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Harmonic close-to-convex mappings associated
with Sălăgean q-differential operator

Omendra Mishra , Asena Çetinkaya and Janusz Sokó l

Abstract. In this paper, we define a new subclassW(n, α, q) of analytic functions
and a new subclass W0

H(n, α, q) of harmonic functions f = h+ g ∈ H0 associated
with Sălăgean q-differential operator. We prove that a harmonic function f = h+ḡ
belongs to the classW0

H(n, α, q) if and only if the analytic functions h+εg belong
to W(n, α, q) for each ε (|ε| = 1), and using a method by Clunie and Sheil-
Small, we determine a sufficient condition for the class W0

H(n, α, q) to be close-
to-convex. We provide sharp coefficient estimates, sufficient coefficient condition,
and convolution properties for such functions classes. We also determine several
conditions of partial sums of f ∈ W0

H(n, α, q).
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1. Introduction

Quantum calculus is the calculus without use of the limits. The history of quan-
tum calculus dates back to the studies of Leonhard Euler (1707-1783) and Carl Gustav
Jacobi (1804-1851). Later, geometrical interpretation of the q-calculus has been ap-
plied in studies of quantum groups. The great interest to quantum calculus is due
to its applications in various branches of mathematics and physics; as for example,
in quantum mechanics, analytic number theory, sobolev spaces, group representation
theory, theta functions, gamma functions, operator theory and several other areas.
For the definitions and properties of q-calculus, one may refer to the books [5] and
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[14]. Jackson [10, 11] was the first who gave some applications of q-calculus by intro-
ducing the q-analogues of derivative and integral. The q−derivative (or q−difference
operator) of a function h, defined on a subset of C, is given by

(Dqh)(z) =


h(z)−h(qz)

(1−q)z , z 6= 0

h′(0), z = 0,

where q ∈ (0, 1). Note that limq→1−(Dqh)(z) = h′(z) if h is differentiable at z ([10]).

For a function h(z) = zk (k ∈ N), we observe that

Dqz
k = [k]qz

k−1,

where

[k]q =
1− qk

1− q
= 1 + q + q2 + ...qk−1

is the q−number of k. Clearly, limq→1− [k]q = k. For more details, one may refer to
[14] and references therein.

Connection of q-calculus with geometric function theory was first introduced by
Ismail et al. [9]. Recently, q-calculus is involved in the theory of analytic functions
[7, 8, 21]. But research on q-calculus in connection with harmonic functions is fairly
new and not much published (see [12, 23, 22, 28]).

Let Dr = {z ∈ C : |z| < r} denote an open disk with r > 0. The open unit
disk will be denoted by D1 = D. Let H denote the class of complex-valued functions
f = u + iv which are harmonic in the open unit disk D, where u and v are real-
valued harmonic functions in D. Functions f ∈ H can also be expressed as f = h+ g,
where h the analytic and g the co-analytic parts of f , respectively. A subclass of
functions f = h + g ∈ H with the additional condition g′(0) = 0 is denoted by H0.
According to the Lewy’s Theorem [15], every harmonic function f = h + g ∈ H is
locally univalent and sense preserving in D if and only if the Jacobian of f , given by
Jf (z) = |h′(z)|2 − | g′(z)|2, is positive in D. This case is equivalent to the existence
of an analytic function ω(z) = g′(z)/h′(z) in D, which is called as the dilatation of f
such that

|ω(z)| < 1 for all z ∈ D.
Clunie and Sheil-Small [3] introduced the class of all univalent, sense preserving

harmonic functions f = h+ g, denoted by SH, with the normalized conditions h(0) =
0 = g(0) and h′(0) = 1 . If the function f = h+ g ∈ SH, then

h(z) = z +

∞∑
k=2

akz
k and g(z) =

∞∑
k=1

bkz
k, (z ∈ D) . (1.1)

A subclass of functions f = h+ g ∈ SH with the condition g′(0) = 0 is denoted
by S0H. Further, the subclass of functions f in SH

(
S0H
)
, denoted by KH

(
K0
H
)

consists

of functions f that map the unit disk D onto a convex region, the subclass S∗H
(
S∗0H
)

consists of functions f that are starlike, and the subclass C∗H
(
C∗0H
)

consists of functions
f which are close-to-convex. Also, if g(z) ≡ 0, the class SH reduces to the class S of
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univalent functions in the class A. Here, A is the class of all analytic functions of the
form h(z) = z +

∑∞
k=2 akz

k. For more details, we refer [4].

