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Abstract. The present extensive study is focused to find estimates
for the upper bounds of the Toeplitz determinants. The logarith-
mic coefficients of univalent functions play an important role in dif-
ferent estimates in the theory of univalent functions, and in the
this paper we derive the estimates of Toeplitz determinants and
Toeplitz determinants of the logarithmic coefficients for the subclasses
LsSq

p , LsCq
p , and LsSq

p ∩ S, LsCq
p ∩ S, 0 < q ≤ p ≤ 1, respec-

tively, defined by post quantum operators, which map the open unit
disc D onto the domain bounded by the limaçon curve defined by

∂Ds :=
{
u+ iv ∈ C :

[
(u− 1)2 + v2 − s4

]2
= 4s2

[
(u− 1 + s2)2 + v2

]}
,

where s ∈ [−1, 1] \ {0}.
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1. Introduction

Let A be the class of analytic functions f in the open unit disc D := {z ∈ C :
|z| < 1} normalized by the conditions f(0) = 0 and f ′(0) = 1. If f ∈ A, then

f(z) = z +

∞∑
n=2

anz
n, z ∈ D, (1.1)

and denotes by S the subclass of A consisting of univalent functions in D
(see [6] for details).
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For two functions f and g analytic in D, we say that the function f
is subordinate to g in D, and write f(z) ≺ g(z), if there exists an analytic
function in D denoted by w, with w(0) = 0 and |w(z)| < 1, z ∈ D, such that
f(z) = g(w(z)) for all z ∈ D. In particular, if the function g is univalent in
D, the above subordination is equivalent to f(0) = g(0) and f(D) ⊂ g(D).

We recall that B denote the class of analytic self-mappings of the unit
disc, that maps the origin onto the origin [13], that is

B :=

{
w(z) =

∞∑
n=1

wnz
n : |w(z)| < 1, z ∈ D

}
, (1.2)

and the class B is known as the class of Schwarz functions.

In 2018, Yunus et. al. [21] studied the subclass of starlike functions
associated with a limaçon domain. The limaçon of Pascal also known as
limaçon is a curve that in polar coordinates has the form r = b + a cos θ,
where a and b are real positive real and θ ∈ (0, 2π). If b ≥ 2a the limaçon
is a convex curve and if 2a > b > a it has an indentation bounded by two
inflection points. For b = a the limaçon degenerates to a cardioid.

Recently, Kanas et. al. [13] introduced subclasses STL(s) and CVL(s)
of starlike and convex function respectively. Geometrically, they consist of

functions f ∈ A such that
zf ′(z)

f(z)
and

(
zf ′(z)

)′
f ′(z)

lie in the region bounded by

the limaçon curve defined as

∂Ds :=

{
u+ iv ∈ C :

[
(u− 1)2 + v2 − s4

]2
= 4s2

[(
u− 1 + s2

)2
+ v2

]}
,

where s ∈ [−1, 1] \ {0}. If we define the limaçon function

Ls(z) := (1 + sz)2, s ∈ [−1, 1] \ {0}, (1.3)

then the analytic characterization of the limaçon domain Ls(D) is given by
the inclusion relation (see [13] inclusions (9) and (10)){

w ∈ C : |w − 1| < 1− (1− |s|)2
}
⊂ Ls(D)

⊂
{
w ∈ C : |w − 1| < (1 + |s|)2 − 1

}
.

In 1991 Chakrabarti and Jagannathan [5] introduced the concept of
(p, q)–calculus in order to generalize or unify several forms of q–oscillator
algebras. In the last three decades, applications of the q–calculus have been
studied and investigated extensively. Inspired and motivated by these appli-
cations many researchers (for example [1], [4]) have developed the theory of
quantum calculus based on two-parameter (p, q)–integer which is used effi-
ciently in many fields such as difference equations, Lie group, hypergeometric
series, physical sciences, etc.
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The (p, q)–bracket or twin basic number [n]p,q is defined by

[n]p,q :=


pn − qn

p− q
, if q ̸= p,

npn−1, if q = p,

where 0 < q ≤ p < 1.

For 0 < q < 1, the q-bracket [n]q for n = 0, 1, 2, . . . is given by [n]q :=
[n]1,q. The (p, q)–derivative of a function f is defined by

Dp,qf(z) :=


f(pz)− f(qz)

(p− q)z
, if q ̸= p, z ̸= 0,

1, if p ̸= q, z = 0,
f ′(z), if p = q.

In particular, Dp,qz
n = [n]p,qz

n−1, therefore, for a function f ∈ A of the form
(1.1) the (p, q)–derivative operator is given by

Dp,qf(z) = 1 +

∞∑
n=2

[n]p,qanz
n−1, z ∈ D.

