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ods, Computer Algebra.

1. Introduction

Consider the nonlinear scalar equation

f(x) = 0, (1.1)

where f : D ⊆ R → R is a continuous and differentiable as many times
as necessary. Let α be a solution of (1.1). Let Rm,p be the set of rational
functions with degree of numerator m and degree of denominator p. Suppose
f has a formal Taylor series

f(z) = c0 + c1z + c2z
2 + · · · .

For any pair (m, p) ∈ N× N, rmp ∈ Rm,p is the type (m, p) Padé ap-
proximant to f if their Taylor series at z = 0 agree as far as possible:

(f − rmp)(z) = O(zmax) (1.2)

We will use three different strategies based on Padé in order to obtain
automatically high order method:

• a direct strategy;
• inverse interpolation;
• modified methods.
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The features of Maple CAS allow us to generate methods of arbitrary
orders. See [4] or [6] for details. The pade procedure from the numapprox

package computes a Padé approximation of degree (m, p) about a given point.
The paper [3] and the book [2] contain several interesting examples of using
Computer Algebra for the derivation of numerical methods. In the sequel we
will consider one-step methods, i.e. methods of the form

xn+1 = F (xn), x0 given.

For the sake of brevity we will use the notations fn = f(xn) and f
(k)
n =

f (k)(xn).

2. The direct approach

The first strategy is to approximate f by its (m, p) Padé approximant rm,p ∈
Rm,p and to solve the equation rm,p(x) = 0. The iteration will have the form

xn+1 = F (xn),

where F (x) is the root of rm,p(x) = 0 as a function of x. In order to avoid
the solution of higher order equations we will choose m = 1.

For example, for m = 1 and p = 0, we obtain the Newton’s method.

> restart;

> with(numapprox):

> F:=pade(f(t),t=x[n],[1,0]):

> G:=collect(solve(%,t),x[n]);

G := xn −
f (xn)

D (f) (xn)
or,

xn+1 = xn −
fn
f ′n
.

For m = 1 and p = 1, we obtain Halley’s method.

> F:=pade(f(t),t=x[n],[1,1]):

> G:=collect(solve(%,t),x[n]);

G := xn − 2
D (f) (xn) f (xn)

2 (D (f) (xn))
2 −

(
D(2)

)
(f) (xn) f (xn)

or,

xn+1 = xn −
2f ′nfn

2 (f ′n)
2 − f ′′nfn.

This formula was obtained using direct Padé approximation in [2].

These are in fact particular cases of Householder-type methods. They
could be obtained by considering (1, p) Padé approximation and solving the
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equation r1p = 0. Their order is p + 2. If f ∈ Cp+1(V ), where V is a neigh-
borhood of α, Househelder showed in [9] that the general form of iteration
is

xn+1 = xn + (p+ 1)

(
1
f

)(p)
(

1
f

)(p+1)

∣∣∣∣∣∣∣
xn

.

The generation of such a method is straightforward with the following
one-line Maple code

> Phi:=(x,p)->x+(p+1)*(D@@(p))(1/f)(x)/(D@@(p+1))(1/f)(x):

We give two examples, for p = 2 and p = 3. The results were con-
verted to mathematical notation.

> F_2:=x+normal(Phi(x,2)-x);

> F_3:=x+normal(Phi(x,3)-x);

F2 := x− 3

[
2f ′2(x)− f ′′(x)f(x)

]
f(x)

f ′′′(x)f2(x) + 6f ′3(x)− 6f ′′(x)f ′(x)f(x)
(2.1)

F3 := x+
4
[
f ′′′(x)f2(x) + 6f ′3(x)− 6f ′′(x)f ′(x)f(x)

]
f(x)

Q(x)
, (2.2)

where

Q(x) = f (4)(x)f3(x)− 8f ′′′(x)f ′(x)f2(x)− 24f ′4(x)+

36f ′′(x)f ′2(x)f(x)− 6f ′′2(x)f2(x) (2.3)

3. Inverse Interpolation

Suppose there exists g = f−1 on a neighborhood V of α. The inverse inter-
polation consists of approximating

α = g(0),

by the value of an interpolant ĝ for g at 0

α = ĝ(0).

In this section we will use inverse Padé interpolation. The formula we
look for will have the form

xk+1 = rmp(xk), k = 0, 1, ,

where rmp is the (m, p) Padé approximant for g(0). For details on in-
verse interpolation see [1], [5], [7]. The paper [7] uses rational interpo-
lation to derive methods for the solution of scalar nonlinear equations.
The Maple procedure invpade generates the iteration function based on
(m, p)-inverse Padé interpolation.
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> invPade:=proc(m::nonnegint,p::nonnegint)
> local f,x;
> x+collect(eval(pade((f@@(-1))(y),y=f(x),[m,p]),y=0)-x,
> x,simplify);
> end proc;

We give examples for (m, p) ∈ {(1, 1), (2, 1), (2, 2)}. The results were
edited, in order to fit on page.

