneficial phase shifts to optimize system behavior, as studied in references
such as [1, 30]. When delays become time-varying, the complexity of analyzing system
stability significantly increases. Several studies have examined the stability of partial
differential equations (PDEs) involving time-varying delay, with notable references
including [22, 8, 26, 13].

In recent years, researchers have shown increasing interest in solving stability
and robustness problems related to constant delay for the Korteweg-de Vries equa-
tion. Notable contributions have been made by researchers such as Baudouin et al.
and Parada et al., as mentioned in [2, 23], where they studied the Korteweg-de Vries
equation with time-delay feedback, establishing the well-posedness and proving expo-
nential stability through the use of the observability inequality. For more details on
the KdV equation with time-delay, the readers can find more details in [35, 11, 15].
Concerning the Korteweg-de Vries equation with time-varying delay, there is a no-
tably singular study conducted by Parada et al. [25]. This study examined the issue of
time-varying delay both on the boundary or internal feedback. With specific assump-
tions concerning time-varying delay, they proved the well-posedness and the stability
results is analyzed, using an appropriate Lyapunov functional. However, in the litera-
ture to the best of our knowledge, there has been no prior work addressing this issue
in the context of the Korteweg-de Vries equation with a saturated source term.

In our paper, we focus on the Korteweg-de Vries equation with time-varying
delay on the boundary feedback in presence of saturated source term. The equation
under investigation is given as follows:

ut(x, t) + ux(x, t) + uxxx(x, t) = f(x, t), t > 0, x ∈ [0, L];

u(0, t) = u(L, t) = 0, t > 0;

ux(L, t) = αux(0, t) + βux(0, t− θ(t)), t > 0;

u(x, 0) = u0(x), x ∈ [0, L];

ux(0, t− θ(0)) = z0(t− θ(0)), 0 < t < θ(0),

(1.6)
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with

f(x, t) = −sat(a(x)u(t;x)), (1.7)

where a(·) ∈ L∞([0, L]) is a nonnegative function satisfying some conditions, and
sat(.) is the same given by (1.4). The main contribution of this paper is to study the
well-posedness and exponential stability of the linear KdV equation with time-varying
delay on the boundary feedback, as given in equation (1.6)-(1.7). The well-posedness
of the system (1.6)-(1.7) is proven under some conditions. By using an appropriate
Lyapunov functional, we demonstrate that the KdV equation (1.6)-(1.7) with the
saturated source term (1.4) is exponentially stable.

Our paper is organized as follows. In the next section, we formulate our problem.
In section 3, we examine the well-posedness of (1.6)-(1.7). Section 4 is dedicated to
the exponential stabilization of (1.6)-(1.7). Finally, we present some conclusions in
section 5.

2. Problem statement

The aim of this paper is to study the following KdV equation with time-varying
delay

ut(x, t) + ux(x, t) + uxxx(x, t) = −sat(a(x)u(x, t)), t > 0, x ∈ [0, L];

u(0, t) = u(L, t) = 0, t > 0;

ux(L, t) = αux(0, t) + βux(0, t− θ(t)), t > 0;

u(x, 0) = u0(x), x ∈ [0, L];

ux(0, t− θ(0)) = z0(t− θ(0)), 0 < t < θ(0),

(2.1)

where where a = a(x) ∈ L∞[0, L] satisfying{
a = a(x) ≥ a0 > 0 on ω ⊆ [0, L],
ω is a nonempty open subset of [0, L],

(2.2)

Moreover, suppose that the delay θ(·) ∈ W 2,∞[0, T ] for all T > 0 and satisfies the
following conditions

0 < θ0 ≤ θ(t) ≤ K, for all t ≥ 0, (2.3)

and

θ̇(t) ≤ d ≤ 1, for all t ≥ 0, (2.4)

where d ≥ 0.
Furthermore, we define the matrix M1 by

M1 =

(
α2 − 1 + |β| αβ

αβ β2 + |β|(d− 1)

)
(2.5)

Where α, β and d are real constants that satisfy the following inequality

|α|+ |β|+ d < 1. (2.6)
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If (2.6) is satisfied, then the matrix M1 is definite negative according to [25].
In this context, we introduce a new variable z(µ, t) = ux(0, t − θ(t)µ) for µ ∈ [0, 1]
and t > 0. Then, z(·, ·) satisfies the following system θ(t)zt(µ, t) + (1− θ̇(t)µ)zµ(µ, t) = 0, t > 0, µ ∈ [0, 1];

z(0, t) = ux(0, t), t > 0;
z(µ, 0) = z0(−θ(0)µ), µ ∈ [0, 1].

