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Harmonic close-to-convex mappings associated
with Salagean ¢-differential operator

Omendra Mishra (%), Asena Cetinkaya (% and Janusz Sokét

Abstract. In this paper, we define a new subclass W(n, «, q) of analytic functions
and a new subclass WY, (n, a, ¢) of harmonic functions f = h+g € H° associated
with Salagean g¢-differential operator. We prove that a harmonic function f = h+g
belongs to the class WY, (n, o, q) if and only if the analytic functions A+ eg belong
to W(n,a,q) for each € (J¢f] = 1), and using a method by Clunie and Sheil-
Small, we determine a sufficient condition for the class W% (n, o, q) to be close-
to-convex. We provide sharp coefficient estimates, sufficient coefficient condition,
and convolution properties for such functions classes. We also determine several
conditions of partial sums of f € W% (n,a, q).
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1. Introduction

Quantum calculus is the calculus without use of the limits. The history of quan-
tum calculus dates back to the studies of Leonhard Euler (1707-1783) and Carl Gustav
Jacobi (1804-1851). Later, geometrical interpretation of the g-calculus has been ap-
plied in studies of quantum groups. The great interest to quantum calculus is due
to its applications in various branches of mathematics and physics; as for example,
in quantum mechanics, analytic number theory, sobolev spaces, group representation
theory, theta functions, gamma functions, operator theory and several other areas.
For the definitions and properties of g-calculus, one may refer to the books [5] and
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[14]. Jackson [10, 11] was the first who gave some applications of g-calculus by intro-
ducing the g-analogues of derivative and integral. The g—derivative (or g—difference
operator) of a function h, defined on a subset of C, is given by
st o
(Dgh)(z) =
1 (0), z=0,

where ¢ € (0,1). Note that lim,_,;- (Dgh)(2) = h'(2) if h is differentiable at z ([10]).
For a function h(z) = z* (k € N), we observe that

quk = [k]qzkilv

where
k
Ky = = 1 g gogh!
l—q
is the g—number of k. Clearly, lim,_,;- [k], = k. For more details, one may refer to
[14] and references therein.

Connection of g-calculus with geometric function theory was first introduced by
Ismail et al. [9]. Recently, g-calculus is involved in the theory of analytic functions
[7, 8, 21]. But research on g-calculus in connection with harmonic functions is fairly
new and not much published (see [12, 23, 22, 28]).

Let D, = {z € C:|z] <r} denote an open disk with » > 0. The open unit
disk will be denoted by ID; = ID. Let H denote the class of complex-valued functions
f = u 4+ iv which are harmonic in the open unit disk I, where v and v are real-
valued harmonic functions in D. Functions f € H can also be expressed as f = h+7,
where h the analytic and ¢ the co-analytic parts of f, respectively. A subclass of
functions f = h +g € H with the additional condition ¢’(0) = 0 is denoted by H°.
According to the Lewy’s Theorem [15], every harmonic function f = h+g € H is
locally univalent and sense preserving in D if and only if the Jacobian of f, given by
Jp(z) = |W'(2)]> — | ¢'(2)|?, is positive in D. This case is equivalent to the existence
of an analytic function w(z) = ¢’(z)/h'(z) in D, which is called as the dilatation of f
such that

lw(z)] <1 forall ze€D.

Clunie and Sheil-Small [3] introduced the class of all univalent, sense preserving
harmonic functions f = h+7, denoted by Sz, with the normalized conditions h(0) =
0 =g¢(0) and A'(0) =1 . If the function f = h+ G € Sy, then

(oo} oo
h(z)=z+ Zakzk and ¢g(z) = Z bz®, (2 €D). (1.1)
k=2 k=1

A subclass of functions f = h + g € Sy with the condition ¢’(0) = 0 is denoted
by S%. Further, the subclass of functions f in Sy (S%), denoted by Ky (IC%) consists
of functions f that map the unit disk ID onto a convex region, the subclass S3, (87*{0)
consists of functions f that are starlike, and the subclass Cj, (C;‘_LO) consists of functions
f which are close-to-convex. Also, if g(z) = 0, the class Sy reduces to the class S of
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univalent functions in the class A. Here, A is the class of all analytic functions of the
form h(z) = 2 + Yoo, arz*. For more details, we refer [4].