In the univalent function theory many extensive studies were given to
estimate the upper bounds of the Hankel determinants, and for further read-
ing one may refer to [15], [16], [18]. The closer connection with the Hankel
determinants are the Toeplitz determinants. A Toeplitz determinant can be
thought of as an “upside-down” Hankel determinant, in that Hankel deter-
minant have constant entries along the reverse diagonal, whereas Toeplitz
matrices have constant entries along the diagonal. In recent past, many re-
searchers have focussed on finding sharp estimates for second and third order
Toeplitz determinants [10], [7], etc.

Thomas and Halim [19] defined the symmetric Toeplitz determinant
Tm(n) by

Tm(n) :=

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+m−1

an+1 an · · · an+m−2

...
...

...
...

an+m−1 an+m−2 · · · an

∣∣∣∣∣∣∣∣∣ ,
and in particular

T2(2) =

∣∣∣∣ a2 a3
a3 a2

∣∣∣∣ , T3(1) =

∣∣∣∣∣∣
1 a2 a3
a2 1 a2
a3 a2 1

∣∣∣∣∣∣ .
For a good summary of the applications of Toeplitz matrices to the wide
range of areas of pure and applied mathematics, one can refer to [20].

The logarithmic coefficients γn := γn(f), n ≥ 1, for a function f ∈ S of
the form (1.1) play an important role in Milin’s conjecture [14] and Brennan’s
conjecture [12], and can also be used to find estimations for the coefficients
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of an inverse function. It is given by the power series representation (see [14,
p. 53])

log
f(z)

z
= 2

∞∑
n=1

γnz
n, z ∈ D, (1.4)

where the function “log” is considered to the main branch, i.e. log 1 = 0.
Differentiating the definition relation (1.4) and then equating the coefficients
of zn, the logarithmic coefficients γ1 and γ2 will be given by

γ1 =
a2
2
, (1.5)

γ2 =
1

2

(
a3 −

a22
2

)
. (1.6)

In the theory of univalent functions the problem of finding the sharp
estimates for the logarithmic coefficients for various significant classes have
gained a high importance (see, for details, [2], [3]). Recently, S. Giri and S.
Kumar [8] initiated the study of Toeplitz determinants whose elements are
logarithmic coefficients of f ∈ S which is given by

Tm,n (γf ) :=

∣∣∣∣∣∣∣∣∣
γn γn+1 . . . γn+m−1

γn+1 γn · · · γn+m−2

...
...

...
...

γn+m−1 γn+m−2 · · · γn

∣∣∣∣∣∣∣∣∣ ,
thus

T2,1 (γf ) =
∣∣∣∣ γ1 γ2
γ2 γ1

∣∣∣∣ .
In this paper we obtained the estimates of Toeplitz determinants and

Toeplitz determinanats of logarithmic coefficients for the subclasses LsSq
p ,

LsCq
p , and LsSq

p ∩ S, LsCq
p ∩ S, 0 < q ≤ p ≤ 1, respectively, defined by post

quantum operators which map the open unit disc D in a domain included in
the limaçon domain.

2. The Subclasses LsSq
p , LsCq

p and Preliminary Results

The new subclasses of A we will define and investigate extend and are con-
nected with the below subclass functions:

Definition 2.1. [17] Denote by S∗
S the subclass of A consisting of functions

given by (1.1) and satisfying

Re
zf ′(z)

f(z)− f(−z)
> 0, z ∈ D.

These functions introduced by Sakaguchi are called functions starlike
with respect to symmetric points, and for a function f ∈ A the above inequal-
ity is a necessary and sufficient condition for f to b e univalent and starlike
with respect to symmetrical points in D (see [17, Theorem 1]).
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Like we can see in [13, Lemma 2], the function Ls defined by (1.3) is
starlike with respect to the point z0 = 1 for all s ∈ [−1, 1] \ {0}, hence is

univalent in D. Moreover, if 0 < s ≤ 1/
√
2 then Ls has real positive part in

D, i.e. Ls is a Carathéodory function (see [13, p. 10]).

Now we define the classes LsSq
p and LsCq

p which maps the open unit disc
onto the region included in the limaçon domain Ls(D) as follows:

Definition 2.2. Let LsSq
p be the subclass of function f ∈ A of the form (1.1)

and satisfying the condition

2zDp,qf(z)

f(z)− f(−z)
≺ Ls(z), 0 < s ≤ 1√

2
.

Definition 2.3. Let LsCq
p be the subclass of A consisting of the function f of

the form (1.1) such that(
2zDp,qf(z)

)′(
f(z)− f(−z)

)′ ≺ Ls(z), 0 < s ≤ 1√
2
.