(2.7)

For more detail about a new variable z that takes into account θ(·) (see [21, 22]).
Therefore, we investigate the following semi-linear system

ut(x, t) + ux(x, t) + uxxx(x, t) = −sat(a(x)u(x, t)), t > 0, x ∈ [0, L];

θ(t)zt(µ, t) + (1− θ̇(t)µ)zµ(µ, t) = 0, t > 0, µ ∈ [0, 1];
u(0, t) = u(L, t) = 0, t > 0
ux(L, t) = αux(0, t) + βux(0, t− θ(t)), t > 0;
u(x, 0) = u0(x), x ∈ [0, L];
ux(0, t− θ(0)) = z0(t− θ(0)), 0 < t < θ(0).
z(0, t) = ux(0, t), t > 0;
z(µ, 0) = z0(−θ(0)µ), µ ∈ [0, 1].

(2.8)

Let Y =

(
u
z

)
, then the system (2.8) can be rewritten as the following first-order

system  Yt = A(t)Y (t) +

(
−sat(a(x)u)

0

)
, t > 0,

Y (0) =
(
u0, z0(−θ(0))

)T
.

(2.9)

Where the operator A(t) is defined by

D(A(t)) = {(u, z) ∈ H3([0, L])×H1([0, L]), u(0) = u(L) = 0

z(0) = ux(0), ux(L) = αux(0, t) + βux(0, t− θ(t))}

A(t)

(
u
z

)
=

(
−ux − uxxx
θ̇(t)µ−1
θ(t) zµ

)
for all

(
u
z

)
∈ D(A(t)). (2.10)

It has been proved in [25] that the domain of operator A(t) is independent of t, i.e.

D(A(t)) = D(A(0)).

Let the Hilbert space H = L2[0, L]×L2[0, 1] equipped with the following usual inner
product 〈(

u
z

)
,

(
u1
z1

)〉
H

=

∫ L

0

uu1dx+

∫ 1

0

zz1dµ,

and its norm ∥∥∥∥( u
z

)∥∥∥∥2
H

=

∫ L

0

u2dx+

∫ 1

0

z2dµ

We introduce a new inner product on H. This inner product is dependent to time t
and define as follows〈(

u
z

)
,

(
u1
z1

)〉
t

=

∫ L

0

uu1dx+ |β|θ(t)
∫ 1

0

zz1dµ,
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with associated norm denoted by ‖ · ‖t. Using (2.3), the norm ‖ · ‖t and ‖ · ‖H are

equivalent in H. Indeed, for all t ≥ 0, and all

(
u
z

)
∈ H, we have

(1 + |β|θ0)

∥∥∥∥( u
z

)∥∥∥∥2
H

≤
∥∥∥∥( u

z

)∥∥∥∥2
t

≤ (1 + |β|K)

∥∥∥∥( u
z

)∥∥∥∥2
H

(2.11)

Now, we recall the definition of mild solution.
Let us consider the abstract system in a Hilbert space Z{

u̇(t) = Au(t) + f(t), t > 0,
u(0) = u0,

(2.12)

where A is an infinitesimal generator of linear C0−semigroup (T (t))t≥0 defined on its
domain D(A) ⊆ H, where Z is a Hilbert space and f ∈ L1

loc([0, T ], Z).

Definition 2.1. [28, Definition 2.3] Let A be the infinitesimal generator of a
C0−semigroup (T (t))t≥0. Let u0 ∈ Z and f ∈ L1(0, T, Z). Then the function
u ∈ C([0, T ], Z) given by

u(t) = T (t)u0 +

∫ t

0

T (t− s)f(s)ds 0 ≤ t ≤ T, (2.13)

is the unique mild solution of the initial value problem (2.12) on [0, T ].

We recall that the saturation function is Lipschitzian in L2[0, L].

