Nonlinear elliptic equations by topological degree in Musielak-Orlicz-Sobolev spaces
DOI:
https://doi.org/10.24193/subbmath.2023.4.13Keywords:
Nonlinear elliptic equation, Musielak-Orlicz-Sobolev space, topological degree.Abstract
We prove by using the topological degree theory the existence of at least one weak solution for the nonlinear elliptic equation\[-\text{ div }a_1(x,\nabla u)+ a_0(x, u)= f(x,u,\nabla u)\]
with homogeneous Dirichlet boundary condition in Musielak-Orlicz-Sobolev spaces.
References
Benkirane, A., Elmahi, A., An existence for a strongly nonlinear elliptic problem in
Orlicz spaces, Nonlinear Anal., 36(1999), 11-24.
Benkirane, A., Sidi El Vally, M., An existence result for nonlinear elliptic equations in
Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math. Soc. Simon Stevin, 20(2013), 57-75.
Bendahmane, M., Wittbold, P., Renormalized solutions for nonlinear elliptic equations
with variable exponents and L1 data, Nonlinear Anal., 70(2009), no. 2, 567-583.
Berkovits, J., Extension of the Leray-Schauder degree for abstract Hammerstein type
mappings, J. Di erential Equations, 234(2007), 289-310.
Berkovits, J., Mustonen, V., On topological degree for mappings of monotone type, Nonlinear
Anal., 10(1986), 1373-1383.
Diening, L., Maximal function on Musielak-Orlicz spaces and generalized Lebesgue
spaces, Bull. Sci. Math., 129(2005), no. 8, 657-700.
Dong, G., Fang, X., Di erential equations of divergence form in separable Musielak-
Orlicz-Sobolev spaces, Bound. Value Probl., (2016), 2016:106.
Fan, X., Di erential equations of divergence form in Musielak-Sobolev spaces and a sub-
supersolution method, J. Math. Anal. Appl., 386(2012), 593-604.
Fan, X.L., Guan, C.X., Uniform convexity of Musielak-Orlicz-Sobolev spaces and appli-
cations, Nonlinear Anal., 73(2010), 163-175.
Gossez, J.-P., A strongly non-linear elliptic problem in Orlicz-Sobolev spaces, In: Proc.
Sympos. Pure Math., 45(1986), 455-462.
Gwiazda, P., Swierczewska-Gwiazda, A., On steady non-newtonian
uids with growth
conditions in generalized Orlicz spaces, Topol. Methods Nonlinear Anal., 32(2008), no.
, 103-113.
Gwiazda, P., Swierczewska-Gwiazda, A., On non-newtonian
uids with the property of
rapid thickening under di erent stimulus, Math. Models Methods Appl. Sci., 18(2008),
-1092.
Gwiazda, P., Swierczewska-Gwiazda, A., Wr oblewska, A., Monotonicity methods in gen-
eralized Orlicz spaces for a class of non-Newtonian
uids, Math. Methods Appl.Sci.,
(2010), 125-137.
Harjulehto, P., Hasto, P., Riesz potential in generalized Orlicz spaces, Forum Math.,
(2017), no. 1, 229-244.
Hudzik, H., On generalized Orlicz-Sobolev space, Funct. Approx. Comment. Math.,
(1976), 37-51.
Kim, I.S., Hong, S.J., A topological degree for operators of generalized (S+) type, Fixed
Point Theory Appl., (2015), 2015:194.
Klawe, F.Z., Thermo-visco-elasticity for models with growth conditions in Orlicz spaces,
Topol. Methods Nonlinear Anal., 47(2016), no. 2, 457-497.
Kov a cik, O., R akosn k, J., On spaces Lp(x) and W1;p(x), Czechoslovak Math. J., 41
(1991), 592-618.
Le, V.K., On a sub-supersolution method for variational inequalities with Leray-Lions
operators in variable exponent spaces, Nonlinear Anal., 71(2009), 3305-3321.
Liu, D., Zhao, P., Solutions for a quasilinear elliptic equation in Musielak-Sobolev spaces,
Nonlinear Anal. Real World Appl., 26(2015), 315-329.
Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034,
Springer-Verlag, Berlin, 1983.
R_u zi cka, M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture
Notes in Math., Vol. 1748, Springer-Verlag, Berlin, 2000.
Youss , A., Azroul, E., Lahmi, B., Nonlinear parabolic equations with nonstandard growth, Appl. Anal., 95(2016), no. 12, 2766-2778.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.