Let f ∈ S and be given by f(z) =
∑∞
k=0 akz

k. Then the lth section (partial sum)
of f is defined by

sl(f)(z) =

l∑
k=0

akz
k, (l ∈ N)

where a0 = 0 and a1 = 1. For a harmonic function f = h+ g ∈ H, where h and g of
the form (1.1), the sequences of sections (partial sums) of f is defined by

si,j(f)(z) = si(h)(z) + sj(g)(z),

where si(h)(z) =
∑i
k=1 akz

k and sj(g)(z) =
∑j
k=1 bkz

k, i, j ≥ 1 with a1 = 1.
In [32], it is noted that the partial sums of univalent functions is univalent in

the disk D1/4. Starlikeness and convexity of the partial sums of univalent functions
was discussed in [29, 30].

The convolution or Hadamard product of two analytic functions

f1(z) =

∞∑
k=0

akz
k and f2(z) =

∞∑
k=0

bkz
k

is defined by

(f1 ∗ f2)(z) =

∞∑
k=0

akbkz
k, (z ∈ D).

The convolution of two harmonic functions f = h+ g and F = H +G is defined by

(f ∗ F )(z) = (h ∗H) (z) + (g ∗G)(z), (z ∈ D).

In 2013, Li and Ponnusamy [16] investigated properties of functions given by

P0
H = {f = h+ ḡ ∈ H0 : <(h′(z)) > |g′(z)|, z ∈ D}

The class P0
H is harmonic analogue of the class R = {f ∈ S : <(f ′(z)) > 0, z ∈

D} introduced by MacGregor [20]. It is known that a harmonic function f = h + ḡ
belongs to the class P0

H if and only if the analytic function h + εg belongs to R for
each ε (|ε| = 1).

In 1977, Chichra [2] studied the class W(α) consisting of functions f ∈ A such
that <(f ′(z) + αzf ′′(z)) > 0 for α ≥ 0 and z ∈ D. Later, Nagpal and Ravichandran
[24] studied the following class

W0
H = {f = h+ ḡ ∈ H0 : <(h′(z) + zh′′(z)) > |g′(z) + zg′′(z)|, z ∈ D},

which is harmonic analogue of W(1). Recently, Ghosh and Vasudevarao [6] defined
the class W0

H(α) for α ≥ 0 by

W0
H(α) = {f = h+ ḡ ∈ H0 : <(h′(z) + αzh′′(z)) > |g′(z) + αzg′′(z)|, z ∈ D}.

In [2], Chichra also studied the class G(α) of an analytic function f for α ≥ 0
such that

<
[
(1− α)

f(z)

z
+ αf ′(z)

]
> 0
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for |z| < r with r ∈ (0, 1]. In 2018, Liu ang Yang [19] defined the class

GkH(α) =

{
f = h+ ḡ ∈ H0 : <

(
(1− α)

h(z)

z
+ αh′(z)

)
>
∣∣(1− α)

g(z)

z
+ αg′(z)

∣∣},
where α ≥ 0, k ≥ 1 and |z| < r with r ∈ (0, 1].

For an analytic function h ∈ A, let the Sălăgean q-differential operator be defined
by ([7]);

D0
qh(z) = h(z), D1

qh(z) = zDqh(z), ..., Dnq h(z) = zDq(Dn−1q h(z)),

where n ∈ N0 = N∪{0}. Making use of h given by (1.1), and simple calculations yield

Dnq h(z) = h(z) ∗ Fq,n(z) = z +

∞∑
k=2

[k]nq akz
k, (z ∈ D) (1.2)

where

Fq,n(z) = z +

∞∑
k=2

[k]nq z
k,

and [k]nq =
(
1−qk
1−q

)n
, q ∈ (0, 1). The operator (1.2) easily reduces to the well-known

Sălăgean differential operator as q → 1− (see [27]).
For a harmonic function f = h + g given by (1.1) and the operator Dnq defined

by (1.2), the harmonic Sălăgean q-differential operator is defined by ([12]);

Dnq f(z) = Dnq h(z) + (−1)nDnq g(z)

= z +

∞∑
k=2

[k]nq akz
k + (−1)n

∞∑
k=1

[k]nq bkz
k.

As q → 1−, the operator Dnq f reduces to the Sălăgean differential operator Dnf for a
harmonic function f = h+ ḡ ([13]).

Motivated by the Sălăgean q-differential operator, we define a new subclass
W(n, α, q) of analytic functions as follows:

Definition 1.1. An analytic function f ∈ A is in the class W(n, α, q) if it satisfies the
condition

<
(

(1− α)Dnq f(z) + αDn+1
q f(z)

z

)
> 0, (1.3)

whereDnq f(z) is the Sălăgean q-differential operator defined by (1.2), and where α ≥ 0,
n ∈ N0, q ∈ (0, 1) and |z| < r with 0 < r ≤ 1.