Lemma 2.2. [33, Theorem 5.1] For all (u, v) ∈ L2[0, L], we have

‖sat(u)− sat(v)‖L2[0,L] ≤ 3‖u− v‖L2[0,L]

3. Well-posedness

Before stating the well-posedness result system (2.9), we recall the result of well-
posedness of the following linear system without source term which has been treated
by Parada et al. [25]

ut(x, t) + ux(x, t) + uxxx(x, t) = 0, t > 0, x ∈ [0, L];
θ(t)zt(µ, t) + (1− θt(t)µ)zµ(µ, t) = 0, t > 0, µ ∈ [0, 1];
u(0, t) = u(L, t) = 0, t > 0
ux(L, t) = αux(0, t) + βux(0, t− θ(t)), t > 0;
u(x, 0) = u0(x), x ∈ [0, L];
ux(0, t− θ(0)) = z0(t− θ(0)), 0 < t < θ(0).
z(0, t) = ux(0, t), t > 0;
z(µ, 0) = z0(−θ(0)µ), µ ∈ [0, 1].

(3.1)

As previously, let Y =

(
u
z

)
, then the system (3.1) can be rewritten as the following

first-order system {
Yt = A(t)Y (t), t > 0,

Y (0) =
(
u0, z0(−θ(0))

)T
.

(3.2)
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Where A(t) is given by (2.10). The well-posedness of (3.2), is proved in [25, Theorem
2.2]. To prove the well-posedness of (3.2), they used the following Theorem

Theorem 3.1. Assume that

1. D(A(0)), is a dense subset of H.
2. D(A(t)) = D(A(0)) ∀t ≥ 0.
3. For all t ∈ [0, T ] A(t) generates a strongly continuous semigroup on H and

the family A = {A(t) : t ∈ [0, T ]} is stable with stability constant C and m
independent of t, i.e. the semigroup (Tt(s))s≥0 generated by A(t) satisfies

‖Tt(s)Y ‖H ≤ Cems‖Y ‖H , for all Y ∈ H, and s ≥ 0.

4. ∂tA(t) belong to L∞∗ ([0, T ], B(D(A(0)))), the space of equivalent of essen-
tially classes bounded strongly measure functions from [0, T ] into the set
B(D(A(0)), H) of bounded operator from D(A(0) to H.

Then the system (3.2) has a unique solution Y ∈ C([0, T ], D(A(0))) ∩ C1([0, T ], H)

More precisely, in [25], the authors demonstrated that, if (2.3)-(2.6) holds,
the operator A(t) satisfy all assumptions of Theorem 3.1 and the system (3.2)
has a unique solution u ∈ C([0,+∞[, H). Moreover if Y0 ∈ D(A(0)), then
Y ∈ C([0,+∞[, D(A(0))) ∩ C1([0,+∞[, H).

The following result gives the conditions for the existences and the uniqueness
of the solution of (2.9).

Theorem 3.2. Let (u0, z0) ∈ H and suppose that (2.3)-(2.6) holds. Assume also that
a = a(x) ∈ L∞[0, L] satisfying (2.2) and u ∈ L2(0, T,H1[0, L]). Then, there exists a
unique solution Y = (u, z) ∈ C([0,+∞[, H) of (2.9).

Proof. Let G(u) =

(
−sat(a(x)u)

0

)
. By assumption u ∈ L2(0, T,H1[0, L]), hence(

−sat(a(x)u)
0

)
∈ L1(0, T,H). Indeed, let u1, u2 ∈ L2(0, T,H1[0, L]), by using the

Holder inequality, ([20, Proposition 3.4]) and ([33, Theorem 5.1]), we get

‖G(u1)−G(u2)‖L1(0,T,H) =

∫ T

0

‖G(u1)−G(u2)‖Hdt

=

∫ T

0

‖sat(au1)− sat(au2)‖L2[0,L]) + ‖0‖L2[0,1]dt

=

∫ T

0

‖sat(au1)− sat(au2)‖L2[0,L])dt

≤ 3

∫ T

0

‖au1 − au2‖L2[0,L])dt

≤ 3‖a‖L∞[0,L]

∫ T

0

‖u1 − u2‖L2[0,L])dt

≤ 3‖a‖L∞[0,L]

√
T
√
L‖u1 − u2‖L2(0,T,H1[0,L]) < +∞.
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Therefore,

(
−sat(a(x)u)

0

)
∈ L1(0, T,H). Moreover, from [25, Theorem 2.2] the

operator A(t) satisfy all assumption of Theorem 3.1. Thus, since

(
−sat(a(x)u)

0

)
∈

L1(0, T,H), then if Y0 ∈ H, the system (3.2) has a unique solution Y = (u, z) ∈
C([0,+∞[, H), according to [14, Theorem 2].

