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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLIV, Number 4, December 1999

AN EXTENSION OF THE BANACH FIXED-POINT THEOREM AND
SOME APPLICATIONS IN THE THEORY OF DYNAMICAL
SYSTEMS

" DANA CONSTANTINESCU AND MARIA PREDOI

Abstract. In this paper we present an extension of the Banach Fixed-
Point Theorem and we apply this new result to find the attractors of
some classes of discrete dynamical processes. By associating a convergent
sequence of Iterated Function Systems (IFS) to a dynamical process, we

derive some applications in the approximation of (IFS) attractors.

1. Introduction

Let’s remember the celebrated Banach Fixed-Point Theorem:

Theorem 1.1. Each contraction f of a complete metric space (X, d) has an unique

fired-point.

It is well-known that this fixed-point, £, is the limit of the sequence (z5)nenN,
zn = f(2n-1) with an arbitrary 2o € X (Picard’s method) .

In Section 2 we propose an extension of this result: the contraction f is
replaced by a sequence of contractions, (fu),cn- We analyse three cases:

e the sequence (fy),cn is convergent.

o all the applications f, , n € N have the same fixed-point.

o the sequence (f,), N is k-periodic.
In each case we obtain a similar result to Theorem 1.1. (Theorem 2.1.,2.2. and 2.3.).

Banach’s classical theorem has some important applications in the theory of

Dynamical Systems, namely in the theory of Iterated Function Systems (IFS). The

1991 Mathematics Subject Classification. 54HXX, 58F13.
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DANA CONSTANTINESCU AND MARIA PREDOI

existence of (IFS) attractors and of the Hutchinson measure attached to an (IFS), for
example, are consequences of Theorem 1.1. Let’s see more details.

If (X, d) is a metric space, one can consider distx : P (X) x P (X) — R,
by

distx (A, B) = sup inf d(z,y) .
c€AYEB

This application is not quite a metric because distx (A, B) # distx (B, A) for

many A, B € P(X), but the celebrated Pompeiu-Hausddorff metric can be obtained
by

h:P(X)xP(X)— Ry, h(A, B) =max(distx (A, B),distx (B, A))

It is clear that h ({z},{y}) =d(z,y).

(see [HS] for details)

Using this metric, one can see, by Picard’s method, that "li_'n:oh ({zn},{€}) =
0 for the recurrent sequence z,4+1 = f (z,) with arbitrary zp € X. ~

If we should consider the discrete dynamical system (X, f), the previous
relation means that {£} is the global attractor of the system.

The results presented in the second paragraph of our paper may be applied
to the theory of dynamical processes (a kind of dynamical systems’ generalization).

One can consider that the pair (X, (f")nEN) may be thought of as a discrete
dynamical process and the corresponding recurrent equation, £, = f,, (zn~1), is used
to define the process attractor (a good survey on this problem is [Vis]). If f, = f, for
all n € N we obtain the classical case. Using the above mentioned results we obtain
some characterisations of the dynamical processes’ attractors (Theorem 3.1., 3.2.).

This way, we extend to dynamical processes some well-known results.

One can obtain, as a particular case, some well-known results in (IFS) theory
and some important applications in the approximation of an (IFS) attractor.

In order to approximate the attractor of an (IFS) using computer facilities,
we associate the sequence of truncated (IFS) to a dynamical process and we prove
that the initial (IFS) attractor, which is in fact the attractor of the associated process,

4
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AN EXTENSION OF BANACH THEOREM

is the limit of the truncated attractors (Theorem 3.4), so it may be approximated as
deep as we want by choosing an appropriate number of decimals for the truncation
operator.

2. Some extensions of Banach’s Fixed-Point Theorem

The next results are not generalizations of Banach’s Fixed-Point Theorem,
because we sometimes use the classical result in the proofs.

For punctually convergent generating sequences we can prove:

Proposition 2.1. Let (X, d) be a metric space and (fn), <N @ sequence of s-contractions,

punctually convergent on X to f. Then f is an s-contraction.

Proof. Because the inequalities

d(f(z),f(y) < d(f(2),fa(@)+d(fa (@), fa (@) +d(fa(¥),f(¥) <
< sd(z,y)+d(fa(2), f(2)+d(fa(¥), [ ()

hold for every n € N and every z,y € X it is clear that

4(f (@), (¥)) < Jim [sd (2,9) +d(fn (2) , £ (&) + 4 (fo (1) . f (8))] = s (2,9) .

0

Proposition 2.2. Let (X,d) be a complete metric space, (fn),cn @ sequence of s-
contractions punctually convergent on X to f |, €, the fired points of f,,n € N, and
€€ X . Then &, — € if and only if f (€) =¢&.

Proof. “<=" From

d(&n€) = d(fal6n), (&) < d(fn(§n) Fn (§)) +d(fa (€) . f(§)) <
Sd(£n1€)+d(fﬂ (6)1f(€))

IA

results that

460, 6) S oA (1al€), 7€) 0
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so d(&n,&) — 0. It is clear now that &, — €.
? =" d(f(€),€) <d(f (&), fa(8) +d(fa (), fn(€n)) +d(fn (£n),€) <
<d(f(€), fn(€)+ (s+1)d(£n,€) = 0.
Hence f (€) =¢&. O

The next Lemma (a classical result in mathematical analysis) will be used in the proof

of Theorem 2.1.

Lemma 2.1. If (an),cn and (bn),cn are sequences of positive numbers and there is

s € (0,1) such that apy1 — san, < by for alln € N and lim b, = 0, then le a, =0.
n—>00 n 00

Theorem 2.1. Let (X,d) be a metric space, (fn),cn @ sequence of s-contraction of
X, punctually convergent on X to f and £ € X. Let also consider the recurrent
sequence Ty, = fy (zn-1), n € N* with arbitrary zo € X . Then z, — £ if and only
if € is the fized point of f.

Proof. “=" From

d(f(£),8) <d(f (&), fa(8) +d(fn(§),€) <
<d(f (&), fa(8) +d(fa(§), fa(za=1)) + d(fa (Tn-1),&) <
d(f (&), fn()) + sd (€, xn-1) +d(2a-1,§)
for all » € N, it results that d(f(¢£),£) < nl_i_)ngod(f(ﬁ),fn(ﬁ)) + sd(€,zn-1) +
d(l‘n_l,f) =0.
So f(&) =¢.
“<=" Let us notice that
d(xmﬁ) = d(fn (In—l) ’f(f)) S d(.fn (xn—-l) vfn (E)) + d(fn (6) vf(f)) S
S s d(zn—l)g) + d(fn(&)vf (6)))

so d(xn,€) — s - d(zn-1,&) < d(fu(€), f(€)). One can now apply Lemma 2.1. for
an = d(zn,8) and b, = d (fa (), F(€)) . It results that nan;od (zn,€) =0, s0 nlingoxn =
€. O
6
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The previous result etablishes that nl_i_}ngo h(z,,&) = 0. It can be formulated in terms

of dynamical systems theory:

Corollary 2.1. Let (X,d) be a complete metric space, (fn),en @ Sequence of s-
contraction of X, punctually convergent on X to f, and let be £ € X the unique
fired-point of f.  Then {£} is the global attractor of the dynamical process P =

(X, (fudnen)-

It is a natural result and it has some interesting applications.

For periodic generating sequences we can prove:

Proposition 2.3. If (X, d) is a complete metric space, (fu),en 5 @ k-periodic se-

quence ( fayk,= fa for alln € N) and &;,&,, ...&k are the fized points of fi, fa, ..., fk
then {&1,...&x} is Lyapunov stable.

Proof. We must find U € V ({£1, ...£x}) such that, for every z € X there is ny, € N
with the property {f, (z),n > n;} CU.

Let’s consider @ = max {d ({£1,&2),d (€2,€3) ...d (€x—1,&k) , d (€, 1)}

It is quite simple to see that

d(l’j,Ej) < de(:l,’l,f[) +

L a
1—s
But &4 = ¢ for all j € N, so

d (Tokt, &) < s™*Hd (z1,&) + 7 L4 for all ne N and j €N

— S

k
— . 2
We now choose I/ = jL=J1B (511 = ‘1) )

Because le s"¥+3 = ( there is ng € N such that, for all n > ng the inequality
n o0

s"kd (z1,61) < 725 should hold. Then

2
d(enk+j, &) < 1 afor alln > ng and j € {1,2,....k}

-8

If n, "2 ng - k, then @, € U for all n > n,,.

If (fn),enis a k-periodic sequence of s-contraction on X then the application

k

frko fk—10...0 f1 is a s"- contraction on X and has an unique fixed point, namely £.