Remark 1.2. i) Letting q → 1−, n = 0 we get the class W(0, α, q) := G(α) introduced
by Chichra [2].

ii) Letting q → 1−, n = 1 we get the class W(1, α, q) := W(α) introduced by
Chichra [2].

iii) Letting q → 1−, n = 1, α = 0 we get the class W(1, 0, q) := R introduced by
MacGregor [20].

Making use of the harmonic Sălăgean q-differential operator, we also define the
class W0

H(n, α, q) of harmonic functions as follows:
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Definition 1.3. A harmonic function f = h + g ∈ H0 with h(0) = g(0) = g′(0) =
h′(0)− 1 = 0 is in the class W0

H(n, α, q) if it satisfies the condition

<
(

(1− α)Dnq h(z) + αDn+1
q h(z)

z

)
>

∣∣∣∣ (1− α)Dnq g(z) + αDn+1
q g(z)

z

∣∣∣∣, (1.4)

where Dnq f(z) is the harmonic Sălăgean q-differential operator, and where α ≥ 0,
n ∈ N0, q ∈ (0, 1) and |z| < r with 0 < r ≤ 1.

Remark 1.4. i) Letting q → 1−, n = 0 we get the class W0
H(0, α, q) := G1H(α) intro-

duced by Liu ang Yang [19].

ii) Letting q → 1−, n = 1 we get the class W0
H(1, α, q) :=W0

H(α) introduced by
Ghosh and Vasudevarao [6].

iii) Letting q → 1−, n = 1, α = 1 we get the classW0
H(1, 1, q) :=W0

H introduced
by Nagpal and Ravichandran in [24].

iv) Letting q → 1−, n = 1, α = 0 we get the class W0
H(1, 0, q) := P0

H introduced
by Li and Ponnusamy [16].

In this paper, we define a new subclass W(n, α, q) of analytic functions and a
new subclass W0

H(n, α, q) of harmonic functions f = h + g ∈ H0 associated with
Sălăgean q-differential operator. In Section 2, we prove that a harmonic function
f ∈ H0 belongs to the class W0

H(n, α, q) if and only if the analytic functions h + εg
belong to W(n, α, q) for each ε with |ε| = 1, and by a method of Clunie and Sheil-
Small, we obtain a sufficient condition for the classW0

H(n, α, q) to be close-to-convex.
We also provide sharp coefficient estimates and sufficient coefficient condition for such
functions classes. In Section 3, we examine that the class W0

H(n, α, q) is closed under
convex combinations and convolutions of its members. In Section 4, we determine
several conditions of partial sums of f ∈ W0

H(n, α, q).

2. Coefficient bounds

Clunie and Sheil-Small proved the following result, which gives a sufficient con-
dition for a harmonic function f to be close-to-convex.

Lemma 2.1. [3] If h and g are analytic in D satisfies |g′(0)| < |h′(0)| and the function
fε = h + εg is close-to-convex for all complex number ε with |ε| = 1, then f = h + g
is close-to-convex..

Theorem 2.2. A harmonic mapping f = h + g is in W0
H(n, α, q) if and only if the

analytic function fε = h + εg belongs to W(n, α, q) for each complex number ε with
|ε| = 1.
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Proof. If f = h+ g ∈ W0
H(n, α, q), then for each complex number ε with |ε| = 1

<
(

(1− α)Dnq fε(z) + αDn+1
q fε(z)

z

)
= <

(
(1− α)Dnq (h(z) + εg(z)) + αDn+1

q (h(z) + εg(z))

z

)
= <

(
(1− α)Dnq h(z) + αDn+1

q h(z) + ε
(

(1− α)Dnq g(z) + αDn+1
q g(z)

)
z

)
> <

(
(1− α)Dnq h(z) + αDn+1

q h(z)

z

)
−
∣∣∣∣ (1− α)Dnq g(z) + αDn+1

q g(z)

z

∣∣∣∣ > 0,

thus fε = h+ εg ∈ W(n, α, q) for each ε with |ε| = 1.
Conversely, if fε = h+ εg ∈ W(n, α, q), then

<
(

(1− α)Dnq h(z) + αDn+1
q h(z) + ε

(
(1− α)Dnq g(z) + αDn+1

q g(z)
)

z

)
> 0, (z ∈ Dr)

or equivalently

<
(

(1− α)Dnq h(z) + αDn+1
q h(z)

z

)
> −<

(
ε
(

(1− α)Dnq g(z) + αDn+1
q g(z)

)
z

)
, (z ∈ Dr).

Since |ε| = 1 is arbitrary, for an appropriate choice of ε we obtain

<
(

(1− α)Dnq h(z) + αDn+1
q h(z)

z

)
>

∣∣∣∣ (1− α)Dnq g(z) + αDn+1
q g(z)

z

∣∣∣∣, (z ∈ Dr)

Hence, f = h+ g ∈ W0
H(n, α, q). �

Theorem 2.3. The functions in the class W0
H(n, α, q) are close-to-convex in D.