Remark 2.4. The above mentioned classes are not empty, as we will show in
the below examples.

(i) Taking f∗(z) = z + az2, a ∈ C, then

Φ∗(z) :=
2zDp,qf∗(z)

f∗(z)− f∗(−z)
= 1 + (p+ q)az, z ∈ D.

For the values q = 0.3, p = 0.5, a = 0.9, and s = 1/
√
3, like we see in the

below Figure 1(A) made with MAPLE™ computer software we have Φ∗(D) ⊂
L1/

√
3(D), and because Φ∗(0) = L1/

√
3(0) from the univalence of L1/

√
3 it

follows that Φ∗(z) ≺ L1/
√
3(z), i.e. f∗ ∈ LsSq

p for the previous parameters.

Also, the Figure 1(B) shows that the function f∗ is not univalent in D because
f∗(D) twice overlaps a subset of C.

(a) The images of Φ∗(∂D)
(red color) and L1/

√
3(∂D)

(blue color)

(b) The domain f∗(D)

Figure 1. Figures for the Remark 2.4(i)
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(ii) For f̂(z) = z + az2 + bz3, a, b ∈ C, we get

Φ̂(z) :=
2zDp,q f̂(z)

f̂(z)− f̂(−z)
=

1 + (p+ q)az +
(
p2 + pq + q2

)
bz2

1 + bz2
, z ∈ D.

If q = 0.85, p = 0.95, a = 0.1, b = 0.2, and s = 1/
√
3, we see in the

Figure 2(A) made with MAPLE™ that Φ̂(D) ⊂ L1/
√
3(D), and from Φ̂(0) =

L1/
√
3(0) and the univalence of L1/

√
3 we have Φ̂(z) ≺ L1/

√
3(z), that is

Φ̂ ∈ LsSq
p for this choice of the parameters. Moreover, from this figure we

wee that Φ̂ is not univalent in D, while the Figure 2(B) shows that f̂ is
univalent in D.

(a) The images of

Φ̂(∂D) (blue color) and
L1/

√
3(∂D) (red color)

(b) The domain f̂(D)

Figure 2. Figures for the Remark 2.4(ii)

(iii) Using the above notations, and

Ψ∗(z) :=

(
2zDp,qf(z)

)′(
f(z)− f(−z)

)′ = 1 + 2(p+ q)az, z ∈ D.

for q = 0.15, p = 0.25, a = 0.9, and s = 1/
√
3, the Figure 3(A) made with

MAPLE™ computer software shows that Ψ∗(D) ⊂ L1/
√
3(D), and because

Ψ∗(0) = L1/
√
3(0) from the univalence of L1/

√
3 it follows Ψ∗(z) ≺ L1/

√
3(z),

i.e. f∗ ∈ LsCq
p for these values of the parameters. The Figure 3(B) shows that

the function f∗ is not univalent in D since there exists a subset of C that’s
twice overlapped by f∗(D).

(iv) Considering the function f̂(z) = z + az2 + bz3, a, b ∈ C, we get

Ψ̂(z) :=

(
2zDp,qf(z)

)′(
f(z)− f(−z)

)′ = 1 + 2(p+ q)az + 3
(
p2 + pq + q2

)
bz2

1 + 3bz2
, z ∈ D.

For q = 0.4, p = 0.5, a = 0.25, b = 0.2, and s = 1/
√
3, we see in the

Figure 4(A) made with MAPLE™ that Ψ̂(D) ⊂ L1/
√
3(D). Using that Ψ̂(0) =

L1/
√
3(0) together with the univalence of L1/

√
3 we have Ψ̂(z) ≺ L1/

√
3(z),
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(a) The images of Φ∗(∂D)
(red color) and L1/

√
3(∂D)

(blue color)

(b) The domain f∗(D)

Figure 3. Figures for the Remark 2.4(iii)

that is Ψ̂ ∈ LsSq
p for these choice of the parameters. Moreover, from this

figure we wee that Ψ̂ is not univalent in D, and from the Figure 4(B) we see

that f̂ is univalent in D.

(a) The images of

Ψ̂(∂D) (blue color) and
L1/

√
3(∂D) (red color)

(b) The domain f̂(D)

Figure 4. Figures for the Remark 2.4(iv)

(v) Concluding, the examples given in the Remark 2.4(i)–(iv) show that
LsSq

p ̸= ∅ and LsCq
p ̸= ∅. From the examples of the Remark 2.4(i) and (iii)

it follows that LsSq
p ̸⊂ S and LsCq

p ̸⊂ S. In addition, the examples of the
Remark 2.4(ii) and (iv) show that the corresponding functions of the form f∗
and f̂ belong to LsSq

p ∩ S and LsCq
p ∩ S, respectively, i.e. LsSq

p ∩ S ̸= ∅ and
LsSq

p ∩C ≠ ∅. These above comments are very important for the motivations
of the results presented in the Sections 3 and 4.