Let f € S and be given by f(z) = > p—, axz". Then the [*" section (partial sum)
of f is defined by

Zakz (1 eN)

where ap = 0 and a; = 1. For a harmomc function f = h + ¢ € H, where h and g of
the form (1.1), the sequences of sections (partial sums) of f is defined by

si,j([)(z) = si(h)(2) + s;(9)(2),

where s;(h)(z) = >, axz® and s;(g)(z) = D7 _; bkz", 0,5 > 1 with aq = 1.

In [32], it is noted that the partial sums of univalent functions is univalent in
the disk Dy /4. Starlikeness and convexity of the partial sums of univalent functions
was discussed in [29, 30].

The convolution or Hadamard product of two analytic functions

Zakz and fa(z Zbkz

k=0
is defined by

(f1* f2)( Zakbkz (z €D).

k=0
The convolution of two harmonic functions f = h+ g and F = H + G is defined by

(fxF)(z) = (h+H)(2) + (9% G)(2), (z€D).
In 2013, Li and Ponnusamy [16] investigated properties of functions given by
Pl ={f=h+geH :R(H () >|g(z)], z€D}

The class PY, is harmonic analogue of the class R = {f € S : R(f'(z)) > 0, z €
D} introduced by MacGregor [20]. It is known that a harmonic function f = h + g
belongs to the class P, if and only if the analytic function h + eg belongs to R for
each € (le] = 1).

In 1977, Chichra [2] studied the class W(a) consisting of functions f € A such
that R(f'(z) + azf”(z)) > 0 for @ > 0 and z € D. Later, Nagpal and Ravichandran
[24] studied the following class

Wy ={f =h+geH :R(N(2) + 20" (2)) > |¢'(2) + 29" ()], 2 € D},

which is harmonic analogue of W(1). Recently, Ghosh and Vasudevarao [6] defined
the class WY, () for a > 0 by

W) ={f=h+geH RN (2)+azh”(2)) > |¢(2) + azg"(2)|, z € D}.

n [2], Chichra also studied the class G(«) of an analytic function f for @ > 0
such that

w|0-afape)
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for |z| < r with r € (0,1]. In 2018, Liu ang Yang [19] defined the class
h
Ghi (o) = {f —h4geH R((1- oz)% +ak'(2) > |(1- a)@

where @ > 0, k > 1 and |z| < r with r € (0,1].
For an analytic function h € A, let the Saldgean ¢-differential operator be defined
by ([7]);

+ag ()]},

Doh(z) = h(z), Dyh(z) = 2Dgh(2), ..., Djh(z) = 2Dg(Dy~ " h(2)),
where n € Ny = NU{0}. Making use of & given by (1.1), and simple calculations yield

Di'h(z) = h(z) * Fyn(z —Z—I—Z napz®, (2 €D) (1.2)

where
o0

+ Z[k]q P
k=2

and [k]y = (11:‘7;)", q € (0,1). The operator (1.2) easily reduces to the well-known
Sélagean differential operator as ¢ — 17 (see [27]).
For a harmonic function f = h + g given by (1.1) and the operator D} defined

by (1.2), the harmonic Sildgean g¢-differential operator is defined by ([12]);
Dy f(2) = Dygh(z) + (=1)"Dgg(2)

o0

=z+ Z akz + ( 1)”Z[k]gbkzk.
k=1
As ¢ — 17, the operator Dy f reduces to the Salagean differential operator D" f for a
harmonic function f = h+g ([13]).
Motivated by the Salagean g¢-differential operator, we define a new subclass
W(n, a, q) of analytic functions as follows:

Definition 1.1. An analytic function f € A is in the class W(n, a, q) if it satisfies the

condition . _
%(“ ) D} () + oD f(z)) -

(1.3)

z
where Dy f(z) is the Salagean g-differential operator defined by (1.2), and where a > 0,
n €Ny, g€ (0,1) and |z| <r with 0 <r < 1.

Remark 1.2. i) Letting ¢ — 17, n = 0 we get the class W(0, , ¢) := G(«) introduced
by Chichra [2].

ii) Letting ¢ — 17, n = 1 we get the class W(1, a, q) := W(«) introduced by
Chichra [2].

iii) Letting ¢ — 17, n =1, & = 0 we get the class W(1,0,¢q) := R introduced by
MacGregor [20].

