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Abstract. This paper is devoted to the study of generalized viscoelastic nonlinear
equations with Dirichlet-Neumann boundary conditions. We establish the local
and uniqueness of weak solutions results in Sobolev spaces with variable expo-
nents. Solutions are constructed as a limit of approximate solutions by a method
independent of a compactness argument. We also discuss the global existence of
solutions in the energy space.
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1. Introduction

In this paper, we study the global existence and uniqueness of weak solutions
for the nonlinear viscoelastic equation with the m (x)-Laplacian operator

utt −∆m(x)u+ w1∆2u (t)− w2∆ut (t) + α (t)

∫ t

0

β (t− s) ∆u (s) ds

+ |u|p(x)−2
u (t) + λg (ut (t)) = bf (u (t)) in Ω× R+,

u = ∂ηu = 0 on Γ× [0,+∞[ ,

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

(1.1)

where ∆m(x)u = div
(
|∇u|m(x)−2∇u

)
is called the m (x)-Laplacian operator,

m(x) and p (x) are two continuous functions on Ω, Ω is a bounded open subset of
Rn with a smooth boundary ∂Ω = Γ, β is a memory kernel that decays exponentially,
g(ut) is a nonlinear damping term, f(u) is a nonlinear generalized source term, u0 and
u1 are given functions, and ∂η denotes the normal derivative directed outside of Ω and

Q = Ω× [0, T ] . Problem 1.1, with its general memory term α (t)
∫ t

0
β (t− s) ∆u (s)ds,
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can be regarded as a fourth order viscoelastic plate equation with a lower�order per-
turbation of the usual m-Laplacian type (m (x) = const ≥ 2). It can also be regarded
as an elastoplastic �ow equation with some kind of memory e�ect. We note that for
viscoelastic plate equations, it is usual to consider a memory of the general form

α (t)
∫ t

0
β (t− s) ∆2u (s)ds. However, because the main dissipation of the system (1.1)

is given by strong damping −∆ut (t), here we consider a weaker memory, acting only
on ∆u (t). There is a large body of literature about the stability and global existence
of viscoelasticity. We refer the reader to, [5, 6, 4, 11, 12]. Our objective in the present
work is to extend the results established in the study of the di�erential equation
about global existence with standard m-growth in the study of generalized prob-
lem 1.1 with nonstandard m(x)-growth. Equations with nonstandard growth occur
in the mathematical modeling of various physical phenomena, for example, the �ows
of electrorheological �uids or �uids with temperature-dependent viscosity, nonlinear
viscoelasticity, processes of �ltration through porous media and image processing.

2. Literature overview and new contributions

The semilinear case with the classical Laplace operator (when m (x) = m =
const) and when (p (x) = p = const), was studied by many authors. Other related
works include:

1. The asymptotic behavior of solutions of the equations of linear viscoelasticity
at large times was considered �rst by Dafermos [5] in 1970, where the general
decay was discussed.

utt −∆2u (t)−∆ut (t) +

∫ t

0

β (t− s) ∆u (s) ds = 0.

From a physical point of view, this type of problem usually arises in viscoelas-
ticity.

2. With the usual m�Laplacian operator m (x) = p(p =const≥ 2), a more general
problem concerning the energy decay for a class of plate equations with memory
and lower order perturbation of the p�Laplacian type

utt − div
(
|∇u|p−2∇u

)
+ ∆2u (t)−∆ut (t) +

∫ t

0

β (t− s) ∆u (s) ds+ f (u (t)) = 0

has been extensively studied in [1].
3. Problem 1.1 without the viscoelastic term, with the usual m-Laplacian operator

(m (x) = m− 1), (p = const ≥ 2) has been extensively studied by Yang et al
[2, 3] concerning existence, nonexistence and long-term dynamics,

utt − div
(
|∇u|m−1∇u

)
+ ∆2u (t)−∆ut (t) + g (ut (t)) + h (u (t)) = f (x, t)

4. The following problem:

utt −∆u (t) +

∫ t

0

β (t− s) ∆(u (s, x))ds+ |u|p−2
u+ σ (x)ut = 0
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for σ : Ω→ R+, a function, which may be null on a part of the domain Ω, has
been considered and studied by many authors [4].

By assuming σ (x) > σ0 on the subdomain $ ⊂ Ω, the authors obtained
an exponential rate of decay, provided that the kernel β satis�es:{

−ζ1β (t) ≤ β′ (t) ≤ −ζ2β (t) , t ≥ 0,

‖β‖L∞(0,+∞) is small enough.

Motivated by previous works, the goal of this paper is to establish the local and
uniqueness of weak solution results in Sobolev spaces with variable exponents.
We also discuss the global existence of solutions in the energy space. We pay
speci�c properties caused by the variable exponents m(.) and p(.).

3. Problem Statement

In this section we list and recall some well-known results and facts from the
theory of Sobolev spaces with variable exponents. (For the details see [7, 8, 9, 10, 13]).
Throughout the rest of the paper we assume that Ω is a bounded domain of Rn, n ≥ 2
with smooth boundary Γ and assume that p(x) and m (x) satisfy:{

2 < p− ≤ p (x) ≤ p+ < p∗ (x) <∞,
2 < m− ≤ m (x) ≤ m+ < m∗ (x) <∞

(3.1)

where

ϕ+ = ess sup
x∈Ω

ϕ (x) , ϕ− = ess inf
x∈Ω

ϕ (x)

and

ϕ∗ (x) ≤


nϕ (x)

(n− ϕ (x))+

, if ϕ+ < n

+∞, if ϕ+ ≥ n.
(3.2)

We also assume that

|m (x)−m (y)| ≤ M

|log |x− y||
, for all x, y in Ω with |x− y| < 1

2
, (3.3)

with M > 0 and

m∗ > ess sup
{x∈Ω}

m (x) (3.4)

Let p : Ω → [1,∞] be a measurable function. We denote by Lp(.)(Ω) the set of
measurable functions u on Ω such that

Ap(.) (u) =

∫
{x∈Ω|p(x)<∞}

|u (x)|p(x)
dx+ ess sup

{x∈Ω|p(x)=∞}
|u (x)| <∞

The set Lp(.) (Ω) equipped with the Luxemburg norm

‖u‖p(.) = ‖u‖Lp(.)(Ω) = inf

{
µ > 0, Ap(.)