Proof. Let f = h + g ∈ W0
H(n, α, q), and let fε = h + εg ∈ W(n, α, q) where |ε| = 1.

By the method used by Ponnusammy et al. [25, Theorem 1.3], if fε ∈ W(n, α, q),
then q-derivative of fε is positive; that is, <{Dnq fε} > 0, and hence fε is analytic and
close-to-convex function. Therefore,

<{Dnq fε} =

<
(

(1− α)Dnq h(z) + αDn+1
q h(z) + ε

(
(1− α)Dnq g(z) + αDn+1

q g(z)
)

z

)
>

∣∣∣∣ (1− α)Dnq g(z) + αDn+1
q g(z)

z

∣∣∣∣+ <
(
ε
(

(1− α)Dnq g(z) + αDn+1
q g(z)

)
z

)
≥
∣∣∣∣ (1− α)Dnq g(z) + αDn+1

q g(z)

z

∣∣∣∣− ∣∣∣∣ε
(

(1− α)Dnq g(z) + αDn+1
q g(z)

)
z

∣∣∣∣ = 0,

showing that fε is analytic and close-to-convex function. Thus according to Lemma
2.1 and Theorem 2.2, it follows that the harmonic function f ∈ W0

H(n, α, q) is also
close-to-convex in D. �

We now establish the sharp coefficient bounds for functions in the class
W0
H(n, α, q).
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Theorem 2.4. Let f = h+ g ∈ W0
H(n, α, q) be of the form (1.1) with b1 = 0. Then for

any k ≥ 2

|bk| ≤
1

[k]nq (1 + α([k]q − 1))
. (2.1)

The result is sharp when f is given by f(z) = z + 1
[k]nq (1+α([k]q−1))

zk.

Proof. Let f ∈ W0
H(n, α, q). Then

<
(

(1− α)Dnq h(z) + αDn+1
q h(z)

z

)
>

∣∣∣∣ (1− α)Dnq g(z) + αDn+1
q g(z)

z

∣∣∣∣
and

(1− α)Dnq g(z) + αDn+1
q g(z)

z
=

∞∑
k=2

[k]nq (1 + α([k]q − 1))bkz
k−1.

Using the series expansion of g, we derive

rk−1[k]nq (1 + α([k]q − 1))|bk| ≤
1

2π

∫ 2π

0

∣∣∣∣ (1− α)Dnq g(reiθ) + αDn+1
q g(reiθ)

reiθ

∣∣∣∣dθ
≤ 1

2π

∫ 2π

0

<
(

(1− α)Dnq h(reiθ) + αDn+1
q h(reiθ)

reiθ

)
dθ

=
1

2π

∫ 2π

0

<
(

1 + [k]nq
(
1 + α([k]q − 1)

)
akr

k−1
)
dθ

= 1.

Letting r → 1− gives the desired bound. �

Remark 2.5. (i) When q → 1−, n = 0 we get the result by Liu ang Yang [19, Corollary
3.2].

(ii) When q → 1−, n = 1 we get the result by Ghosh and Vasudevarao [6,
Theorem 4.2].

Theorem 2.6. Let f = h+ g ∈ W0
H(n, α, q) be of the form (1.1) with b1 = 0. Then for

any k ≥ 2

(i) |ak|+ |bk| ≤ 2
[k]nq (1+α([k]q−1))

(ii) ||ak| − |bk|| ≤ 2
[k]nq (1+α([k]q−1))

(iii) |ak| ≤ 2
[k]nq (1+α([k]q−1))

The results are sharp and the equality is held for the function

f(z) = z +

∞∑
k=2

2

[k]nq (1 + α([k]q − 1))
zk.

Proof. Suppose that f = h+ g ∈ W0
H(n, α, q), then from Theorem 2.2 fε = h+ εg ∈

W(n, α, q) for ε with |ε| = 1. Thus for any |ε| = 1, we have

<
(

(1− α)Dnq (h(z) + εg(z)) + αDn+1
q (h(z) + εg(z))

z

)
> 0, |z| < r.
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Then there exists an analytic function p of the form p(z) = 1 +
∑∞
k=1 pkz

k with
<(p(z)) > 0 in D such that

(1− α)Dnq (h(z) + εg(z)) + αDn+1
q (h(z) + εg(z))

z
= p(z). (2.2)

Comparing coefficients on both sides of (2.2), we have

[k]nq (1 + α([k]q − 1))(ak + εbk) = pk−1, k ≥ 2. (2.3)

Since |pk| ≤ 2 for k ≥ 1 and ε (|ε| = 1) is arbitrary, from (2.3) we get

[k]nq (1 + α([k]q − 1))(|ak|+ |bk|) ≤ 2,

which proves (i). The last two inequalities are consequences of the first inequality. �

Remark 2.7. (i) When q → 1−, n = 0 we get the result by Liu ang Yang [19, Corollary
3.4].