Making use of the harmonic Salagean g¢-differential operator, we also define the
class WY, (n, ., ¢) of harmonic functions as follows:
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Definition 1.3. A harmonic function f = h +g € H° with h(0) = g(0) = ¢'(0) =
h'(0) — 1 = 0 is in the class WY, (n, o, q) if it satisfies the condition

e B e

z z
where Dy f(z) is the harmonic Salagean g-differential operator, and where o > 0,
n € Ng, g€ (0,1) and |z| <7 with 0 <r < 1.

Remark 1.4. i) Letting ¢ — 17, n = 0 we get the class WY, (0, o, q) := G},(«) intro-
duced by Liu ang Yang [19].

ii) Letting ¢ — 17, n = 1 we get the class W (1, a, ¢) := WY, () introduced by
Ghosh and Vasudevarao [6].

iii) Letting ¢ — 17, n = 1, & = 1 we get the class WY, (1,1, q) := WY, introduced
by Nagpal and Ravichandran in [24].

iv) Letting ¢ = 17, n = 1, @ = 0 we get the class W%(l, 0,q) := 73% introduced
by Li and Ponnusamy [16].

In this paper, we define a new subclass W(n, «, q) of analytic functions and a
new subclass WY, (n, . q) of harmonic functions f = h +g € H" associated with
Salagean g-differential operator. In Section 2, we prove that a harmonic function
f € H° belongs to the class W% (n,a, q) if and only if the analytic functions h + eg
belong to W(n, a, q) for each e with |e] = 1, and by a method of Clunie and Sheil-
Small, we obtain a sufficient condition for the class W%(n, @, q) to be close-to-convex.
We also provide sharp coefficient estimates and sufficient coefficient condition for such
functions classes. In Section 3, we examine that the class W%(n, a, q) is closed under
convex combinations and convolutions of its members. In Section 4, we determine
several conditions of partial sums of f € WY (n, a,q).

2. Coefficient bounds

Clunie and Sheil-Small proved the following result, which gives a sufficient con-
dition for a harmonic function f to be close-to-convex.

Lemma 2.1. [3] If h and g are analytic in D satisfies |¢’(0)| < |h'(0)| and the function
fe = h + eg is close-to-convex for all complex number € with |e| =1, then f = h+7
s close-to-convex..

Theorem 2.2. A harmonic mapping f = h+ g is in W3, (n,«, q) if and only if the
analytic function fo = h + eg belongs to W(n,«,q) for each complex number e with
le| = 1.
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Proof. If f = h+7g € WY,(n,,q), then for each complex number € with |e[ = 1
3?< (1 =)Dy fe(2) + a’DZ}*lfe(z)>

z

R

((1 — ) D (h(z) + eg(z)) + oD (h(z) + eg(z)))

z

SCE((1 — ) D'h(z) + oDyt h(z) + e( (1 — a) Dig(z) + aDgHg(z)))

z
- SCE((1 — ) Dph(z) + ozDg“h(z)) B ’ (1—a)Dg(z) + aDjtg(z) -0,
z z

thus fo = h +eg € W(n,a, q) for each e with |e| = 1.

Conversely, if fo = h+eg € W(n, «, q), then

1 —a)Dh(z) + oD h(z) + 1— o)D" + oDt
NEELACRTATD (1= ) o) o g<z>)> o en)
or equivalently

1—a)D"h(z) + oD h(z e( (1 —a)Drg(z) + oD g(z
(L0 D £ DI (L) ol £ D)) ()
Since |e| = 1 is arbitrary, for an appropriate choice of € we obtain

1—a)D h(z) + oD h(2 1—a)D"g(z) + aDg(z
§R<( )q(i p ())>( )qg(i qg(),(ze]D)T)

Hence, f = h+g € WY, (n,a,q). O

Theorem 2.3. The functions in the class W%(n, a, q) are close-to-convez in D.