(
u

µ

)
≤ 1

}
,
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is a Banach space with

min
(
‖u‖p−p(.) , ‖u‖

p+
p(.)

)
≤ Ap(.) (u) ≤ max

(
‖u‖p−p(.) , ‖u‖

p+
p(.)

)
and the generalized Hölder's inequality holds.

Let p satisfy the following Zhikov�Fan uniform local continuity condition :

|p (x)− p (y)| ≤ M

|log |x− y||
, for all x, y in Ω with |x− y| < 1

2
, M > 0, (3.5)

with ess inf
{x∈Ω}

(p∗ (x)− p (x)) > 0.

• If condition (3.5) is ful�lled, Ω has a �nite measure and p, q are variable ex-
ponents so that p(x) ≤ q(x) almost everywhere in Ω, then the embedding
Lq(.)(Ω) ↪→ Lp(.)(Ω) is continuous.

• If p : Ω → [1,+∞) is a measurable function and p∗ > ess sup
{x∈Ω}

p (x) with p∗ ≤

2n
n−2 (n > 2) ,

(
p∗ ≤ 2n

n−4 (n > 4)
)
, then the embeddings H1

0 (Ω) ↪→ Lp(.)(Ω), and(
H2

0 (Ω) ↪→ Lp(.)(Ω)
)
are continuous and compact respectively.

Let us state the precise hypotheses on g, f, α and β :
α is a measurable nonincreasing di�erentiable bounded function on R+ and

α+ ≥ α (0) ≥ α (t) > 0, t ≥ 0. (3.6)

Let g be increasing C1�function such that:
xg (x) ≥ d0 |x|σ(x)

, x ∈ R,

|g (x)| ≤ d1 |x|+ d2 |x|σ(x)−1
, x ∈ R, di ≥ 0,

2 < σ− ≤ σ (x) ≤ σ+ ≤ p (x) ≤ p+ ≤
2n

n− 2
<∞, n ≥ 3.

(3.7)

Let f (x, s) ∈ C1 (Ω× R) satisfy:

sf (x, s) + k1 (x) |s| ≥ p (x) f̂ (x, s) , (3.8)

and the growth conditions
|f (x, s)| ≤ l1

(
|s|θ + k2 (x)

)
;

|fs (x, s)| ≤ l1
(
|s|θ−1

+ k3 (x)
)

in Ω× R, and 1 < θ ≤ p−
2
,

(3.9)

where f̂ (x, s) = f̂ (s) =
∫ s

0
f (x, ζ) dζ, with some l0, l1 > 0 and the nonnegative

functions k1 (x) , k2 (x) , k3 (x) ∈ L∞ (Ω), a.e. x ∈ Ω. .
The memory kernel β : [0,+∞[ → [0,+∞[ is a di�erentiable bounded function

such that 
β(0) = β0 > 0, ∞ >

∫ ∞
0

β(t)dt = β1;

w1λ1 − α (0)β1 > 0;

α (t)β (t) + α′ (t)

∫ t

0

β (s) ds ≥ 0 t ∈ R+.

(3.10)
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there exists K > 0 such that

β′(t) ≤ −Kβ(t) ∀t ≥ 0. (3.11)

where λ1 > 0 is determined by the imbedding inequality

λ1 |∇u (t)|2 ≤ |∆u|2 . (3.12)

Remark 3.1. Typical examples of functions satisfying (3.10) and (3.11), are

β (t) = β0e
−at, a ≥ max

(
β0α (0)

w1λ1
,K

)
;

α (t) = α (0) e−
α(0)
w1λ1

∫ t
0
β(s)ds.

Remark 3.2. We remark from the �rst identity in (3.10) and assumption (3.6) that

w1λ1 − α (t)

∫ t

0

β(s)ds ≥ w1λ1 − α (0)β1 > 0, for all t ∈ R+.

4. Main Result

In this section we establish an existence result for problem 1.1.

4.1. Local Existence

Theorem 4.1. Assume that (3.6)-(3.11) hold, given any (u0, u1) ∈ H2
0 (Ω)∩Lp(.)(Ω)×

L2(Ω). Then problem 1.1 admits a solution u (t) satisfying:

u ∈ L∞(0, T ;V ∩ Lp(.)(Ω)), (4.1)

where

V =
{
ϕ ∈ H2 (Ω) : ϕ = 0 on Γ

}
.

Proof. Let wj (j = 1, 2, ...) satisfy the spectral problem

(wj , v)H2
0

= λj (wj , v) , ∀v ∈ H2
0 ,

where (., .)
H2

0

represents the inner product in H2
0 . The family of functions

{w1, w2, ..., wm} yield a Galerkin basis for both H2
0 and L2 (Ω).

