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Abstract. Since quasiconvex functions have convex lower level sets it is possible
to minimize them by means of separating hyperplanes. An example of such a
procedure, well-known for convex functions, is the subgradient method. However,
to find the normal vector of a separating hyperplane is in general not easy for the
quasiconvex case. This paper attempts to gain some insight into the computational
aspects of determining such a normal vector and the geometry of lower level sets
of quasiconvex functions. In order to do so, the directional differentiability of
quasiconvex functions is thoroughly studied. As a consequence of that study, it
is shown that an important subset of quasiconvex functions belongs to the class
of quasidifferentiable functions. The main emphasis is, however, on computing
actual separators. Some important examples are worked out for illustration.
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1. Introduction

The backbone of every successful procedure to minimize a general nonsmooth
convex function is separation. For example, so-called subgradient methods as discussed
in [18], refinements of such methods with space dilation yielding the ellipsoid algo-
rithm, [9, 22], use the important property of a finite-valued convex function that every
nonoptimal point in its domain can be properly separated by an affine functional, or
hyperplane, from the nonempty set of points with lower functional value, the so-
called lower level set. Also, the important class of bundle methods, [13], is based on
the construction of hyperplanes supporting the epigraph and so these methods can
be seen as refinements of the cutting plane idea of Kelley, [14]. Since the epigraph of
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a convex function and its lower level sets are convex it is possible to separate both
the epigraph and a lower level set from points outside their relative interiors and
use the corresponding separating hyperplanes to minimize the function. Moreover,
for finite-valued convex functions the normal vectors of both types of hyperplane are
determined by elements of the nonempty subgradient set at the corresponding point.
To extend the above results to a larger class of functions it is natural to consider qua-
siconvex functions. These functions, by definition, have convex lower level sets. We
first observe that for an important subset of the quasiconvex functions, the so-called
lower subdifferentiable functions, one can define the concept of a lower subgradient,
[17]. This lower subgradient at some point satisfies the subgradient inequality on the
corresponding lower level set (therefore its name!) and this enables us to apply the
cutting plane approach of Kelley, [17]. Since this lower subgradient can be identified
by means of a hyperplane separating the point from its convex lower level set it is
important to be able to compute such a separating hyperplane. A similar observation
holds for all quasiconvex functions and this paper addresses the question how to com-
pute the normal vector of a hyperplane separating the lower level set of a quasiconvex
function from any given nonminimal point on its domain. We try to keep the class
of quasiconvex functions as general as possible by not assuming lower subdifferentia-
bility. Unfortunately some results are only valid under some additional assumptions.
These assumptions cease to hold for quasiconvex functions which are constant in some
neighborhood of a nonminimal point. If this happens it seems impossible to compute a
normal vector of a separating hyperplane using only local information. However, this
does not imply that every algorithm based on the construction of separating hyper-
planes will get trapped in such a “bad” point. In a pair of subsequent papers, [6, 8],
an adaptation of the ellipsoid method is considered which keeps track of a hyper-
rectangle containing a minimal point. This hyperrectangle is in general much smaller
than the current ellipsoid and can be constructed without increasing the complexity
order of the algorithm. This gives the opportunity, in case the center of the current
ellipsoid is such a “bad” point, to search this “easy” hyperrectangle in order to either
prove optimality of the present point or find another point from where it is possible to
proceed. In this paper we also show that every quasiconvex function with a Lipschitz
continuous directional derivative is quasidifferentiable, [5]. This result relates these
two function classes.

2. Quasiconvex functions

We recall that a function f : Rn−→ [−∞,+∞] is called proper if the domain
of f , given by dom(f) := {x ∈ Rn : f(x) < ∞}, is nonempty and if f(x) > −∞
for every x ∈ Rn. Among the set of proper functions we will now concentrate on the
so-called evenly quasiconvex functions defined below.

Definition 2.1. A function f : Rn−→ [−∞,+∞] is called quasiconvex if the lower level

sets L≤f (α) := {x ∈ Rn : f(x) ≤ α} are convex for every α ∈ R. The function is called
evenly quasiconvex if its lower level sets are all evenly convex. Observe a set is called
evenly convex if it can be represented by the intersection of open halfspaces.
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Observe that every lower semicontinuous quasiconvex function is evenly qua-
siconvex, since it has closed convex (hence evenly convex) lower level sets. More-
over, it can also be shown (see [15]) that every upper semicontinuous quasiconvex
function is evenly quasiconvex Clearly, for f quasiconvex, it is well known that
dom(f) =

⋃
α∈IR L

≤
f (α) is convex due to L≤f (α) ⊆ L≤f (β) for every α ≤ β. The

following result lists some well-known equivalent characterizations of quasiconvexity,
see [19].

Lemma 2.2. The following conditions are equivalent.

1. The function f : Rn−→ [−∞,+∞] is quasiconvex.
2. The sets L<f (α) := {x ∈ Rn : f(x) < α} are convex for each α ∈ R.

3. f(λx+ (1− λ)y) ≤ max{f(x), f(y)} for every x,y ∈ Rn and 0 < λ < 1.

In the next section we will consider the special class of proper positively homo-
geneous evenly quasiconvex functions.

3. On properties of proper positively homogeneous evenly
quasiconvex functions

This section mainly derives similar results as those obtained by Crouzeix in
[2, 3, 4]. However, while Crouzeix considers proper, positively homogeneous, lower
semicontinuous quasiconvex functions we replace lower semicontinuity and quasicon-
vexity by evenly quasiconvexity. Despite this weaker assumption it is possible to derive
similar results by means of easier proofs. Since the main results in this section are
a consequence of duality results for quasiconvex functions these simple proofs are
possible using a more natural generalization, [16, 7], of the well-known biconjugate
or Fenchel-Moreau theorem for convex functions, [12, 21]. It turns out that proper
evenly quasiconvex functions originate a more symmetrical representation in the dual
space than proper lower semicontinuous quasiconvex functions, [16, 7], and using this
more suitable representation one can give simpler proofs. Moreover, since the defi-
nition of an evenly quasiconvex function already “includes” a separation result for
convex sets it is also possible to give a very simple and easy proof for this dual rep-
resentation of proper evenly quasiconvex functions. For a proof of the next result the
reader should consult Theorem 1.16 and 1.18 of [6]. Observe that 〈., .〉 denotes the
well known innerproduct.

Lemma 3.1. Let ϕ : Rn−→ [−∞,+∞] be a proper positively homogeneous evenly
quasiconvex function satisfying ϕ(0) = 0. For every x ∈ Rn it follows

ϕ(x) = sup
{
ψ
(
x?, 〈x?,x〉

)
: x? ∈ Rn

}
(3.1)

with

ψ(x?, r) := inf{ϕ(y) : 〈x?,y〉 ≥ r, y ∈ Rn}. (3.2)

Moreover, for every x? ∈ Rn the function r 7−→ ψ(x?, r) is a nondecreasing positively
homogeneous function.
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The above lemma is the alluded dual representation. Using it, the next results
provide slight improvements over related results in [4, 2]. Recall that a convex posi-
tively homogeneous function is also called sublinear, see [12].

Lemma 3.2. If ϕ : Rn−→ [−∞,+∞] is a proper positively homogeneous evenly qua-
siconvex nonnegative function satisfying ϕ(0) = 0 then ϕ is a lower semicontinuous
sublinear function with its subgradient set ∂ϕ(0) at 0 nonempty.