Formula for (1, 1) is the Halley’s formula.

> F11:=invPade(1,1);

F11 := x+ 2
f ′(x)f(x)

f ′′(x)f(x)− 2f ′2(x)

Formula for (2, 1) was given and studied in [10].

> F21:=invPade(2,1);

> convert(%,diff);

F21 := x−
f(x)

[
f(x)f ′(x)f ′′′(x)− 3

2f(x)f ′′2(x) + 3f ′2(x)f ′′(x)
]

f ′(x) [f(x)f ′(x)f ′′′(x)− 3f(x)f ′′2(x) + 3f ′2(x)f ′′(x)]
(3.1)

Note that the formula for (1, 2) is different from (2.1) (that is, the direct
approach and inverse interpolation generates different formulas for (1,2) pair
of degrees). The (2, 2)-type formula is

F22 = x+
U

V
, (3.2)

where

U = 6ff ′
[
f (f ′)

2
f (4) − 6ff ′f ′′f ′′′ + 6f (f ′′)

3
+ 4f ′′′ (f ′)

3 − 6 (f ′′)
2

(f ′)
2
]

(x)

and

V = f2
(

3 (f ′)
2
f (4)f ′′ − 4 (f ′)

2
(f ′′′)

2 − 6 f ′ (f ′′)
2
f ′′′ + 9 (f ′′)

4
)

(x)

− 6 f (f ′)
2
(

(f ′)
2
f (4) − 8 f ′f ′′f ′′′ + 9 (f ′′)

3
)

(x)

− 12 (f ′)
4
(

2 f ′f ′′′ − 3 (f ′′)
2
)

(x).

4. Modified methods

Following the ideas of Sebah and Gourdon [8], we look for an iteration of the
form

xn+1 = xn + hn + a2
h2n
2!

+ a3
h3n
3!

+ · · · , (4.1)

where hn = − f(xn)
f ′(xn)

. Under the assumptions that f is sufficiently differen-

tiable and hn +a2
h2
n

2! +a3
h3
n

3! + · · · is small, we start from Taylor expansion of
f(xn+1) about xn, and using the side-relation f(xn) + hnf

′(xn) = 0, we try
to choose an’s so that to cancel as many terms as possible in the expansion.
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The Maple procedure modPade below returns the coefficients (ak)
and the modified method (4.1) truncated to a given number of terms.

> modPade:=proc(nmax::nonnegint)
> local k, inc,dT, dT2, sol, a, ec, so, it, n ;
> inc:=h+add(a[k]*h^k/k!,k=2..max(nmax+1,3));
> dT:=convert(taylor(f(x[n]+t),t=0,nmax+1),polynom);
> dT:=simplify(subs(t=inc,dT),[f(x[n])+h*D(f)(x[n])=0]):
> dT2:=collect(dT,h,simplify):
> for k from 2 to nmax+1 do
> ec[k]:=coeff(dT2,h,k);
> end;
> so:=solve([seq(ec[k],k=2..nmax+1)],[seq(a[k],k=2..nmax+1)]);
> assign(so);
> it:=x[n]+eval(subs(h=-f(x[n])/D(f)(x[n]),factor(inc)));
> return a,it;
> end proc:

modPade computes for ak, k = 2, . . . , 6, the following values

a2 = −f
′′
n

f ′n

a3 =
3 (f ′′n )

2 − f ′′′n f ′n
(f ′n)

2

a4 = −f
(4)
n (f ′n)

2 − 10f ′′′n f
′′
nf
′
n + 15 (f ′′n )

3

(f ′n)
3

a5 =
105 (f ′′n )

4 − 105f ′′′n (f ′′n )
2
f ′n + 15f

(4)
n f ′′n (f ′n)

2
+ 10 (f ′n)

2
(f ′′′n )

2 − f (5)n (f ′n)
3(

f (4)
)4

a6 = − 7

(f ′n)
5

(
135 (f ′′n )

5 − 180f ′′′n (f ′′n )
3
f ′n + 30f (4)n (f ′′n )

2
(f ′n)

2
+ 40f ′′n (f ′′′n )

2
(f ′n)

2

−3f (5)n f ′′n (f ′n)
3 − 5f ′′′n f

(4)
n (f ′n)

3
)

For nmax = 4, modPade gives the fourth-order formula

xn+1 = xn−
f (xn)

f ′ (xn)
−f
′′ (xn) f2 (xn)

2 (f ′ (xn))
3 +

(
f ′′′ (xn) f ′ (xn)− 3 (f ′′ (xn))

2
)
f3 (xn)

6 (f ′ (xn))
5

(4.2)
For nmax = 5, modPade gives the fifth-order formula

xn+1 = xn −
f (xn)

f ′ (xn)
− f ′′ (xn) f2 (xn)