For any m ∈ N, let us put Vm = Span {w1, w2, ..., wm} . We de�ne

um(t) =

m∑
i=1

Kjm(t)wj , (4.2)

where Kjm satis�es:

(uttm(t), wj) + w1 (∆um,∆wj) + w2 (∇umt,∇wj) + a(um (t) , wj) +
(
|um|p(x)−2

um, wj

)
−
(
α (t)

∫ t

0

β (t− s)∇um (s) ds,∇wj
)

+ λ (g (umt) , wj) = b (f (um) , wj) , (Pm)
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um(0) = u0m =

m∑
i=1

αimwj , umt(0) = u1m =

m∑
i=1

βimwj ,

u0m → u0 in Vm, u1m → u1 in L2(Ω).

(4.3)

for 1 ≤ j ≤ m, and

a(ψ,Ψ) =

∫
Ω

|∇ψ|m(x)−2∇ψ∇Ψdx.

As the family {w1, w2, ..., wm} is linearly independent, the problem Pm admits at
least one local solution um in the interval [0, tm] verifying um (t) ∈ L2 (0, tm;Vm) and
umt (t) ∈ L2 (0, tm;Vm). The estimate below will allow tm to be independent of m.

A priori Estimate 1

Let us de�ne

(βo∇u) (t) =

∫ t

0

β (t− s)
∫

Ω

|∇u (s)−∇u (t)|2 dxds,

it is easy, by di�erentiating the term α (t) (βo∇u) (t) with respect to t, to show that

α (t)

∫
Ω

∫ t

0

β (t− s)∇u (s)∇ut (t) dxds

= −1

2

d

dt

{
α (t) (βo∇u) (t)− α (t) |∇u (t)|2

∫ t

0

β (s) ds

}
(4.4)

+
1

2
α (t) (β′o∇u) (t)− 1

2
α (t)β (t) |∇u (t)|2

+
1

2
α′ (t) (βo∇u) (t)− 1

2
α′ (t) |∇u (t)|2

∫ t

0

β (s) ds.

Next, replacing wj in (Pm) by umt (t), yields

(uttm(t), umt(t)) + a(um (t) , umt (t)) + w1 (∆um (t) ,∆umt (t)) + w2 (∇um (t) ,∇umt (t))

+
(
|um|p(x)−2

um(t), umt(t)
)
− α (t)

∫ t

0

β (t− s) (∇um (s) ,∇umt (t)) ds (4.5)

+λ (g (umt) , umt (t)) = b(f (um (t)) , umt(t)).
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Using Young's inequality and (4.4), it results

d

dt



1

2
|umt(t)|2 +

∫
Ω

1

m (x)
|∇um(t)|m(x)

dx+
1

2
w1 |∆um|2

−1

2

(
α (t)

∫ t

0

β (s) ds

)
|∇um (t)|2

+
1

2
α (t) (βo∇um) (t) +

∫
Ω

1

p (x)
|um(t)|p(x)

dx− b
∫

Ω

f̂ (um(t)) dx


(4.6)

+λ (g (umt) , umt (t)) + w2 |∇umt (t)|2

=
1

2
α (t) (β′o∇um) (t) +

1

2
α′ (t) (βo∇um) (t)

−1

2

(
α (t)β (t) + α′ (t)

∫ t

0

β (s) ds

)
|∇um(t)|2 .

We denote by Em the energy functional associated with problem (1.1):

Em (t) =
1

2
|umt(t)|2 +

1

2
w1 |∆um|2 −

1

2

(
α (t)

∫ t

0

β (s) ds

)
|∇um (t)|2 +

1

2
α (t) (βo∇um) (t)

+

∫
Ω

1

m (x)
|∇um(t)|m(x)

dx+

∫
Ω

1

p (x)
|um(t)|p(x)

dx− b
∫

Ω

f̂ (um(t)) dx. (4.7)

Using the conditions (3.6), (3.10) and (3.11), we see that

E′m (t) ≤ 1

2
α (t) (β′o∇um) (t)− 1

2

(
α (t)β (t) + α′ (t)

∫ t

0

β (s) ds

)
|∇um(t))|2

+
1

2
α′ (t) (βo∇um) (t) ≤ 0 ∀t ≥ 0. (4.8)

The Young's inequality and (3.8), gives

−b
∫

Ω

f̂ (um(t)) dx ≥ −
∫

Ω

b

p (x)
k1 (x) |um|dx−

∫
Ω

b

p (x)
umf (x, um) dx (4.9)

≥ −ε+
1

p2
−

∫
Ω

|um(t)|p(x)
dx− Cε+

∫
Ω

|k1 (x)|p
′(x)

dx−
∫

Ω

b

p (x)
umf (x, um) dx.
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Next, using hypothesis (3.9) and Young's inequality, we obtain∫
Ω

b

p (x)
umf (x, um) dx ≤

∫
Ω

b

p (x)
|f (x, um)| |um|dx

≤ l21
p−
ε+

∫
Ω

(
|um|2θ + |k2 (x)|2

)
dx+

c (ε+, p−)

p2
−

∫
Ω

|um|2 dx

≤ l21
p−
ε+

(∫
Ω

p (x)− 2θ

p (x)
dx+ 2θ

∫
Ω

1

p (x)
|um(t)|p(x)

dx

)
+

l21
p−
ε+ ‖k2 (x)‖2∞

+C ′ (ε+, p−) +
ε+

p2
−

∫
Ω

|um(t)|p(x)
dx (4.10)

≤ l21
p−
ε+

(
|Ω| p+ − 2θ

p−
+

2θ

p−

∫
Ω

|um(t)|p(x)
dx

)
+
l21
p−
ε+ ‖k2 (x)‖2∞ + C ′ (ε+, p−) +

ε+

p2
−

∫
Ω

|um(t)|p(x)
dx.

