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1. Introduction

Let Ω ⊂ RN , N ≥ 2, be a bounded domain with smooth boundary ∂Ω. For θ ∈
(1,∞), consider in Ω the θ-Laplace operator ∆θu = div (| ∇u |θ−2 ∇u). Obviously,
∆2 is the classic Laplacian ∆. There are many applications involving such kind of
operators, including the so called two phase problems. For example, the operator(
∆ + c∆θ

)
, c > 0, θ ∈ (1,∞), has applications in Born-Infeld theory for electrostatic

fields (see Bonheure, Colasuonno & Fortunato [16], Fortunato, Orsina & Pisani [26]).
We also refer to Benci et al. [14] and Benci, Fortunato & Pisani [15] for more general
applications to quantum physics. Two phase equations arise also in other parts of
mathematical physics as reaction diffusion equations (see Cherfils & Il’yasov [18]) and
nonlinear elasticity theory (see Marcellini [35] and Zhikov [45]). In fact, the literature
related to this subject is vast and daily increasing.

For p, q ∈ (1,∞), define Apq := ∆p + ∆q, which is usually called (p, q)−Laplacian.
We assumes that p 6= q, because for p = q Apq = 2∆p and this case is not relevant for
our discussion here. Notice that the operator introduced above

(
∆ + c∆θ

)
with c = 1

is a (2, θ)−Laplacian. The restriction to the case c = 1 does not affect the generality.
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In what follows we recall some facts concerning the classic eigenvalue problem
for −∆p, p ∈ (1,∞), under the Dirichlet boundary condition{

−∆pu = λ | u |p−2 u in Ω,

u = 0 on ∂Ω.
(1.1)

A real number λ is called an eigenvalue of problem (1.1) if this problem admits a

nontrivial weak solution, i.e. there exists uλ ∈W 1,p
0 (Ω) \ {0} such that∫

Ω

| ∇uλ |p−2 ∇uλ · ∇w dx = λ

∫
Ω

| uλ |p−2 uλw dx ∀ w ∈W 1,p
0 (Ω). (1.2)

The nontrivial solutions uλ of problem (1.1) are called eigenfunctions corresponding
to the eigenvalue λ, and (λ, uλ) are called eigenpairs of problem (1.1).

A standard method to show the existence of an increasing sequence of eigenvalues
for problem (1.1),

0 < λD1 < λD2 ≤ λD3 ≤ · · · → ∞, (1.3)

relies on the Ljusternik-Schnirelmann principle and on the concept of Krasnosel’sk̆ıi
genus. There are also other methods to prove the existence of such a sequence (see
Garćıa-Azorero & Peral [28], Drábek & Robinson [23]). It is still not known whether
this sequence includes all eigenvalues of problem (1.1), except for the well-known
particular case p = 2.

On the other hand, it is well-known that −∆p with the Dirichlet boundary
condition admits a lowest positive eigenvalue λ1 (called principal eigenvalue), which
is simple, and there exists a corresponding eigenfunction which is positive in Ω (see
Lindqvist [34], Lê [33] and the references therein). Note also that the properties of
the next lowest eigenvalue λ2 have been investigated by Anane & Tsouli in [2], who
proved that λ2 has a variational characterization similar to that corresponding to the
linear case p = 2.

Similar situations can be reported in the case of Neumann, Robin or Steklov
boundary conditions.

2. Eigenvalue problems governed by the (p, q)−Laplacian

In this section we shall present some recent results on eigenvalue problems in-
volving the (p, q)−Laplacian with various boundary conditions. More precisely, these
results contain information regarding the corresponding eigenvalue sets. As seen be-
low, the fact that the differential operatorApq is non-homogeneous (i.e., p 6= q) implies
that the eigenvalue sets are intervals or contain intervals. Throughout this section we
will assume that p, q ∈ (1,∞), p 6= q, and introduce the following notations:

W := W 1,max{p,q}(Ω),

∂u

∂νpq
:=
(
| ∇u |p−2 + | ∇u |q−2

)∂u
∂ν
,

(2.1)

where ν is the outward unit normal to ∂Ω.
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2.1. The case of Dirichlet, Neumann, Robin or Steklov boundary conditions

Let us begin with the case of the Dirichlet boundary condition. Specifically, we
consider the problem {

−Apqu = λ | u |p−2 u in Ω,

u = 0 on ∂Ω.
(2.2)

The definitions of eigenvalues, eigenfunctions and eigenpairs for problem (2.2) are sim-
ilar to those corresponding to problem (1.1), the only differences being the following:
the left hand side of equation (1.2) is replaced by∫

Ω

(
| ∇uλ |p−2 + | ∇uλ |q−2

)
∇uλ · ∇w dx,

and the Sobolev space in which the weak solution is sought is now W
1,max{p,q}
0 (Ω).