Proof. Let f =h+g € WY(n,a,q), and let f. = h+eg € W(n,a,q) where || = 1.
By the method used by Ponnusammy et al. [25, Theorem 1.3], if f. € W(n,«a,q),
then g-derivative of f is positive; that is, R{D} fc} > 0, and hence f. is analytic and
close-to-convex function. Therefore,

R{D; fe} =
§R((1 — ) DIh(z) + aDi T h(z) + e( (1 — ) Dirg(z) + oDt g(2)) )

z

(1 —a)Dlg(2) + oD g(2)

> ‘
z

N §R(E( (1-0)Dyg(2) + aDg+1g(z))>

e( (1-a)Drg(z) + aDg+1g(z))

z

- ’ (1-a)Drg(z) + aDg+1g(z)

z

-

showing that f. is analytic and close-to-convex function. Thus according to Lemma
2.1 and Theorem 2.2, it follows that the harmonic function f € WY, (n,,q) is also
close-to-convex in D. O

We now establish the sharp coefficient bounds for functions in the class
Wi (n, a, q).
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Theorem 2.4. Let f = h+7 € W3,(n, . q) be of the form (1.1) with by = 0. Then for
any k > 2
1

bl < ) 2.1
S B e, - 1) 21
The result is sharp when f is given by f(z) = z + ng
Proof. Let f € WY /(n,a,q). Then
R (1 — ) Dph(z) + oDyt h(2) - (1 —a)Dg(z) + oD g(2)
z z
and .
(1-a)Dyg(z) + aDytlg(z) N, _
a . a :Z[k}q(1+a([k]q—l))bkzk L
k=2
Using the series expansion of g, we derive
i 1 (7 |(1—a)Dlg(re??) + oD g(re?)
PP R (1 4 o[K]g — 1))[be] < > ! — 4 do
- 1 2m R (1-a) Dgh(reie) + ozDZ;Hh(rew) "
-2 rei?
1 2m
=5 5)?(1 + [k]7 (1 + a([k]q — 1))akrk1)d9
0

=1.

Letting » — 17 gives the desired bound. O

Remark 2.5. (i) When ¢ — 17, n = 0 we get the result by Liu ang Yang [19, Corollary
3.2].

(iil) When ¢ — 17, n = 1 we get the result by Ghosh and Vasudevarao [6,
Theorem 4.2].

Theorem 2.6. Let f = h+g € WY (n,a,q) be of the form (1.1) with by = 0. Then for
any k > 2
(@) lax| + o] < prraTam@n,—m
(ii) [lar] — [bx]| SW
(i) lax| < prraram—m
The results are sharp and the equality is held for the function

k
‘”Z IR R
Proof. Suppose that f = h+g € WY,(n,a,q), then from Theorem 2.2 f, = h+€g €
W(n,a, q) for € with |¢] = 1. Thus for any |e| = 1, we have

. ((1 —a) Dy(h(z) + eg<z>i + oDy (h(z) + EW”) >0, [o] <.
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Then there exists an analytic function p of the form p(z) = 1+ > o, prz" with
R(p(z)) > 0 in D such that

(1 — ) Dy (h(2) + eg(2)) + oDy (h(2) + eg(2))

= p(2). (2.2)
Comparing coefficients on both sides of (2.2), we have
K3 (1 + c([Kly — 1)) (an + €bg) = pr—1, k> 2. (2.3)
Since |pg| < 2 for k > 1 and € (|¢| = 1) is arbitrary, from (2.3) we get
[K]g (1 + a((Klg = 1)(Jax| +[bx]) <2,

which proves (i). The last two inequalities are consequences of the first inequality. O

Remark 2.7. (i) When ¢ — 17, n = 0 we get the result by Liu ang Yang [19, Corollary
3.4].

(iil) When ¢ — 17, n = 1 we get the result by Ghosh and Vasudevarao [6,
Theorem 4.3].

The following result gives a sufficient condition for a function to be belong to
Wi (n, e, q).

Theorem 2.8. Let f = h+g € HC be of the form (1.1) with by = 0. If

[e.°]

DKL+ alklg — 1)) (lawl + [b]) < 1, (2.4)

k=2
then f € Wi (n,a,q).

Proof. Let f = h+g € H°. Using the series representation of h given by (1.1), we get

NEECLICETAUC) FNHE e

z

oo

> 1= Ky (L + oKy — 1)lax]

k=2

Mg

g (L4 a([k]y — 1)|bg|

V

Mg

21+ af[klg — 1bez""

[
N

—a)Dyg(z) + oDyt g(2)

z

therefore f € WY,(n,a, q). d

)

—~
—

Remark 2.9. When ¢ — 17, n = 1 we get the result by Ghosh and Vasudevarao [6,
Theorem 4.5].
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3. Convex combinations and convolutions

In this section, we prove that the class W%(n, a, q) is closed under convex com-
binations and convolutions of its members.