Furthermore, sat(ã(x)u) ∈ L1(0, T, L2[0, L]), hence if

(
u0
z0

)
∈ D(A(0)), then from

[2, Proposition 2] the solution of (2.9) is a regular solution. �

4. Exponential stability

Consider the following energy

E(t) =
1

2

∫ L

0

u2(x, t)dx+
‖β‖

2
θ(t)

∫ 1

0

u2x(0, t− θ(t)µ)dµ. (4.1)

The following lemma proves that the energy (4.1) does not increase.

Lemma 4.1. Assume that assumptions (2.3), (2.4) and (2.6) are satisfied. Moreover
suppose also that u ∈ L2(0, T,H1[0, L]) and a = a(x) ∈ L∞[0, L], satisfying (2.2).
Then, for any regular solution of (2.9), the energy (4.1) satisfies the following in-
equality

d

dt
E(t) ≤

(
ux(0, t)
z(1, t)

)T (
1

2
M1

)(
ux(0, t)
z(1, t)

)
≤0.

(4.2)

Proof. Let u a regular solution of (2.1). By definition z(µ, t) = ux(0, t− θ(t)µ), hence
we rewrite the energy (4.1) as follows

E(t) =
1

2

∫ L

0

u2(x, t)dx+
‖β‖

2
θ(t)

∫ 1

0

z2(µ, t)dµ.

Differentiating E(·), we get

d

dt
E(t) =

∫ L

0

uutdx+
|β|
2
θ̇(t)

∫ 1

0

z2dµ+ |β|θ(t)
∫ 1

0

zztdµ

=−
∫ L

0

uuxdx−
∫ L

0

uuxxxdx−
∫ L

0

sat(au)udx

+
|β|
2
θ̇(t)

∫ 1

0

z2dµ+ |β|θ(t)
∫ 1

0

zztdµ

(4.3)

After some integrations by parts, we obtain

−
∫ L

0

uuxdx = 0; −
∫ L

0

uuxxxdx =
1

2
u2x(L, t)− 1

2
u2x(0, t),
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and

|β|θ(t)
∫ 1

0

zztdµ =|β|θ(t)
∫ 1

0

θ̇(t)µ− 1

θ(t)
zzµdµ

=|β|θ̇(t)
∫ 1

0

µzzµdµ− |β|
∫ 1

0

zzµdµ.

Thus

|β|θ̇(t)
∫ 1

0

µzzµdµ =
|β|
2
θ̇(t)

[
µz2(µ, t)

]1
0
− |β|

2
θ̇(t)

∫ 1

0

z2(µ, t)dµ

=
|β|
2
θ̇(t)z2(1, t)− |β|

2
θ̇(t)

∫ 1

0

z2(µ, t)dµ

(4.4)

and

−|β|
∫ 1

0

zzµdµ =− |β|
2

[
z2(µ, t)

]1
0

=− |β|
2

[
z2(1, t)− z2(0, t)

]
=
|β|
2
u2x(0, t)− |β|

2
z2(1, t).

(4.5)

Using (2.8), (4.3), (4.4) and (4.5), we get

d

dt
E(t) =

1

2
(αux(0, t) + βz(1, t))2 − 1

2
u2x(0, t)−

∫ L

0

sat(au)udx

+
|β|
2
θ̇(t)

∫ 1

0

z2dµ+ |β|θ̇(t)
∫ 1

0

µzzµdµ− |β|
∫ 1

0

zzµdµ

=
1

2
α2u2x(0, t) + αβux(0, t)z(1, t) +

1

2
β2z2(1, t)− 1

2
u2x(0, t)

−
∫ L

0

sat(au)udx+
|β|
2
θ̇(t)

∫ 1

0

z2dµ+
|β|
2
θ̇(t)z2(1, t)

− |β|
2
θ̇(t)

∫ 1

0

z2dµ+
|β|
2
u2x(0, t)− |β|

2
z2(1, t)

=
1

2
(α2 − 1 + |β|)u2x(0, t) + αβux(0, t)z(1, t)