The existence of eigenvalues for this problem in the case when the right hand
side of equation (2.2)1 is of the form λmp(x) | u |p−2 u in Ω, where mp ∈ L∞(Ω)
such that the Lebesgue measure of {x ∈ Ω; mp(x) > 0} is positive, was studied by
Tanaka in [42]. Using the Mountain Pass Theorem, Tanaka was able to obtain the full
eigenvalue set ([42, Theorem 1, Theorem 2]). In the particular case mp ≡ 1, Tanaka’s
result is the following:

Theorem 2.1. If p, q ∈ (1,∞), p 6= q, then the set of eigenvalues of problem (2.2)
is precisely (λD1 ,∞), where λD1 denotes the first eigenvalue of the negative Dirichlet
p−Laplacian, more exactly

λD1 := inf

{∫
Ω
| ∇u |p dx∫

Ω
| u |p dx

, u ∈W 1,p
0 (Ω)

}
. (2.3)

Notice that the eigenvalue set of −Apq with Dirichlet boundary condition has
been completely determined, being an interval independent of q.

Next, let us consider the case of a generalized Neumann boundary condition.
More precisely, consider the eigenvalue problem{

−Apqu = λ | u |q−2 u in Ω,
∂u
∂νpq

= 0 on ∂Ω.
(2.4)

The solution u of problem (2.4) is understood in a weak sense, as an element of the
Sobolev space W satisfying equation (2.4)1 in the sense of distributions and (2.4)2 in
the sense of traces. The scalar λ ∈ R is an eigenvalue of problem (2.4) if there exists
uλ ∈W \ {0} such that for all w ∈W we have∫

Ω

(
| ∇uλ |p−2 + | ∇uλ |q−2

)
∇uλ · ∇w dx = λ

∫
Ω

| uλ |q−2 uλw dx. (2.5)

Problem (2.4) was investigated by Mihăilescu [36, Theorem 1.1] (for q = 2, p ∈
(2,∞)), Fărcăşeanu, Mihăilescu & Stancu-Dumitru [24, Theorem 1.1] (for q = 2, p ∈
(1, 2)), Mihăilescu & Moroşanu [37, Theorem 1.1] (for q ∈ (2,∞), p ∈ (1,∞), p 6= q)
and Barbu & Moroşanu [7, Theorem 1] (for q ∈ (1, 2), p ∈ (1,∞), p 6= q).
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To investigate such a problem, one can use techniques based on minimization
arguments, which will be briefly described in what follows.

To begin with, let us choose w = uλ in (2.5). Clearly, we see that the eigenvalues
of problem (2.4) cannot be negative. It is also obvious that λ0 = 0 is an eigenvalue
of this problem with the corresponding eigenfunctions given by the nonzero constant
functions.

Now, if we assume that λ > 0 is an eigenvalue of problem (2.4) and choose w ≡ 1
in (2.5) we obtain that every eigenfunction uλ corresponding to λ necessarily belong
to the set

CNe :=
{
u ∈W ;

∫
Ω

| u |q−2 u dx = 0
}
. (2.6)

This is a symmetric cone. Moreover, CNe is a weakly closed subset ofW and CNe\{0} 6=
∅ (see [6, Section 2]).

Next, we shall briefly describe the method we can use to solve the eigenvalue
problem (2.4).

For λ > 0 consider the C1 functional Jλ : W → R, defined as

Jλ(u) =
1

p

∫
Ω

| ∇u |p dx+
1

q

∫
Ω

| ∇u |q dx− λ

q

∫
Ω

| u |q dx. (2.7)

This functional is often called the energy functional associated to problem (2.4).
Clearly, λ is an eigenvalue of problem (2.4) if and only if there exists a critical point
uλ ∈W \ {0} of Jλ, i. e. J ′λ(uλ) = 0.