Theorem 3.1. The class W% (n,a, q) is closed under conver combinations.

Proof. Suppose Dy fi = Dgh; + (—1)"D{1‘gi € WY (n,a,q) for i = 1,2,...,k and

Zle ti=1(0 <t; <1). The convex combination of functions Dy f; can be written
as

DI f Zt D fi(2) = DI'h(z) + (—=1)"Dlg(z)

where Dy'h(z) = Zi:1 t;Dy hi(z) and Dyg(z) = Zle t;D; gi(2). Then h and g both
are analytic in D with h(0) = g(0) = h’/(0) — 1 = ¢’(0) = 0. A simple computation
yields
1— ) Dph(z) + aDp*tth " (1—a)Drhi(z) + oD hy
(LD EPEIC)Y g5 (D) D)

i=1

k n n n+1 n+1
(—=1)" (1 —a) Dygi(z) + (-1)""'aD (2)
> Zti g 2
=1
(1 —a)Dg(z) + aDytg(z)
iy z .
This shows that f € WY, (n,a, q) O

A sequence {ci}72, of non-negative real numbers is said to be a convex null
sequence if ¢ — 0 as k — oo, and

Co— C1 201—02202—032...ch,1—ck2...20.
To prove the convolution results, we need the following lemmas.

Lemma 3.2. [31] Let {c,}32, be a convex null sequence. Then the function

is analytic, and N(s(z)) > 0 in D.

Lemma 3.3. [31] Let the function p be analytic in D with p(0) =1 and RN(p(z)) > 1/2
in . Then for any analytic function F in D, the function p x ' takes values in the
convex hull of the image of D under F.

Using Lemmas 3.2 and 3.3, we prove the following lemma.

Lemma 3.4. Let F € W(n,«,q), then %(@) > 1
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Proof. Suppose F' € W(n, a, q) be given by F(z) =z + > po, Axz¥, then

(1 + Z (14 af 1))Akzk_1> >0,

which is equivalent to R(p (z)) > 1/2 in D, where
=14 Z (14 a([k], — 1)) ApzF1

Now consider a sequence {cj}32, defined by

2
co=1 and ci_1 = for k> 2.
(kg (1 + a([k], — 1))
It can be easily seen that the sequence {ci}72, is convex null sequence and using
Lemma 3.2, the function

=143 ey

k=2

is analytic with R(s(z)) > 3 in D. Hence

=, (HZ 1+a<[ T 1>ZH>

= (1 0 ol = ) ¢ (13 )

k=2

and making use of Lemma 3.3 we observe that §R(F(Z)) > 1 for z € D. O

Lemma 3.5. Let Fy and F» belong to W(n,«,q). Then F = Fy x F5 € W(n, «a,q).

Proof. Let F1(z) = z+Y ey Arz"” and Fy(z) = 2+ p—, Byz". Then the convolution
of F1 and F; is given by

F(z) = (F1 x Fy)(2) = 2 + ZAkBkzk.
k=2
To prove that F' € W(n, a, q), we have to show that

3%<(1 —a)DIF(2) + aD:;HF(z)) o

z

which is equivalent to

(1 + Z (1+ a([k], — 1))AkBkzk_1> >0
or

(3.1)

DO | =

m<1 + % i[k]g(l + a(k]y — 1))AkBkz’<1> >

k=2
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Since F; € W(n, «a, q) we have

oo

§R<1 + E Z[k}ga + a([k], — 1))Akzk1> >

N —

2
k=2

FQ(Z)

and by Lemma 3.4, F, € W(n, a, q) implies R ( )>4inDor

1 = n k—1 1

?R(l + 3 I;[k]q(l + a([k]y — 1)) Bz ) > 3
By applying Lemma 3.3, we conclude we have (3.1). Hence, F' = Fy x Fy, € W(n, «, q).
O

Now using Lemma 3.5, we prove that the class WY, (n, a, ¢) is closed under con-
volutions of its members.