7
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The sequence (Zn),en > Tn (§) = fa (Tn-1), With zo (§) = £ is also k-periodic,

SO Tp = Tn mod & for all n € N. 0

Theorem 2.2. Let (X, d) be a complete metric space, (fr), N a k-periodic sequence
of s-contractions, & the fized point of fx o ...0 fi and £, = fn (£n—1) with arbitrary
zo € X. Then

Jim h ({2a}, {1 (§) , (fa 0 /1) (§) s s (S 0 fimr 00 1) (§)}) = 0.
Proof. Because f, fa, ..., fir are s-contractions it is clear that

nliglod (@n,(frno...o f1)(§)) =0,
SO
nliync}oh'({mn}: {(fn o fn—l O ..y fl) (&) R E N‘}) =0.

We may use now the periodicity of (f,),cn to obtain that
Tim b ({zn}, {1 (€) (F20 1) (€) - (fico fimr 0 o0 1) (€))) = 0
0

Corollary 2.2. Let S = (N, X, f) be a contractive dynamical system on the complete
metric space X , £ the fivred point of f and z, = f(zn—1) with arbitrary zo € X.
Then lim h({z,},{¢}) = 0.

7n—00

Proof. In Theorem 2.2. we choose k = 1. O

Now let’s see what happens when all f,,n € N have the same fixed-point.

Theorem 2.3. Let (X, d) be a complete metric space, (fn),cn sequences of s-con-
tractions of X and x, = f, (2n—1) with arbitrary zo € X. If the applications f,,n €
N have the same fized point €, then n‘i{{,‘o”‘({f"}’ {€}) = 0 and each sphere centered
in {€} is Lyapunov stable.

Proof. Because d(zn,€) < s"d(zo,€) and h ({z,}, {¢}) = d(zp,€) we obtain imme-

diately the results of the Theorem.

8
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Let’s notice that, even if f,,n € N have the same fixed point, we know
nothing about the convergence or periodicity of (fn),cn-

For example, the applications f, (v) = %:c have the same fixed-point, 0, for
alln € N and f, p“ml—;)“auy 0, still (fn), en is not periodic.

The applications g, (z) = 2i(;_11'_'_z have also the same fixed-point, 0, for
all n € N, but the sequence (g,),¢n is punctually convergent only on {0} and it is

periodic (k = 2). ' O
It is clear now that the situations analyzed in the previous theorems are different.

3. Applications to the Theory of Dynamical Systems

We shall apply the previous results to the theory of Iterated Function Systems
(IFS), which are classical examples of chaotic dynamical systems (in the sense of the
Devaney definition) and whose attractors are fractals (see [Hut]).

An IFS on the complete metric space (X,d) is

S = (X, w1, ws, ..., w,) where wy,wy,...,w, : X = X are s-contractions of

On the family of compact subsets of X with # (X), we consider

h:H(X)xH(X)— Ry , Pompeiu-Hausdorff’s metric.

It is well-known that (# (XX), k) is a complete metric space if (X, d) is so.

Using the s-contractions wy, wy, ..., w, one can obtain another s-contraction,
namely @ : # (.X) = H (X) , @ (B) = wy (B)Uws (B)U...Uw, (B) for each B € H (X)
which has (see Banach’s Fixed Point Theorem ) a single fixed point A € H (X), so
A =w (A)Uws (A)U...Uw, (4).

The Iterated Function System S is associated to the contractive dynamical
system S = (H (X),®).

The single fixed-point of @ , A € H (X), is in fact the global attractor of S
(it is a compact set and nli)lgoh (w" (z),A) = 0 for every & € X). It is called the
attractor of S and it is interesting to prove that S exhibits chaotic dynamics on A
(see [Ba] for details).

We associate now an (IFS) sequence to a discrete dynamical process.
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Definition 3.1. Let’s consider k € N and (Sn),eny Sn = (X, win, w20, ..., Wk 5)a
sequence of s-IFS . @, : H (.X) = H (X) is defined by

Wp (B) = w10 (B)Uwapn (B)U...Uwg 5 (B)

for all B € H (X) then P = (H(X), (Wn)nen) is the contractive dynamical process

associated to the sequence (Sn),en-

Let’s notice that, if S, = S for all n € N, then P = (H(X),®@) is the
contractive dynamical system associated to S.

We shall study the properties of the dynamical process’ attractor if (S,), cn
is a convergent or a periodic sequence.

Proposition 3.1. Let (wy),c be a sequence of s-contractions of the compact metric

 (X,d). Then wa 5 wifand only ifw, 5 .
space ( ) en w o w if and only if wy, (H(X),h)w

Proof. “=" From the previous definitions, it results that

Il

d(w, (B),w (B)) max ( min d(y,2)) =

YEW,(B) z€W(B)

: ’
max(mind (w, (z), w (z))

Suppose that d (@, (B) ,w(B)) /0. Then there is € > 0 and ng — oo so
that d (W, (B) ,w (B)) > e. For this ¢ > 0 and for every k € N there is #,,, € B such
that

d(wny, (2n,) , w (Tny)) > €.

But (2, ),en C B and B is a compact set, so it has a convergent subsequence, equally
denoted by (mn*)kEN for the simplicity of writing.
So there are € > 0, a sequence of natural numbers (ng),cn tending to oo

and a sequence (n, ),y C X convergent to & € X such that

d (Wny (Zn,) , w (Tn,)) > ¢,

W91
10
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for all £ € N. Then

e < d(wy, (zn,),w(zn,)) <
< d(wn, (2n,) , wny (7)) +d (wn, (2),w (2)) +d(w(z),w(2n,)) <
< sd(zn,,z)+d(wn, (2),w(2)) + sd(zn,, )
This is a contradiction, because

nli_rg()d (Tne, ) =0

and

lim d(wn, (2),w(z)) =0.

N —>00

It results that d (@, (B) ,@w(B)) — 0. In the same way we can prove that
d(w(B),w, (B)) — 0.
We may now see that

lim h (@, (B) ,@(B)) = 0

n—o0
for every B € # (X). Tt means that @, '~ 5 .
(H(X),h)
“«<” Because {¢} € H (X) for every z € X and W, ({z}) = w ({}) it results

that
nl-l-)nolod (wn (z),w(z)) = nl'if.‘oh (@n (), w(x))=0

sowp, B w. O
(X,d)

Corollary 3.1. Let (X,d) be a compact metric space and

(S")nEN = ((X, Win,W2ny ... wk,n)),,eN

a sequence of s-(I.F.S.) such that w;n % u; for everyi € {1,2,...k} and let’s denote

S = (X, uy,ug,...,ur). Then the sequence of the associated contractive dynamical
systems S, = (H (:X),@n), n € N is convergent to S = (H (X),u) in the Pompeiu-
Hausdorff metric.

Using this result and a previous theorem we can prove

11
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Theorem 3.1. Let (X,d) be a compact metric space and

(Sn)nEN = ((X’u)i,n)u’z,ns ""wkt"’))nGN

a sequence of s-(L.F.S.) such that w;y, 7’;) u; for every i € {1,2,..k} and let’s
note S = (X, uy,us,...,ux). Then the attractor of the contractive dynamical process

associated to (Sp)nen s the very attractor of S.

Proof. Let :S'V,, = (K (X),w,) be the contractive dynamical system associated to S,.
In the theorem’s hypothesis it is clear that A,, the attractor of .g’n, is the
fixed point of the s-contraction @, : H(X) = H (X).
From Proposition 3.1. it results that w, (‘H(—)%)),h) % (here S = (H(X),7) is
the contractive dynamical system associated to S). Let’s notice that A is the fixed

point of T and Corollary 2.1. shows that A is the attractor of P = (H(.X), (@n)nen),

the contractive dynamical process associated to (Sn),cn- a

A direct method to obtain the attractor A is the following:

e we choose Ag € H (X) (usually with a single element).
e we construct the sequence A,, = W, (A,—1) and we see that nlLrggA,, =A,
so A may be approximated by A, for n € N large enough.
One may say that the attractor of the approximating system is the approximation of
the attractor. The random procedure presented in [Ba] can be easily adapted to this
situation.
If (Wn),en is a periodic sequence we may apply Theorem 2.3. in order to

prove:

Theorem 3.2. If (Sp)nen = ((X, Wi n, Wan, ..., Wkn))neN 5 a k-periodic sequence
of s-iterated function systems (so w; n = Wiptk for alli € {1,2,...,k} and alln € N)
and Wy, : H(X) = H(X) isTp = W1, nUW2n,U...UWk 5 then the contractive dynamical

process assoctated to (Sp),cn » namely P = (H (X), (Wn),en) ts k-periodic and its

attractlor is the orbit of the unique fized point of the application W o ... o Wy.
More precisely there is an unique set A € H (X) such that {w, (A4), (W, o
wy) (A), ..., (W o ... oﬁl) (A)} is the attractor of P.

12
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For k = 1 this is a well known result in the theory of iterated function systems.