In our investigations we will use the next lemmas:
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Lemma 2.5. [11, Lemma 2.1] If the function w ∈ B is of the form (1.2), then
for some complex numbers ξ and ζ such that |ξ| ≤ 1 and |ζ| ≤ 1, we have

w2 = ξ
(
1− w2

1

)
, and

w3 =
(
1− w2

1

) (
1− |ξ|2

)
ζ − w1

(
1− w2

1

)
ξ2.

Lemma 2.6. [9, p. 3, Lemma 1], [6] If the function w ∈ B is of the form (1.2),
then the sharp estimate |wn| ≤ 1 holds for n ≥ 1.

3. Symmetric Toeplitz Determinants of the Coefficients for the
Classes LsSq

p and LsCq
p

Now we will give upper bounds for some symmetric Toeplitz determinants
for the functions belonging to the above defined classes LsSq

p and LsCq
p , em-

phasizing that for |T2(2)| the results are sharp.

Theorem 3.1. If the function f ∈ LsSq
p has the form (1.1), then

|T2(2)| ≤
s2(s+ 4)2(
[3]p,q − 1

)2 +
4s2(

[2]p,q
)2 ,

and this inequality is sharp (i.e. the best possible).

Proof. Assuming that f ∈ LsSq
p , according to the definition of the subordi-

nation there exists a function w ∈ B of the form (1.2) such that

2zDp,qf(z)

f(z)− f(−z)
=
(
1 + sw(z)

)2
, z ∈ D. (3.1)

Since (3.1) is equivalent to

2zDp,qf(z) =
(
f(z)− f(−z)

)(
1 + sw(z)

)2
, z ∈ D,

expanding in Taylor series the both sides of the above relation and equating
the corresponding terms we have

z + z2[2]p,qa2 + z3a3[3]p,q + z4a4[4]p,q + · · · =
z + 2sw1z

2 + z3
(
a3 + 2sw2 + s2w2

1

)
+ 2z4 (sw1a3 + sw3 + w1w2) + . . . ,

thus

a2 =
2sw1

[2]p,q
=

2sw1

t2
, (3.2)

a3 =
2sw2 + s2w2

1

[3]p,q − 1
=

2sw2 + s2w2
1

t3 − 1
, (3.3)

where, for simplicity, we use the notation tn:=[n]p,q.
It follows that

|T2(2)| =
∣∣a23 − a22

∣∣ = ∣∣∣∣∣
(
2sw2 + s2w2

1

t3 − 1

)2

−
(
2sw1

t2

)2
∣∣∣∣∣ , (3.4)
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and rewriting w2 in terms of w1 from Lemma 2.5, we get

|T2(2)| =

∣∣∣∣∣∣
(
2s
(
1− w2

1

)
ξ + s2w2

1

t3 − 1

)2

−
(
2sw1

t2

)2
∣∣∣∣∣∣ . (3.5)

From the relation (3.5), using the triangle’s inequality and the fact that
s > 0 we get first that

|T2(2)| =

∣∣∣∣∣4s2
(
1− w2

1

)2
ξ2 + s4w4

1 + 4s3
(
1− w2

1

)
ξ w2

1

(t3 − 1)
2 − 4s2w2

1

t22

∣∣∣∣∣
≤

4s2
∣∣1− w2

1

∣∣2 |ξ|2 + s4|w1|4 + 4s3
∣∣1− w2

1

∣∣ |ξ| |w1|2

(t3 − 1)
2 +

4s2|w1|2

t22
. (3.6)

Denoting x := |w1| and y := |ξ|, then x, y ∈ [0, 1], and∣∣1− w2
1

∣∣ ≤ 1 + x2,
∣∣1− w2

1

∣∣2 ≤
(
1 + x2

)2
, (3.7)

if we combine the inequalities (3.7) with (3.6) it follows

|T2(2)| ≤
4s2

(
1 + x2

)2
y2 + s4 x4 + 4s3

(
1 + x2

)
y x2

(t3 − 1)
2 +

4s2 x2

t22
=: h(x, y).