Define

λ̃Ne := inf
w∈CNe\{0}

∫
Ω
| ∇w |q dx∫

Ω
| w |q dx

. (2.8)

Since λ̃Ne = λ
Neq
1 for q > p and λ̃Ne ≥ λ

Neq
1 for q < p, it follows that λ̃Ne > 0 (we

have denoted by λ
Neq
1 the first positive eigenvalue of the negative Neumann q−Laplace

operator).
Also, one can easily check that there is no eigenvalue of problem (2.4) in the set

(−∞, λ̃Ne] \ {0}. So, from now on we shall consider that λ is arbitrary but fixed in

the interval (λ̃Ne,∞).
We distinguish two cases related to p and q:

Case 1: 1 < q < p. In this case, as λ > λ̃Ne, the functional Jλ is coercive on
CNe ⊂W = W 1,p(Ω), i.e.,

lim
‖u‖W1,p(Ω)→∞,u∈CNe

Jλ(u) =∞.

In particular, there exists u∗ ∈ CNe \{0} where Jλ attains its minimal value over CNe,

Jλ(u∗) = inf
w∈CNe\{0}

Jλ(w) 6= 0

(see [7, Lemma 6]).

Case 2: 1 < p < q. Under this assumption, the functional Jλ is no longer coercive
and may be unbounded below on W = W 1,q(Ω). So, we consider the restriction of
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functional Jλ to the Nehari type manifold (see [41]):

Nλ = {v ∈ CNe \ {0}; 〈J ′λ(v), v〉 = 0}.

We observe that

Jλ(u) =
q − p
qp

∫
Ω

| ∇u |p dx > 0 ∀ u ∈ Nλ.

Moreover, any possible eigenfunction corresponding to λ belongs to Nλ.

In addition, since λ > λ̃Ne, we can easily check that Nλ 6= ∅.
In this case we have the following result (see [6, Case 2, Steps 1-4] and [7,

Lemma 6]):

If 1 < p < q and λ > λ̃Ne, then there exists u∗ ∈ Nλ where Jλ attains its
minimal value over Nλ,

mλ := inf
w∈Nλ

Jλ(w) > 0.

Using the above preliminary results and applying the Lagrange Multipliers Rule
in the case q ≥ 2 and, respectively, an approximation technique in the case 1 < q < 2,
one can show that in fact the minimizer u∗ of functional Jλ over CNe if q < p and,
respectively, over Nλ if q > p, is a global minimizer of Jλ over the whole W, i.e. u∗ is

an eigenfunction of problem (2.4) corresponding to the eigenvalue λ > λ̃Ne.
Thus, we have the following important result which provides the full spectrum

of the eigenvalue problem (2.4):

Theorem 2.2. Assume that p, q ∈ (1,∞), p 6= q. Then the set of eigenvalues of problem

(2.4) is precisely {0} ∪ (λ̃Ne,∞), where λ̃Ne is the positive constant defined by (2.8).

Now, consider the eigenvalue problem for the Steklov (p, q)−Laplacian, namely{
Apqu = 0 in Ω,
∂u
∂νpq

= λ | u |q−2 u on ∂Ω.
(2.9)

Using an approach similar to that used before for the Neumann (p, q)−Laplacian, one
can determine the full spectrum of the eigenvalue problem (2.9). More exactly, if we
denote

CS :=
{
u ∈W ;

∫
∂Ω

| uλ |q−2 uλ dσ = 0
}
, (2.10)

λ̃S := inf
w∈CS\{0}

∫
Ω
| ∇w |q dx∫

∂Ω
| w |q dσ

, (2.11)

we have the following result

Theorem 2.3. Assume that p, q ∈ (1,∞), p 6= q. Then the set of eigenvalues of problem

(2.9) is precisely {0} ∪ (λ̃S ,∞), where λ̃S is the positive constant defined by (2.11).