Proof. Since the function ϕ is assumed to be positively homogeneous it remains to
prove that it is lower semicontinuous and convex. By (3.1) it is sufficient to prove that

the function r 7−→ ψ(x?, r), and hence the function x 7−→ ψ
(
x?, 〈x?,x〉

)
, is lower

semicontinuous and convex for every x? ∈ Rn with ψ defined by (3.2) in Lemma 3.1.
Clearly it follows by the nonnegativity of the function ϕ that 0 ≤ ψ(x?, r) for every
(x?, r) ∈ Rn+1. Also, ψ(x?, 0) = inf{ϕ(y) : 〈x?,y〉 ≥ 0, y ∈ Rn} ≤ ϕ(0) = 0 and
so ψ(x?, 0) = 0. Hence by the nonnegativity of ψ and the function r 7−→ ψ(x?, r)
is nondecreasing we conclude that ψ(x?, r) = 0 for every r ≤ 0. Again using ϕ is
a positively homogeneous function and hence the function r 7−→ ψ(x?, r) is also
positively homogeneous it follows for r > 0 that ψ(x?, r) = rψ(x?, 1) with ψ(x?, 1) ≥
0. This shows that the convexity and lower semicontinuity of the function r 7−→
ψ(x?, r) is established whether ψ(x?, 1) is finite or not. To prove the last part we
observe, since the function ϕ is proper lower semicontinuous and sublinear, that by
Theorem V.3.1.1 of [12] the function ϕ is the support function of the closed nonempty
convex set C := {x? ∈ Rn : 〈x?,x〉 ≤ ϕ(x) for every x ∈ Rn}. Since ϕ(0) = 0 we have
C = ∂ϕ(0) and the proof is finished. �

Another consequence of Lemma 3.1 is given by the following result. Remember
K◦ denotes the well known polar of the cone K given by K◦ = {x∗ ∈ Rn : 〈x∗,x〉 ≤
0 for every x ∈ K}.

Lemma 3.3. If ϕ : Rn−→ [−∞,+∞] is a proper positively homogeneous evenly qua-

siconvex function satisfying ϕ(0) = 0 and dom(ϕ) ⊆ cl
(
L<ϕ (0)

)
then ϕ is a lower

semicontinuous sublinear function with its subgradient set ∂ϕ(0) at 0 nonempty.

Proof. To ensure the first part of the result only the convexity and lower semicontinu-
ity of the function ϕ require a proof. This will once again be based on analyzing the
function r 7−→ ψ(x?, r) for each x? ∈ Rn. We discuss the following mutually exclusive
cases for x?.

1. Let x? not belong to
(

cl
(
L<ϕ (0)

))◦
. If this holds we can find some x0 satisfying

ϕ(x0) < 0 and 〈x?,x0〉 > 0. Since the function ϕ is proper the value ϕ(x0) must
be finite. Hence, for every r > 0 we obtain by Lemma 3.1 that

ψ(x?, r) = 〈x?,x0〉−1ψ
(
x?, r〈x?,x0〉

)
≤ 〈x?,x0〉−1ϕ(rx0) = r〈x?,x0〉−1ϕ(x0) < 0

and so limr↑∞ ψ(x?, r) = −∞. This yields using r 7−→ ψ(x?, r) is nondecreasing
that ψ(x?, r) = −∞ for each r ∈ R and we obtain by relation (3.1) and the
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function ϕ is proper that

ϕ(x) = sup{ψ(x, 〈x∗,x〉) : x∗ ∈ cl
(
L<ϕ (0)

))◦
}.

2. Let x? belong
(

cl
(
L<ϕ (0)

))◦
and consider ψ(x?, r) for r > 0. If the vector

y ∈ Rn satisfies 〈x?,y〉 ≥ r > 0 then y does not belong to cl
(
L<ϕ (0)

)
and

so y is not an element of dom(ϕ). This implies ϕ(y) = +∞ for each y ∈ Rn
satisfying 〈x?,y〉 ≥ r > 0 and by relation (3.2) we obtain ψ(x?, r) = +∞ for
r > 0. To analyze ψ(x?, r) for r ≤ 0 we consider the following two mutually
exclusive cases.
(a) There exists an x0 belonging to L<ϕ (0) such that 〈x?,x0〉 = 0. If this holds

we obtain by relation (3.2) for every α > 0 that

ψ(x?, 0) = ψ
(
x?, 〈x?,x0〉

)
≤ ϕ(αx0) = αϕ(x0) < 0

and as in part 1 we obtain ψ(x?, 0) = −∞.This shows ψ(x?, r) = −∞ for
every r ≤ 0.

(b) For every x belonging to L<ϕ (0) it follows that 〈x?,x〉 < 0. To compute
ψ(x?, 0) we first observe for each y satisfying 〈x?,y〉 ≥ 0 that by our
assumption the vector y does not belong to L<ϕ (0) and so ϕ(y) ≥ 0. Since 0
is one of those elements y and ϕ(0) = 0 it follows from (3.2) that ψ(x?, 0) =
0. Clearly, Lemma 3.1 yields for r < 0 that

ψ(x?, r) = −rψ(x?,−1)

with −∞ ≤ ψ(x?,−1) < 0.

To finish the proof it follows by the above analysis that we must only concentrate on

part 2b and verify that there exists some x? belonging to
(

cl
(
L<ϕ (0)

))◦
satisfying

ψ(x?,−1) > −∞. If such an x? does not exists then ϕ(x) = −∞ for every x ∈ L<ϕ (0)
and this contradicts that the function ϕ is proper. Hence, to represent the function ϕ
as in relation (3.1) it is enough to consider elements of the set

S :=
{
x? ∈

(
cl
(
L<ϕ (0)

))◦
: −∞ < ψ(x?,−1) < +∞

}
and we have verified that

ϕ(x) = sup
{
ψ
(
x?, 〈x?,x〉

)
: x? ∈ S

}
. (3.3)

Since for every x? ∈ S the function x 7−→ ψ
(
x?, 〈x?,x〉

)
is convex and lower semi-

continuous this shows by relation (3.3) that the function ϕ is lower semicontinuous
and convex. The last part follows from similar arguments as used in the proof of
Lemma 3.2. �

Observe for ϕ convex with ϕ(0) = 0 that ϕ(x) ≥ 0 for every x ∈ Rn is equivalent
to 0 ∈ ∂ϕ(0). So, for ϕ satisfying the conditions of Lemma 3.2 we have 0 ∈ ∂ϕ(0)
while for ϕ satisfying the conditions of Lemma 3.3 we have 0 6∈ ∂ϕ(0).
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An immediate consequence of the previous two lemmas is the following theorem,
which improves a related result in [4, 2]. Before discussing this theorem we introduce
for any function ϕ the related functions ϕ− and ϕ+ given by

ϕ−(x) :=

{
ϕ(x) if x ∈ cl

(
L<ϕ (0)

)
+∞ otherwise

(3.4)

and

ϕ+(x) :=

{
0 if x ∈ cl

(
L<ϕ (0)

)
ϕ(x) otherwise.

(3.5)

Theorem 3.4. Every proper, positively homogeneous evenly quasiconvex function ϕ
satisfying ϕ(0) = 0 is lower semicontinuous and is the minimum of two lower semi-
continuous sublinear functions ϕ− and ϕ+.

Proof. If ϕ(x) ≥ 0 for every x or equivalently L<ϕ (0) is empty we obtain by relation
(3.4) and (3.5) that ϕ−(x) = +∞ and ϕ+(x) = ϕ(x) for every x and the desired result
follows by Lemma 3.2. If L<ϕ (0) is nonempty it follows using ϕ is a proper positively

homogeneous evenly quasiconvex function and cl
(
L<ϕ (0)

)
a nonempty closed convex

cone (hence evenly convex) that ϕ+ satisfies the conditions of Lemma 3.2 and ϕ− the
conditions of Lemma 3.3. Hence the functions ϕ− and ϕ+ are lower semicontinuous
and sublinear. This also implies by relation (3.4) that ϕ−(x) ≤ 0 for every x ∈
cl
(
L<ϕ (0)

)
and by relations (3.4) and (3.5) we obtain ϕ(x) = min{ϕ−(x), ϕ+(x)}

showing the desired result. �

By Theorem 3.4 every proper evenly quasiconvex positively homogeneous func-
tion which is finite at 0 must be lower semicontinuous. This is a rather remarkable
result which does not hold in general for evenly quasiconvex functions. As an example
we mention the evenly quasiconvex function

sign(x) :=

 −1 if x < 0
0 if x = 0
1 if x > 0

which is neither lower nor upper semicontinuous at 0.
If ϕ is a finite positively homogeneous evenly quasiconvex function one can show,

under some additional condition, that ϕ is continuous on Rn. To establish this result
we need the following lemma.