(3.8)

Since

∂

∂y
h(x, y) =

8s2
(
x2 + 1

)2
y + 4s3

(
x2 + 1

)
x2

(t3 − 1)
2 ≥ 0, (x, y) ∈ [0, 1]× [0, 1],

we obtain that for any x ∈ [0, 1] we have

max
{
h(x, y) : y ∈ [0, 1]

}
= h(x, 1) =: g(x).

and consequently, from (3.8) we get

|T2(2)| ≤
4s2

(
1 + x2

)2
+ s4 x4 + 4s3

(
1 + x2

)
x2

(t3 − 1)
2 +

4s2 x2

t22
= g(x). (3.9)

Using the fact that

g′(x) =

8x

[
(s+ 2)

(
s x2 + 2x2 + 2

)
t22

2
+ (t3 − 1)

2

]
s2

(t3 − 1)
2
t22

≥ 0, x ∈ [0, 1],

we have that g is an increasing function on [0, 1]. Therefore, the inequality
(3.9) leads us to

|T2(2)| ≤ g(1) =
s2(s+ 4)2

(t3 − 1)
2 +

4s2

t22
, x ∈ [0, 1],

that proves the required inequality.
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To prove the sharpness of our result, let consider the function f ∈ A
given by (3.1) with w(z) = iz−2z2. Since w1 = i, w2 = −2, using the relation
(3.4) we have

|T2(2)| =

∣∣∣∣∣
(
−4s− s2

t3 − 1

)2

+

(
2s

t2

)2
∣∣∣∣∣ = s2(s+ 4)2

(t3 − 1)
2 +

4s2

t22
,

which shows the sharpness of our inequality. □

Theorem 3.2. If the function f ∈ LsSq
p has the form (1.1), then

|T3(1)| ≤ 1 +
8s2(

[2]p,q
)2 +

8s3(s+ 4)(
[2]p,q

)2∣∣∣[3]p,q − 1
∣∣∣ + s2(s+ 4)2(

[3]p,q − 1
)2 .

Proof. Using the same techniques and notations like in the proof of Theorem
3.1 we have

|T3(1)| =
∣∣1− 2a22 + 2a22a3 − a23

∣∣
=

∣∣∣∣∣1− 2

(
2sw1

t2

)2

+ 2

(
2sw1

t2

)2

· 2sw2 + s2w2
1

t3 − 1
−
(
2sw2 + s2w2

1

t3 − 1

)2
∣∣∣∣∣ .

From Lemma 2.5, rewriting the expression w2 in terms of w1 the above rela-
tion leads to

|T3(1)| =

∣∣∣∣∣1− 2

(
2sw1

t2

)2

+ 2

(
2sw1

t2

)2

·
2s
(
1− w2

1

)
ξ + s2w2

1

t3 − 1

−
4s2

(
1− w2

1

)2
ξ2 + s4w4

1 + 4s3w2
1

(
1− w2

1

)
ξ

(t3 − 1)
2

∣∣∣∣∣ . (3.10)

Letting x := |w1| and y := |ξ|, then x, y ∈ [0, 1], and applying the
triangle’s inequality in the right hand side of (3.10), since s > 0 we obtain

|T3(1)| ≤ 1 +
8s2x2

t22
+

8s2x2
[
2s
(
1 + x2

)
y + s2x2

]
t22 |t3 − 1|

+
4s2

(
1 + x2

)2
y2 + s4x4 + 4s3x2

(
1 + x2

)
y

(t3 − 1)
2 =: q(x, y). (3.11)

A simple computation shows that for all (x, y) ∈ [0, 1]× [0, 1] we have

∂

∂y
q(x, y) =

16s3x2
(
x2 + 1

)
t22|t3 − 1|

+
8s2

(
x2 + 1

)2
y + 4s3x2

(
x2 + 1

)
(t3 − 1)

3 ≥ 0,

therefore, for any x ∈ [0, 1] we have

max
{
q(x, y) : y ∈ [0, 1]

}
= q(x, 1) = 1 +

8s2x2

t22
+

8s2x2
[
2s
(
1 + x2

)
+ s2x2

]
t22 |t3 − 1|

+
4s2

(
1 + x2

)2
+ s4x4 + 4s3x2

(
1 + x2

)
(t3 − 1)

2 =: t(x),
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hence, from (3.11) it follows

|T3(1)| ≤ t(x), x ∈ [0, 1]. (3.12)

Moreover, since

t′(x) =
16s2x

t22
+

16s2x
[
2s
(
x2 + 1

)
+ s2x2

]
t22|t3 − 1|

+
8s2x2

(
2s2x+ 4sx

)
t22 |t3 − 1|

+
16s2

(
x2 + 1

)
x+ 4s4x3 + 8s3x

(
x2 + 1

)
+ 8s3x3

(t3 − 1)
3 ≥ 0, x ∈ [0, 1],

the function t is increasing on [0, 1], and from (3.12) we deduce that

|T3(1)| ≤ t(1) = 1 +
8s2

t22
+

8s3(s+ 4)

t22 |t3 − 1|
+

s2(s+ 4)2

(t3 − 1)
2 ,

which represents the required inequality. □

Theorem 3.3. If the function f ∈ LsCq
p has the form (1.1), then

|T2(2)| ≤
s2(s+ 4)2

9
(
[3]p,q − 1

)2 +
s2(

[2]p,q
)2 ,

and this inequality is sharp (i.e. the best possible).