This theorem was proved by Costea & Moroşanu [19, Theorem 3.1] in the case
p ∈ (1,∞), q ∈ [2,∞), p 6= q and later by Barbu & Moroşanu [7, Theorem 1] in the
case p ∈ (1,∞), q ∈ (1, 2), p 6= q.
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Next, we pay attention to equation (2.4)1 with a generalized Robin boundary
condition. More precisely, we consider the following eigenvalue problem{

−Apqu = λ | u |q−2 u in Ω,
∂u
∂νpq

+ β | u |q−2 u = 0 on ∂Ω,
(2.12)

where β is a positive constant.
The eigenvalue problem (2.12) was studied by Gyulov & Moroşanu [30], who

found an interval of eigenvalues for this problem. In order to state the main result in
[30], we define

λ̃R := inf
w∈W\{0}

∫
Ω
| ∇w |q dx+ β

∫
∂Ω
| ∇w |q dσ∫

Ω
| w |q dx

,

λ0 := β
| ∂Ω |N−1

| Ω |N
,

(2.13)

where | · |N and | · |N−1 denote the Lebesgue measures of the two sets. Obviously,

the constant λ̃R coincides with the first eigenvalue of the Robin q−Laplace operator
(see Lê [33]) in the case q > p and is greater than or equal to that if q < p, so it is
positive.

The results concerning the spectrum of problem (2.12) can be summarized as
follows:

Theorem 2.4. Assume that p, q ∈ (1,∞), p 6= q and β is a positive constant. Then

λ̃R < λ0 and any λ ∈ (λ̃R, λ0) is an eigenvalue of problem (2.12). Moreover, the

problem (2.12) has no nontrivial solution for λ ∈ (−∞, λ̃R].

Note that this theorem does not say whether there are eigenvalues of problem
(2.12) in the interval [λ0,∞). On the other hand, we know that there exists a sequence
of eigenvalues of problem (2.12) which converges to ∞ (see [5]). However, the full
spectrum of problem (2.12) is still not completely known.

We also mention the paper by Papageorgiou, Vetro & Vetro [38] where an
eigenvalue problem more general than (2.12) is considered in the case 1 < p < q.
Here the operator Apq is perturbed with an indefinite and unbounded potential,
ζ ∈ Ls(Ω), s < N/q if q ≤ N and s = 1 if q > N. The constant β is replaced
by a function β ∈W 1,∞(∂Ω), β ≥ 0, β 6≡ 0 such that∫

Ω

ζ dx+

∫
∂Ω

β dσ > 0. (2.14)

By arguing as in [30], the authors obtain a result similar to Theorem 2.4 (see [38,
Theorem 1]).

Finally, let us consider the Steklov like eigenvalue problem{
−Apqu+ ρ1(x) | u |p−2 u+ ρ2(x) | u |q−2 u = 0, x ∈ Ω,
∂u
∂νpq

+ γ1(x) | u |p−2 u+ γ2(x) | u |q−2 u = λ | u |q−2 u, x ∈ ∂Ω.
(2.15)

Assume that the following hypotheses are fulfilled:
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(hρ1γ1
) ρ1 ∈ L∞(Ω) and γ1 ∈ L∞(∂Ω), ρ1, γ1 are nonnegative functions such that∫

Ω

ρ1 dx+

∫
∂Ω

γ1 dσ > 0; (2.16)

(hρ2γ2
) ρ2 ∈ L∞(Ω), γ2 ∈ L∞(∂Ω) and ρ2 is a nonnegative function.

It is worth pointing out that the potential function γ2 is allowed to be sign changing.
As usual, a scalar λ ∈ R is said to be an eigenvalue of the problem (2.15) if there

exists uλ ∈W \ {0} such that for all w ∈W∫
Ω

(
| ∇uλ |p−2 + | ∇uλ |q−2

)
∇uλ · ∇w dx

+

∫
Ω

(
ρ1 | uλ |p−2 +ρ2 | uλ |q−2

)
uλw dx

+

∫
∂Ω

(
γ1 | uλ |p−2 +γ2 | uλ |q−2

)
uλw dσ = λ

∫
∂Ω

| uλ |q−2 uλw dσ.

(2.17)

The function uλ is called an eigenfunction of the problem (2.15) (corresponding to
the eigenvalue λ).

Define

λ̃SR := inf
w∈W\{0}

∫
Ω

(
| ∇w |q +ρ2 | w |q

)
dx+

∫
∂Ω
γ2 | w |q dσ∫

∂Ω
| w |q dσ

. (2.18)

Problem (2.15) was studied by Barbu & Moroşanu [11]. Let us recall the main result
on its eigenvalue set:

Theorem 2.5. ([11, Theorem 1]) Assume that p, q ∈ (1,∞), p 6= q and assumptions
(hρiγi), i = 1, 2, are fulfilled. Then the set of eigenvalues of problem (2.15) is precisely

(λ̃SR,∞).