(ii) When q → 1−, n = 1 we get the result by Ghosh and Vasudevarao [6,
Theorem 4.3].

The following result gives a sufficient condition for a function to be belong to
W0
H(n, α, q).

Theorem 2.8. Let f = h+ g ∈ H0 be of the form (1.1) with b1 = 0. If

∞∑
k=2

[k]nq (1 + α([k]q − 1))(|ak|+ |bk|) ≤ 1, (2.4)

then f ∈ W0
H(n, α, q).

Proof. Let f = h+ g ∈ H0. Using the series representation of h given by (1.1), we get

<
(

(1− α)Dnq h(z) + αDn+1
q h(z)

z

)
= <

(
1 +

∞∑
k=2

[k]nq (1 + α([k]q − 1)akz
k−1
)

> 1−
∞∑
k=2

[k]nq (1 + α([k]q − 1)|ak|

≥
∞∑
k=2

[k]nq (1 + α([k]q − 1)|bk|

>

∣∣∣∣ ∞∑
k=2

[k]nq (1 + α([k]q − 1)bkz
k−1
∣∣∣∣

=

∣∣∣∣ (1− α)Dnq g(z) + αDn+1
q g(z)

z

∣∣∣∣,
therefore f ∈ W0

H(n, α, q). �

Remark 2.9. When q → 1−, n = 1 we get the result by Ghosh and Vasudevarao [6,
Theorem 4.5].
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3. Convex combinations and convolutions

In this section, we prove that the class W0
H(n, α, q) is closed under convex com-

binations and convolutions of its members.

Theorem 3.1. The class W0
H(n, α, q) is closed under convex combinations.

Proof. Suppose Dnq fi = Dnq hi + (−1)nDnq gi ∈ W
0
H(n, α, q) for i = 1, 2, ..., k and∑k

i=1 ti = 1 (0 ≤ ti ≤ 1). The convex combination of functions Dnq fi can be written
as

Dnq f(z) =

k∑
i=1

tiDnq fi(z) = Dnq h(z) + (−1)nDnq g(z)

where Dnq h(z) =
∑k
i=1 tiDnq hi(z) and Dnq g(z) =

∑k
i=1 tiDnq gi(z). Then h and g both

are analytic in D with h(0) = g(0) = h′(0) − 1 = g′(0) = 0. A simple computation
yields

<
(

(1− α)Dnq h(z) + αDn+1
q h(z)

z

)
= <

( k∑
i=1

ti
(1− α)Dnq hi(z) + αDn+1

q hi(z)

z

)

>

∣∣∣∣ k∑
i=1

ti
(−1)n (1− α)Dnq gi(z) + (−1)n+1αDn+1

q gi(z)

z

∣∣∣∣
≥

∣∣∣∣∣ (1− α)Dnq g(z) + αDn+1
q g(z)

z

∣∣∣∣∣ .
This shows that f ∈ W0

H(n, α, q) �

A sequence {ck}∞k=0 of non-negative real numbers is said to be a convex null
sequence if ck → 0 as k →∞, and

c0 − c1 ≥ c1 − c2 ≥ c2 − c3 ≥ ... ≥ ck−1 − ck ≥ ... ≥ 0.

To prove the convolution results, we need the following lemmas.

Lemma 3.2. [31] Let {ck}∞k=0 be a convex null sequence. Then the function

s(z) =
c0
2

+

∞∑
k=1

ckz
k

is analytic, and <(s(z)) > 0 in D.

Lemma 3.3. [31] Let the function p be analytic in D with p(0) = 1 and <(p(z)) > 1/2
in D. Then for any analytic function F in D, the function p ∗ F takes values in the
convex hull of the image of D under F .

Using Lemmas 3.2 and 3.3, we prove the following lemma.

Lemma 3.4. Let F ∈ W(n, α, q), then <
(F (z)

z

)
> 1

2 .



42 Omendra Mishra, Asena Çetinkaya and Janusz Sokó l

Proof. Suppose F ∈ W(n, α, q) be given by F (z) = z +
∑∞
k=2Akz

k, then

<
(

1 +

∞∑
k=2

[k]nq (1 + α([k]q − 1))Akz
k−1
)
> 0,

which is equivalent to <(p(z)) > 1/2 in D, where

p(z) = 1 +
1

2

∞∑
k=2

[k]nq (1 + α([k]q − 1))Akz
k−1.