Lemma 3.5. If the function ϕ is proper positively homogeneous and evenly quasiconvex
and its lower level set L<ϕ (0) is nonempty then the following conditions are equivalent.

1. rbd(L<ϕ (0)) ⊆ L=
ϕ (0).

2. L<ϕ (0) is relatively open.

Proof. To verify 1 ⇒ 2 it is sufficient to prove that L<ϕ (0) ⊆ ri(L<ϕ (0)). Let d0 ∈
L<ϕ (0) ⊆ cl(L<ϕ (0)) and suppose that d0 does not belong to ri(L<ϕ (0)). Then d0 ∈
rbd(L<ϕ (0)) and hence by 1 we obtain that ϕ(d0) = 0. This contradicts d0 ∈ L<ϕ (0) and
we have shown that L<ϕ (0) ⊆ ri(L<ϕ (0)). To prove 2⇒ 1 we observe for d ∈ rbd(L<ϕ (0))
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that d does not belong to ri(L<ϕ (0)) = L<ϕ (0). Hence, ϕ(d) ≥ 0 and since ϕ+(d) = 0
for every d ∈ cl(L<ϕ (0)) with ϕ+ defined as in relation (3.5), it follows by Theorem
3.4 that 0 ≤ ϕ(d) = min{ϕ−(d), ϕ+(d)} ≤ 0 or equivalently ϕ(d) = 0. �

In the next result we show that under some additional condition a finite positively
homogeneous evenly quasiconvex functions is actually continuous.

Lemma 3.6. If the function ϕ is a finite positively homogeneous evenly quasiconvex
function and the set L<ϕ (0) is relatively open then the function ϕ is continuous on Rn.

Proof. If L<ϕ (0) is empty then by Lemma 3.2 we obtain that ϕ(d) = ϕ+(d) for every
d ∈ Rn. Since dom(ϕ+) = Rn and by Lemma 3.2 the function ϕ+ is convex it
follows by Corollary 10.1.1 of [21] that ϕ is continuous. If L<ϕ (0) is nonempty then
by Theorem 10.1 of [21], Lemma 3.3, Lemma 3.2 and Theorem 3.4 it is sufficient
to prove that ϕ is upper semicontinuous on rbd(L<ϕ (0)). Since by assumption the
set L<ϕ (0) is relatively open we obtain by Lemma 3.5 that ϕ(d) = 0 for every d ∈
rbd(L<ϕ (0)). Suppose now by contradiction that lim supd→d0

ϕ(d) > ϕ(d0) = 0 for
some d0 ∈ rbd(L<ϕ (0)). Hence, there exists a sequence {dk : k ≥ 1} with limk↑∞ dk =
d0 such that limk↑∞ ϕ(dk) > 0. Since by Lemma 3.4 the function ϕ+ is sublinear
and finite it follows as in the first part of this proof that ϕ+ is continuous and we
obtain by Theorem 3.4 that ϕ+(d0) = limk↑∞ ϕ+(dk) ≥ limk↑∞ ϕ(dk) > 0. This
implies using the definition of ϕ+ in relation (3.5) that d0 6∈ cl(L<ϕ (0)) contradicting
d0 ∈ rbd(L<ϕ (0)). Therefore the function ϕ must be upper semicontinuous for every
d ∈ rbd(L<ϕ (0)) and this proves the desired result. �

It is now immediately clear for ϕ continuous on Rn that the set L<ϕ (0), if not
empty, has full dimension n and so ri(L<ϕ (0)) = int(L<ϕ (0)) = L<ϕ (0).

The properties of the above special class of positively homogeneous evenly qua-
siconvex functions will be useful to study the local properties of more general quasi-
convex functions. A way to do this is to look at directional derivatives of quasiconvex
functions as functions of the direction. This will be discussed in the next section.

4. Directional derivatives of quasiconvex functions

Unlike convex functions, quasiconvex functions do not always have directional
derivatives. An important generalization of directional derivatives is given by the
Dini upper derivative of f at x0 in the direction d. This generalization coincides with
the definition of Dini upper derivative used within the theory of quasidifferentiable
functions if f is locally Lipschitz around x0, see [5].

Definition 4.1. If f : Rn−→ [−∞,+∞] is some function with f(x0) finite the Dini
upper derivative of f at x0 in the direction d is given by

f ′+(x0;d) := lim sup
t↓0

f(x0 + td)− f(x0)

t
.
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We observe by the definition of lim sup that f ′+(x0;d) always exists, i.e. −∞ ≤
f ′+(x0;d) ≤ +∞, for any function f : Rn−→ [−∞,+∞] with f(x0) finite. Moreover, it
is easy to verify that d 7−→ f ′+(x0;d) is positively homogeneous and that f ′+(x0; 0) = 0.
If we know additionally that f is quasiconvex then the next result is easy to prove
using Lemma 2.2, see [2].

Lemma 4.2. Let f : Rn−→ [−∞,+∞] be a quasiconvex function with f(x0) fi-
nite. Then the function d 7−→ f ′+(x0;d) is positively homogeneous, quasiconvex and
f ′+(x0; 0) = 0.

In the remainder of this paper we will always assume that f : Rn−→ [−∞,+∞] is
a quasiconvex function with f(x0) finite and d 7−→ f ′+(x0;d) is a proper evenly quasi-
convex function. Introducing the function ϕ(d) := f ′+(x0;d) we observe by Lemma 4.1
that this function satisfies the properties of the functions studied in Section 3. Al-
though this function depends on x0, whenever no risk of confusion exists we do not
refer to it for the sake of notation convenience.

Lemma 4.3. If the function f is quasiconvex and finite at x0 and the function ϕ given
by ϕ(d) := f ′+(x0;d) is a finite evenly quasiconvex function then the function ϕ is
continuous on Rn.

Proof. The function ϕ is positively homogeneous and satisfies ϕ(0) = 0. Applying
now Lemma 3.6 it is sufficient to verify that L<ϕ (0) is relatively open. By definition
this holds for L<ϕ (0) empty. Hence assume that L<ϕ (0) nonempty and let d ∈ L<ϕ (0).

This implies that there exists some t0 > 0 satisfying x0 + td ∈ ri(L<f (f(x0)).

Hence by Theorem 6.8.2 of [21] we obtain that d ∈ t−10 (ri(L<f (f(x0))) − x0) ⊆
ri(cone(L<f (f(x0)) − x0)) and we obtain by Lemma 4.4 that d ∈ ri(L<ϕ (0)). This
shows the result. �

Notice that Crouzeix in [2, 3, 4] observed that ϕ might not be lower semicontin-
uous even if ϕ is a finite, positively homogeneous and quasiconvex function. Finally,
if f is quasiconvex and additionally locally Lipschitz around x0, (see [1] fot the def-
inition of locally Lipschitz), it is easy to show by a direct proof that ϕ is Lipschitz
continuous (and hence continuous) on Rn.
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Figure 1. Interpretation of the partial description

As already pointed out in the introduction, it is crucial for many optimization
methods to be able to compute an element of the normal cone of L<f (f(x0)) at x0.
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It is essential to consider the strict lower level set L<f (f(x0)) since, unlike for convex
functions, a nonminimal point may be in the interior of its lower level set. In order
to see that take any point in the segment connecting a and b in Figure 1. The first
picture is drawn in the domain and shows two lower level sets. The one with a dashed
boundary is L<f (f(b)) and the one with a full boundary is L≤f (f(a)) = L≤f (f(b)). The
second picture is drawn in the epigraph space and corresponds to slicing the graph of
the function along the line going through a and b.