2 (f ′ (xn))
3 +

(
f ′′′ (xn) f ′ (xn)− 3 (f ′′ (xn))

2
)
f3 (xn)

6 (f ′ (xn))
5

−

(
f (4) (xn) (f ′ (xn))

2 − 10f ′′′ (xn) f ′′ (xn) f ′ (xn) + 15 (f ′′ (xn))
3
)
f4 (xn)

24 (f ′ (xn))
7

(4.3)

Remark 4.1. These methods are the same as Chebyshev methods and could
be generated using inverse Taylor interpolation (see [1, 7]).
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5. Numerical examples

We wish to compare the different iterations on the solution of the equation

xex + x2 − 6 = 0. (5.1)

First, we compute the solution using fsolve function with Digits set to
400.

> Digits:=400:

> eq:=x*exp(x)+x^2-6:

> root1:=fsolve(eq,x);

root1 :=1.25716946808154244322416171370599680292013126504290076\
142355162009975113083056615579120160569103718598288101\
140558803113433921630435939810988753086636 . . .

Then, for each method we execute a small number of iteration steps
and count the number of correct digits and compute the absolute error as the
modulus of the difference between root1 and the computed approximation.

• Padé (1, 2), order 4 (formula (2.1))

x1 = 1.26(257 . . . ) 2 digits

x2 = 1.2571694681(095 . . . ) 10 digits

x3 = 1.2571694680815424432241617137059968029201312(853 . . . ) 43 digits

x4 = 1.25716946808154244322416171370599680292013126504(. . . ) 176 digits

• inverse Padé (2, 1), order 4 (formula (3.1))

x1 = 1.2(727 . . . ) 1 digits

x2 = 1.2571694(737 . . . ) 8 digits

x3 = 1.2571694680815424432241617137059969(004 . . . ) 34 digits

x4 = 1.2571694680815424432241617137059968029201312650(. . . ) 137 digits

• modified method, order 4 (formula (4.2))

x1 = 1.3(106 . . . ) 1 digits

x2 = 1.25717(411 . . . ) 5 digits

x3 = 1.257169468081542443224(458 . . . ) 21 digits

x4 = 1.25716946808154244322416171370599680292013126504(. . . ) 86 digits

• Padé (1, 3), order 5 (formulas (2.2) and (2.3))

x1 = 1.257(703 . . . ) 3 digits

x2 = 1.257169468081542443(624 . . . ) 18 digits

x3 = 1.257169468081542443224161713705996802920131265(. . . ) 94 digits

x4 = 1.25716946808154244322416171370599680292013126504(. . . ) 472 digits

Note that this method was tested for Digits set to 500.
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• inverse Padé (2, 2), order 5 (formula (3.2))

x1 = 1.26(. . . ) 2 digits

x2 = 1.2571694680815(682 . . . ) 13 digits

x3 = 1.257169468081542443224161713705996802920131265(. . . ) 69 digits

x4 = 1.25716946808154244322416171370599680292013126504(. . . ) 348 digits

• modified method, order 5 (formula (4.3))

x1 = 1.(2846 . . . ) 1 digits

x2 = 1.257169(479 . . . ) 7 digits

x3 = 1.257169468081542443224161713705996802920(249 . . . ) 39 digits

x4 = 1.2571694680815424432241617137059968029201312650(. . . ) 199 digits

Tables 1 and 2 give the error after each iteration for 4th order and for 5th
order methods, respectively.

Iteration Padé Inverse Padé Modified
(1, 2) (2, 1) order 4

1 5.4033e− 03 1.5528e− 02 5.3445e− 02
2 2.7982e− 11 5.6144e− 09 4.6404e− 06
3 2.0247e− 44 9.7495e− 35 2.9607e− 22
4 5.5508e− 177 8.8659e− 138 4.9061e− 87

Table 1. Errors for each iteration, 4th order methods

Iteration Padé Inverse Padé Modified
(1, 3) (2, 2) order 5

1 5.3370e− 04 3.7722e− 03 2.7441e− 02
2 4.0001e− 19 2.5751e− 14 1.0904e− 08
3 9.4690e− 95 3.8318e− 70 1.1775e− 40
4 7.0386e− 473 2.7954e− 349 1.7284e− 200

Table 2. Errors for each iteration, 5th order methods

6. Conclusions

.
All methods presented computes a large number of correct digits in

a small number of iterations. Direct Padé and inverse Padé methods are
superior to modified methods. Direct Padé methods, (in fact, Householder
methods) have a better accuracy than methods based on inverse Padé inter-
polation of the same total degree, at least for equation (5.1). The approach
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presented in this paper could be useful in the context of symbolic computa-
tion, when a large number of digits is required and to automatically generate
numerical methods for the solution of nonlinear equations.
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