+
1

2

(
β2 + |β|(θ̇(t)− 1)

)
z2(1, t)−

∫ L

0

sat(au)udx.
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Therefore using (2.4), we obtain

d

dt
E(t) +

(
ux(0, t)
z(1, t)

)T (
−1

2
M1

)(
ux(0, t)
z(1, t)

)
≤ 1

2
(α2 − 1 + |β|)u2x(0, t) + αβux(0, t)z(1, t)

+
1

2

(
β2 + |β|(θ̇(t)− 1)

)
z2(1, t)−

∫ L

0

sat(au)udx

+

(
ux(0, t)
z(1, t)

)T (
−1

2
M1

)(
ux(0, t)
z(1, t)

)
= −

∫ L

0

sat(au)udx

≤ 0.

Because

∫ L

0

sat(au)udx ≥ 0, indeed, if ‖au‖L2 ≤ 1, then

sat(au)u = au2 ≥ 0.

If ‖au‖L2 ≥ 1,

sat(au)u =
au

‖au‖L2

u =
au2

‖au‖L2

≥ 0,

where a = a(x) is a nonnegative function. Consequently, using (2.6), we have

d

dt
E(t) ≤

(
ux(0, t)
z(1, t)

)T (
1

2
M1

)(
ux(0, t)
z(1, t)

)
≤ 0. �

The following lemmas play an important role to prove the exponential stability
of (2.8). Before that, consider the following lyapunov function

V (t) = E(t) + λV1(t) + γV (t)2, (4.6)

where λ, γ ≥ 0, E(·) is given by (4.1), and

V1(t) =

∫ L

0

xu2(x, t)dx (4.7)

V2(t) = θ(t)

∫ 1

0

(1− µ)u2(x, t− θ(t)µ)dµ. (4.8)

Lemma 4.2. Assume that a = a(ax) ∈ L∞[0, L] satisfies (2.2),

(
u0
z0

)
∈ D(A(0))

and u ∈ L2(0, T,H1[0, L]), then for any regular solution of (2.1), the following equa-
tion is satisfied

V̇1(t) =L(α2u2x(0, t) + 2αβux(0, t)ux(0, t− θ(t)) + β2u2x(0, t− θ(t))

+

∫ L

0

u2dx− 3

∫ L

0

u2xdx−
∫ L

0

xsat(au)udx
(4.9)
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Proof. Let us consider a regular solution, then Differentiate V1(·) we have

V̇1(t) = 2

∫ L

0

xuutdx

= −2

∫ L

0

xuuxdx− 2

∫ L

0

xuuxxxdx− 2

∫ L

0

xsat(au)udx

After some integrations by parts, we obtain

−2

∫ L

0

xuuxdx =

∫ L

0

u2dx;

−2

∫ L

0

xuuxxxdx = Lu2(L, t)− 3

∫ L

0

u2xdx

= L(αux(0, t) + βux(0, t− θ(t)))2 − 3

∫ L

0

u2xdx

Using the last equations, we get

V̇1(t) =

∫ L

0

u2dx+ L(αux(0, t) + βux(0, t− θ(t)))2

− 3

∫ L

0

u2xdx− 2

∫ L

0

xsat(au)udx

= L(α2u2x(0, t) + 2αβux(0, t)ux(0, t− θ(t)) + β2u2x(0, t− θ(t)))

+

∫ L

0

u2dx− 3

∫ L

0

u2xdx− 2

∫ L

0

xsat(au)udx

�

Lemma 4.3. Assume that (2.4) is satisfied. Suppose also

(
u0
z0

)
∈ D(A(0)) and

u ∈ L2(0, T,H1[0, L]), then for any regular solution of (2.1), the following inequality
is satisfied

V̇2(t) ≤ −(1− d)

∫ 1

0

u2x(0, t− θ(t)µ)dµ+ u2x(0, t). (4.10)

Proof. Consider a regular solution, then differentiate V2(·), we have

V̇2(t) =θ̇(t)

∫ 1

0

(1− µ)u2
x(0, t− θ(t)µ)dµ

+2θ(t)

∫ 1

0

(1− µ)∂tux(0, t− θ(t)µ)ux(0, t− θ(t)µ)dµ

=θ̇(t)