Clearly, in order to seek a vector normal to L<f (f(x0)) we must know that the

set L<f (f(x0)) is nonempty. A sufficient condition to ensure that this strict lower
level set is nonempty is the nonemptiness of the set of strict descent directions at
x0 defined as L<ϕ (0) := {d ∈ Rn : f ′+(x0;d) < 0}. Unfortunately, in the case of
quasiconvex functions, contrary to convex functions (see [12]), the nonemptiness of
the set of strict descent directions is not necessary as shown by f(x) = x3 at 0.

This function is differentiable at 0 and its derivative at this point equals 0.
Therefore f ′(0; d) = 0 for every d ∈ R, while L<f (0) = (−∞, 0) is clearly nonempty.

x

y

Figure 2. A simple but “nasty” quasiconvex function: x3

For quasiconvex functions a necessary condition is given by the nonemptiness of
the set L≤ϕ (0) \ {0} with L≤ϕ (0) := {d ∈ Rn : f ′+(x0;d) ≤ 0} the set of descent direc-
tions. It turns out, see Section 4.2 ahead, that the function ϕ completely characterizes
the normal cone of L<f (f(x0)) at x0 if L<ϕ (0) is nonempty. For L<ϕ (0) empty we also

need global information to find out whether L<f (f(x0)) is nonempty or not and so
the local information given by ϕ is insufficient even to decide whether x0 minimizes
f or not.

To discuss the case with L<ϕ (0) nonempty we first observe that L<ϕ (0) is a convex

subset of the nonempty convex cone cone(L<f (f(x0))−x0). For L<ϕ (0) nonempty it is

shown in the next result that ri(cone(L<f (f(x0)) − x0)) equals ri(L<ϕ (0)). The same

result is proven by Crouzeix in [3] but for completeness we list a more detailed proof.

Lemma 4.4. If f : Rn−→ [−∞,+∞] is a quasiconvex function with f(x0) finite and
L<ϕ (0) nonempty then ri(cone(L<f (f(x0))− x0)) equals ri(L<ϕ (0)).

Proof. Since L<ϕ (0) ⊆ cone(L<f (f(x0)) − x0) and L<ϕ (0) is nonempty it is sufficient

by Theorem 6.3.1 of [21] to verify that ri(cone(L<f (f(x0)) − x0)) ⊆ L<ϕ (0). Consider

now some d0 ∈ ri(cone(L<f (f(x0))− x0)) and let

d ∈ L<ϕ (0) ⊆ cone(L<f (f(x0))− x0).
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By Theorem 6.4 of [21] there exists some µ < 0 such that

dµ := d0 + µ(d− d0) ∈ ri(cone(L<f (f(x0))− x0))

and so d0 = 1
1−µdµ −

µ
1−µd. Moreover, since dµ ∈ ri(cone(L<f (f(x0)) − x0)) and by

Theorem 6.8.1 of [21] it follows that 0 does not belong to ri(cone(L<f (f(x0)) − x0))

we can find some t0 > 0 satisfying f(x0 + t0dµ) < f(x0). Construct now for each
t > 0 the line Lt going through x0 + t0dµ and mt := x0 + td0 and crossing x0 + αd
in nt := x0 + ξtd, see Figure 3. By the quasiconvexity of f it follows that

f(mt) = f(x0 + td0) ≤ max{f(x0 + t0dµ), f(x0 + ξtd)}. (4.1)

To compute ξt we intersect the line Lt with the line x0+αd. After some computations
we obtain

ξt =
−µtt0

(1− µ)t0 − t
.

Substituting this into (4.1) yields

f(x0 + td0)− f(x0)

t
≤ max

f(x0 + t0dµ)− f(x0)

t
,
f
(
x0 + −µtt0

(1−µ)t0−td
)
− f(x0)

t


and due to x0 + t0dµ ∈ L<f (f(x0)) and limt↓0

ξt
t = −µ

1−µ > 0 we obtain

f ′+(x0;d0) ≤ −µ
1− µ

f ′+(x0;d) < 0.

.
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nt = x0 + ξtd

x0 + αd

x0 + αd0

Figure 3. Construction of Lt

Hence, d0 ∈ L<ϕ (0) and the desired result is proven. �

The previous result will play an important role in the sequel. Its main importance
is to show that if the set L<ϕ (0) is nonempty then this set is indistinguishable by

polarity from the set cone(L<f (f(x0))− x0).
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4.1. Quasidifferentiability of quasiconvex functions

This section shows the important result that a quasiconvex function with a
Lipschitz continuous directional derivative at x0 is quasidifferentiable at x0.

Definition 4.5 ([5]). If f : Rn−→ [−∞,+∞] is some function with f(x0) finite the
directional derivative of f at x0 in the direction d is given by

f ′(x0;d) := lim
t↓0

f(x0 + td)− f(x0)

t
.

Moreover, f is said to be quasidifferentiable at x0 if d 7−→ f ′(x0;d) exists for every
d ∈ Rn and

f ′(x0;d) = max
y∈∂f(x0)

〈d,y〉+ min
y∈∂f(x0)

〈d,y〉

with ∂f(x0), resp. ∂f(x0), compact convex subsets of Rn. The sets ∂f(x0) and ∂f(x0)
are called respectively the subdifferential and the superdifferential of f at x0 being
IDf(x) := [∂f(x0), ∂f(x0)] ⊆ R2n the quasidifferential of f at x0.

Observe that whenever f ′(x0;d) exists it equals f ′+(x0;d). It is well-know that
every finite convex function f : Rn−→ R is quasidifferentiable at every x ∈ Rn with
IDf(x) := [∂f(x), {0}] and ∂f(x) the nonempty subgradient set of f at x. Moreover,
it can be easily shown, [5], that the function x 7−→ min{f1(x), f2(x)} is quasidif-
ferentiable at x0 if fi, i = 1, 2, is quasidifferentiable at x0. In general, the set of
quasidifferentiable functions at x0 is a linear space closed with respect to all alge-
braic operations and, more importantly, to the operations of taking maxima and
minima. Also for f quasidifferentiable at x0 it is easy to verify that d 7−→ f ′(x0;d)
is Lipschitz continuous. To relate the previous results for quasiconvex functions to
the above class of functions we observe for f : Rn−→ [−∞,+∞] quasiconvex, L<ϕ (0)
empty with ϕ(d) := f ′(x0;d) a finite continuous function that by Theorem (3.4) and
Lemma 3.2 the function f is quasidifferentiable at x0 with IDf(x0) = [∂ϕ+(0), {0}].
If this holds the Lipschitz continuity of ϕ follows by the finiteness of ϕ+. However,
if L<ϕ (0) is nonempty we have to assume that ϕ is Lipschitz continuous (with Lips-
chitz constant L > 0) and by Theorem 3.4 this implies ϕ(d) = min{ϕ−(d), ϕ+(d)}.
Applying Lemma 3.3 and Lemma 3.2 we know that ϕ+ is a finite positively homoge-
neous convex function and ϕ− a proper lower semicontinuous positively homogeneous
convex function. Hence to prove that f is quasidifferentiable at x0 it is sufficient to
replace ϕ− by a finite positively homogeneous convex function without destroying
Theorem 3.4. Clearly for ϕ Lipschitz continuous it follows that L<ϕ (0) is open and
hence int(dom(ϕ−)) = L<ϕ (0). This implies by Theorem 23.4 of [21] that ∂ϕ−(d) is

a nonempty compact convex set for every d ∈ D<f (x0) and since ϕ is Lipschitz con-
tinuous with Lipschitz constant L it is easy to show by the subgradient inequality
applied to ϕ− that ∂ϕ−(d) ⊆ LB for every d ∈ L<ϕ (0) with B := {x ∈ Rn : ‖x‖ ≤ 1}
the closed unit Euclidean ball. On the other hand, since ϕ− is positively homoge-
neous it follows that ∂ϕ−(λd) = ∂ϕ−(d) for every λ > 0 and d ∈ L<ϕ (0) and so
by the previous observations one can pick for every d0 ∈ L<ϕ (0) and corresponding
ray {λd0 : λ > 0} ⊆ L<ϕ (0) a subgradient ξ(d0) ∈ ∂ϕ−(λd0), λ > 0, satisfying
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‖ξ(d0)‖ ≤ L. Consider now the function ϕ̂− : Rn−→ [−∞,+∞] given by

ϕ̂−(d) := sup
d0∈L<

ϕ (0)

ϕ−(d0) + 〈ξ(d0),d− d0〉. (4.2)

For this function the following result holds.