Note that if γ1 ≡ 0 and γ2 ≡ const. > 0, then we have a Steklov-Robin
boundary condition. The arguments we have used in the mentioned paper can easily
be adapted to the following eigenvalue problem{

−Apqu+ ρ1(x) | u |p−2 u+ ρ2(x) | u |q−2 u = λ | u |q−2 u, x ∈ Ω,
∂u
∂νpq

+ γ1(x) | u |p−2 u+ γ2(x) | u |q−2 u = 0, x ∈ ∂Ω,
(2.19)

under similar assumptions for the functions ρi, γi, i = 1, 2. While in the previous
works [30] and [38] only subsets of the corresponding spectra were found, in this case
the presence of the potential functions ρi, γi satisfying assumptions (hρiγi), i = 1, 2,
allows the full description of the spectrum.

2.2. The case of parametric boundary conditions

Consider the following eigenvalue problem{
−Apqu = λα(x) | u |r−2 u in Ω,
∂u
∂νpq

= λβ(x) | u |r−2 u on ∂Ω,
(2.20)

under the following hypotheses
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(hpqr) p, q, r ∈ (1,∞), p 6= q;

(hαβ) α ∈ L∞(Ω) and b ∈ L∞(∂Ω) are given nonnegative functions satisfying∫
Ω

α dx+

∫
∂Ω

β dσ > 0. (2.21)

Such eigenvalue problems were discussed for the first time by Von Below & François
[43] (see also François [27]) who considered the linear eigenvalue problem{

−∆u = λu in Ω,
∂u
∂ν = λβu on ∂Ω.

They call it a dynamical eigenvalue problem since it can be derived from the study of
the heat equation with dynamical boundary conditions. Also, the motivation behind
problem (2.20) comes from the study of a double phase parabolic equation (see Arora
& Shmarev [3], Huang [31], Marcellini [35] and the references therein) under a dy-
namical boundary condition. The existence theory for such parabolic problems relies
on the spectral theory of associated elliptic problems with the parameter λ both in
the equation and the boundary condition.

The eigenvalues and eigenfunctions of problem (2.20) can be defined as before.
All eigenfunctions of problem (2.20) belong to the set

Cr :=
{
u ∈W ;

∫
Ω

α | u |r−2 u dx+

∫
∂Ω

β | u |r−2 u dσ = 0
}
. (2.22)

In the case r = q, define

λ̃ := inf
w∈Cq\{0}

∫
Ω
| ∇w |q dx∫

Ω
α | w |q dx+

∫
∂Ω
β | w |q dσ

. (2.23)

If r 6= q we assume, without any loss of generality, that 1 < p < q and for r ∈ (p, q)
define

λ∗ := inf
v∈Cr\Zr

Γ
Kq(v)1−γKp(v)γ

Kr(v)
, λ∗ :=

r

q1−γpγ
λ∗, (2.24)

where

Zr := {v ∈W ;

∫
Ω

α | v |r dx+

∫
∂Ω

β | v |r dσ = 0},

Kp(u) :=

∫
Ω

| ∇u |p dx, Kq(u) :=

∫
Ω

| ∇u |q dx,

Kr(u) :=

∫
Ω

α | u |r dx+

∫
∂Ω

β | u |r dσ ∀ u ∈W = W 1,q(Ω),

γ :=
q − r
q − p

, Γ :=
q − p

(r − p)1−γ(q − r)γ
.

(2.25)

In the case r = q we have obtained the following result:

Theorem 2.6. ([7, Theorem 1]) Assume that p, q ∈ (1,∞), p 6= q, r = q and (hαβ)

holds. Then λ̃ > 0 and the set of eigenvalues of problem (2.20) (with r = q) is precisely

{0} ∪ (λ̃,∞), where λ̃ is the constant defined by (2.23).
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Note that problem (2.20) in the case q = 2 and p ∈ (1,∞), p 6= 2, has been
previously studied by Abreu & Madeira[1].

In the case r 6∈ {p, q}, we have the following result:

Theorem 2.7. ([8, Theorem 1.1], [10, Theorem 1]) Suppose that assumption (hαβ)
holds.

(a) If either (1 < r < p < q < ∞) or (1 < q < p < r < ∞ and r ∈
(

1, q(N−1)
N−q

)
if

1 < q < N), then the set of eigenvalues of problem (2.20) is [0,∞).

