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Solution of nonlinear equations via
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gebra approach
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Abstract. We generate automatically several high order numerical
methods for the solution of nonlinear equations using Padé approxi-
mation and Maple CAS.
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1. Introduction

Consider the nonlinear scalar equation

f(z) =0, (1.1)

where f : D C R — R is a continuous and differentiable as many times
as necessary. Let o be a solution of (1.1). Let R,, ) be the set of rational
functions with degree of numerator m and degree of denominator p. Suppose
f has a formal Taylor series

f(z)zco+clz+6222+~--.

For any pair (m,p) € Nx N, ry,,, € Ry, is the type (m,p) Padé ap-
proximant to f if their Taylor series at z = 0 agree as far as possible:

(f = rmp)(2) = O(z"") (1.2)

We will use three different strategies based on Padé in order to obtain
automatically high order method:

e a direct strategy;
e inverse interpolation;
e modified methods.
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The features of Maple CAS allow us to generate methods of arbitrary
orders. See [4] or [6] for details. The pade procedure from the numapprox
package computes a Padé approximation of degree (m, p) about a given point.
The paper [3] and the book [2] contain several interesting examples of using
Computer Algebra for the derivation of numerical methods. In the sequel we
will consider one-step methods, i.e. methods of the form

Tni1 = F(xy), xo given.

For the sake of brevity we will use the notations f,, = f(z,) and f,(Lk) =

f(k) ().

2. The direct approach
The first strategy is to approximate f by its (m,p) Padé approximant 7, , €

Rm.p and to solve the equation r,, ,(x) = 0. The iteration will have the form
LTn+1 = F(Z‘n),

where F(z) is the root of r,, ,(z) = 0 as a function of z. In order to avoid
the solution of higher order equations we will choose m = 1.
For example, for m = 1 and p = 0, we obtain the Newton’s method.

> restart;

> with(numapprox) :

> F:=pade(f(t),t=x[n],[1,0]):
> G:=collect(solve(%,t),x[nl);

D (f) (zn)

fu

Tn+l = T — f,-
n

G =z, —

or,

For m =1 and p = 1, we obtain Halley’s method.
> F:=pade(f(t),t=x[n],[1,1]):
> G:=collect(solve(%,t),x[nl);

O o D (f) (x,) f (x4)
2D (@) = (DD) () (x) f (x0)
J— 2f7/1fn
Tp4+1 = Tn

2~ fia
This formula was obtained using direct Padé approximation in [2].

These are in fact particular cases of Householder-type methods. They
could be obtained by considering (1,p) Padé approximation and solving the
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equation 71, = 0. Their order is p + 2. If f € CPT}(V), where V is a neigh-
borhood of a, Househelder showed in [9] that the general form of iteration

is
( 1 ) (p)
f
(l>(p+1) ’
f -
The generation of such a method is straightforward with the following

one-line Maple code

> Phi:=(x,p)->x+(p+1)*(Dee(p)) (1/£) (x)/(De@(p+1)) (1/£) (x):
We give two examples, for p = 2 and p = 3. The results were con-
verted to mathematical notation.

> F_2:=x+normal (Phi(x,2)-x);
> F_3:=x+normal (Phi(x,3)-x);

Tn+l = Tp + <p+ 1)

[2f2(2) — f"(2)f (@)] f(x)

b= @ 6w - P @@
i ::“_4[f’”(x)f2(“7)+6f/3(x)_Gfﬂ( 2)f'(2)f ()] f(= )7 (2.2)
Q(z)
where

Q) = [ (2) () — 81" (@) f' () f*(x) — 24" (2)+
361" (x) f*(2) f(x) — 6"(x) f*(z) (2.3)

3. Inverse Interpolation

Suppose there exists g = f~! on a neighborhood V of a. The inverse inter-

polation consists of approximating

a = g(0),
by the value of an interpolant g for g at 0
a =g(0).