Lemma 4.6. If f : Rn−→ [−∞,+∞] is a quasiconvex function with f(x0) finite, ϕ is
Lipschitz continuous with ϕ(d) := f ′(x0;d) and L<ϕ (0) is nonempty then the function
ϕ̂− given by (4.2) is a finite, positively homogeneous and convex function. Moreover,
ϕ̂−(d) equals ϕ(d) for every d ∈ cl(L<ϕ (0)) and ϕ̂−(d) > 0 for every d 6∈ cl(L<ϕ (0)).

Proof. Clearly ϕ̂− is a convex function. Since ‖ξ(d)‖ ≤ L and ξ(d) ∈ ∂ϕ−(d) for
every d ∈ L<ϕ (0) we obtain for d0 ∈ L<ϕ (0) fixed and any d ∈ Rn that

ϕ−(d0) + 〈ξ(d0),d− d0〉 ≤ ϕ−(0) + 〈ξ(d0),d〉 ≤ L‖d‖
and so by (4.2) the function ϕ̂− is finite. To prove that ϕ̂− is positively homogeneous
we first observe using ξ(d0) ∈ ∂ϕ−(λd0), λ > 0, for every d0 ∈ L<ϕ (0) that

ϕ−(d0) + 〈ξ(d0), λd− d0〉 = λϕ−
(
λ−1d0

)
+ λ

〈
ξ(d0),d− λ−1d0

〉
= λϕ−

(
λ−1d0

)
+ λ

〈
ξ
(
λ−1d0

)
,d− λ−1d0

〉
≤ λϕ̂−(d)

for every d ∈ Rn. This yields by the definition of ϕ̂− that ϕ̂−(λd) ≤ λϕ̂−(d) for

every λ > 0 and hence ϕ̂−(λd) ≤ λϕ̂−(d) = λϕ̂−

(
λ−1λd

)
≤ ϕ̂−(λd) implying ϕ̂− is

positively homogeneous. Also for every d0 ∈ L<ϕ (0) it follows that ϕ−(d) ≥ ϕ−(d0) +
〈ξ(d0),d−d0〉 and so ϕ−(d) ≥ ϕ̂−(d). If d ∈ L<ϕ (0) we obtain by (4.2) that ϕ̂−(d) ≥
ϕ−(d) and this yields that ϕ̂− equals ϕ− on L<ϕ (0). By the lower semicontinuity of ϕ−
and the continuity of ϕ̂− the functions are equal on cl(L<ϕ (0)). Finally, assume that
ϕ̂−(d1) ≤ 0 for some d1 6∈ cl(L<ϕ (0)) and consider a fixed d0 ∈ L<ϕ (0). Since L<ϕ (0)
is open there exists some 0 < µ < 1 such that dµ := µd0 + (1 − µ)d1 ∈ rbd(L<ϕ (0)).
This implies by the convexity of ϕ̂− that ϕ̂−(dµ) ≤ µϕ̂−(d0) + (1 − µ)ϕ̂−(d1) < 0,
and so ϕ−(dµ) = ϕ̂−(dµ) < 0 contradicting Lemma 3.5. This yields ϕ̂−(d) > 0 for
every d 6∈ cl(L<ϕ (0)) and the proof of the result is finished. �

Introduce now the function ϕ̃− : Rn−→ R given by

ϕ̃−(d) := ϕ+(d) + ϕ̂−(d). (4.3)

Using this function one can show the following result.

Theorem 4.7. If f : Rn−→ [−∞,+∞] is a quasiconvex function with f(x0) finite and
ϕ Lipschitz continuous then f is quasidifferentiable at x0.

Proof. The result is already verified for L<ϕ (0) empty. Assume therefore that L<ϕ (0)
is nonempty. If this holds, it follows by Lemma 4.6 and Lemma 3.2 that ϕ̃− given by
relation (4.3) and ϕ+ are quasidifferentiable. Moreover, it is easy to verify by Theorem
3.4 and again relation (4.3) using ϕ̂−(d) > 0 for every d 6∈ cl(L<ϕ (0)) that

f ′(x0;d) = min
{
ϕ̃−(d), ϕ+(d)

}
for every d ∈ Rn and hence the desired result is proved. �
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4.2. Where are the separators?

This subsection, based on Lemma 4.4 and on the properties of the Dini upper
derivative, characterizes the elements of the normal cone of the set L<f (f(x0)) at x0.
Introduce now the set

Γf := {x ∈ Rn : f ′+(x;d) ≥ 0 for every d ∈ Rn} (4.4)

which is sometimes called the set of stationary points. For reasons to be soon clarified
we call this the set of “bad” points. Before deriving the announced characterization,
we observe by Theorem 11.3 of [21] that the normal cone

NL<
f

(x0) :=
{
x? ∈ Rn : 〈x?,x− x0〉 ≤ 0 for every x ∈ L<f (f(x0))

}
(4.5)

of L<f (f(x0)) at x0 is a proper nonempty convex cone of Rn if L<f (f(x0)) is nonempty.

In the next lemma a partial description of NL<
f

(x0) is given by means of the function

ϕ if the set L<ϕ (0) is empty. Introducing the nonempty sets

L=
ϕ (0) := {d ∈ Rn : f ′+(x0;d) = 0}

and

L≤ϕ (0) := {d ∈ Rn : f ′+(x0;d) ≤ 0}
it follows that L<ϕ (0) is empty if and only if L≤ϕ (0) = L=

ϕ (0). A sufficient condition for

L<ϕ (0) to be empty is given by x0 ∈ int(L≤f (f(x0))). The example f(x) = x3 at x = 0,
shows that this condition is not necessary. Although trivial the next result seems to
be new.

Lemma 4.8. If the function f : Rn−→ [−∞,+∞] is a quasiconvex function satisfy-
ing f(x0) finite and the set L<f (f(x0)) is nonempty and the set L<ϕ (0) is empty or
equivalently x0 ∈ Γf , then

(L=
ϕ (0))◦ ⊆ NL<

f
(x0)

with NL<
f

(x0) the normal cone of L<f (f(x0)) at x0 defined in relation (4.5).

Proof. Since L<ϕ (0) is empty and f is quasiconvex it must follow by Lemma 4.2 that

L=
ϕ (0) is a nonempty convex cone. Moreover, the nonemptyness of L<f (f(x0)) and

the emptyness of L<ϕ (0) enable us to verify that L<f (f(x0)) − x0 ⊆ L=
ϕ (0) and so

cone(L<f (f(x0))− x0) ⊆ L=
ϕ (0). This implies that

(L=
ϕ (0))◦ ⊆ (cone(L<f (f(x0))− x0))◦ = NL<

f
(x0)

and hence the desired result is proven. �

Clearly, the above result reduces to a useless observation if L=
ϕ (0) equals Rn. In

this case we obtain (L=
ϕ (0))◦ = {0} and this happens for f(x) = x3 at x0 = 0.

Figure 1 provides an interpretation of Lemma 4.8. The first picture is drawn
in the domain and shows two lower level sets. The one with a dashed boundary is
L<f (f(b)) and the one with a full boundary is L≤f (f(a)) = L≤f (f(b)). The second
picture is drawn in the epigraph space and corresponds to slicing the graph of the
function along the line going through a and b. Observe first that if x0 ∈ (a, b) then
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L=
ϕ (0) = Rn and so no useful information is provided. On the other hand, if x0 = a

then L=
ϕ (0) 6= Rn and so

(
L=
ϕ (0)

)◦
also contains nonzero elements.