Theorem 3.1. also contains the basic ideas of the approximation of an IFS
attractor using computer facilities. In this case, the repeated truncations can dra-
matically modify the attractor’s properties.

If Tk is a 10~*-truncation operator on the metric space (X, d) then

d(Ti (), Tk (y)) < 2-107% if d (z,y) < 10~* and kﬁ'xooTk (z) =z forall z,y
in X.

Let’s consider S = (X, w1, ws,...wp) an IFS and T a 10~*-truncation oper-
ator on X.

Let’s denote Sy = (N, X, Tk o wy, ..., Ty, 0 wy).

Simple computations show that T} o w; ;’? w;. Unfortunately, the previous
result may not be applied, because Tjow; is not a contraction but, using the mentioned

properties of Tk, we can easily obtain a result similar to Theorem 3.1.

Theorem 3.3. Let w be an s-contraction in the compact metric space (X,d) and
(Tk)ren @ sequence of 107%,k € N truncation operators on X,

Then Ty ow B w if and only if T, 5w
kow v dandonly fTiow o B

Using this result we can prove

Theorem 3.4. Let’s consider S = (X, w1, ws, ...w,) an IFS on the complete metric
space (X,d) and (Ti)ren a sequence of (10~%)-truncation operators on X. If Ax,

A are the attractors of Sp = (N,X,Tj owy,..., Ty o w,) and S,respectively, then, in
(% (X),h), we have

lim A, = A
k—o0

From Theorem 3.4. it results that A can be well approximated, by choosing

an appropriate number of decimals for the truncation operator.

It is very important, because there are no general relations between the real

attractor and the truncated one.
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ABSOLUTELY F/U-PURE MODULES

IULIU CRIVEI

Abstract. Let R be an associative ring with non-zero identity. A sub-
module A of a right R-module B is said to be F/U-pure if f @Qr 1pju is
a monomorphism for every free left R-module F' and for every cyclic sub-
module U of F, where f : A — B is the inclusion monomorphism. A right
R-module D is said to be absolutely F//U-pure if D is F/U-pure in every
right R-module which contains it as a submodule. We characterize abso-
lutely F/U-purity by injectivity with respect to a certain monomorphism.
We also prove that the class of absolutely F/U-pure right R-modules is
closed under taking direct products, direct sums and extensions. Moreover,
we consider absolutely F/U-pure right modules over right noetherian rings

and regular (von Neumann) rings.

1. Introduction

In this paper we denote by R an associative ring with non-zero identity and
all R-modules are unital. By a homomorphism we understand an R-homomorphism.
The category of right R-modules is denoted by Mod — R. The injective envelope of a
right R-module A4 is denoted by E(A).

Let

0—A-5HB-50—0 (1)

be a short exact sequence of right R-modules and homomorphisms. The monomor-
phism f is said to be F'//U-pure if the tensor product f®1p/y : AQrF/U — BQrF/U
1s a monomorphism for every free left R-module F' and for every cyclic submodule U

of F [1, Definition 2.1]. If f is F/U-pure, then the short exact sequence (1) is called

1991 Mathematics Subject Classification. 16D80.
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F/U-pure. If A is a submodule of B and f is the inclusion monomorphism, then A is
said to be an F/U-pure submodule of B.

Let M € Mod— R. Then M is said to be projective with respect to the short
exact sequence (1) if the natural homomorphism Homgr(M, B) - Homgr(M,C) is
surjective. The right R-module M is said to be injective with respect to the short exact
sequence (1) (or with respect to the monomorphism f) if the natural homomorphism
Homp(B, M) — Hompr(A, M) is surjective.

Following Maddox [3], a right R-module M is said to be absolutely pure if
M 1is pure in every right R-module which contains M as a submodule.

In the present paper we introduce the notion of absolutely #/U-pure right

R-module and we establish some properties for such modules.

2. Basic results

We shall begin with two results which will be used later in the paper.

Theorem 2.1. [1, Theorem 2.8] Let A be a submodule of a right R-module B. Then
the following statements are equivalent:

(i) A is F/U-pure in B;

(it) If ay,...,an € R, r1,...,7n € R and the system of equations a; = xr;,

t=1,...,n has a solution b € B, then it has a solution a € A.

Theorem 2.2. [2, Theorem 2.3) A short exact sequence (1) is F/U-pure if and only
if for every finitely generated right ideal of R the right R-module R/I is projective

with respect to the short exact sequence (1).
We shall give now the following definition.

Definition 2.3. A right R-module A is said to be absolutely F/U-pure if A is F/U-

pure in each right R-module which contains A as a submodule.

In the sequel we shail denote by A the class of absolutely F/U-pure right

modules.

16
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Theorem 2.4. Let A € Mod — R. Then the following statements are equivalent:
(i) A€ A;
(ii) A is F/U-pure in E(A),
(iii) If A is a finitely generated right ideal of R and i : I — R is the inclusion

monomorphism, then A is injective with respect to i.

Proof. Let I be a finitely generated right ideal of R and consider the short exact

sequence of right R-modules
0—I1-RLZyR/T—0 2)

where ¢ is the inclusion monomorphism and p the natural epimorphism. Since R is
projective, we have Ext}(R, A) = 0. Hence the short exact sequence (2) induces the

following short exact sequence of abelian groups:

Homp(i,14)

Hompg(R, A) Hompg(I,A) — Ezth(R/I,A) —— 0  (3)

Let D € Mod — R such that A is a submodule of D and consider the short
exact sequence

0 — A -1y E(D) -4 E(D)/A — 0 (4)

where j is the inclusion monomorphism and ¢ the natural epimorphism. By injectivity
of E(D), we have Exth(R/I, E(D)) = 0. Hence the short exact sequence (4) induces

the following short exact sequence of abelian groups:

Hompg(1g/1,9)

Hompg(R/I, E(D)) Homp(R/I, E(D)/A) —

— Exth(R/I,A) — 0 (5)
(7) = (i1) This is clear.
(#8) = (44i) Suppose that A is F/U-pure in IF(A) and consider D = A in
the short exact sequence (4). By Theorem 2.2, Hompg(1g/s,q) is surjective. Hence
Exth(R/1,A) = 0, because the sequence (5) is exact. By the exactness of the sequence

17
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(3), it follows that Homp (4, 14) is surjective. Therefore A is injective with respect to
i.

(i) = () Suppose that A is injective with respect to i.  Then
Hompg(i,14) is surjective. Since the short exact sequence (3) is exact, it follows
that E;ct}q(R/I, A) = 0. By the exactness of the sequence (5), Homg(1x/s,q) is sur-
jective. By Theorem 2.2, A is F/U-pure in E(D). By Theorem 2.1, A is F//U-pure
in D. Therefore A € A. O

Remark. Every injective right R-module is absolutely F/U-pure.

Corollary 2.5. The class A is closed under taking direct products and direct sum-

mands.
Lemma 2.6. The class A is closed under taking direct sums.

Proof. Let (Aj)jes be a family of absolutely F/U-pure right R-modules and let
A = @jesA;. Let I be a finitely generated right ideal of R, i : I — R the inclusion
monomorphism and f : I —+. A an homomorphism. Since f([) is finitely generated,
there exists a finite subset K C J such that f(I) C ®xex Ax = B. By Corollary 2.5,
B € A. Therefore by Theorem 2.4, there exists a homomorphism g : R — B such
that gi = v, where v : I — B is the homomorphism defined bsl v(r) = f(r) for every
r € I. Let u: B — A be the inclusion monomorphism. Then ugi = uv = f. By

Theorem 2.4, A € A. a

Theorem 2.7. Let (1) be a short ezact sequence of right R-modules and let A,C € A.
Then B € A. '

Proof. Let I be a right ideal of R, i : I — R the inclusion monomorphism and

h: I — B a homomorphism. Consider the following diagram of right R-modules with

exact rows:
0—>J]——=R
/7 P4
u s v _ -
///ﬁ//w s
i/ »
0—>A=>B—>C—0
18
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where u, v, w, s are homomorphisms which will be defined. Since C € A, by Theorem
2.4 there exists a homomorphism s : R — C such that si = gh. By projectivity of R,
there exists a homomorphism w : R — B such that gw = s. We have gwi = st = gh,
hence g(wi — h) = 0. Let » € I. Then g((wi — h)(r)) = 0, therefore (wi — h)(r) €
Kerg = Im f. Since f is a monomorphism, there exists a unique element a € A
such that (wi — h)(r) = f(a). Hence we can define a homomorphism u : I — A
by u(r) = a. We have also h(r) = (wi)(r) — f(a). Since A € A, there exists a

homomorphism v : R — A such that vi = u. Then

((w = fo)i)(r) = (wi)(r) — (fu)(r) = (wi)(r) - f(a) = h(r).