Now replace (4.10) in (4.9) and let 0 < ε+ ≤
p2−

p+(2+2θl21)
; by using (3.10), (3.12) and

Remark 3.2 from (4.7), we obtain:

Em (t) ≥ 1

2
|umt(t)|2 +

1

2λ1
(w1λ1 − α (0)β1) |∆um (t)|2 (4.11)

+C1

∫
Ω

|∇um(t)|m(x)
dx+ C2

∫
Ω

|um(t)|p(x)
dx− C3 (1 +K1 +K2) ,

or

|umt(t)|2+|∆um (t)|2+

∫
Ω

|um(t)|p(x)
dx+

∫
Ω

|∇um(t)|m(x)
dx ≤ C4 (Em (t) +K1 +K2 + 1) ,

(4.12)
where

C1 ≥
1

m+
, 0 < C2 =

p2
− − p+

(
2 + 2θl21

)
ε+

p2
−p+

,

C3 = max

(
Cε+ ;

l21
p
ε+;C ′ (ε+, p−) +

l21
p−
ε+
p− − 2θ

p−

)
,

C4 = max

 1

min
(

1
2λ1

(w1λ1 − α (0)β1) , C1, C2

) , C3

 .

Thus, it follows from (4.6), (4.8) and (4.12) that

|umt(t)|2 +

∫
Ω

|∇um(t)|m(x)
dx+ |∆um|2 +

∫
Ω

|um(t)|p(x)
dx

+w2

∫ t

0

|∇umt (s)|2 ds+ λ

∫ t

0

(g (umt (s)) , umt (s)) ds (4.13)

≤ C4 (Em (0) +K1 +K2 + 1) for every t ≥ 0

where K1 = ‖k1‖2∞ , K2 = ‖k2‖2∞ .
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According to Hölder's inequality, using (3.8) and (3.9), we have∣∣∣∣b∫
Ω

f̂ (um(0)) dx

∣∣∣∣ ≤ b

p−

∫
Ω

|k1 (x)| |u0m|dx+
b

p−

∫
Ω

|u0m| |f (x, u0m)|dx

≤ C
(
|u0m|2 + ‖k1‖2∞ +

∫
Ω

|u0m|p(x)
dx+ ‖k2‖2∞ + |u0m|2

)
.

Therefore from (4.7) one has

Em (0) =
1

2
|u1m|2 +

∫
Ω

1

m (x)
|∇u0m|m(x)

dx+
1

2
|∆u0m|2

+

∫
Ω

1

p (x)
|u0m|p(x)

dx− b
∫

Ω

f̂ (u0m) dx

≤ C
(
|u1m|2 +

∫
Ω

|∇u0m|m(x)
dx+ |∆u0m|2 +

∫
Ω

|u0m|p(x)
dx+ |u0m|2 +K1 +K2

)
.

Then from (4.3) and (4.13), we obtain

|umt(t)|2 +

∫
Ω

|∇um(t)|m(x)
dx+ |∆um|2 +

∫
Ω

|um(t)|p(x)
dx

+w2

∫ t

0

|∇umt (s)|2 ds+ λ

∫ t

0

(g (umt (s)) , umt (s)) ds ≤ C,

for some positive constant C > 0.

Gronwall's inequality and assumption (3.7) gives

um is bounded in L∞
(

0, T ;H2
0 (Ω) ∩ Lp(.)(Ω)

)
,

umt is bounded in L∞
(
0, T ;L2(Ω)

)
,

g (umt) .umt is bounded in L1 (Ω× (0, T )) ,

umt is bounded in L2
(

0, T ;Lσ(.)(Ω)
)
,

∇umt is bounded in L2
(
0, T ;L2 (Ω)

)
,

∇um is bounded in L∞
(

0, T ;Lm(.) (Ω)
)
,

∆m(.) (um) is bounded in L∞
(

0, T ;W−1,m′(.) (Ω)
)
.

(4.14)

Since H1
0 ↪→ W

1,p+
0 (Ω), we can use the standard projection arguments as in Lions

[14]. Then from (Pm) and the estimates (4.14), we obtain

uttm is bounded in L2
(
0, T ;H−1

0 (Ω)
)
. (4.15)

To estimate the term g (umt (t)) we need the following lemma.

Lemma 4.2. For all m ∈ N there exists M > 0 such that

||g (umt (t))||
L

σ(x)
σ(x)−1 (Q)

≤M.
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Proof. Thanks to Holder's, and Young's inequalities, from (3.7), we get∫
Ω

|g (umt)|
σ(x)
σ(x)−1 dx =

∫
Ω

|g (umt)| |g (umt)|
1

σ(x)−1 dx

≤
∫

Ω

|g (umt (t))|
(
d1 |umt (t)|+ d2 |umt (t)|σ(x)−1

) 1
σ(x)−1

dx

≤ C
∫

Ω

|g (umt (t))|
(
|umt (t)|

1
σ(x)−1 + |umt (t)|

)
dx

= C

∫
Ω

|g (umt (t))| |umt (t)|
1

σ(x)−1 dx+ C

∫
Ω

|g (umt (t))| |umt (t)|dx

≤ σ+ − 1

σ+

∫
Ω

|g (umt)|
σ(x)
σ(x)−1 dx+ C (σ+, σ−)

∫
Ω

|umt (t)|
σ(x)
σ(x)−1 dx

+C

∫
Ω

|g (umt (t))| |umt (t)|dx,

therefore

1

σ+

∫
Ω

|g (umt (t))|
σ(x)
σ(x)−1 dx

≤ C (σ+, σ−)