(b) If 1 < p < r < q < ∞, with r < q(N−1)
N−q if q < N, then 0 < λ∗ < λ∗ and for

λ ∈ {0} ∪ [λ∗,∞) there exists a weak solution uλ ∈ W 1,p(Ω) \ {0} to problem (2.20).
For any λ ∈ (−∞, λ∗) \ {0} problem (2.20) has only the trivial solution. Moreover,
the constants λ∗, λ

∗ can be expressed as follows

λ∗ = inf
v∈Cr\Zr

Kp(v) +Kq(v)

Kr(v)
, λ∗ = inf

v∈Cr\Z

1
pKp(v) + 1

qKq(v)
1
rKr(v)

. (2.26)

Thus, we were able to find the full eigenvalue sets in two of the three possible
cases. The difficult case is r ∈ (p, q), for which the eigenvalue set is not completely
known.

Now, let us pay attention to the following eigenvalue problem governed by the
(p, q, r)−Laplacian, which is defined by Apqru := ∆pu+ ∆qu+ ∆ru,{

−Apqr = λα(x) | u |r−2 u in Ω,
∂u
∂νpqr

= λβ(x) | u |r−2 u on ∂Ω,
(2.27)

under the assumption (hαβ) above and
(hpqr)

′ p, q, r ∈ (1,+∞), q < p, r 6∈ {p, q}.

In the boundary condition (2.27)2, ∂u
∂νpqr

denotes the conormal derivative correspond-

ing to the differential operator Apqr, i.e.,

∂u

∂νpqr
:=
( ∑
α∈{p,q,r}

| ∇u |α−2
)∂u
∂ν
.

where ν is the outward unit normal to ∂Ω.

Such a triple-phase eigenvalue problem is motivated by some models arising in math-
ematical physics. More exactly, let us consider the operator

Qu := −div
( ∇u√

1− | ∇u |2
)
.

This operator occurs in the electrostatic Born-Infeld equation (see [16]), in string
theory, in particular in the study of D-branes (see, e.g., [29]), and in classical relativity,
where Q represents the mean curvature operator in Lorent-Minkowski space (see, e.g.,
[12] and [17]). A second order approximation of Q is B := −4u−44u− 3

246u, which
is a negative (2, 4, 6)-Laplacian (see [40]), with the coefficient −3/2 instead of −1.
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In fact, one can consider a more general eigenvalue problem, with

Bu := ∆pu+ ρq∆qu+ ρr∆ru, ρq, ρr > 0,

instead of Apqr, and with

∂u

∂νB
:=
( ∑
α∈{p,q,r}

ρα | ∇u |α−2
)∂u
∂ν
, ρp = 1,

instead of ∂u
∂νpqr

(see [9, Section 4]).

Under assumption (hpqr)
′, the appropriate Sobolev space for problem (2.27) is

W̃ := W 1,max{p,r}(Ω). One can define the eigenvalues of problem (2.27) as follows:

λ ∈ R is an eigenvalue of problem (2.27) if there exists uλ ∈ W̃ \ {0} such that∫
Ω

(
| ∇uλ |p−2 + | ∇uλ |q−2 + | ∇uλ |r−2

)
∇uλ · ∇w dx

= λ
(∫

Ω

a | uλ |r−2 uλw dx+

∫
∂Ω

b | uλ |r−2 uλw dσ
)
∀ w ∈ W̃ .

(2.28)

If uλ is an eigenfunction corresponding to a positive eigenvalue λ then necessarily
uλ belongs to the set

C :=
{
u ∈ W̃ ;

∫
Ω

α | u |r−2 u dx+

∫
∂Ω

β | u |r−2 u dσ = 0
}
. (2.29)

Let us introduce the notations

Kα(u) :=

∫
Ω

| ∇u |α dx, α ∈ {p, q, r},

kr(u) :=

∫
Ω

α | u |r dx+

∫
∂Ω

β | u |r dσ ∀ u ∈W,

Z := {v ∈W ; kr(v) = 0}.

(2.30)

Define

Λr := inf
v∈C\Z

Kr(v)

kr(v)
. (2.31)

For r ∈ (q, p) denote

Λ∗ := inf
v∈C\Z

(
Γ
Kp(v)1−γKq(v)γ

kr(v)
+
Kr(v)

kr(v)

)
,

Λ∗ := inf
v∈C\Z

(
Γ

r

p1−γqγ
Kp(v)1−γKq(v)γ

kr(v)
+
Kr(v)

kr(v)

)
,

γ :=
p− r
p− q

, Γ :=
p− q

(r − q)1−γ(p− r)γ
.