Applying Lemma 4.4 and Theorem 6.3 of [21] it follows for L<ϕ (0) nonempty that

cl(L<ϕ (0)) = cl(cone(L<f (f(x0))− x0)).

Similar as for convex functions (see [12, 21]), this yields

NL<
f

(x0) = {x∗ ∈ Rn : 〈x∗,x− x0〉 ≤ 0 for every x ∈ L<f (f(x0)}

=
(

cone(L<f (f(x0))− x0)
)◦

=
(
cl(cone(L<f (f(x0))− x0))

)◦
= (cl(Lϕ(0)))

◦

(4.6)

with K◦ denoting the polar cone of K. Hence, to give an alternative description of
the set NL<

f
(x0), it is sufficient by relation (4.6) or Lemma 4.8 to show that the set

cl(L<ϕ (0)) or cl(L=
ϕ (0)) is the polar cone of some other closed cone K and then apply

the bipolar theorem.

Lemma 4.9. If the function f : Rn−→ [−∞,+∞] is a quasiconvex function satisfy-
ing f(x0) finite and the function ϕ given by ϕ(d) := f ′+(x0;d) is a proper evenly
quasiconvex function satisfying L<ϕ (0) is nonempty then

NL<
f

(x0) = cl(cone(∂ϕ−(0)))

with NL<
f

(x0) the normal cone of L<f (f(x0)) at x0 defined in relation (4.5).

Proof. By Theorem 3.4 and Proposition VI.1.3.3 of [12] we obtain that

cl(L<ϕ (0)) = {d ∈ Rn : ϕ−(d) ≤ 0}
= {d ∈ Rn : 〈x?,d〉 ≤ 0 for every x? ∈ ∂ϕ−(0)}
= (cone(∂ϕ−(0)))◦.

Hence by (4.6) and Proposition III.4.2.7 of [12] it follows that

NL<
f

(x0) = (cl(L<ϕ (0))◦ = (cone(∂ϕ−(0)))◦◦ = cl(cone(∂ϕ−(0)))

and this shows the desired result. �

An interpretation of Lemma 4.9 is provided by Figure 4.
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Figure 4. The normal cone to the strict lower level set in the favo-
rable case

Compare now this figure with Figure 1, The situation described in Figure 4
corresponds to taking x0 = b in Figure 1.

Since ϕ− is sublinear it follows that ∂ϕ−(d) ⊆ ∂ϕ−(0) ⊆ NL<
f

(x0) for every

d ∈ dom(ϕ−) = cl(L<ϕ (0)). If additionally, L<ϕ (0) is a convex cone of dimension n
this implies by Theorem IV.4.2.3 of [12] that ϕ− is differentiable on a dense subset
of int(L<ϕ (0)), and so we can conclude for a point belonging to this dense subset that
∇ϕ−(d) ∈ NL<

f
(x0).

An immediate consequence of Lemma 4.8 and Lemma 3.2 is given by the fol-
lowing result. Although this result is not difficult to prove it appears to be new and
improves Lemma 4.8 for ϕ evenly quasiconvex.

Lemma 4.10. If the function f : Rn−→ [−∞,+∞] is a quasiconvex function satisfying
f(x0) finite and the set L<f (f(x0)) nonempty and the function ϕ given by ϕ(d) =

f ′+(x0;d) is proper and evenly quasiconvex and the set L<ϕ (0) empty then

cl(cone(∂ϕ+(0))) ⊆ NL<
f

(x0)

with NL<
f

(x0) the normal cone of L<f (f(x0)) at x0 defined in relation (4.5).

Proof. By our assumptions it follows that L=
ϕ (0) is nonempty and L≤ϕ (0) = L=

ϕ (0).
This implies by Lemma 3.2 and ϕ+ being the support function of ∂ϕ+(0) that

L=
ϕ (0) = {d ∈ Rn : ϕ+(d) = 0}

= {d ∈ Rn : 〈x?,d〉 ≤ 0 for every d ∈ ∂ϕ+(0)}
= (cone(∂ϕ+(0)))◦.

Applying now Lemma 4.8 and Proposition III.4.2.7 of [12] yields

cl(cone(∂ϕ+(0))) = (cone(∂ϕ+(0)))◦◦ = (L=
ϕ (0))◦ ⊆ NL<

f
(x0)

and the desired result is proven. �

As already observed, if d 7−→ f ′+(x0;d) is the zero functional or equivalently
∂ϕ+(0) = {0}, the above result does not provide any useful information.
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5. How to separate, if you must!

In this section we analyze the problem of computing an element of the normal
cone NL<

f
(x0) if L<f (f(x0)) is nonempty. As already observed, a sufficient condition

for L<f (f(x0)) to be nonempty is given by the nonemptiness of the set L<ϕ (0) with

ϕ(d) := f ′+(x0;d) and so it is natural to consider the optimization problem

ϑ(S) = inf{ϕ(d) : d ∈ C} (S)

with C a compact convex set satisfying 0 ∈ int(C). Notice, since dim(C) = n that the
boundary bd(C) of C is given by C\ int(C). In order to guarantee that the optimization
problem (S) is solvable, i.e. there exists some d0 ∈ C satisfying ϕ(d0) = ϑ(S), it is
sufficient by Theorem 3.4 to assume that ϕ is a proper evenly quasiconvex function.
In the remainder of this section we always assume that d 7−→ f ′+(x0;d) satisfies this
property and so the set S of optimal solutions of optimization problem (S) is always
nonempty. Clearly, one should choose the compact convex set C with 0 ∈ int(C) in
such a way that optimization problem (S) is “easy” solvable. Since ϕ is a proper,
positively homogeneous and evenly quasiconvex function the following result is easy
to verify and so its proof is omitted.

Lemma 5.1. It follows ϑ(S) < 0 if and only if L<ϕ (0) is nonempty. If this holds then
S ⊆ bd(C). Moreover, if ϑ(S) = 0, i.e. x0 ∈ Γf , then either 0 is the unique solution
of (S) or S ∩ bd(C) is nonempty.

Clearly, if 0 is the unique solution of optimization problem (S) then due to
0 ∈ int(C), f : Rn−→ [−∞,+∞] quasiconvex and ϕ : Rn−→ R ∪ {+∞} proper and
positively homogeneous, it follows that L<f (f(x0)) is empty. Also, if ϑ(S) < 0 we

obtain by Lemma 4.9 that an optimal solution d0 of optimization problem (S) is also
an optimal solution of the optimization problem

ϑ(S′) = inf{ϕ−(d) : γC(d) ≤ 1,d ∈ cl(L<ϕ (0)} (S′)

with γC(d) := inf{t > 0 : d ∈ tC} the gauge of C. Since by Lemma 3.3 the function
ϕ− is proper and convex with dom(ϕ−) = cl(L<ϕ (0)) and the function γC is finite
and convex due to C compact, convex and 0 ∈ int(C), the optimization problem (S)
satisfies the properties of a convex program given in Section 28 of [21].

Using now so-called primal-dual information given by the Karush-Kuhn-Tucker
conditions it is possible to prove the next result.

Lemma 5.2. If d0 is an optimal solution of (S) with ϑ(S) < 0 then the set ∂ϕ−(d0)−
ϑ(S)∂γC(d0) contains 0.