∫
Ω

|umt (t)|
σ(x)
σ(x)−1 dx+ C

∫
Ω

|g (umt (t))| |umt (t)|dx

≤ C ||umt (t)||
σ(x)
σ(x)−1

2 + C

∫
Ω

|g (umt (t))| |umt (t)|dx,

hence, estimates (4.14) gives

∫ T

0

∫
Ω

|g (umt (t))|
σ(x)
σ(x)−1 dxdt ≤M. (4.16)

�

By estimate (4.16)

g (umt (t))→ g (ut (t)) a.e. in Ω× (0, T )

Therefore from Lions [14, Lemma 1.3] we infer that

g (umt)→ g (ut) in L
σ(.)
σ(.)−1 (Ω× (0, T )) weak star. (4.17)

Passage to the limit.
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On the other hand, we have from (4.14)

um −→ u weak star in L∞
(

0, T ;H2
0 (Ω) ∩ Lp(.)(Ω)

)
,

∆2um −→ ∆2u weak star in L∞
(

0, T ;H2
0 (Ω) ∩ Lp(.)(Ω)

)
,

umt −→ ut weak star in L2
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;H1

0 (Ω)
)
,

g (umt) −→ g (ut) weak star in L
σ(.)
σ(.)−1 (Ω× (0, T )) ,

∆umt (t)→ ∆ut (t) weak star in L2
(
0, T ;H−1(Ω)

)
,

∆m(.) (um)→ ψ weak star in L∞
(

0, T ;W−1,m′(.) (Ω)
)

(4.18)

By applying the Lions-Aubin compactness lemma, we obtain, for any T > 0,

um −→ u strongly in L2
(
0, T ;H1

0 (Ω)
)
. (4.19)

Using the compactness of H1
0 (Ω) in L2(Ω), it is easy to verify∫ T

0

∫
Ω

|um|p(.)−2
umvdxdt→

∫ T

0

∫
Ω

|u|p(.)−2
uvdxdt for all v ∈ Lσ(.)

(
0, T ;H1

0 (Ω)
)
,

as m→∞.
Using growth conditions (3.9) and (4.18), we see that

∫ T
0

∫
Ω
|f (um)|

θ+1
θ dxdt is

bounded and

f (um) −→ f (u) a.e.in Ω× (0, T ) ,

then

f (um) −→ f (u) weak star in L
θ+1
θ

(
0, T ;L

θ+1
θ

)
,

as m→∞, which implies that∫ T

0

∫
Ω

f (um) vdxdt→
∫ T

0

∫
Ω

f (u) vdxdt for all v ∈ Lθ+1
(
0, T ;H1

0 (Ω)
)
.

Passing to the limit in (Pm), we have

(utt(t), v)− (ψ, v) + w1

(
∆2u, v

)
− w2 (∆ut, v) +

(
|u|p(.)−2

u, v
)

(4.20)

−
(
α (t)

∫ t

0

β (t− s)∇u(s)ds,∇v
)

+ λ (g (ut) , v) = b (f (u) , v) ∀v ∈W 1,p(.)(Ω).

Finally, by strong convergence, we can use a standard monotonicity argument as done
in Lions [14] or Ma & Soriano [15] to show that ψ = ∆m(.) (u). Then we infer that
limit u satis�es (4.1) and

utt−∆m(.) (u)+w1∆2u−w2∆ut+α (t)

∫ t

0

β (t− s) ∆u (s))ds+|u|p(.)−2
u+λg (ut) = bf (u) .

From where the proof of theorem (4.1). �
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4.2. Uniqueness

In this subsection, the uniqueness of the solution will be proven.

Theorem 4.3. Let the assumptions of theorem 4.1 hold. Assume further that

p+ ≤
2n− 2

n− 2
, n 6= 2 (p+ <∞ if n ≤ 2) (4.21)

m+ ≤
2n− 2

n− 2
, n 6= 2 (m+ <∞ if n ≤ 2) , (4.22)

1 < θ ≤ p−
2
, (4.23)

Then, there exists a unique solution u to problem 1.1 and it satis�es (4.1).

Proof. Let u, v be two weak solutions of problem 1.1, and set Ψ = u − v. Then, Ψ
satis�es the equation

Ψtt (t)−
(
∆m(.)u (t)−∆m(.)v (t)

)
+ w1∆2Ψ (t)− w2∆Ψ′ (t)

+λ (g (ut (t))− g (vt (t))) + (|u (t)|p(.)−2
u (t)− |v (t)|p(.)−2

v (t)) (4.24)

+α (t)

∫ t

0

β (t− s) ∆Ψ(s)ds = b (f (u (t))− f (v (t)))

in L2
(
0, T ;L2 (Ω)

)
, T > 0, with boundary conditions and null initial data. As Ψ′ ∈

L2
(
0, T ;H1

0 (Ω)
)
, multiplying above equation by Ψ′ (t), to get

1

2

d

dt
|Ψt(t)|2 + w1

1

2

d

dt
|∆Ψ(t)|2 + w2 |∇Ψt|2 + (g (ut)− g (vt) , ut − vt) (4.25)

+
(
|∇u|m(.)−2∇u− |∇v|m(.)−2∇v,∇Ψt

)
=

∫
Ω

(
|v|p(.)−2

v − |u|p(.)−2
u
)

Ψtdx

+ (f (u)− f (v) ,Ψt) + α (t)

∫
Ω

∫ t

0

β (t− s)∇Ψ (s)∇Ψt (t) dsdx.

From (3.7) we have:

(g (ut)− g (vt) , ut − vt) ≥ 0.