Hence there exists the homomorphism w — fv : R — B such that (w — fv)i = h. By
Theorem 2.4, B € A. a

3. Absolutely F/U-pure modules over particular rings

In this section we shall consider absolutely F/U-pure R-modules over right

noetherian rings and regular(von Neumann) rings.

Theorem 3.1. The following statements are equivalent:
(i) R is right noetherian;
(i) If A € A, then A is injective.

Proof. (i) = (i) Suppose'that R is noetherian. Let A € A, let I be a right ideal
of R and let ¢ : I — R be the inclusion monomorphism. Since R is noetherian, [
is finitely generated. By Theorem 2.4, A is injective with respect to i.Therefore by
Baer’s criterion, A is injective.

(%) = (¢) Suppose that every absolutely F//U-pure right R-module is in-
jective. Let (A;)jes be a family of injective right R-modules and let A = @jesA;.
Then A; € A for every j € J. By Lemma 2.6, A € A, hence A is injective. Since
every direct sum of injective right R-modules is injective, it follows that R is right
noetherian [5, Chapter 4, Theorem 4.1]. ]
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Remark. If R is not right noetherian, there exist absolutely F//U-pure right R-modules

which are not injective.

Lemma 3.2. Let I be a finitely generated right ideal of R. If I € A, then I isa

direct summand of R.

Proof. Suppose that I € A and let ¢ : I — R be the inclusion monomorphism. By
Theorem 2.4, there exists a homomorphism p : R — [ such that pi = 1 Therefore [

is a direct summand of R. 0

Theorem 3.3. The following statements are equivalent:
(i) A€ A for every A € Mod — R;
(ii) I € A for every finitely generated right ideal I of R;

(111) R is regular (von Neumann).

Proof. (1) = (i7) This is clear.

(73) = (4i7) It follows by Lemma 3.2, because R is regular if and only if
every finitely generated right ideal I of R is a direct summand of R [4, Chapter |,
Theorem 14.7.8 and Proposition 4.6.1].

(7it) = () Suppose that R is regular. Let A € Mod — R, let I be a finitely
generated right ideal of R and let f : I — A be a homomorphism. Then I is a direct
summand of R. Hence there exists a finitely generated right ideal J of R such that
R =1@®J. Then there exist a unique » € I and a unique s € J such that 1 =7 +s.
Therefore we can define a unique homomorphism h : R — A such that h(1) = f(»).

It follows that At = f. By Theorem 2.4, A € A. O

Corollary 3.4. Let R be regular (von Neumann) and let I be a right ideal of R which
is not finitely generated. Then I € A, but I is not injective.

Example 3.5. Let Z be the ring of integers and let P be the set of all primes. Then
R =[] ep Z/pZ is a commutative regular (von Neumann) ring and R = @,epZ/pZ
is an ideal of R. Since I is not finitely generated, it follows that I € A, but I is not

injective.
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STUDIA UN1V. “BABES-BOLYAI", MATHEMATICA, Volume XLIV, Number 4, December 1999

A SUFFICIENT CONDITION FOR UNIVALENCE

PAULA CURT

Abstract. In this paper we obtain an univalence criterion for holomorphic

mappings in the unit ball of C*.

1. Introduction

Let C* denote the space of n complex variables z = (z1,...,2,) with the

usual inner product
n
(z,w) = E 2;W5
i=

and norm ||z|| = (z, z)%. The unit ball {z € C* : ||z|| < 1} is denoted B™.
We let £ (C") denote the space of continuous linear operators from C* into

C”, i.e. the n x n complex matrices A = (A;), with the standard operator norm
lA]l = sup{||A2|| : ||zl <1}, A€L(C).
I = (I;x) denotes the identity in £ (C*).
We denote by H (B") the class of holomorphic mappings
f(2)=(fi(2),. . [a (2)),2€ B"

from B"™ into C*. We say that f € H (B") is locally biholomorphic in B" if f has a

local inverse at each point in B® or equivalently if the derivative

Df(z) = (6g‘z§2))15j,ks"

is nonsingular at each point z € B",

The second derivative of a function f € H (B") is a symmetric bilinear op-

erator D?f(z)(+,-) on C* x C*. D?f(z)(z,-) is the linear operator obtained by
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restricting D? f (z) to {z} x C* and has the matrix representation

<= 0% fi(2)
DA (@) (=) = (Z 0% 07m z"‘) .
m=1 1<j5,k<n

A mapping v € H (B") is called a Schwarz function if ||v (2)|| < ||z]|,z € B".
If f,g € H(B") we say that f is subordinate to g (f < g) in B”, if there exists a
Schwarz function v such that f (z) = g (v(2)),z € B".

A function L : B" x [0,00) — C" is an univalent subordination chain if
L(-,t) € H(B™"),L(-,t) is univalent in B™ for all t € [0,00) and L(:,s) < L{:,1),
whenever 0 < s <t < oo.

We shall use only normalized functions in an univalent subordination chain,
ie DL(0,t) =e'l, for all ¢ > 0.

The following theorem is due to J.A. Pfaltzgrafl and we shall use it to prove

our results.

Theorem 1. [3] Let L (z,t) = ez +..., be a function from B™ x [0, 00) into C* such
that:

(i) For eacht >0, L(-,t) € H(B").

(1) L(z,t) is a locally absolutely continuous function of t, locally uniformly with

respect to z € B™.
Let h(z,t) be a function from B™ x [0,00) into C* such that:

(iii) For each t > 0,h(-,t) € H (B"), h(0,t),h(0,t)=0, Dh(0,t) = I and
Re < h(z,t), 2> 0, z € B™.

(w) For each T > 0 and r € (0,1) there is a number K = K (r,T) such that
|k (z,t)|| < K(r,T), where ||z|| <r and t € [0,T).

(v) For each z € B™, h(z,t) is a measurable function of t on [0, 00).

Suppose h (z,t) satisfies

OL (2,1
—é—tz—'——):DL(z,t)h(z,l) aec t>0, foral z€ B" (1)
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Further, suppose there is a sequence (t;),,50, tm > 0 increasing to oo such

that

lim e™ 'L (z,t,) = F (2) (2)

m—0o0
locally uniformly in B™.

Then for eacht > 0, L(-,t) is univalent on B™.

2. Main results
Theorem 2. Let f,g € H (B") such that f(0) = g(0) =0, Df(0) = Dg(0) =1
and g is locally univalent in B™. If

|(0g =N Dr () - 1| <1 (3)

and

121 [(Dg ()7 D () = 1] + (1= 11201) (D () D2 () (=) <1 (4)
for all z € B™, then f is an univalent function in B™.
Proof. We define
L(z,t)=f(e7t2) + (e —e™*) Dg (e7*2) (), (z,t) € B™ x [0,00)

- We shall prove that L (z,t) satisfies the conditions of Theorem 1 and hence
L (-,t) is univalent in B", for all ¢ € [0,00). Since f (z) = L(z,0) we obtain that f is
an univalent function in B™.
We have L (z,t) = e'z + (holomorphic term). Thus tl_i’rrcée"L(z,t) = z,
locally uniformly with respect to B™ and hence (2) holds for F (z) = z.
Clearly L (z,1) satisfies the absolute continuity requirements of Theorem 1.

From (5) we obtain
DL (z,t) = €' Dg (e7*z) [I — E (z,1)] (5)
where, for all (z,t) € B” x [0,00), E(z,1) is the linear operator defined by
E(st) = e[(Dg(e™2) ™ Df (e72) ~ 1] -

~(1-e"%)(Dg (e"'tz))_1 D?g(e7t2) (e7%z,-). (6)
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We consider

Ae™tz) = (Dg(e7t2))”'Df(e7tz) —1

B(e7*2) = (Dg (e_tz))—1 D?g(e~*2) (e7*z,-) and

F(z,t,d) = M(e7'2)+(1-A)B(e7'2), A€[0,1]

From (3) and (4) it results ||A(e7%2)]| < 1 and ||F (2,t,A;)]| < 1, where
X =e2|2||*,z€ B",t > 0. Since 1 > e~2 > ), for all z€ B" and ¢ > 0 we can
write e™% = u + (1 — u) \,, where u € [0,1). Then

—E(z,t)=uA(e™z) + (1 —u) F(2,t,);), uwe(o,1).
We obtain
NE (z, )| < ullA(e72)|| + A= w) IF (2,8, X:) || < 1, (2,t) € B" x [0,00)

and hence I — F (z,t) is an invertible operator.
Further calculation shows that

0L (z,t)

L) g (eta) U 4+ B (2 1) () =

DL (2,t)[[ = E(z,0)] ' [I + E (z,1)](2) .