Theorem 3.6. If f1 and fo belong to W, (n, v, q), then fi x fo2 € W (n,a,q).

Proof. Let fi = hy +7; and fo = hy + g, be two functions in WY, (n, «, ¢). Then the
convolution of f; and fs is defined as f; * fo = hy*ho + g1 * g2. In order to prove that
f1 % f2 € WY (n, @, q), we need to prove that F' = hy * ha + €(g1 * g2) € W(n, a, q) for
each € (|¢] = 1). By Lemma 3.5, the class W(n, a, q) is closed under convolutions for
each € (le] = 1), h; +e€g; € W(n,a,q) for i = 1,2. Then both F; and F» given by

Fy = (h1 — g1) * (h2 — €g2)
and

Fy = (hy + g1) * (ha + €g2)
belong to W(n, «, q). Since W(n, «, ¢) is closed under convex combinations, then the
function

1
F= §(F1+F2) = hy * hy + €(g1 * g2)

belongs to W(n, a, q). Thus W% (n,a, q) is closed under convolution. O

4. Partial sums

In this section, we examine sections (partial sums) of functions in the class
Wi (n, . q).

Theorem 4.1. Let f = h+g € WY (n, o, q) with a > 0. Then for each € (le| = 1) and
|z| < 1/2, we have

(1 — ) Dy(s3(h) +esz(g)) + oDy (s3(h) + esa(g)) 1
8?( . ) > 1

Proof. Let f = h+g € W{(n,,q). Then by Theorem 2.2, h + eg € W(n, e, q) for
€ (le] =1), so Rfe(z) > 0, where

(1 — ) Dy (h(2) + eg(2)) + Dy (h(2) + eg(2

o) = ! D143 met
k=1
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Moreover

(1 —a)Dy(s3(h) + es3(g)) + aDy ' (s3(h) + esz(g))
=1+ [2];(1+ a([2]y — 1)(az + eb2)z + [3]5 (1 + a([3], — 1)(as + €bz) 2>
=1+p1z+p22°

It is easy to see that
2p2 — pi| < 4—|p)?

Let 2ps — p? = p. Then py = p/2 + p3/2 and |p| < 4 — |p1|2. Also, let p1z = vy + i3
and ,/pz = 1 + i where 3,7, d,n are real numbers. Then for |z| < 1/2

2
p
’72"'62 _ |p1|2|2’|2 < | le|
and
p 4—|pi]?
52=\pI\Z|2—772S%—UQS#—nzﬁl—(vzﬂLﬁQ)—nz
so that
- (1 — ) Dy (s3(h) + es3(g)) + aDy (s3(h) + ess(g))
4
=R(1 +p1z + p22°)
2
=§R(1—|—p1z+§,22—|—%z2)
2 2 2 2
o9 v B
:1 _ — - —
2+ (5-7)+(5-7)
2 2 2 2 2 2
1=t =p"—n" 1 B
-1 — L
Tty 2 Tty
1\? 1
2
— > -
L) e
which gives the result. O

Theorem 4.2. Let f = h+g € WY, (n,a,q), where h and g given by (1.1) with by = 0.
Then for each j > 2, s1;(f) € Wi (n,a, q) for |z| < 1/2.

Proof. Let f =h+7g € WY/(n,a,q). It is clear that

s15(£)(2) = s1(h)(2) +55(9)(2) = 2 + ) _ by
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It follows from Theorem 2.4 that for all |z| < 1/2,

‘ (1 —a)Dysi(g)(2) + aDytrs;(9)(2)

z

M-

(K] (1 + a([K] — 1))bez"""

=
[|

2

M-

[k]g (1 + a([K]q — 1)) [brll=""]

k=2
J i
- 1— 2P ||
< Skl — |2I(
2 I TR S 1-T
P (1 —a)Dysi(h)(2) + aDytlsi(h)(2)
. :
This implies that s1 ;(f) € WY, (n, o, q) in |2| < 1/2. O

Theorem 4.3. Let f = h+g € WY, (n, a,q), where h and g given by (1.1) with by = 0,
and let i and j satisfy of the following conditions:

(i) 3<i<j,
(i) i=7>2,
(iii) ¢ =3 and j = 2.
Then s; ;(f) € W, (n,a,q) in |z| < 1/2.
Proof. Let ¥5(h)(z) = ¥ pei1 arz® and 9;(g)(z) = Z,;“;j_i_l bpz*. Then
h=s;(h)+9;(h) and g =s;(g)+Y;(g).