Now consider a sequence {ck}∞k=0 defined by

c0 = 1 and ck−1 =
2

[k]nq (1 + α([k]q − 1))
for k ≥ 2.

It can be easily seen that the sequence {ck}∞k=0 is convex null sequence and using
Lemma 3.2, the function

s(z) = 1 +

∞∑
k=2

2

[k]nq (1 + α([k]q − 1)
zk−1

is analytic with <(s(z)) > 1
2 in D. Hence

F (z)

z
= p(z) ∗

(
1 +

∞∑
k=2

2

[k]nq (1 + α([k]q − 1)
zk−1

)

=

(
1 +

1

2

∞∑
k=2

[k]nq (1 + α([k]q − 1))Akz
k−1
)
∗
(

1 +

∞∑
k=2

2

[k]nq (1 + α([k]q − 1)
zk−1

)
and making use of Lemma 3.3 we observe that <

(F (z)
z

)
> 1

2 for z ∈ D. �

Lemma 3.5. Let F1 and F2 belong to W(n, α, q). Then F = F1 ∗ F2 ∈ W(n, α, q).

Proof. Let F1(z) = z+
∑∞
k=2Akz

k and F2(z) = z+
∑∞
k=2Bkz

k. Then the convolution
of F1 and F2 is given by

F (z) = (F1 ∗ F2)(z) = z +

∞∑
k=2

AkBkz
k.

To prove that F ∈ W(n, α, q), we have to show that

<
(

(1− α)Dnq F (z) + αDn+1
q F (z)

z

)
> 0,

which is equivalent to

<
(

1 +

∞∑
k=2

[k]nq (1 + α([k]q − 1))AkBkz
k−1
)
> 0

or

<
(

1 +
1

2

∞∑
k=2

[k]nq (1 + α([k]q − 1))AkBkz
k−1
)
>

1

2
. (3.1)



Harmonic close-to-convex mappings 43

Since F1 ∈ W(n, α, q) we have

<
(

1 +
1

2

∞∑
k=2

[k]nq (1 + α([k]q − 1))Akz
k−1
)
>

1

2

and by Lemma 3.4, F2 ∈ W(n, α, q) implies <
(F2(z)

z

)
> 1

2 in D or

<
(

1 +
1

2

∞∑
k=2

[k]nq (1 + α([k]q − 1))Bkz
k−1
)
>

1

2
.

By applying Lemma 3.3, we conclude we have (3.1). Hence, F = F1 ∗F2 ∈ W(n, α, q).
�

Now using Lemma 3.5, we prove that the class W0
H(n, α, q) is closed under con-

volutions of its members.

Theorem 3.6. If f1 and f2 belong to W0
H(n, α, q), then f1 ∗ f2 ∈ W0

H(n, α, q).

Proof. Let f1 = h1 + g1 and f2 = h2 + g2 be two functions in W0
H(n, α, q). Then the

convolution of f1 and f2 is defined as f1 ∗f2 = h1 ∗h2 +g1 ∗ g2. In order to prove that
f1 ∗ f2 ∈ W0

H(n, α, q), we need to prove that F = h1 ∗ h2 + ε(g1 ∗ g2) ∈ W(n, α, q) for
each ε (|ε| = 1). By Lemma 3.5, the class W(n, α, q) is closed under convolutions for
each ε (|ε| = 1), hi + εgi ∈ W(n, α, q) for i = 1, 2. Then both F1 and F2 given by

F1 = (h1 − g1) ∗ (h2 − εg2)

and

F2 = (h1 + g1) ∗ (h2 + εg2)

belong to W(n, α, q). Since W(n, α, q) is closed under convex combinations, then the
function

F =
1

2
(F1 + F2) = h1 ∗ h2 + ε(g1 ∗ g2)

belongs to W(n, α, q). Thus W0
H(n, α, q) is closed under convolution. �

4. Partial sums

In this section, we examine sections (partial sums) of functions in the class
W0
H(n, α, q).

Theorem 4.1. Let f = h+ g ∈ W0
H(n, α, q) with α ≥ 0. Then for each ε (|ε| = 1) and

|z| < 1/2, we have

<
(

(1− α)Dnq (s3(h) + εs3(g)) + αDn+1
q (s3(h) + εs3(g))

z

)
>

1

4
.

Proof. Let f = h + g ∈ W0
H(n, α, q). Then by Theorem 2.2, h + εg ∈ W(n, α, q) for

ε (|ε| = 1), so <fε(z) > 0, where

fε(z) =
(1− α)Dnq (h(z) + εg(z)) + αDn+1

q (h(z) + εg(z))

z
= 1 +

∞∑
k=1

pkz
k.
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Moreover

(1− α)Dnq (s3(h) + εs3(g)) + αDn+1
q (s3(h) + εs3(g))

z

= 1 + [2]nq (1 + α([2]q − 1)(a2 + εb2)z + [3]nq (1 + α([3]q − 1)(a3 + εb3)z2

= 1 + p1z + p2z
2.