In this section we will use inverse Padé interpolation. The formula we
look for will have the form

Tht1 = Tmp(Tk), k=0,1,,
where 7, is the (m,p) Padé approximant for g(0). For details on in-
verse interpolation see [1], [5], [7]. The paper [7] uses rational interpo-
lation to derive methods for the solution of scalar nonlinear equations.
The Maple procedure invpade generates the iteration function based on
(m, p)-inverse Padé interpolation.
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invPade:=proc(m: :nonnegint,p: :nonnegint)
local f,x;
x+collect (eval (pade ((fe@(-1)) (y),y=f(x), [m,pl),y=0)-x,
X,simplify);
end proc;
We give examples for (m,p) € {(1,1),(2,1),(2,2)}. The results were
edited, in order to fit on page.
Formula for (1,1) is the Halley’s formula.

> Fl11:=invPade(1,1);

vV V.V VYV

f'(@)f(x)
f(@) f(x) = 2f7(x)
Formula for (2,1) was given and studied in [10].

> F21:=invPade(2,1);

> convert (%,diff);

F11 =+ 2

 f@) [f@)f (@) f" (@) = $f (@) f? (@) + 32 () f" (2)]
fr@) [f (@) f/(x) f" (@) = 3f (@) f72(x) + 3f2(x) [ (2)]
Note that the formula for (1,2) is different from (2.1) (that is, the direct
approach and inverse interpolation generates different formulas for (1,2) pair
of degrees). The (2, 2)-type formula is

F21 =T

(3.1)

U
F22 :J,‘—i-v, (32)

where
U=67 [F UV 7O =611 1" 467 (f) + 41" (1) = 6 (") ()] (@)
and
V= 2 (3 FD 8 = a (U =6 (49 (1)) (@)
—6 5 (U D =s8rp 7" +9 (")) ()
—12 () (2007 -3 () (@),

4. Modified methods

Following the ideas of Sebah and Gourdon [8], we look for an iteration of the
form

2 h3
xn+1:xn+hn+a22—7+a33—7+~~, (4.1)
where h,, = — ]{;((:;’:l)). Under the assumptions that f is sufficiently differen-

2 3
tiable and h,, +a2hz—? +a3};—? + .-+ is small, we start from Taylor expansion of
f(zn41) about x,, and using the side-relation f(z,,) + hnf'(z,) = 0, we try
to choose a,’s so that to cancel as many terms as possible in the expansion.
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The Maple procedure modPade below returns the coefficients (ay)
and the modified method (4.1) truncated to a given number of terms.

> modPade:=proc(nmax: :nonnegint)
> local k, inc,dT, dT2, sol, a, ec, so, it, n ;
> inc:=h+add(alk]*h"k/k!,k=2..max(nmax+1,3));
> dT:=convert(taylor(f(x[n]+t),t=0,nmax+1),polynom) ;
> dT:=simplify(subs(t=inc,dT), [f(x[n])+h*D(f) (x[n])=0]):
> dT2:=collect(dT,h,simplify):
> for k from 2 to nmax+1 do
> eclk] :=coeff(dT2,h,k);
>  end;
> so:=solve([seq(ec[k],k=2..nmax+1)], [seq(alk],k=2..nmax+1)]);
> assign(so);
> it:=x[n]+eval (subs(h=-f(x[n])/D(f) (x[n]),factor(inc)));
> return a,it;
> end proc:
modPade computes for ai, k = 2,...,6, the following values
"
4y = —In
2 7!
3 (f//)Q o f///f/
az = %
(fh)
S (F)? = 04 £ 15 ()]
gy = —
(f2)°
105 ()" = 10537 (1) Fo + 15142 1 (1)* 410 () () = 147 (£)°
as = 1
(f@)
7 3 2 2 2
% =~ s (135 (£2)° = 180427 (F1)° £+ 3078 ()7 (1) + 40£7 (£ (12)

=3O () = 50T (1))
For nymax = 4, modPade gives the fourth-order formula
A ) P (@) £ @) =3 (6 @)) £ )
Tn41 = Tn f/ (xn) 9 (f/ (xn))S 6 (f, (xn))5

(4.2)
For nmax = 5, modPade gives the fifth-order formula

C f) e P (@) @) =3 (7 @a)?) £ ()
T T T T (@) 6 (f (xn))°
(£9 (o) (7 @a))> = 108 () £ (o) F (20) +15 (1" (2a))°) £* ()
24 (f (wn))"

(4.3)

Remark 4.1. These methods are the same as Chebyshev methods and could
be generated using inverse Taylor interpolation (see [1, 7]).
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5. Numerical examples

We wish to compare the different iterations on the solution of the equation
ze® + 22 —6=0. (5.1)

First, we compute the solution using fsolve function with Digits set to
400.