Proof. If d0 is an optimal solution of (S) with ϕ(d0) = ϑ(S) < 0 then λd0 ∈ L<ϕ (0) for
every λ > 0. Also, by Lemma 5.1 we obtain that d0 ∈ bd(C) implying that γC(d0) = 1
and so γC(λd0) = λγC(d0) < 1 for every 0 < λ < 1. Hence, by Corollary 28.2.1 of [21]
a Karush-Kuhn-Tucker vector λ1 of (S) exists and this yields by Theorem 28.3 of [21]
that 0 ∈ ∂ϕ−(d0)+λ1∂γC(d0), λ1(γC(d0)−1) = 0 and λ1 ≥ 0. If λ1 = 0 it follows that
0 ∈ ∂ϕ−(d0) and this yields ϕ−(d) ≥ ϕ−(d0) for every d ∈ Rn. However, since ϕ− is
positively homogeneous and ϕ−(d0) < 0 it follows that ϕ−(λd0) = λϕ−(d0) < ϕ−(d0)
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for every λ > 1 contradicting 0 ∈ ∂ϕ−(d0). Hence, λ1 > 0 and to compute λ1 we
observe the following. It is well-known, [12, 21], that

∂γC(d0) = {d?0 ∈ C◦ : 〈d?0,d0〉 = γC(d0)}

with C◦ the polar of C and so by the Karush-Kuhn-Tucker conditions and Lemma 5.1
there exists some d?0 ∈ Rn with −d?0 ∈ ∂ϕ−(d0), 〈d?0,d0〉 = λ1 and 〈d?0,d〉 ≤ λ1 for
every d ∈ C. Since −d?0 ∈ ∂ϕ−(d0) it follows by Theorem 23.5 of [21] that

ϕ−(d0) + ϕ∗−(−d?0) = −〈d?0,d0〉

with ϕ∗− the conjugate function of ϕ−. Since ϕ− is positively homogeneous and thus
ϕ∗− is either 0 or +∞ we obtain by the above equality that

ϕ−(d0) = −〈d?0,d0〉 = −λ1

and so the result is proven. �

The following result is an immediate consequence of the previous lemma.

Corollary 5.3. If γC is differentiable in d0 then −∇γC(d0) ∈ NL<
f

(x0).

Proof. The previous result shows for ϑ(S) < 0 and d0 an optimal solution of (S) that
the sets ∂ϕ−(d0) and ϑ(S)∂γC(d0) intersect. Hence, if γC is differentiable in d0 with
gradient ∇γC(d0) then

ϑ(S)∂γC(d0) = {ϑ(S)∇γC(d0)}

and so ϑ(S)∇γC(d0) ∈ ∂ϕ−(d0) ⊆ ∂ϕ−(0). Now, by Lemma 3.3 it follows that
∂ϕ−(0) ⊆ NL<

f
(x0) and since ϑ(S) < 0 and NL<

f
(x0) is a cone this leads to the

stated result. �

In the next example we discuss the well know Lp norm.

Example 5.4. Take C := {x ∈ Rn : ‖x‖p ≤ 1} with ‖ · ‖p, 1 < p < ∞, the `p-norm.
Clearly, γC(x) = ‖x‖p and γC is differentiable everywhere except at 0. Moreover, for
every x 6= 0 it is easy to verify that

∇γC(x) = ‖x‖1−pp

 sign(x1)|x1|p−1
...

sign(xs)|xs|p−1


with xi the ith component of x and sign(x) the sign function.

If ϑ(S) < 0, d0 solves optimization problem (S) and γC is not differentiable in
d0 while ϕ(d) is differentiable in d0 then it is easy to show, due to d0 ∈ int(L<ϕ (0))
and the definition of ϕ−, that ∇ϕ(d0) = ∇ϕ−(d0) ∈ ∂ϕ−(0) with ϕ(d) := f ′+(x0;d).
In this case, the optimization problem (S) is only used to identify an interior element
of L<ϕ (0). This also shows that selecting some d1 ∈ int(L<ϕ (0)) with ϕ differentiable
in d1 already yields an element of the normal cone NL<

f
(x0).
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Figure 5. Geometric interpretation of the separation oracle

Finally, we provide in Figure 5 a geometrical interpretation of Lemma 5.2.
The first picture shows a set C with a kink at d0 and for which cone(∂γC(d0)) is
a cone (shifted in the picture to the vertex of C for clarity) whose symmetric cone
intersects ∂ϕ−(d0) (by Lemma 5.2) but includes elements which do not belong to
cone(∂ϕ−(d0)) = NL<

f
(x0). On the other hand, the second picture corresponds to a

smooth C. Hence ∂γC(d0) is a singleton and so the symmetric of its conical hull (a
half line) intersects (by Lemma 5.2 again) cone(∂ϕ−(d0)) and it must be included in
NL<

f
(x0).

We triplicate each picture for clarity. The top picture shows the conical hull of
the strict lower level set, the corresponding normal cone and the compact convex set C
corresponding to the feasible region of optimization problem (S). The middle picture
shows the solution of problem (S), direction d0, and the conical hull of ∂γC(d0).
Finally, the bottom picture shows the intersection of the symmetric of this conical
hull and the normal cone.
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We consider in the next section several quasiconvex functions for which we do
not have to solve the optimization problem (S).

6. Examples

This section illustrates classes of functions for which optimization problem (S)
can be replaced by easier membership problems.

6.1. Regular functions

In this subsection we discuss a separation oracle for the following subclass of
quasiconvex functions.

Definition 6.1. Let f : Rn−→ [−∞,+∞] be a quasiconvex function with f(x0) finite.
Then f is called regular at x0 if ϕ is a lower semicontinuous sublinear function with
ϕ(d) := f ′+(x0;d).

Following Pshenichnyi in [20] these functions are sometimes called quasidifferen-
tiable. However, we prefer to follow Clarke, [1], and call them regular since the term
quasidifferentiable has nowadays a broader meaning, see [5].

As the next lemma shows the above class of functions is closed under the finite
max operator.

Lemma 6.2. Let fi : Rn−→ [−∞,+∞], i = 1, . . . , n, be quasiconvex functions with
fi(x0) finite for every 1 ≤ i ≤ n. If each function fi is regular at x0 then the function
f : Rn−→ [−∞,+∞] given by f(x) := max1≤i≤n fi(x) is also regular at x0.

Proof. It is easy to verify that f is quasiconvex and f(x0) is finite. Moreover, by
Lemma 2.5.3 of [11] we obtain that

f ′+(x0;d) = max
i∈I(x0)

f ′i+(x0;d) (6.1)

with I(x0) := {1 ≤ i ≤ n : f(x0) = fi(x0)} the set of active indices of f at x0. Since
by assumption it follows that d 7−→ f ′i+(x0;d) is a lower semicontinuous sublinear

function for every 1 ≤ i ≤ n the desired result follows by (6.1). �

An important class of regular functions is given by the next lemma. These func-
tions are extremely important in location analysis, see [11].

Lemma 6.3. Let g : Rm−→ R be a finite nondecreasing quasiconvex function and
v : Rn−→ Rm a finite-valued convex vector function, i.e. v(x) := (v1(x), . . . , vm(x))
with vi : Rn−→ R, i = 1, . . . ,m, finite-valued convex functions. If the func-
tion f : Rn−→ [−∞,+∞] is given by f(x) = g(v(x)) and g is regular and lo-
cally Lipschitz at v(x0) then f is a quasiconvex function regular at x0. Moreover,
f ′+(x0;d) = g′+(v(x0);v′(x0;d)) with v′(x0;d) = (v′1(x0;d), . . . , v′m(x0;d)) and the
function d 7−→ f ′+(x0;d) is Lipschitz continuous.

Proof. Since g is a nondecreasing quasiconvex function and v a convex vector function
it is easy to verify that f is quasiconvex. Also, by Lemma 2.5.2 of [11] it follows that
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f ′+(x0;d) = g′+(v(x0);v′(x0;d)). Moreover, since g is regular at v(x0) and nonde-
creasing we obtain for every 0 < λ < 1 and d1,d2 ∈ Rn that

f ′+(x0;λd1 + (1− λ)d2)

= g′+(v(x0);v′(x0;λd1 + (1− λ)d2))

≤ g′+(v(x0);λv′(x0;d1) + (1− λ)v′(x0;d2))

≤ λg′+(v(x0);v′(x0;d1)) + (1− λ)g′+(v(x0);v′(x0;d2))

= λf ′+(x0;d1) + (1− λ)f ′+(x0;d2)

and by the Lipschitz continuity of d 7−→ v′(x0;d) and d 7−→ g′+(v(x0);d), the Lip-
schitz continuity of d 7−→ f ′+(x0;d) follows. �

For the class of functions given in Definition 6.1 it is now easy, using only classical
results of convex analysis, to prove the next result.