It is easy to see that

|2p2 − p21| ≤ 4− |p1|2

Let 2p2 − p21 = p. Then p2 = p/2 + p21/2 and |p| ≤ 4 − |p1|2. Also, let p1z = γ + iβ
and
√
pz = η + iδ where β, γ, δ, η are real numbers. Then for |z| < 1/2

γ2 + β2 = |p1|2|z|2 ≤
|p1|2

4

and

δ2 = |p||z|2 − η2 ≤ |p|
4
− η2 ≤ 4− |p1|2

4
− η2 ≤ 1− (γ2 + β2)− η2

so that

<
(

(1− α)Dnq (s3(h) + εs3(g)) + αDn+1
q (s3(h) + εs3(g))

z

)
= <(1 + p1z + p2z

2)

= <(1 + p1z +
p

2
z2 +

p21
2
z2)

= 1 + γ +

(
η2

2
− δ2

2

)
+

(
γ2

2
− β2

2

)
= 1 + γ +

η2

2
− 1− γ2 − β2 − η2

2
+
γ2

2
− β2

2

=
1

4
+

(
γ +

1

2

)2

+ η2 ≥ 1

4
,

which gives the result. �

Theorem 4.2. Let f = h+ g ∈ W0
H(n, α, q), where h and g given by (1.1) with b1 = 0.

Then for each j ≥ 2, s1,j(f) ∈ W0
H(n, α, q) for |z| < 1/2.

Proof. Let f = h+ g ∈ W0
H(n, α, q). It is clear that

s1,j(f)(z) = s1(h)(z) + sj(g)(z) = z +

j∑
k=2

bkzk
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It follows from Theorem 2.4 that for all |z| < 1/2,∣∣∣∣ (1− α)Dnq sj(g)(z) + αDn+1
q sj(g)(z)

z

∣∣∣∣
=

∣∣∣∣ j∑
k=2

[k]nq (1 + α([k]q − 1))bkz
k−1
∣∣∣∣

≤
j∑

k=2

[k]nq (1 + α([k]q − 1))|bk||zk−1|

≤
j∑

k=2

|z|k−1 =
|z|(1− |z|j−1)

1− |z|
<

|z|
1− |z|

< 1 = <
(

(1− α)Dnq s1(h)(z) + αDn+1
q s1(h)(z)

z

)
.

This implies that s1,j(f) ∈ W0
H(n, α, q) in |z| < 1/2. �

Theorem 4.3. Let f = h+ g ∈ W0
H(n, α, q), where h and g given by (1.1) with b1 = 0,

and let i and j satisfy of the following conditions:

(i) 3 ≤ i < j,
(ii) i = j ≥ 2,
(iii) i = 3 and j = 2.

Then si,j(f) ∈ W0
H(n, α, q) in |z| < 1/2.

Proof. Let ϑi(h)(z) =
∑∞
k=i+1 akz

k and ϑj(g)(z) =
∑∞
k=j+1 bkz

k. Then

h = si(h) + ϑi(h) and g = sj(g) + ϑj(g).

To prove si,j(f) ∈ W0
H(n, α, q), it suffices to prove that si(h) + εsj(g) ∈ W(n, α, q)

for ε (|ε| = 1). If f ∈ W0
H(n, α, q), then

<
(

(1− α)Dnq (si(h) + εsj(g)) + αDn+1
q (si(h) + εsj(g))

z

)
= <

(
(1− α)Dnq (h+ εg) + αDn+1

q (h+ εg)

z

−
(1− α)Dnq (ϑi(h) + εϑj(g)) + αDn+1

q (ϑi(h) + εϑj(g))

z

)
≥ <

(
(1− α)Dnq (h+ εg) + αDn+1

q (h+ εg)

z

)
−
∣∣∣∣ (1− α)Dnq (ϑi(h) + εϑj(g)) + αDn+1

q (ϑi(h) + εϑj(g))

z

∣∣∣∣. (4.1)
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By assumption, we see that

(1− α)Dnq (h+ εg) + αDn+1
q (h+ εg)

z
≺ 1 + z

1− z
,

where ≺ is the subordination symbol. From the last relation, we conclude that

<
(

(1− α)Dnq (h+ εg) + αDn+1
q (h+ εg)

z

)
≥ 1− |z|

1 + |z|
. (4.2)