Thanks to Hölder's inequality, we estimated the �rst term on the right hand side of
(4.25) as follows:∣∣∣∣∫

Ω

(|v|p(x)−2
v − |u|p(x)−2

u)Ψtdx

∣∣∣∣ ≤ (p+ − 1)

∫
Ω

sup
(
|u|p(x)−2

, |v|p(x)−2
)
|Ψ| |Ψt|dx

≤ (p+ − 1)

∫
Ω

(
|u|p+−2

+ |v|p+−2
+ |u|p−−2

+ |v|p−−2
)
|Ψ| |Ψt|dx

≤ C

 ‖u‖p+−2

Ln(p+−2)(Ω)
+ ‖v‖p+−2

Ln(p+−2)(Ω)

+ ‖u‖p−−2

Ln(p−−2)(Ω)
+ ‖v‖p−−2

Ln(p−−2)(Ω)

 ||Ψ (t)||Lq(Ω) |Ψt (t)| ,

where 1
n + 1

q + 1
2 = 1, and from (4.21), n (p− − 2) ≤ n (p+ − 2) ≤ 2n

n−2 = q
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which gives by estimate (4.1), Young's inequality and as H1
0 (Ω) ⊂ Lq(Ω), that:∣∣∣∣∫

Ω

(|v|p(x)−2
v − |u|p(x)−2

u)Ψtdx

∣∣∣∣
≤ C

 ‖∇u‖p+−2
L2(Ω) + ‖∇v‖p+−2

L2(Ω)

+ ‖∇u‖p−−2
L2(Ω) + ‖∇v‖p−−2

L2(Ω)

 ||∇Ψ (t)||L2(Ω) |Ψt (t)|

≤ C
(
|∇Ψ(t)|2 + |Ψt (t)|2

)
.

By the same manner and by condition (4.21), we have∣∣∣∣∫
Ω

(|∇u|m(x)−2∇u− |∇v|m(x)−2∇v∇Ψtdx

∣∣∣∣
≤ (m+ − 1)

∫
Ω

sup
(
|∇u|m(x)−2

, |∇v|m(x)−2
)
|∇Ψ| |∇Ψt|dx

≤ C

 ‖u‖m+−2

Ln(m+−2)(Ω)
+ ‖v‖m+−2

Ln(m+−2)(Ω)

+ ‖u‖m−−2

Ln(m−−2)(Ω)
+ ‖v‖m−−2

Ln(m−−2)(Ω)

 ||Ψ (t)||Lq(Ω) |Ψ
′ (t)| ,

≤ C

 ‖∇u‖m+−2
L2(Ω) + ‖∇v‖m+−2

L2(Ω)

+ ‖∇u‖p−−2
L2(Ω) + ‖∇v‖p−−2

L2(Ω)

 ||∇Ψ (t)||L2(Ω) |Ψt (t)|

≤ C
(
|∇Ψ(t)|2 + |Ψt (t)|2

)
.

Now setting Uζ = ζu+ (1− ζ) v, 0 ≤ ζ ≤ 1, from the growth condition it follows that∣∣∣∣∫ t

0

∫
Ω

|f (u)− f (v)| |Ψt|dxdt

∣∣∣∣ =

∣∣∣∣∫ t

0

∫
Ω

∫ 1

0

d

dζ
f (Uζ) dζΨtdxdt

∣∣∣∣
≤
∫ t

0

∫
Ω

∣∣∣∣∫ 1

0

d

dζ
f (Uζ) dε

∣∣∣∣ |Ψt|dxds

≤
∫ t

0

∫
Ω

∫ 1

0

∣∣∣∣ d

dζ
f (Uζ) dζ

∣∣∣∣ |Ψt|dxds

≤ l1
∫ t

0

∫
Ω

∫ 1

0

(
|Uζ |θ−1

+ |k3 (x)|
)
|u− v| |Ψt|dζdxds

≤ C
∫ t

0

∫
Ω

(
|u|θ−1

+ |v|θ−1
+ |k3 (x)|

)
|Ψ (s)| |Ψt (s)|dxds = I.

Using generalized Hölder's, Young's inequalities, estimates (4.1), and let λ satisfy:

1 < λ+ 1 ≤ min

(
n

(n− 2) (θ − 1)
,

n

n− 2

)
, n 6= 2 (λ <∞ if n ≤ 2) (4.26)
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from (4.23), the following estimates hold,

I ≤ C
∫ t

0

∥∥∥l1 (|u|θ−1
+ |v|θ−1

+ |k3 (x)|
)∥∥∥λ

2(λ+1)
||Ψ||2(λ+1) ‖Ψt‖2

≤ C
∫ t

0

(∥∥∥|u|θ−1
∥∥∥λ

2(λ+1)
+
∥∥∥|v|θ−1

∥∥∥λ
2(λ+1)

+ ‖k3 (x)‖λ2(λ+1)

)
||Ψ||2(λ+1) ‖Ψt‖2 ds

≤ C
∫ t

0

(
‖∇u‖λ(θ−1)

2 + ‖∇v‖λ(θ−1)
2 + ‖k3 (x)‖λ∞

)
||∇Ψ||2 ‖Ψt‖2 ds

≤ C
∫ t

0

(
|Ψt(s)|2 + |∇Ψ(s)|2

)
ds.

because by (4.26) we have ||Ψ||2(λ+1) ≤ ||∇Ψ||2.
Combining the above inequalities with identity (4.4), from (4.25), we derive

1

2
|Ψt(t)|2 +

1

2
C

(
w1λ1 − α (t)

∫ t

0

β (s) ds

)
|∇Ψ(t)|2

+C2

∫ t

0

|∇Ψt (s)|2 ds+
1

2
α (t) (βo∇Ψ) (t)