Il

It results that L (z,t) satisfies the differential equation (1) for all £ > 0 and
z € B™, where

h(zt) == Bz 0] U+ E(50)] (). ™)

We shall show that h (z,1) satisfies the condition (iii), (iv) and (v) of Theorem
1. Clearly, h (z,t) satisfies the holomorphy and measurability requirements, £ (0,¢) =
0 and Dh (0,t) = I. The inequality
lh (2,8) = z|I=[| E (2,2) (A (2,8) + )| <NE (2, ) ][Il h (2,2) + 2l < |[h (2,2) + 2]

implies Re (h (z,t),z) > 0, for z € B™ and ¢ > 0.
26



A SUFFICIENT CONDITION FOR UNIVALENCE

For a fixed t > 0, E (-, t) defined by (7) is an holomorphic function from B"
into £ (C*),E(0,t) =0 and ||E (2,t)|| < 1,z € B".

By using Schwarz lemma for C* we obtain ||E (z,t)|| < ||z||,z € B™.

It follows

1+l
1—ill

The conditions of Theorem 1 being satisfied we obtain that the functions

for all € B™.

Ik (2, 01| < Il

L(z,t), t > 0 are univalent in B™. In particular f(z) = L(z,0) is univalent in B™.
O

Remark. If g = f, then Theorem 2 becomes the n-dimensional version of Becker’s
univalence criterion [3].
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ON A SUBCLASS OF CERTAIN STARLIKE FUNCTIONS WITH
NEGATIVE COEFFICIENTS

TUNDE DOMOKOS

Abstract. This work presents the class of functions, note by P(n, A, a),

which contain univalent functions with negative coeflicients, satisfying:

2@ AP L)
R s+ =N

If fi(z) € P(n,\, @), j = 1,m, then the convolution of theese

functions, h(z), lies to the class P(n, ), 8), where we have 8.

}>a.

The author obtain the order of starlikeness of a convex function
of order «, with negative coeflicients. The theorems 2,3,4 and corrolaris

1,2,4,5 are original results of the author.

Let A(n) denote the class of functions of the form

f(z)=z— Z ax 2,

k=n+1

ar > 0,n € N ={1,2,...,n}, which are analytic in the unite disk:
U={z€C:|z|<1}.

The function f(z) € A(n) is said to be in the class P(n, A, @) if it satisfies:

z2f'(2) + A22f(2)
Azf'(z) + (1= M) f(2)

Re{ }> e,

for some o (0 < @< 1), A (0<A<1),and forall z € U.

The classes P(n,0,a) = T(n) and P(n,1,a) = Cy(n) were studied by Sri-
vastava,Owa and Chatterjea in [3], and the classes P(1,0,a) = T*(a) and P(1,1,a) =
C(a) by Silvermann in [2].
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Theorem 1 ([1]). The function f(z) € A(n) is in the class P(n, A, a) if and only if:
o0

Y (k-a)Mk-A+Dax<1l-a.

=n+l1
For A = 0 and A = 1 we obtain two Lemmas in [3], and if n = 1 too, we

obtain two Lemmas in [2]. We have the following theorem :

Theorem 2. If the function f € Cu(n), then f € P(n,\, ), where:

- n(l — a)(an+1)
n+Dn+l1-a)—(1—-a)An+1)

The result is sharp, the extremal function is:

B =

l-a n+1

1@ == e fnvica)”

Proof. We know that:

fe€Cam)& > k(k—a)ar <1-a.
k=n+1

and

o0

fePm B & Y (k=B)Ak—A+1a <1-p.
k=n+1
We have to find the largest 3 such that

(k=BAk-A+1) _ k(k—0)

1-3 = l—a (1)
The inequality (1) is equivalent to
g< k(k—a)—k(l—a)(Ak—A+1) —1— (k=11 —a)Me—-A+1)
= klk—a)—(1—a)Mk=2+1)  k(k—a)—(1—a)Ak—=X+1)

We define the function g(k)by:

(k=11 =a)Me—-X+1)
k(k—a)—(1—a)Me—-A+1)
Therefore g(k) < g(k + 1) we have that the function g(k) is an increasing function on
k,k>n+1.

g(k) =1-

Finaly we have :

n(l — a)(An +1)

ﬂzg("‘i‘l):l“(n+1)(n+]_a)—(l—a)()\n+1)'
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which completes the proof of our theorem. O

Convolution of functions

Let the functions f;(z) be defined by :
(e o)
filz)=2z— Z ajk 2~
k=n+1
ajk >0,j=1,2,...,m. Then we define the function h(z) by:
00
h(z) =z — Z (a:ll,k + ag,k +--- +arzn,k)zk‘ (2)
k=n41
Theorem 3. If f;(z) € P(n,\,a), j = 1,2,...,m, then the function h(z) given by
(2) is in the class P(n, A, B), where:

3 mn(l — a)?
(n+1-a)2(An+1)—m(l—0a?)

B =
The result is sharp, the extremal functions are:

(2) = l-a n+1 :
filz) =2 (n+1—-a)(/\n+1)z , i=12...,m

Proof. By using Theorem 1 we have

5 {(k - a)i,\—k; A+ 1)]2(‘?,k <y (k- ai(ika; At <1, )
k=nt1 k=n+41

j=1,2,...,m. (3) implies:

Los e A D 4t <1

k=n+1 l1-a

We have to find the largest 8 such that:
(k=B -A+1)
(1-5)
The inequality (4) is equivalent to
(k—a)’ Ak —A+1) —mk(1l —a)?
(k—a)2(Mk—=A+1)—m(l-a)?2 ~

m(k - 1)(1 — a)?
(k=a)2(Ak - A+ 1) —m(l—a)?

—a 2 _ 2
Frmt ) )

<

B<

=1-
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Let the function s(k) be :

m(k - 1)(1 — a)?
(k—a)2(Mk—=A+1)—m(l—a)?’

We prove that s(k) < s(k + 1) for k, k > n + 1, inequality wich is equivalent to

s(k)=1-

where
g(k) = 22k3 + (1 = A = 2a0)k? + (=1 — A+ 2a)\)k + (m — 1)(1 — o).
We have
9(2) =6A+4A(1—a) + 2+ (m - 1)(1 - @) > 0.
By calculating the derivate of the g(k), we obtain :
g'(k) = 6Mk* +2(1 = A = 2aA\)k — 1 — 1 + 2.

We also have :

¢(2)=132A+6A1-a)+3>0 (5)
g"(k) = 120k +2(1 — X — 2a)) (6)
g"(2) =182 +4X(1-0a)+2>0 (7)
g"(k) =12X2>0, for 0 < A< 1 (8)

For A =0 we have g(k) = k(k— 1)+ (m—-1)(1-a)? >0
So that (8) implies that the function g’(k) is an increasing function on k, and by
using (7) we have g"”(k) > 0. This implies that the function ¢’(k) is increasing on k.
Using (5) we have g'(k) > 0 so that the function g(k) is increasing on k. But g(2) >0
so g(k) > 0for k>n+1.
Therefore s(k) < s(k + 1), the function s(k) is an increasing function in k , k > n+1,
and this implies that :

mn(l — a)?

B<s(n+1)=1- (n+1—-a)})(An+1)—m(l —a)?
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For the functions :

-«
n+1-a)(An+1)

f](z)z‘z—(

lz"“, i=12,...,m,
the result is sharp. O

Corollary 1. If f;(z) € P(n, A, «), j = 1,2, then the function :

0o

h(2)=2— ) (af,+a3s)e
k=n+1

is in the class P(n, A, B), where:

2n(1 —a)?

A=l- (n+1-a)2)An+1)—2(1—-a)?

The result is sharp for the functions :

1—-a n
W) =R =~ e

Corollary 2. Let fj(z) € Ta(n), § = 1,2,...,m. Then the function h(z) given by
(2) is in the class Tg(n),where

mn(l — a)?

p=1- (n+1l-a)?-—m(l-a)?

The result is sharp, the extremal functions are :

-« .
fj(Z):Z—mZ"+l ]=1,2,...,m‘

Corollary 3. Let f;j(z) € Ca(n),j =1,2,...,m. Then the function h(z) given by (2)

lies to the class Cy(n), where:

mn(l — a)?

p=1- m+)(n+l1-0a)2—m(l-a)?

The result is sharp for the functions :

l-«

@) == e nric )’

ntl j=12,...,m.
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The order of starlikeness of a convex function of order a from the class
A(n)

We know that the class P(n, 1, @) = Cy(n) contain convex functions of order

a, with :
zf"(z)
f'(z)

and the class P(n,0, 3) = Tp(n) contain starlike functions of order g, with :

Re(l +

) > a, z €U,

zf'(2)
Re=ry~>#  z€U.

Theorem 4. If f € Cy(n),then f € Tp(n), where :

n(n+1)
r+D)(n+l-a)-(1—a)

g =
The result 1s sharp for the function :

11—« n
f(Z):z—(n-l-l)(n-{-l—a)z +1.