> Digits:=400:
>  eq:=x*exp(x)+x"2-6:
> rootl:=fsolve(eq,x);

root! :=1.25716946808154244322416171370599680292013126504290076'
142355162009975113083056615579120160569103718598288101\
140558803113433921630435939810988753086636 . . .

Then, for each method we execute a small number of iteration steps
and count the number of correct digits and compute the absolute error as the
modulus of the difference between root1 and the computed approximation.

e Padé (1,2), order 4 (formula (2.1))

x1 = 1.26(257...) 2 digits

xo = 1.2571694681(095...) 10 digits

x3 = 1.2571694680815424432241617137059968029201312(853 . . . ) 43 digits

x4 = 1.25716946808154244322416171370599680292013126504(. .. ) 176 digits
e inverse Padé (2, 1), order 4 (formula (3.1))

v =1.2(727...) 1 digits

2o = 1.2571694(737...) 8 digits

x3 = 1.2571694680815424432241617137059969(004 . . . ) 34 digits

x4 = 1.2571694680815424432241617137059968029201312650(. . . ) 137 digits
e modified method, order 4 (formula (4.2))

x1 = 1.3(106...) 1 digits

xo = 1.25717(411...) 5 digits

x3 = 1.257169468081542443224(458 .. .) 21 digits

x4 = 1.25716946808154244322416171370599680292013126504(. . . ) 86 digits
e Padé (1,3), order 5 (formulas (2.2) and (2.3))

z = 1.257(703...) 3 digits

xo = 1.257169468081542443(624 . .. ) 18 digits

x3 = 1.257169468081542443224161713705996802920131265(. . . ) 94 digits

x4 = 1.25716946808154244322416171370599680292013126504(. . . ) 472 digits

Note that this method was tested for Digits set to 500.
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e inverse Padé (2,2), order 5 (formula (3.2))

x1 = 1.26(...) 2 digits

zo = 1.2571694680815(682. ..) 13 digits

x3 = 1.257169468081542443224161713705996802920131265(. . . ) 69 digits

x4 = 1.25716946808154244322416171370599680292013126504(. . . ) 348 digits
e modified method, order 5 (formula (4.3))

21 =1.(2846...) 1 digits

xo = 1.257169(479...) 7 digits

x3 = 1.257169468081542443224161713705996802920(249 . . . ) 39 digits

x4 = 1.2571694680815424432241617137059968029201312650(. . . ) 199 digits

Tables 1 and 2 give the error after each iteration for 4th order and for 5th
order methods, respectively.

Iteration Padé Inverse Padé Modified
(1,2) (2,1) order 4
1 5.4033¢ — 03 | 1.5528¢ — 02 | 5.3445e¢ — 02
2 2.7982¢ — 11 | 5.6144e — 09 | 4.6404e — 06
3 2.0247¢ — 44 | 9.7495¢ — 35 | 2.9607e — 22
4 5.5508e¢ — 177 | 8.8659¢ — 138 | 4.9061e — 87
TABLE 1. Errors for each iteration, 4th order methods
Iteration Padé Inverse Padé Modified
(1,3) (2,2) order 5
1 5.3370e — 04 | 3.7722¢ — 03 | 2.7441e — 02
2 4.0001le — 19 | 2.5751e — 14 | 1.0904e — 08
3 9.4690e — 95 | 3.8318¢ — 70 | 1.1775e — 40
4 7.0386e — 473 | 2.7954e¢ — 349 | 1.7284¢ — 200

TABLE 2. Errors for each iteration, 5th order methods

6. Conclusions

All methods presented computes a large number of correct digits in
a small number of iterations. Direct Padé and inverse Padé methods are
superior to modified methods. Direct Padé methods, (in fact, Householder
methods) have a better accuracy than methods based on inverse Padé inter-
polation of the same total degree, at least for equation (5.1). The approach
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presented in this paper could be useful in the context of symbolic computa-
tion, when a large number of digits is required and to automatically generate
numerical methods for the solution of nonlinear equations.
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