≤ C
∫ t

0

(
|Ψt (s)|2 + |∇Ψ(s)|2

)
ds+

1

2

∫ t

0

α′ (s) (βo∇Ψ) (s) ds

+
1

2

∫ t

0

α (s) (β′o∇Ψ) (s) ds− 1

2

∫ t

0

α (s)β (s) + α′ (s)

s∫
0

β (ζ) dζ

 |∇Ψ (s)|2 ds

Then, from remark 3.2, assumptions (3.10) gives

|Ψt(t)|2 + (w1λ1 − α (0)β1) |∇Ψ(t)|2 ≤ C
∫ t

0

(
|Ψt (s)|2 + |∇Ψ(s)|2

)
ds.

and then by Gronwall's inequality we deduce that: Ψ (t) = Ψ (0) = 0 in H2
0 (Ω). �

To study the global existence of the energy function, we de�ne some functionals
and establish several lemmas. Let the functions:

I (t) = I (u (t)) =
p (x)

4

(
w1λ1 − α (t)

∫ t

0

β (s) ds

)
|∇u (t)|2 (4.27)

−b
∫

Ω

f (u (t))u (t) dx− b
∫

Ω

k1 (x) |u (t)|dx;

J (t) = J (u (t)) =
1

2

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)
|∇u (t)|2 − b

∫
Ω

f̂ (x, u) dx; (4.28)

E(t) = E(u(t), ut(t)) ≥ J (u (t)) +
1

2
|ut(t)|2 +

∫
Ω

1

p (x)
|u(t)|p(x)

dx (4.29)

+

∫
Ω

1

m (x)
|∇u(t)|m(x)

dx+
1

2
α (t) (βo∇u) (t) .
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And the set as
W =

{
u : u ∈ H2

0 (Ω) , I (t) > 0
}
∪ {0} . (4.30)

where

E(t) =
1

2
|ut(t)|2 +

1

2
w1 |∆u|2 −

1

2

(
α (t)

∫ t

0

β (s) ds

)
|∇u (t)|2

+
1

2
α (t) (βo∇u) (t) +

∫
Ω

1

m (x)
|∇u(t)|m(x)

dx+

∫
Ω

1

p (x)
|u(t)|p(x)

dx− b
∫

Ω

f̂ (u(t)) dx.

(4.31)

5. Global existence

In this section we show that the solution of problem 1.1 global in in in�nite time
under the assumption

E (0) < 4 (w1λ1 − α (0)β1)

(
p− (λ1w1 − α (0)β1)

4 (l1 + l1 ||k2 (x)||∞ + ||k1 (x)||∞) bCθ+1
∗

) 2
θ−1

.

and

p+ ≤
2n

n− 2
, n 6= 2 (p+ <∞ if n ≤ 2) .

The next lemma shows that our energy functional (4.29) is a nonincreasing
function along the solution of (1.1).

Lemma 5.1. E(t) is a nonincreasing for t ≥ 0 and

E′ (t) = −w2 |∇ut|2 − λ
∫

Ω

ut (t) g (ut (t)) dx+
1

2
α′ (t)

∫
Ω

(βo∇u) (t) dx

+
1

2
α (t)

∫
Ω

(β′o∇u) (t) dx− 1

2

(
α (t)β (t) + α′ (t)

∫ t

0

β (s) ds

)
|∇u(t)|2 ≤ 0. (5.1)

Proof. Multiplying the equation of (1.1) by ut and integrating by parts over Ω, using
(3.6), (3.7), (3.10) and remark 3.2, summing up the product results, obtains

E (t)− E (0) = −w2

∫ t

0

|∇ut (s)|2 ds− λ
∫ t

0

∫
Ω

ut (s) g (ut (s)) dxds

+
1

2

∫ t

0

α′ (t)

∫
Ω

(βo∇u) (s) dxds+
1

2

∫ t

0

α (s)

∫
Ω

(β′o∇u) (t) dxds

−1

2

∫ t

0

(
α (s)β (s) + α′ (s)

∫ s

0

β (ζ) dζ

)
|∇u(s)|2 ds ≤ 0 for t ≥ 0.

�

Lemma 5.2. Let (3.6) and (3.8) hold, suppose u0 ∈W and u1 ∈ H1
0 (Ω) such that

γ = bCθ+1
∗

(
4

E (0)

w1λ1 − α (0)β1

) θ−1
2

(l1 + l1 ||k2 (x)||∞ + ||k1 (x)||∞) (5.2)

<
p−
4

(λ1w1 − α (0)β1) .



16 Abita Rahmoune

then u ∈W for each t ≥ 0

where C∗ is the best Poincar's, Sovolev constant depending only on p (x) and on
Ω, which satisfy 2 < p (x) ≤ p+ ≤ 2n

n−2 (n ≥ 3) (2 ≤ p+ <∞ if n = 1, 2) .

‖u (t)‖p(x) ≤ C∗ ‖∇u (t)‖2 ∀u ∈ H
1
0 (Ω).

Proof. Since I (0) > 0, by the continuity, there exists 0 < Tm < T such

I (t) ≥ 0 in [0, Tm] ,

this gives from (4.28) and (3.8):

E (t) ≥ J (t) =
1

p (x)
I (t) +

1

4

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)
|∇u|2

+
b

p (x)

(∫
Ω

f (u)udx+

∫
Ω

k1 (x) |u|dx− p (x)

∫
Ω

f̂ (x) dx

)
(5.3)

≥ 1

4

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)
|∇u|2 .

since by (3.8) we have

∫
Ω

f (u)udx+

∫
Ω

k1 (x) |u|dx− p (x)

∫
Ω

f̂ (x) dx ≥ 0

Then by using (5.3), (4.29), (5.1) and remark 3.2, we obtain

|∇u|2 ≤ 4

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)−1

E (t) ≤ 4

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)−1

E (0) .