Proof. Using the Theorem 1. for A =1 we have:

[ee]

Y k(k—o)ar <1-a. (9)

k=n+1

From the Theorem 1. for A = 0 we have:

[ee]

FeTn) e Y (k-Pau <1-46. (10)

k=n+1
We have to find the largest 3 such that:

k—p kk—-a)
T3S T a (11)

The inequality (11) is equivalent to:

k(k —1)
R Yy pay g

Let the function g(k) be:
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Therefore ¢g'(k) > 0 for k, k > n+ 1, the function g(k) is an increasing function on k,
k> n+1, we have :

n(n +1)
(r+1)(n+l1-a)—(1-a)’

which completes the proof of our theorem.

B<g(n+1)=

The inequality in (9) and (10) are attained for the function:

1—-a

— zn+1
(n+1l)(n+1-0a)

fl2) =2
O

Corollary 4. For a = 0 we obtain § = :—"‘—l Thus a convez function from class

2
A(n) is starlike of order § = 21,

Corollary 5. For n = 1 we have 8 = % If a = 0, then we have 8 = %, so a

conver function of the form:

flz)=z- Zakz"
k=2

is starlike of order %, and % > %

We know, that in case of the functions of the form :
(o]

f(z) == +Zakzk,
k=2

not necessary with negative coefficients, the theorem of Marx and Strohhacker tell us

that a convex function is starlike of order %

The same theorem, for n = 2, tell us that a convex function of the form
(e o]
f(z) =2+ Zakz",
k=3

is starlike of order %
From Theorem 4., for n = 2 we have § = ;2 and if a =0, we obtain § = $.

Finally, a convex function of the form :

flz2) =2— iakzk
k=3

is starlike of order %, and %— > %
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COUNTERPARTS OF ARITHMETIC MEAN-GEOMETRIC
MEAN-HARMONIC MEAN INEQUALITY

S.S. DRAGOMIR

Abstract. Some converse inequalities for the celebrated arithmetic mean-

geometric mean-harmonic mean inequality are given.

1. Introduction

Recall the means

1) weighted arithmetic mean A, (w,a),

and

3) weighted harmonic mean H, (w,a),

* — Wn
fnlwoa) =5 o
where
a=(ay,..,an),w = (wy,..,wn),a;,w; >0(i=1,...,n)
and W, = Z?_l w;.

1991 Mathematics Subject Classification. 26D15, 26Dxx.
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The following inequality is well known in the literature as arithmetic mean - geometric

mean - harmonic mean inequality

Ay (w,a) > Gy (w,a) > Hy (w,a). (1.1)
The equality holds in (1.1) if and only if a; = ... = a,. Note that (1.1) is equivalent
to
An(w,a) Gp (w,a)
1< —~—+, 1< ——+. 1.2
= Gn(w,a)’ H, (w,a) (12)

The main aim of this note in to point out upper bounds for the quotients

Ap(w,a) Gp(w,a)
Gn(w,a)’ H,(w,a)

2. The Results

In the recent paper [1], Dragomir and Goh, by the use of an inequality for
convex functions, have proved the following analytic inequality for the logarithmic

mapping.

Lemma 1. Let £,p; >0 (i = 1,...,n) where Y i pi = 1. Then

0< ZP:’ Ing; —1In (Zpifi) (2.1)
=1 i=1

fhlﬁ

< 12:: ; E piPj 6—5?)

i,j=1

Z Pipj— (7 _EJ) .

1<i<j<n '

The equalities hold iff €, = ... =&,

Using this result, we can state the following theorem containing a converse
of A.-G.-H. inequalities.
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Theorem 2. Let w,a be as in Introduction. Then

1< g%:_; < exp [2_%!”;2_; - 1] (2.2)
—exp [W > w L:_L}
= exp [ Z wiw; ‘a—aaj)z} =: B, (w,a)
w2 1<i<j<n iGj
(2.3)

and
Gn(w.a) < B, (w,a).

1<
~ Hp(w,a)
The equalities hold in both inequalities iff a; = ... = a,,.

Proof. The proof of (2.2) follow by (2.1) choosing p; = n).
The proof of (3) follows by (2.2) choosing % instead of a and taking into
O

B, (w,a).

~-%‘;and£i:a,-(i:1,...,

account that B, (w,1) =
We point out another results which does not use the concavity property of

log -mapping, but an inequality between the geometric and logarithmic mean of two

positive numbers.

Theorem 3. Let w,a be as in Introduction. Then

Ap 1
‘s g a))- XP[[A (w,a)] 2 W, Z = |An (W,8) - lhl]

1/2
['v%; Loy wi[An (w, a) — a,~]2]
< exp [, (w, ) Ho (w27 (2.4)
39
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Proof. We recall the following well known inequality between the geometric mean

G(a,b) := Vab(a,b > 0) and the logarithmic mean (see for example [2, p. 346])

if b=
L(a,b) := { ol fb‘; (a,b > 0)
1 a

Wota
ie.,
G(a,b) < L(a,b) for all a,b > 0. (2.5)
Note that (2.5) is equivalent to
lnb~Ina| < —=,a,b>0. (2.6)

The equality holds in (2.6) iff a = b.
Now, choose in (2.6)
b:=A,(w,a),a=a;(i=1,..,n)
to get

In A4, (w,a) — Ina;| < %l (2.7)

for all i € {1,...,n}.
Multiplying by w; > 0 and summing over ¢ € {1, ...,n}, we deduce

Wnaln A, (w,a) — Z w;Ina;

< Zw; lIn A, (w,a) — lna;|
i=1

n —-a,l
; \/ (w a)a;

1 n g
- Wg\/_a_;l/l" (W,a) _ail

)
from where results the first inequality in (4).

40



COUNTERPARTS OF A.-G.-H.-INEQUALITY

Using the Cauchy-Buniakowski-Schwarz’s discrete inequality, we get
S A (w,) - o
—_— ) — w,a) — a;
Wn i=1 \/a—' "

|: Zw [A wa) .]2}1/2 (L n Ei>1/2
Wa ! Wn &~ a;

i=1 =1

(18 o wi A (w,2) — i)
[He (w, )]

and the second inequality in (4) also holds.

The case of equality is obvious. O

The following corollary which provides an upper bound for the quotient

Gy (w,a)
H, (w,a)

holds.

Corollary 4. Let w,a be as in Introduction. Then

G (w,a)
'S H, (w,a) 5P [[H ) Z 7 ail]

< oxp | [Anlmoa)] ] Z Y 1H, (w, a) — ai?
_ p Hn (w, a) Wﬂ : a-g n ) a'i N
The equality holds iff a1 = ... = a,.

The proof follows by the inequality (4) puttmg instead of a and taking into

account that

We omit the details.
For an extensive literature on weighted means and their inequalities, the
author recommends the monograph [2].
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NON-ANALYTIC n-STARLIKE AND n-SPIRALLIKE FUNCTIONS

SORIN G. GAL

Abstract. In this paper properties of geometric kind for non-analytic n-
starlike and n-spirallike functions, n € NuU {0}, are obtained. They are
extensions of some results in the case of non-analytic (usual) starlike and
convex functions proved in [3] and in the case of analytic n-starlike func-

tions in [2].

1. Introduction

A well-known method in complex analysis by which can be introduced new

classes of functions is by using differential inequalities of the form

F(f,D(f)(2),...,D"(f)(2)) > 0,2€ U = {z € C; |z] < 1},

where D(f)(z) = za—f- - Eaf

0z 8z’
D(f)(z) = 2f'(2)).

In this sense let us mention the following two examples:

D*(f)(z) = D[D"'(f)(z) (if f is analytic then

(i) the class of analytic n-starlike (n € NU {0}) functions on U, introduced in [6];

(i1) the class of analytic logarithmically n-starlike functions on U, introduced in [2].

In Section 2 we extend to non-analytic n-starlike functions some properties of nou-
analytic usual starlike and convex functions in [3].

Section 3 is concerned with the case of non-analytic n-spirallike functions.

2. Non-analytic n-starlike functions

We say that f : U — Cis in C*(U), n € N fixed, if it is continuous and has

continuous all partial derivatives of order n with respect £ = Rez and y = Imz. For

1991 Mathematics Subject Classification. 30C45, 30C55.

Key words and phrases. non-analytic functions, univalence, n-starlikeness, n-spirallikeness.
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f € CY(U), n € NU {0}, we consider the operator (sce [3])

of 8f
D(f)(2) = 25 T Eag

where 0 0 K¢ 0 0 0
55 [aﬁ aﬂ’ Ei; [aﬁ* %] i=v-l,
and the iterates D**1(f) = D[D"(f)], D°(f) = f.
Definition 2.1. Let f € C"*1(U). We say that f is n-starlike in U if f(0) =0, f is
univalent on U, D*(f)(z) # 0, Vz € U \ {0} and
D+ (f)(2)

e D) (2)

>0,YzeU\{0}. (1)
Remarks.