Proof. For the function f ∈ LsCq
p , using the definition of the subordination

there exists a function w(z) = w1z + w2z
2 + · · · ∈ B, z ∈ D, such that(

2zDp,qf(z)
)′(

f(z)− f(−z)
)′ = (1 + sw(z)

)2
, z ∈ D. (3.13)

The relation (3.13) could be written in the form(
2zDp,qf(z)

)′
=
(
f(z)− f(−z)

)′(
1 + sw(z)

)2
, z ∈ D,

and expanding in Taylor series both sides of this equality we get

1 + 2z[2]p,qa2 + 3z2a3[3]p,q + 4z3a4[4]p,q + · · · =
1 + 2sw1z + z2

(
s2w2

1 + 2sw2 + 3a3
)
+ z3

(
2s2w1w2 + 2sw3 + 6sw1a3

)
+ . . . .

Equating the corresponding coefficients it follows that

a2 =
sw1

[2]p,q
, (3.14)

a3 =
2sw2 + s2w2

1

3
(
[3]p,q − 1

) . (3.15)

Using Lemma 2.5 it’s easy to check that

|T2(2)| =
∣∣a23 − a22

∣∣ = ∣∣∣∣∣4s2w2
2 + s4w4

1 + 4s3w2
1w2

9 (t3 − 1)
2 − s2w2

1

t22

∣∣∣∣∣
=

∣∣∣∣∣4s2
(
1− w2

1

)2
ξ2 + s4w4

1 + 4s3w2
1

(
1− w2

1

)
ξ

9 (t3 − 1)
2 − s2w2

1

t22

∣∣∣∣∣ , (3.16)
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where we use the previous notation tn:=[n]p,q.

Denoting x := |w1| and y := |ξ|, then x, y ∈ [0, 1], and using the
triangle’s inequality in the right hand side of the above relation, since s > 0
we have

|T2(2)| ≤
4s2

(
1 + x2

)2
y2 + s4x4 + 4s3

(
1 + x2

)
x2y

9 (t3 − 1)
2 +

s2x2

t22
=: h(x, y).

(3.17)

It is easy to see that

∂

∂y
h(x, y) =

4s2
(
x2 + 1

) [
(s+ 2y)x2 + 2y

]
9 (t3 − 1)

2 ≥ 0, (x, y) ∈ [0, 1]× [0, 1],

consequently, for each x ∈ [0, 1] we have

max
{
h(x, y) : y ∈ [0, 1]

}
= h(x, 1)

=
4s2

(
1 + x2

)2
+ s4x4 + 4s3

(
1 + x2

)
x2

9 (t3 − 1)
2 +

s2x2

t22
=: g(x).

Combining this last relation with the inequality (3.17) we obtain

|T2(2)| ≤ g(x). (3.18)

Since for all x ∈ [0, 1] we have

g′(x) =
16s2

(
x2 + 1

)
x+ 4s4x3 + 8s3x3 + 8s3

(
x2 + 1

)
x

9 (t3 − 1)
2 +

2s2x

t22
≥ 0,

the function g is increasing on [0, 1], therefore the inequality (3.18) leads to

|T2(2)| ≤ g(1) =
s2(s+ 4)2

9 (t3 − 1)
2 +

s2

t22
,

and our conclusion is proved.

The inequality is sharp for the function f ∈ A given by (3.1) with
w(z) = iz − 2z2. In this case w1 = i, w2 = −2, and from the relation (3.16)
we get

|T2(2)| =
s2(s+ 4)2

(t3 − 1)
2 +

4s2

t22
,

which proves the sharpness of our inequality □

Using the same techniques as in the previous theorem, we obtain the
next upper bound for |T3(1)| if f ∈ LsCq

p .