Lemma 6.4. If f : Rn−→ [−∞,+∞] is a quasiconvex function regular at x0 and L<ϕ (0)
is nonempty then

cl(cone(∂ϕ(0))) = NL<
f

(x0)

with ∂ϕ(0) the subgradient set of the convex function ϕ(d) := f ′+(x0;d) at 0. Moreover,
if L<f (f(x0)) is nonempty and L<ϕ (0) is empty then

cl(cone(∂ϕ(0))) ⊆ NL<
f

(x0).

Proof. To prove the first result we observe by relation (4.6) that

NL<
f

(x0) = (cl(L<ϕ (0)))◦.

Since f is a quasiconvex function regular at x0 it follows by Proposition VI.1.3.3
of [12] that cl(L<ϕ (0)) = L≤ϕ (0). Moreover, by Theorem V.3.1.1 of [12] we obtain that

L≤ϕ (0) equals {d : 〈x?,d〉 ≤ 0 for every x? ∈ ∂ϕ(0)}. Clearly this set also equals
(cone(∂ϕ(0)))◦ and hence by (4.6) and Proposition III.4.2.7 of [12] we obtain that

NL<
f

(x0) = (cone(∂ϕ(0)))◦◦ = cl(cone(∂ϕ(0))).

The second result can be proved in a similar way and this completes the proof. �

Finally we can show the main result of this subsection. Recall that the set of “bad”
points Γf is defined in (4.4).

Lemma 6.5. Let gi : Rm−→ R, i = 1, . . . , n, be quasiconvex and continuously differ-
entiable functions and suppose vi : Rn−→ R, 1 ≤ i ≤ m, are finite-valued convex
functions. Then it follows for f(x) := max1≤i≤n fi(x) with fi(x) := gi(v(x)) that x0

belongs to Γf if and only if

0 ∈ conv

 ⋃
i∈I(x0)

m∑
j=1

∂gi
∂zj

(v(x0))∂vj(x0)


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where I(x0) := {1 ≤ i ≤ n : f(x0) = fi(x0)}. Moreover, if L<ϕ (0) is nonempty, i.e.
x0 6∈ Γf , then

cone

conv

 ⋃
i∈I(x0)

m∑
j=1

∂gi
∂zj

(v(x0))∂vj(x0)

 = NL<
f

(x0)

Proof. Clearly every function gi : Rm−→ R is regular and locally Lipschitz at x0.
Applying now Lemma 6.3 yields

f ′i(x0;d) =

m∑
j=1

∂gi
∂zj

(v(x0))v′j(x0;d)

and so by Theorem V.3.1.1 of [12] we obtain for 1 ≤ i ≤ n that

f ′i(x0;d) = max{〈d,x?〉 : x? ∈ ∂ϕi(0)}
with

∂ϕi(0) :=

m∑
j=1

∂gi
∂zj

(v(x0))∂vj(x0).

By Lemma 2.5.3 of [11] this implies

f ′(x0;d) = max
i∈I(x0)

f ′i(x0;d)

= max
i∈I(x0)

max{〈d,x?〉 : x? ∈ ∂ϕi(0)}

= max

〈d,x?〉 : x? ∈ conv

 ⋃
i∈I(x0)

∂ϕi(0)

 .

Using the above relation it follows that f ′(x0;d) ≥ 0 for every d ∈ Rn if and only

if 0 belongs to conv
(⋃

i∈I(x0)
∂ϕi(0)

)
. This proves the first part. To prove the sec-

ond part we observe that conv
(⋃

i∈I(x0)
∂ϕi(0)

)
is the subgradient set of the finite

valued convex function ϕ at 0 and since ∂ϕi(0) is compact for each i and 0 does not

belong to conv
(⋃

i∈I(x0)
∂ϕi(0)

)
the second result follows by Lemma 6.4 together

with Lemma III.1.4.7 and Theorem III.1.4.3 of [12]. �

In the next subsection we consider another class of quasiconvex functions for
which the separation problem is easy.

6.2. Another class of easy functions

Let gi : Rn−→ R be a continuously differentiable and convex function and γi ∈ R,
1 ≤ i ≤ m, and introduce the functions fi : Rn−→ R given by

fi(x) := min{gi(x), γi}.
Clearly, the functions fi are quasiconvex and so is the function

f(x) := max
1≤i≤m

fi(x).

A representation of such a function for the case of affine gi is given in Figure 6.



126 J.B.G. Frenk, J.A.S. Gromicho and S. Zhang

Figure 6. A bivariate quasiconvex function with horizontal regions

Moreover, if I(x0) := {1 ≤ i ≤ m : f(x0) = fi(x0)} it follows that

f ′(x0;d) = max
i∈I(x0)

f ′i(x0;d) (6.2)

and

f ′i(x0;d) =

 min{〈∇gi(x0),d〉, 0} if gi(x0) = γi
〈∇gi(x0),d〉 if gi(x0) < γi
0 if gi(x0) > γi

. (6.3)

By (6.2) and (6.3) it is clear that f ′(x0;d) ≥ 0 for every d ∈ Rn if there exists some
i ∈ I(x0) satisfying gi(x0) > γi and this implies that ϑ(S) = mind∈C f

′(x0;d) ≥ 0.
Therefore assume for every i ∈ I(x0) that gi(x0) ≤ γi. If this holds the following
result is easy to prove.

Lemma 6.6. If for every i ∈ I(x0) it follows that gi(x0) ≤ γi then ϑ(S) < 0 if and
only if 0 6∈ conv({∇gi(x0), i ∈ I(x0)}). Moreover, if this holds then

conv({∇gi(x0), i ∈ I(x0)}) ⊆ NL<
f

(x0).

Proof. Clearly, by the assumption gi(x0) ≤ γi for every i ∈ I(x0), (6.2) and (6.3) we
obtain that mind∈C f

′(x;d) is equivalent to the optimization problem

min t
st : t ≥ min{〈∇gi(x0),d〉, 0} for every i ∈ J(x0)

t ≥ 〈∇gi(x0),d〉 for every i ∈ I(x0) \ J(x0)
d ∈ C

with J(x0) := {i ∈ I(x0) : gi(x0) = γi}. This implies that ϑ(S) < 0 if and only if the
optimization problem

min t
st : t ≥ 〈∇gi(x0),d〉 for every i ∈ I(x0)

d ∈ C
has a negative objective value. This problem in turn is equivalent to

min
d∈C

max
i∈I(x0)

〈∇gi(x0),d〉 = min
d∈C

ϕ(d)
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with
ϕ(d) := max{〈d,y〉 : y ∈ conv({∇gi(x0), i ∈ I(x0)})}.

We finally obtain that ϑ(S) < 0 if and only if there exists some d ∈ C with ϕ(d) < 0
or equivalently 0 6∈ conv({∇gi(x0), i ∈ I(x0)}). Observe that for s = 2 this decision
can be carried out by means of the linear time algorithm presented in [10]. By the
definition of ϕ− and the representation of f ′(x0;d) it follows that

ϕ−(d) =

{
ϕ(d) if d ∈ cl(L<ϕ (0))
+∞ otherwise

and so any ∇gi(x0), i ∈ I(x0), belongs to ∂ϕ−(0). This implies

conv({∇gi(x0), i ∈ I(x0)}) ⊆ ∂ϕ−(0)

and by Lemma 3.3 the desired result follows. �
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