1) For n = 0 and n = 1, the condition (1) means the geometric condition of starlike-
ness and of convexity in the case of non-analytic functions, respectively, considered

for the first time in [3].
2) If f is analytic then D(f)(z) = zf'(z) and the classes of functions satisfying (1)

were considered for the first time in [6].

The following result can be considered, in a certain sense, a property of geometric

kind of the left hand-side in (1).

Lemma 2.2. For fized r € (0,1), let us denote C, = 9U,, U, = {z € U; |z| < 7},
7-(8) = f(8U,), z = re*?, 8 € [0,2r). If f € C**Y(U) and D™(f)(z) # 0 for all
z € U\ {0}, then

D"“(f)( )

R )

= ;[arg'y,”)], z=re'’, 0€]0,27).

Proof. Let f = A+ iB. We have

D(f)e) = 228 _ 0B [(’M (’)A]

By Y% T |Yer T xa_y’
z =41y = r[cosf + isinb)],
, 0A O0r O0A Oy .[0B dx OB 0y
'7’,-():%'%"'3—3,'%4—1[—5;'%4——5&--0—9]:
= 1'%13 —y% +1i [.E%g -—y%?] =1D(f)(z).
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9 _

By the general formula 0 = iD(g) (see [3]), we get

7(0) = SEDU)E = 2D (1)) = ~D*(1)(2),
W) = oel-D()(E)] = D)),

90) = Z[-D*(7)(2)] = D(A)(2),
and finally,

DD ()(2) _ p D" (1)(2)
DNE DG

splarg ] = o larg(eD" ()()] = (see [3) = Re

where ¢ € {—1,+1,4,—1}, which proves the theorem.

In the analytic case, in [6] was proved that the condition (1) and f(0) =
f'(0) = 1 = 0, imply the univalence of f and that as function of n, the classes of
n-starlike functions form a decreasing sequence (in respect with the inclusion).

In the non-analytic case, as was pointed out in [3] for n = 0 and n = 1, these
conditions do not imply the univalence of f and additional conditions are required
for that. O

In this order of ideas, concerning the classes introduced by Definition 2.1, we
have the followiong extension to non-analytic case of Corollary 2.1 in [6].

Theorem 2.3. Let m,n € NU {0}, m < n. If f € C*t1(U) satisfies:

f0)=0, f&I[D'(NE#0, z€U\{0}, J(N)()>0, z€U

: i D (f)(2)
(here J(f) means the Jacobian of f), then the condition RGW >0,Vze
z
" D™1(£)(2) S

U\ {0}, implies ReW >0, V z€ U\{0} and the fact that f is univalent
onU.

Proof. A direct consequence of the proofs of Theorem 1 and of Lemmas 1, 2, 3 in [4],
is the following:

if F e C*U), F(0)=0, J(F)(0) >0, F(2)D(F)(z) #0, V z € U \ {0} and

'eD2(F)(Z) z en eD(F)(Z) z so, we have
R D(F)(2) >0, VzeU\({0}, then Re Flz) >0, Vz € U\ {0}. Also, h
£(0) = D(f)(0) = --- = D*(£)(0) = 0.
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On the other hand, we have J[D(£)](0) = J(f)(0), J[D*(£)](0) = [J(f)(0)] >
0, k=1, n.

Applying the above result for F = D*~1(f), F = D"7%(f),..., F = f, we
M >0, VzeU\{0}, forany m € {0,1,...,n—1}.

D™ (£)(z) | o
Taking m = 0 and applying Theorem 1 in [3] it follows that f is univalent on

easily obtain Re

U, which proves the theorem. O

3. Non-analytic n-spirallike functions

Keeping the notations in Section 2, we introduce the following.
Definition 3.1. Let f € C*t}(U), n € NU {0}. We say that f is logarithmically
n-spirallike of type v € ( g, 2) if £(0) =0, D*(f)(z) #0, Vze€ U\ {0}, fis

univalent on U and

v D" (f)(2)
Re[e —DT(—f—)(*)—]>O,V2€U\{O} (2)
We say that f is Archimedean n-spirallike on U if f(0) = 0, D*(f)(z) #

0, VzeU\{0}, f is univalent on U and

it oy 20E)
Re (1 - a0 (1)) T

We say that f is hyperbolic n-spirallike on U if f(0) =0, D*(f)(2) # 0,V z €
U\ {0}, f is univalent on U and

]>0,Vz€U\{0}. (3)

Dn+1

Re [(10°(1)2)] +) 2 DE)

z)]>o VzeU\{0}. (4)

Remarks.

1) Takingn = 0 in Definition 3.1, we obtain the classes of usual non-analytic spirallike
functions studied in [1].

2) Forn =1 and f analytic on U, the class of functions defined by (2) was for the first
time considered in [5]. In this case, the situation is different from the starlike case,
because as was pointed out in [5], even for analytic functions f, the conditions
(2), f(0) =0, f'(2) # 0, z € U, do not imply in general the univalence of f.
However, in e.g. the paper [5], was proved that for 0 < cosy < 0.2315, these above

conditions imply the univalence of f.
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3) The analytic logarithmically n-spirallike functions were considered in [2].
4) For v = 0 in (2) we obtain the classes of n-starlike functions introduced by Defi-

nition 2.1.

The following result can be considered in a certain sense, of geometric kind for the
relations (2), (3), (4), respectively.
Theorem 3.2. For fized r € (0,1), let us denote C, = 8U,, U, = {z € C; |z| < r},

v+ (0) = F(OU,), z =re'?, 8 € [0,2x). Let f € C**Y(U) be with D*(f)(z) #0, V z €

U\ {0}, D(f)(z) = zg—’: _7((?)_2'

(i) Let us consider the family of logarithmically spirals
‘U)¢(t) — ¢t cos—yei(qb—t sin'y), te (—OO, +OO),
where ¢ € [0,2r) is a parameter. Then (2) is equivalent with
o¢

55 >0 Vo €0,2m), (5)

where ¢ = ¢(0,r) is the solution of the equation
wg(t) = 1™ (6) (6)
(ii) Let us consider the family of Archimedean spirals
wg(t) = te' P ¢ € (0, +00),

where ¢ € [0,2) is a parameter. Then (3) is equivalent with (5), where ¢ is
given by (6).
(iii) Let us consider the family of hyperbolic spirals

wy(t) = e/t t e (0,+00), ¢€[0,27).

Then (4) is equivalent with (5), where ¢ is given by (6).

Proof. From the proof of Lemma 2.2 we have

Y™ (8) = cD™(f)(2), c€{-1,+1,i,—i}.
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(1) By (6) we get (as in the proof of Theorem 1 in [1])
t cosy = log|eD" (£)(z)|

¢ — tsinvy == arg(cD" (f)(2)),

and consequently

¢ = arg[cD"(f)(z)] + tg vlog |eD™(f)(2)];

9¢ 1 e ()] _ 1 i D"“(f)(z)]

E cos'yRe [67 eDn(f)(2) ] - cos’yRe [e ’ Dr(f)(=z) |~

(i1) Replacing in the statement (iii) of Theorem 2 in [1] f(2) by ¢D™( f)(2), we obtain
(5)-

(i) Replace f(z) by ¢D™(f)(z) in the statement (iii) of Theorem 3 in [1].

The theorem is proved. d
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ANALYTIC INVARIANTS AND THE RESOLUTION GRAPHS OF
THE SINGULARITIES OF THE TYPE ADE

ALEXANDRU HORVATH

Abstract. In this note we show that the equality of the maximal ideal cy-
cle and the Artin’s fundamental cycle for the complex surface singularities

of type ADE can be proved directly, using the resolution graphs.

Let (X, z) be a normal surface singularity, and take a good resolution ¢ :
Y — X. The combinatorics/topology of ¢ is codified in the dual resolution graph I'y.
Using the plumbing construction, it is proved, that the information codified in I'y is
the same as the information codified in the link Lx. In particular I'y is completely
equivalent to the topology of (X, z).*

We would like to codify numerically some information about the ring of holo-
morphic functions on (X, z) (actually about the maximal ideal mx ). Therefore,
take an arbitrary holomorphic function f : (X,z) — (C,0) (i.e. f € mx,). Then we
take the composed map fo¢ : Y — C, and denote by (f o ¢) its divisor on Y. Recall
that (f o ¢) is the set of zeros of f o ¢ with their natural multiplicities.

(fod) = miE;i+ Y m(St;)St;.
i i

The part of this sum supported by E is 5, m; E; — where m; is the vanishing order
of f o ¢ along E; — and is denoted by (f o ¢)r, while the strict transform St(f) is
> ™(St;)St;.