Theorem 3.4. If the function f ∈ LsCq
p has the form (1.1), then

|T3(1)| ≤ 1 +
2s2(

[2]p,q
)2 +

2s3(s+ 4)

3
(
[2]p,q

)2∣∣∣[3]p,q − 1
∣∣∣ + s2(s+ 4)2

9
(
[3]p,q − 1

)2 .
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Proof. With the same techniques and notations as in the proof of the previous
theorem we have

|T3(1)| =

∣∣∣∣∣1− 2
s2w2

1

t22
+ 2

s2w2
1

t22
· s

2w2
1 + 2sw2

3 (t3 − 1)
− s4w4

1 + 4s2w2
2 + 4s3w2

1w2

9 (t3 − 1)
2

∣∣∣∣∣ .
Rewriting the expression w2 in terms of w1 like in Lemma 2.5, applying the
triangle’s inequality, denoting x = |w1| ≤ 1, y = |ξ| ≤ 1, and using that s > 0
we get

|T3(1)| ≤ 1 +
2s2x2

t22
+

2s2x2
[
s2x2 + 2s

(
1 + x2

)
y
]

3t22 |t3 − 1|

+
s4x4 + 4s2

(
1 + x2

)2
y2 + 4s3x2

(
1 + x2

)
y

9 (t3 − 1)
2 =: p(x, y). (3.19)

It follows that

∂

∂y
p(x, y) =

4s3x2
(
x2 + 1

)
3t22|t3 − 1|

+
4s
[
2sy

(
x2 + 1

)
+ s2x2

] (
x2 + 1

)
9 (t3 − 1)

2 ≥ 0,

(x, y) ∈ [0, 1]× [0, 1],

hence, for each x ∈ [0, 1] we have

max
{
p(x, y) : y ∈ [0, 1]

}
= p(x, 1) = 1 +

2s2x2

t22
+

2s2x2
[
s2x2 + 2s

(
1 + x2

)]
3t22 |t3 − 1|

+
s4x4 + 4s2

(
1 + x2

)2
+ 4s3x2

(
1 + x2

)
9 (t3 − 1)

2 =: q(x). (3.20)

Using that

q′(x) =
8s3x

(
x2 + 1

)
3t22|t3 − 1|

+
8s3x3

3t22|t3 − 1|
+

(
2s2x+ 4syx

)
s
(
x2 + 1

)
9 (t3 − 1)

2

+
8
[
2sy

(
x2 + 1

)
+ s2x2

]
sx

9 (t3 − 1)
2 ≥ 0, x ∈ [0, 1],

the function q is increasing on [0, 1], and from the inequalities (3.19) and
(3.20) we conclude that

|T3(1)| ≤ q(1) = 1 +
2s2

t22
+

2s3(s+ 4)

3t22 |t3 − 1|
+

s2(s+ 4)2

9 (t3 − 1)
2 .

□

4. Symmetric Toeplitz Determinants of the Logarithmic
Coefficients for the Classes LsSq

p ∩ S and LsCq
p ∩ S

In this section we find the estimates of initial two logarithimic coefficients and
then the estimate of symmetric Toeplitz determinants T2,1 (γf ) of logarithmic
coefficients for the subclasses LsSq

p ∩ S and LsCq
p ∩ S.
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Theorem 4.1. If the function f ∈ LsSq
p ∩ S has the form (1.1) and the loga-

rithmic coefficients are given by (1.4), then

|γ1| ≤
s

[2]p,q
and |γ2| ≤

s(s+ 4)

2
∣∣[3]p,q − 1

∣∣ + s2(
[2]p,q

)2 .
Proof. Replacing the values of a2 and a3 given by (3.2) and (3.3) in (1.5) and
(1.6), using the notation tn:=[n]p,q, from Lemma 2.6 we obtain

|γ1| =
∣∣∣∣sw1

t2

∣∣∣∣ ≤ s

t2
=

s

[2]p,q
.

In addition, using Lemma 2.5 we get

|γ2| =
1

2

∣∣∣∣2sw2 + s2w2
1

t3 − 1
− 2s2w2

1

t22

∣∣∣∣ = 1

2

∣∣∣∣∣2s
(
1− w2

1

)
ξ + s2w2

1

t3 − 1
− 2s2w2

1

t22

∣∣∣∣∣ ,
where |ξ| ≤ 1. Letting x := |w1| and y := |ξ|, then x, ξ ∈ [0, 1] and using the
triangle’s inequality in the above relation together with s > 0 we obtain

|γ2| ≤
2s
(
1 + x2

)
y + s2x2

2 |t3 − 1|
+

s2x2

t22
=: F (x, y). (4.1)

It follows that

∂

∂y
F (x, y) =

s
(
1 + x2

)
|t3 − 1|

> 0, (x, y) ∈ [0, 1]× [0, 1],

hence, for each x ∈ [0, 1] we have

max
{
F (x, y) : y ∈ [0, 1]

}
= F (x, 1) =

2s
(
1 + x2

)
+ s2x2

2 |t3 − 1|
+

s2x2

t22
=: r(x).