(2.32)

The main result concerning problem (2.27) is the following:

Theorem 2.8. (see [9, Theorems 1.1 and 1.2]) Assume that (h′pqr) and (hαβ) above
are fulfilled. If r 6∈ (q, p), then Λr > 0 and the set of eigenvalues of problem (2.27) is
precisely {0} ∪ (Λr,∞), where Λr is the constant defined by (2.31). Otherwise, if r ∈
(q, p), and r < q(N −1)/(N − q) if q < N, then 0 < Λ∗ < Λ∗, every λ ∈ {0}∪ [Λ∗,∞)
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is an eigenvalue of problem (2.27), and for any λ ∈ (−∞,Λ∗) \ {0} problem (2.27)
has only the trivial solution.

It would be nice to see whether some of the above result could be extended to
the case in which operator Apq is replaced by the operator Qpq := Qp + Qq, where
for θ ∈ (1,∞) we have denoted by Qθ the operator defined as follows

Qθu := div
(
F θ−1(∇u)Fξ(∇u)

)
, (2.33)

where F is a positive, one-homogeneous, convex function on RN and Fξ denotes the
gradient of F.

If we assume that F ∈ C2(RN \{0}) and the Hessian matrix of F p,
(
F pξiξj (ξ)

)
i,j
,

is positive definite on RN \{0}, then operator Qθ is elliptic. This operator is a natural
generalization of ∆θ which can be obtained from Qθ if F is the Euclidean norm.
A typical example of F satisfying the above conditions is the lr−norm (denoted by
‖ · ‖r),

F (ξ) :=
( N∑
i=1

| ξi |r
)1/r

, r ∈ (1,∞),

for which the operator Qθ has the form

∆rθ(u) := div
(
‖ ∇u ‖θ−rr ∇ru

)
,

where

∇ru :=

(∣∣∣ ∂u
∂x1

∣∣∣r−2 ∂u

∂x1
, · · · ,

∣∣∣ ∂u
∂xN

∣∣∣r−2 ∂u

∂xN

)
.

Note that ∆rθ is a nonlinear operator unless θ = r = 2 when it reduces to the usual
Laplacian. An important special case is r = θ, when ∆θθ is the so-called pseudo
θ−Laplacian.

The operator defined in (2.33) is often called anisotropic p-Laplacian or Finsler
p-Laplacian. There exist many papers dedicated to the study of its eigenvalues, for
different boundary conditions (Dirichlet, Neumann, Robin or Steklov). See, e.g., [13],
[20], [21], [22], [25], [32], [44] and references therein.

As an example, let us consider the eigenvalue problem{
−Qpu = λα(x) | u |q−2 u in Ω,

F p−1(∇u)∇ξF (∇u) · ν = λβ(x) | u |q−2 u on ∂Ω.
(2.34)

As usual, a real number λ is an eigenvalue of problem (2.34) if there exists uλ ∈
W 1,p \ {0} such that for all w ∈W 1,p(Ω)∫

Ω

F (∇uλ)p−1∇ξF (∇uλ) · ∇w dx

= λ
(∫

Ω

α | uλ |q−2 uλw dx+

∫
∂Ω

β | uλ |q−2 uλw dσ
)
.

(2.35)

The following result holds for problem (2.34).
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Theorem 2.9. ([4, Theorem 1.2]) Assume that q ∈ (1,∞), p ∈
(

Nq
N+q−1 ,∞

)
, p 6= q,

and (hαβ) are fulfilled. Then the set of eigenvalues of problem (2.34) is [0,∞).

We expect that many of the above results will be extended to eigenvalue problems
governed by the operator Qpq.
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[5] Barbu, L., Burlacu, A., Moroşanu, G., On a bulk-boundary eigenvalue problem involving
the (p, q)-Laplacian (in preparation).
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[10] Barbu, L., Moroşanu, G., On the eigenvalue set of the (p, q)−Laplacian with a Neumann-
Steklov boundary condition, Differential Integral Equations, 36(2023), no. 5-6, 437-452.
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”Babeş-Bolyai” University,
Faculty of Mathematics and Computer Science,
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