Case (i): 3 ≤ i < j
Applying Theorems 2.4 and 2.6, we observe that∣∣∣∣ (1− α)Dnq (ϑi(h) + εϑj(g)) + αDn+1

q (ϑi(h) + εϑj(g))

z

∣∣∣∣
=

∣∣∣∣ j∑
k=i+1

[k]nq (1 + α([k]q − 1))akz
k−1 +

∞∑
k=j+1

[k]nq (1 + α([k]q − 1))(ak + εbk)zk−1
∣∣∣∣

≤
j∑

k=i+1

2|z|k−1 +

∞∑
k=j+1

2|z|k−1 = 2
|z|i

1− |z|
(4.3)

Using (4.1), (4.2) and (4.3), we obtain

<
(

(1− α)Dnq (si(h) + εsj(g)) + αDn+1
q (si(h) + εsj(g))

z

)
≥ 1− |z|

1 + |z|
−2

|z|i

1− |z|
. (4.4)

For 4 ≤ i < j and |z| = 1/2, the inequality (4.4) gives

<
(

(1− α)Dnq (si(h) + εsj(g)) + αDn+1
q (si(h) + εsj(g))

z

)
≥ 1

3
− 1

4
> 0.

Since <
( (1−α)Dn

q (si(h)+εsj(g))+αDn+1
q (si(h)+εsj(g))

z

)
is harmonic, it assumes its minimum

value on the circle |z| = 1/2. Hence, if 4 ≤ i < j then si,j(f) ∈ W0
H(n, α, q) in

|z| < 1/2.
If i = 3 < j, then in view of Theorem 2.4 and Theorem 4.1, we attain

<
(

(1− α)Dnq (s3(h) + εsj(g)) + αDn+1
q (s3(h) + εsj(g))

z

)
= <

(
(1− α)Dnq (s3(h) + εs3(g)) + αDn+1

q (s3(h) + εs3(g))

z

+ ε

j∑
k=4

[k]nq (1 + α([k]q − 1))bkz
k−1
)

≥ 1

4
−

j∑
k=4

[k]nq (1 + α([k]q − 1))|bkzk−1|

≥ 1

4
− |z|3

1− |z|
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so that

<
(

(1− α)Dnq (s3(h) + εsj(g)) + αDn+1
q (s3(h) + εsj(g))

z

)
> 0

for |z| < 1/2, and thus s3,j(f) ∈ W0
H(n, α, q) in |z| < 1/2.

Case (ii): i = j ≥ 2
If i = j ≥ 4, then the inequality (4.4) gives si,j(f) ∈ W0

H(n, α, q) in |z| < 1/2.

For i = j = 2, s2,2(f)(z) = z + a2z
2 + b2z2. Using Theorem 2.6, we get

<
(
1 + [2]nq (1 + α([2]q − 1))(a2 + εb2)z

)
≥ 1− [2]nq (1 + α([2]q − 1))|a2 + εb2||z|
≥ 1− 2|z| > 0

in |z| < 1/2.
If i = j = 3, then Theorem 4.1 shows that s3,3(f) ∈ W0

H(n, α, q) in |z| < 1/2.
Therefore, we prove that for i = j ≥ 2, si,j(f) ∈ W0

H(n, α, q) in |z| < 1/2.
Case (iii): i = 3 and j = 2.

In view of Theorems 2.4 and 4.1, we have

<
(

(1− α)Dnq (s3(h) + εs2(g)) + αDn+1
q (s3(h) + εs2(g))

z

)

= <
(

(1− α)Dnq (s3(h) + εs3(g)) + αDn+1
q (s3(h) + εs3(g))

z
−ε[3]nq (1+α([3]q−1))b3z

2

)
≥ 1

4
− |z|2 =

1

4
− 1

22
= 0

for |z| < 1/2. Thus s3,2(f) ∈ W0
H(n, α, q) in |z| < 1/2. �
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[21] Mahmood, S., Sokó l, J., New subclass of analytic functions in conical domain associated
with Ruscheweyh q-differential operator, Results Math., 71(2017), 1345–1357.

[22] Mishra, O., Sokol, J., Generalized q-starlike harmonic functions, Rev. Real Acad. Cienc.
Exactas Fis. Nat. Ser. A-Mat., 115(2021).

[23] Murugusundaramoorthy, G., Jahangiri, J.M., Ruscheweyh-type harmonic functions de-
fined by q-differential operators, Khayyam J. Math., 5(2019), 79–88.

[24] Nagpal, S., Ravichandran, V., Construction of subclasses of univalent harmonic map-
pings, J. Korean Math. Soc., 53(2014), 567–592.

[25] Ponnusamy, S., Yamamoto, H., Yanagihara, H., Variability regions for certain families
of harmonic univalent mappings, Complex Variables and Elliptic Equations, 58(2013),
no. 1, 23–34.

[26] Ruscheweyh, S., Sheil-Small, T., Hadamard products of Schlicht functions and the Pólya-
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