(4.2)
From the fact

r′(x) =
sx(s+ 2)

|t3 − 1|
+

2s2x

t22
≥ 0, x ∈ [0, 1],

the function r is increasing on [0, 1], and from (4.1) and (4.2) we conclude
that

|γ2| ≤ r(1) =
4s+ s2

2 |t3 − 1|
+

s2

t22
,

which proves our second inequality. □

Theorem 4.2. If the function f ∈ LsCq
p ∩ S has the form (1.1) and the loga-

rithmic coefficients are given by (1.4), then

|γ1| ≤
s

2 [2]p,q
and |γ2| ≤

s(s+ 4)

6
∣∣[3]p,q − 1

∣∣ + s2

4
(
[2]p,q

)2 .
Proof. Using the values of a2 and a3 given by (3.14) and (3.15), from (1.5)
and (1.6), using Lemma 2.6 we obtain

|γ1| =
∣∣∣∣sw1

2t2

∣∣∣∣ ≤ s

2|t2|
and |γ2| =

1

2

∣∣∣∣2sw2 + s2w2
1

3 (t3 − 1)
− s2w2

1

2t22

∣∣∣∣ .
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Rewriting the expression of w2 in terms of w1 according to Lemma 2.5,
using the triangle’s inequality in the above last relation, and the notations
x := |w1|, y := |ξ|, with x, ξ ∈ [0, 1], since s > 0 we obtain

|γ2| ≤
2s
(
1 + x2

)
y + s2x2

6 |t3 − 1|
+

s2x2

4t22
=: G(x, y). (4.3)

Therefore

∂

∂y
G(x, y) =

s
(
1 + x2

)
3 |t3 − 1|

> 0, (x, y) ∈ [0, 1]× [0, 1],

hence, for each x ∈ [0, 1] we have

max
{
G(x, y) : y ∈ [0, 1]

}
= G(x, 1) =

2s
(
1 + x2

)
+ s2x2

6 |t3 − 1|
+

s2x2

4t22
=: k(x).

(4.4)
Since

k′(x) =
sx(sx+ 2)

3 |t3 − 1|
+

s2x

2t22
≥ 0, x ∈ [0, 1],

the function k is increasing on [0, 1], and combining (4.3) with (4.4) it follows

|γ2| ≤ k(1) =
s(s+ 4)

6 |t3 − 1|
+

s2

4t22
,

and the proof is complete. □

The following two results, where we determined the upper bounds for
the Toeplitz determinant |T2,1 (γf )| for the classes LsSq

p ∩S and LsCq
p ∩S are

immediately consequences of the previous two theorems.

Corollary 4.3. For the class LsSq
p ∩ S the next inequality holds:

|T2,1 (γf )| ≤
(

s

[2]p,q

)2

+

(
s(s+ 4)

2
∣∣[3]p,q − 1

∣∣ + s2(
[2]p,q

)2
)2

.

Proof. Since

|T2,1 (γf )| = |γ2
1 − γ2

2 | ≤ |γ2
1 |+ |γ2

2 |
from the inequalities of Theorem 4.1 we get

|T2,1 (γf )| ≤
(

s

t2

)2

+

(
s(s+ 4)

2 |t3 − 1|
+

s2

t22

)2

.

□

Similarly, using the inequalities obtained in Theorem 4.2 it’s easy to
prove the next result:

Corollary 4.4. For the class LsCq
p ∩ S the next inequality holds:

|T2,1 (γf )| ≤
(

s

2 [2]p,q

)2

+

(
s(s+ 4)

6
∣∣[3]p,q − 1

∣∣ + s2

4
(
[2]p,q

)2
)2

.
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5. Concluding Remarks

The quantum calculus is one of the important tools in many area of math-
ematics, physics and in the areas of ordinary fractional calculus, optimal
control problems, quantum physics, operator theory, and q–transform analy-
sis, and in this paper we made a connection with some subclasses of analytic
functions.

In addition, the logarithmic coefficients play an important role for dif-
ferent estimates in the theory of univalent functions. Many researchers have
found the upper bounds for the second and third order Toeplitz determi-
nants and logarithmic coefficients for various subclasses of analytic function.
The present investigation deals with the subclasses of symmetric function
using the (p, q)–calculus for some functions defined by subordinations to the
limaçon domain, and we determined upper bounds for some special symmetric
Toeplitz determinants containing the coefficients and the logarithmic coeffi-
cients of the functions belonging to these classes. We obtained bounds for the
second and third order Toeplitz determinants and Toeplitz determinants for
logarithmic coefficients for the classes LsSq

p , LsCq
p , and LsSq

p ∩ S, LsCq
p ∩ S,

respectively, defined by the post-quantum operators and subordinated to Ls

function.

We hope that these results could be important in several fields related
to mathematics, engineering, science and technology, and we encourage the
researchers to find the sharp estimates for third order Toeplitz determinants
and Toeplitz determinants for logarithmic coefficients.
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