∫ 1

0

(1− µ)u2
x(0, t− θ(t)µ)dµ+ 2

∫ 1

0

θ(t)∂tux(0, t− θ(t)µ)ux(0, t− θ(t)µ)dµ

−2

∫ 1

0

µθ(t)∂tux(0, t− θ(t)µ)ux(0, t− θ(t)µ)dµ

(4.11)
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After some integration by parts and using the following equation

−θ(t)∂tux(0, t− θ(t)µ) = (1− θ̇(t)µ)∂µux(0, t− θ(t)µ),

we obtain

2

∫ 1

0

θ(t)∂tux(0, t− θ(t)µ)ux(0, t− θ(t)µ)dµ =u2x(0, t)− (1− θ̇(t))u2x(0, t− θ(t))

−θ̇(t)
∫ 1

0

u2x(0, t− θ(t)µ)dµ

(4.12)

and

−2

∫ 1

0

µθ(t)∂tux(0, t− θ(t)µ)ux(0, t− θ(t)µ)dµ =(1− θ̇(t))u2x(0, t− θ(t))

−
∫ 1

0

u2x(0, t− θ(t)µ)dµ

+2

∫ 1

0

µθ̇(t)u2x(0, t− θ(t)µ)dµ

(4.13)

We deduce from (4.11), (4.12), (4.13) and (2.4) that

V̇2(t) = −
∫ 1

0

u2x(0, t− θ(t)µ)dµ

+ θ̇(t)

∫ 1

0

µu2x(0, t− θ(t)µ)dµ+ u2x(0, t)

≤ −
∫ 1

0

u2x(0, t− θ(t)µ)dµ+ d

∫ 1

0

µu2x(0, t− θ(t)µ)dµ+ u2x(0, t)

= −(1− d)

∫ 1

0

u2x(0, t− θ(t)µ)dµ+ u2x(0, t)

�

Now, we are able to state and prove the main result of this section.

Theorem 4.4. Assume that a = a(x) ∈ L∞[0, L] satisfying (2.2), and L < π
√

3.
Moreover suppose that the assumptions (2.3) , (2.4) and (2.6) are satisfied. Then,
there exists r > 0 such that for every (u0, z0) ∈ H satisfying ‖(u0, z0)‖H ≤ r, there
exists δ > 0 and M > 0 such that

E(t) ≤Me−2δtE(0), ∀t > 0. (4.14)

where for λ and γ sufficiently small, the two positive constants δ and M satisfy the
following inequality:

δ ≤ min

{
(9π2 − 3L2 − 2L

3
2 rπ2)

3L2(1 + 2Lλ)
λ,

γ

h(2γ + |β|)

}
(4.15)
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and

M ≤ 1 + max

{
Lλ,

2γ

|β|

}
.

Where λ and γ, satisfying the following inequality

λ ≤
{

(1− |β|)(1− |β| − d) + α2(d− 1) + 2γ(|β|+ d− 1)

2L(|β| − α2(d− 1)− β2 − 2γ|β|)
1− α2 − β2 − |β|d+ 2γ

2L(α2 + β2)

}
.

(4.16)

and

γ ≤
{

1− α2 − β2 − |β|d
2

(1− |β|)(1− |β| − d) + α2(d− 1)

2(1− |β| − d)

|β| − α2(d− 1)− β2

2β

}
.

(4.17)

Remark 4.5. The Lyapunov function V (·) and the energy E(·) are equivalent. Indeed,

E(t) ≤ V (t) ≤M1E(t) ∀t > 0, (4.18)

where M1 = 1 + max
{
Lλ, 2γ

|β|

}
> 0. Thanks to inequality (4.18), in order to prove

the exponential stability of system (2.1), it is sufficient to show that for all δ > 0,

d

dt
V (t) + 2δV (t) ≤ 0.

Proof. Let

(
u0
z0

)
∈ D(A(0)) such that ‖

(
u0
z0

)
‖0 ≤ r, with r > 0 chosen later.