To prove s; ;(f) € W3 (n,a,q), it suffices to prove that s;(h) + €s;(g) € W(n,a,q)
for € (le] = 1). If f € W (n,a,q), then

%< (1 — ) D2 (si(h) + s, (g)) + oD+ (s:(h) + s, <g)>>

_ 8?((1 —a) D} (h+ egi + aDyt(h + €g)
(L= ) Dy (di(h) + €d;(g)) + oDy (9s(h) + 619j(9))>

- ‘ (1 — &) Dy (Vi (h) + €0;(g)) + oDy (9i(h) + €d;(9)) ‘

. §R<(1 — ) D} (h + €eg) + oD (h + eg))

(4.1)
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By assumption, we see that

(1 —a)Dy(h+eg) + oDy (h + €g) R
z 1—2’

where < is the subordination symbol. From the last relation, we conclude that

SCE((1—a)DZ}(lH—eg)+o¢Dg+1(h—i-eg)) > 1—|z|. (4.2)
z 1+ ]z]
Case (i): 3<i<j
Applying Theorems 2.4 and 2.6, we observe that
(1 —a) Dy (0:(h) + €95(g)) + aDpt(95(h) + €9;(g))
z
J
= Z (k] (1 + a([k], — 1) Jarz" "1+ Z g (L4 a([k]y — 1)) (ar + eby) 2"t
k=i+1 k=j+1
J
g22|z\k1+22| |’“_2 2 (4.3)
k=i+1 k=j+1 —I#]
Using (4.1), (4.2) and (4.3), we obtain
(L PRe(h) + e5,(9) + 0D i) 4 ens@) L 1=lal Ly 1o,
z 1+ 2| 1-—]z]

For 4 <i < j and |z| = 1/2, the inequality (4.4) gives
%((1 —a) Dy (si(h) + esj(g)) + oDy (si(h) + es;(g ))) >

> 0.

c,om—u
pM»—*

z

n n41
Since §R((1 ) Dy (s (hHESJ(g)HaD (si(h)Fes; (g))) is harmonic, it assumes its minimum

value on the circle |z| = 1/2 Hence, if 4 < i < j then s;;(f) € WY/(n,a,q) in
|z| < 1/2.
If : = 3 < j, then in view of Theorem 2.4 and Theorem 4.1, we attain

§R< (1 —a)Dy(s3(h) + es; (g)i + aDyt (s3(h) + es; (g))>

=N

<(1 — @) D} (ss(h) + ess(g)) + oDyt (s3(h) + es3(g))

+ SR+ a((k], - 1))bkzk1>

v
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so that

of (L= ) Dy (ss(h) + es5(0)) + Dy ssh) + 50\ _
z
for [2| < 1/2, and thus s3 ;(f) € W,(n,a,q) in |z] < 1/2.
Case (ii): 1 =7 >2

If i = j > 4, then the inequality (4.4) gives s; ;(f) € WY(n,a,q) in |z| < 1/2.

For i = j =2, s22(f)(2) = 2 + a22? + ba22. Using Theorem 2.6, we get

R(1+ (25 (1 + a([2]; — 1))(az + €b2)2)
> 1= [2](1+ a(2lg = 1))laz + ebs||z]
>1-2[z| >0
in |z| < 1/2.
If i = j = 3, then Theorem 4.1 shows that s33(f) € WY,(n,a,q) in |z| < 1/2.
Therefore, we prove that for i = j > 2, s; ;(f) € W,(n,a,q) in |z] < 1/2.
Case (iii): ¢ =3 and j = 2.
In view of Theorems 2.4 and 4.1, we have
%< (1 —a) D} (ss(h) + esa(g)) + oDyt (s3(h) + 652(9)))
z

_ gfe( (1= @) Dy (s5(h) + esalg)) + aDy* (s5(h) + esalg) —6[3]Z(l+a([3]q_1))b3z2>

z
1 1 1
> == =
23 =12
for |2| < 1/2. Thus s32(f) € WY (n,a,q) in |z| < 1/2. O
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