Global solution for a diffusive epidemic model (HIV/AIDS) with an exponential behavior of source
DOI:
https://doi.org/10.24193/subbmath.2023.4.15Keywords:
Reaction-diffusion systems, Lyapunov function, global solution.Abstract
We consider the question of global existence and uniform boundedness
of nonnegative solutions of a system of reaction-diffusion equations with
exponential nonlinearity, without any restriction on initial data, using maximum
principle and Lyapunov function techniques.
References
Alikakos, N., Lp
Di erential Equations, 4(1979), 827-868.
Barabanova, A., On the global existence of solutions of reaction-di usion equation with
exponential nonlinearity, Proc. Amer. Math. Soc., 122(1994), 827-831.
Benachour, S., Rebiai, B., Global classical solutions for reaction-di usion systems with
nonlinearities of exponential growth, J. Evol. Equ., 10(2010), no. 3, 511-527.
Castillo-Chavez, C., Cooke, K., Huang, W., Levin, S.A., On the role of long incubation
periods in the dynamics of acquires immunode ciency syndrome, AIDS, J. Math. Biol.,
(1989), 373-398.
Crandall, M., Pazy, A., Tartar, L., Global existence and boundedness in reaction-di usion
systems, SIAM J. Math. Anal., 18(1987), 744-761.
Cussler, E.L., Di usion, Cambridge University Press, Second Edition, 1997.
Daddiouaissa, E.H., Existence of global solutions for a system of reaction-di usion equa-
tions with exponential nonlinearity, Electron. J. Qual. Theory Di er. Equ., 73(2009), 1-7.
Daddiouaissa, E.H., Global solution for a di usive epidemic model (HIV/AIDS) with a
strong exponential source, Jour. Abstr. Di er. Equ. Appl., 9(2018), no. 1, 30-40.
Djebara, L., Abdelmalek, S., Bendoukha, S., Global existence and asymptotic behavior
of solutions for some coupled systems via Lyapunov functional, Acta Math. Sci. Ser. B.,
B(6)(2019), 1538-1550.
Friedman, A., Partial Di erential Equation of Parabolic Type, Prentice Hall, 1964.
El Hachemi Daddiouaissa
Hamaya, Y., On the asymptotic behavior of a di usive epidemic model (AIDS), Nonlin-
ear Anal., 36(1999), 685-696.
Haraux, A., Kirane, M., Estimation C1 pour des problemes paraboliques semi-lineaires,
Ann. Fac Sci. Toulouse Math., 5(1983), 265-280.
Haraux, A., Youkana, A., On a result of K. Masuda concerning reaction-di usion equa-
tions, Tohoku Math. J., 40(1988), 159-163.
Henry, D., Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math-
ematics 840, Springer-Verlag, New York, 1981.
Hollis, S.L., Martin, R.H., Pierre, M., Global existence and boundedness in reaction-
di usion systems, SIAM J. Math. Anal., 18(1987), no. 3, 744-761.
Kanel, J.I., On global initial boundary-value problems for reaction-di usion systems with
balance conditions, Nonlinear Anal., 37(1999), 971-995.
Kirane, M., Global bounds and asymptotics for a system of reaction-di usion equations,
J. Math Anal. Appl., 138(1989), 1172-1189.
Masuda, K., On the global existence and asymptotic behaviour of reaction-di usion equa-
tions, Hokkaido Math. J., 12(1983), 360-370.
Melkemi, L., Mokrane, A.Z., Youkana, A., Boundedness and large-time behavior results
for a di usive epidemic model, J. Appl. Math., (2007), 1-15.
Pazy, A., Semigroups of Linear Operators and Applications to Partial Di erential Equa-
tions, Springer Verlag, New York, 1983.
Webb, G.F., A reaction-di usion model for a deterministic di usive epidemic, J. Math.
Anal. Appl., 84(1981), 150-161.
Zeidler, E., Nonlinear Functional Analysis and its Applications, Tome II/b, Springer
Verlag, 1990.
Zelenyak, T.I., Stabilization of solutions to boundary value problems for second order
parabolic equations in one space variable, Di er. Uravn. Protsessy Upr., 4(1968), 34-45.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.