Using (4.2), (4.9) and (4.10), we get

V̇ (t) ≤1

2
YM1Y + Lλα2u2x(0, t) + 2Lλαβux(0, t)ux(0, t− θ(t))

+Lβ2u2x(0, t− θ(t)) + λ

∫ L

0

u2dx− 3λ

∫ L

0

u2xdx

−
∫ L

0

xsat(au)udx− γ(1− d)

∫ 1

0

u2x(0, t− θ(t)µ)dµ+ γu2x(0, t)

=Y T
[

1

2
M1 +M2

]
Y + λ

∫ L

0

u2dx− 3λ

∫ L

0

u2xdx

−
∫ L

0

xsat(au)udx− γ(1− d)

∫ 1

0

u2x(0, t− θ(t)µ)dµ,

where Y =

(
ux(0, t)

ux(0, t− θ(t))

)
and M2 =

(
Lλα2 + γ Lλαβ
Lλαβ Lλβ2

)
and the matrix M1

is given by (2.5).
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Since x ∈ [0, L] and sat(au)u ≥ 0, we deduce that
∫ L
0
xsat(au)udx ≥ 0. Consequently

we deduce that

V̇ (t) ≤Y T
[

1

2
M1 +M2

]
Y + λ

∫ L

0

u2dx− 3λ

∫ L

0

u2xdx

−γ(1− d)

∫ 1

0

u2x(0, t− θ(t)µ)dµ.

(4.19)

Now, we calculate 2δV (t), using (2.3), we have

2δV (t) =2δE(t) + 2δλV1(t) + 2δγV2(t)

=δ

∫ L

0

u2dx+ δ|β|θ(t)
∫ 1

0

u2x(0, t− θ(t)µ)dµ+ 2δλ

∫ L

0

xu2dx

+2δγθ(t)

∫ 1

0

u2x(0, t− θ(t)µ)dµ− 2δγθ(t)

∫ 1

0

µu2x(0, t− θ(t)µ)dµ

≤δ
∫ L

0

u2dx+ δ|β|K
∫ 1

0

u2x(0, t− θ(t)µ)dµ

+2δλL

∫ L

0

u2dx+ 2δγK

∫ 1

0

u2x(0, t− θ(t)µ)dµ

(4.20)

According to [25, Theorem 3.2], for λ and γ small enough, the matrix 1
2M1 + M2 is

definite negative, and from (4.19) and (4.20) we deduce that

V̇ (t) + 2δV (t) ≤Y T
[

1

2
M1 +M2

]
Y + (λ+ δ + 2Lλδ)

∫ L

0

u2dx− 3λ

∫ L

0

u2xdx

+(δ|β|K + 2γδK − γ(1− d))

∫ 1

0

u2x(0, t− θ(t)µ)dµ

≤(λ+ δ + 2Lλδ)

∫ L

0

u2dx− 3λ

∫ L

0

u2xdx

+(δ|β|K + 2γδK − γ(1− d))

∫ 1

0

u2x(0, t− θ(t)µ)dµ

(4.21)

By using the Poincaré inequality, we get

V̇ (t) + 2δV (t) ≤
(
L2

π2
(λ+ δ + 2Lλδ)− 3λ

)∫ L

0

u2xdx

+ (δ|β|K + 2γδK − γ(1− d))

∫ 1

0

u2x(0, t− θ(t)µ)dµ.

(4.22)

�

By assumption L < π
√

3, then from [2], it is possible to choose r small enough

to have r <
3(π2 − L2)

2L
3
2π2

. Consequently, we can choose δ > 0 such that (4.15) holds in
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order to obtain that
L2

π2
(λ+ δ + 2Lλδ)− 3λ ≤ 0,

and

δ|β|K + 2γδK − γ(1− d) ≤ 0,

therefore

V̇ (t) + 2δV (t) ≤ 0 ∀t ≥ 0.

Hence, we deduce that

V (t) ≤ Ce−2δtV (0) ∀t ≥ 0.

By (4.18), we get

E(t) ≤ Ce−2δtE(0) ∀t ≥ 0.

Using the density of D(A(0)), we conclude the proof by extending the result to any
initial condition within H.

5. Conclusion

In this work, we investigated the linear Korteweg-de Vries equation with a time-
varying delay on the boundary feedback in the presence of a saturated source term.
This study has illustrated that the incorporation of a time-varying delay in the
Korteweg-de Vries equation, along with a saturated source term, leads to a well-
posed system under some conditions. Using a suitable Lyapunov functional, we prove
that the system (2.1) is locally exponentially stable. An inserting topic for further
research is the analysis of exponential stability of the non-linear KdV equation with
time-variyng delay in presence of non-linear source term.
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