(5.4)
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By recalling (3.9), Sobolev-Poincaré's embedding (θ + 1 ≤ p), condition (5.2), esti-
mate (5.4) and Cauchy-Schwartz's inequality, we have the following estimates:

b

∫
Ω

f (u)udx+ b

∫
Ω

k1 (x) |u|dx ≤ b
∫

Ω

|f (u)| |u|dx+ b

∫
Ω

|k1 (x)| |u|dx

≤ bl1
∫

Ω

|u|θ+1
dx+ bl1

∫
Ω

|k2 (x)| |u|dx+ b

∫
Ω

|k1 (x)| |u|dx

≤ bl1 ‖u (t)‖θ+1
θ+1 + b (l1 ||k2 (x)||∞ + ||k1 (x)||∞) ‖u (t)‖θ+1

θ+1

≤ bl1Cθ+1
∗ |∇u(t)|θ+1

+bCθ+1
∗ (l1 ||k2 (x)||∞ + ||k1 (x)||∞) |∇u(t)|θ+1

= bl1C
θ+1
∗ |∇u(t)|θ−1 |∇u(t)|2

+bCθ+1
∗ (l1 ||k2 (x)||∞ + ||k1 (x)||∞) |∇u(t)|θ−1 |∇u(t)|2

≤ bCθ+1
∗

(
4

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)−1

E (0)

) θ−1
2

(5.5)

× (l1 + l1 ||k2 (x)||∞ + ||k1 (x)||∞) |∇u|2

≤ bCθ+1
∗

(
4

E (0)

w1λ1 − α (0)β1

) θ−1
2

× (l1 + l1 ||k2 (x)||∞ + ||k1 (x)||∞) |∇u|2

<
p−
4

(λ1w1 − α (0)β1) |∇u|2

≤ p (x)

4

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)
|∇u|2 on [0, Tm] .

Therefore, from (4.27), we conclude that I (t) > 0 for all t ∈ [0, Tm] . By repeating
this procedure, and using the fact that

lim
t→Tm

bCθ+1
∗

(
4

E (t)

w1λ1 − α (0)β1

) θ−1
2

(l1 + l1 ||k2 (x)||∞ + ||k1 (x)||∞) ≤ D

<
p−
4

(λ1w1 − α (0)β1) .

Tm is extended to T. �

Theorem 5.3. Let the assumptions of theorem 4.1 hold. Let u0 ∈ W satisfying (5.2).
Then, the solution gotten in of theorem 4.1 is global.

Proof. It su�cient independently to t to show that

|ut|2 + |∇u|2 +

∫
Ω

|∇u(t)|m(x)
dx+

∫
Ω

|u(t)|p(x)
dx

is bounded.
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For this aim, we use (4.27), (4.29), (3.8), (3.10) and Lemma 5.2 to obtain:

E(0) ≥ E(t) ≥ 1

2

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)
|∇u (t))|2 − b

∫
Ω

f̂ (x, u) dx

+
1

2
|ut(t)|2 +

∫
Ω

1

m (x)
|∇u(t)|m(x)

dx+

∫
Ω

1

p (x)
|u(t)|p(x)

dx+
1

2
α (t) (βo∇u) (t)

≥ 1

4

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)
|∇u (t))|2 +

1

p (x)
I (t)

+
b

p (x)

(∫
Ω

f (u)udx+

∫
Ω

k1 (x) |u|dx− p (x)

∫
Ω

f̂ (x, u) dx

)
+

1

2
|ut(t)|2 +

∫
Ω

1

m (x)
|∇u(t)|m(x)

dx+

∫
Ω

1

p (x)
|u(t)|p(x)

dx

≥ 1

4

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)
|∇u (t)|2

+
1

2
|ut(t)|2 +

∫
Ω

1

m (x)
|∇u(t)|m(x)

dx+

∫
Ω

1

p (x)
|u(t)|p(x)

dx

≥ 1

4
(λ1w1 − α (0)β1) |∇u (t))|2 +

1

2
|ut(t)|2

+

∫
Ω

1

m (x)
|∇u(t)|m(x)

dx+

∫
Ω

1

p (x)
|u(t)|p(x)

dx.

Therefore

|ut(t)|2+|∇u (t)|2+

∫
Ω

|∇u(t)|m(x)
dx+

∫
Ω

|u(t)|p(x)
dx ≤ max

(
p+,m+, 4 (λ1w1 − α (0)β1)

−1
)
E(0),

These estimates ensure that the solution u(t) exist globally in [0,+∞[. �

Example 5.4. Consider the following functions:

f (x, u) = a (x) |u|$−2
u− b (x) |u|γ−2

u

with appropriate functions a (x) and b (x) , where $ > γ ≥ 1.

g (ut (t)) = |ut (t)|σ(x)−2
ut (t) ; σ (x) satis�es conditions in (3.7);

∆m(x)u = div
(
|∇u|m−2∇u

)
; m (x) = m > 2.

Then, problem 1.1, is reduced to the following problem

utt − div
(
|∇u|m−2∇u

)
+ w1∆2u (t)− w2∆ut (t) + α (t)

∫ t

0

β (t− s) ∆u (s) ds

+λ |ut (t)|σ(x)−2
ut (t) + |u|p(x)−2

u (t) = bf (u (t)) in Ω× R+,

u = ∂ηu = 0 on Γ× [0,+∞[ ,

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

(P)
Since f, g satis�es hypotheses (3.7)-(3.9). Then, Theorems 4.1, 4.3 and 5.3 are veri�ed
for problem P, which gives importance to this general problem.
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