Therefore, by construction, for any f € mx , we get a cycle (f o ¢)r =

> mi(f)E; supported by E.
Definition 1. The set of all these cycles is denoted by

Zan(¢) ={(fod)r: f €Emx:},
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and is called the set of analytic cycles.

Recall, that in the set of cycles we have an ordering. For Z’' = ) n}E; and
Z" =% n!E; we write Z’ < Z” if and only if n} < nf for all i. With these notations
obviously min(2’, Z") = 57, min(n}, nf) - E;.

DR 1

Lemma 2. If Z1,Z5 € Zan(¢), then

(1) Zy + Z3 € Zan(9),
(2) min(Z1, Z3) € Zan(9).

Proof. The proof is easy. For the point (1) just take f; - fo. For the point (2), take a

generic linear combination Ay f; + Agfe. O

The above lemma assures that Z(¢) has a unique minimal element with
respect to the above ordering. This cycle is denoted by Znax, by S. S.-T. Yau, who
introduced it and called it marimal ideal cysle; (also it is denoted by Z;, i.e. fiber
cycle, by Miles Reid [8]).

Lemma 2 shows that if the linear term of f is sufficiently generic, then (fo¢) =
Zmax- Actually for any embedding (X,z) C (CV,0), a sufficiently general linear
function ! : (CV,0) — (C,0) induces an I|x : (X,z) = (C,0) with (I|x 0 $)r = Zmax-

The main goal is to find — up to the extent which is possible — the lattice
Zan(¢) from the topology of (X, z), i.e. only from the graph I'y.

We recall the most important property of the cycles (f o ¢)r, (f € mx ).
This is, that (f o ¢)r - Ex < 0 for any k. This is a consequence of the fact that
(fod)- Ex =0 and St(f) - Ex > 0 for any k.

Notice also that any cycle Z = (f o ¢)r is a positive cycle, i.e. Z =Y n;E;
with n; > 0 for any ¢, and Z # 0, which we will denote by Z > 0.

The topological analog (candidate) for Zan(¢) is

Ziop(#) = {Z is positive cycle |Z - B <0, for all k}.
Lemma 3. (1) If Z1,Z3 € Ziop(4), then Zy + Z3 € Ziop(9),

(2) If 21,22 € Ztop(9), then min(Z1, Z3) € Ziop(4),
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(3) If Z € Ziop(), Z = 3 ;niE;, then n; > 0 for all i.

For the proof, see [2].

The above lemma shows that in Zgo,(¢) there is a unique minimal cycle,
which has only strict positive coefficients. This cycle is denoted by Zni, and is called
minimal cycle (or numerical cycle or Artin’s fundamental cycle; it was introduced by
Artin [1]).

Notice that Zyop(#) and Zmin is completely described by the graph I'y. They
are the topological candidates for the set Zan(¢) and the cycle Zyax.

Obviously, we have also

{ Zan(¢) c Ztop(‘ﬁ):

Zmin(8) < Zmax(4).

FACT: In general Znin(¢) # Zmax(¢). However for the singularities of type ADE
these two cycles agree.

The point is, that for this type of singularities the fact that Zynax = Zmin
can be verified using the algorithm described in the chapter 6 in [2]. This algorithm
constructs the resolution graph of a surface singularity of type (X, z) = ({f(z,y) —
2" = 0},0), where f : (C2,0) — (C,0) is an isolated plane curve singularity.

Let us show this for the singularities of type A,.

Proposition 4. (The case A,, n odd) Take f(z,y) = z"t! + 32, and (X, z) given
by ({f(z,y) — 22 = 0},0). Suppose n is odd, n+ 1 =2l. Then Zmin($) = Zmax(9)-

Proof. The embedded resolution graph of f is shown in the figure 1. This is actually
the good embedded resolution graph of z. The algorithm described in the chapter

~2 ~2 -2 ) 1 (1)
o———o0 - © O—
(2) (4) @-4 (2-2) (21) 0

FIGURE 1. The embedded resolution graph of A,, n odd
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6 [2] gives the multiplicities of z, but we need the multiplicities of z, because this
corresponds to the generic linear section on (X, 0).

If we follow during the process of blowing up the strict transform of z, we
can represent it as the arrow decorated by (*) in figure 2. Notice that we can retain

the Euler numbers from the previous graph.

. -2 -2 -2 -2 -1
o o o o o)
(1) (1) 1) ) (1) (1

n-vertices (odd)

FIGURE 2. The strict transform of z, A,, n odd

If we apply now the algorithm of chapter 6 [2], we obtain the embedded resolution

graph of z, as is shown in the figure 3.

-2 -2

O— o
(1)

-2 -2

o 0

FIGURE 3. The embedded resolution graph of z in the case A,, n odd

Now, we have the graph of = (see 4), the arrows with multiplicities (1), the Euler
numbers, but not all the multiplicities of z in the vertices of the graph.

The trick is, that these multiplicities are uniquely determined by the equa-

tions

My €y + E my, = 0, for every vertex w,
VEVy
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which is a system of linear equations, with nonsingular matrix, hence it has a unique
solution. Since the multiplicities m, = 1, for all v, already satisfy the system, they

form actually its solution.

-2 -2 -2 -2 -2
—0 —0 - O o o
(1) (1) (1) (1) (1) (1 (1)

FIGURE 4. The graph of z : ({z% + y? + 2% = 0},0) = (C,0)

Obviously the cycle given by this set of multiplicities, 7 = E} + E2 + --- + E,, has
the minimal coefficients, and is given by a function (z), hence Zmin = Zmax-

The case n even is similar. O
Remark 5. The singularity D,, can be treated analogously.

Remark 6. For the singularities of type Eg, E7 and Eg, we have to apply in addvance
the Laufer’s algorithm [3], to get the minimal topological cycle. This is because the
multiplicities are not the absolutely minimal one. For all these cases the general linear
section represented by the coordinate function which appears on the highest power
in the equation of f it turns out to give the minimal cycle given by the Laufer’s
algorithm.

The computational details are similar for these cases, too. See also [2].

Acknowledgment: 1 would like to thank Prof. dr. Andrds Némethi, The

Ohio-State University, USA, for guiding me so generously in this circle of problems.
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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLIV, Number 4, December 1999

THE MARKOV PROPERTY FOR THE SOLUTION OF THE
STOCHASTIC NAVIER-STOKES EQUATION

HANNELORE LISEI

Abstract. We consider the stochastic Navier-Stokes equation of Navier-
Stokes type containing a noise part given by a stochastic integral with
respect to a Wiener process. The purpose of this paper is to prove that
the solution of this nonlinear equation is a Markov process. We take into

consideration the properties of the Galerkin approximations.

1. Introduction

The stochastic Navier-Stokes equation has important physical and technical
applications. It describes the behavior of a viscous velocity field of an incompressible
liquid. The equation on the domain of flow G C IR” (n > 2 a natural number) is
given by

O _ JAU = —(U, VU + f - Vp+ ()22

divU =0, U(0,z)=Us(z), U(tz)l|sc=0,t>0, z€q,
where U is the velocity field, v is the viscosity, A is the Laplacian, V is the gradient, f
is an external force, p is the pressure, and Uy is the initial condition. Realistic models
for flows should contain a random noise part, because external perturbations and the
internal Browninan motion influence the velocity field. For this reason equation (1)
contains a random noise part C(U )?ﬂ Here the noise is defined as the distributional

ot

derivative of a Wiener process (w(t)) 017 whose intensity depends on the state U.
tefo,
Throughout this paper we consider strong solutions ( “strong” in the sense of

stochastic analysis) of a stochastic equation of Navier-Stokes type (we will call it a

1991 Mathematics Subject Classification. 60H15, 60J25, 60G40.

Key words and phrases. stochastic Navier-Stokes equation, Markov process, stochastic analysis.
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stochastic Navier-Stokes equation) and define the equation in the generalized sense as
an evolution equation, assuming that the stochastic processes are defined on a given
complete probability space and the Wiener process is given in advance.

An important property in the study of the solutions of stochastic differential
equations is the Markov property. This property is used for example in dynamic
programming approaches (see [4]) to formulate Bellman’s principle, in the theory of
random dynamical systems (see [1]) to determine invariant measures, in investiga-
tions of the long-time behaviour of the processes (see [8]). In the case of stochastic
processes which are also Markov processes we can describe its properties by studying
the properties of the corresponding Markov semigroup.

In this paper we prove that the solution of the stochastic Navier-Stokes equa-
tion is a Markov process. This property was proved by B. Schmalfu§ [6] for the
stochastic Navier-Stokes equation, but only for the case of additive noise. Our hy-
pothesis are more general.

The structure of the paper is as follows: In Section 2 we give the assumptions
for the Navier-Stokes equation and mention some results concerning the convergence
of the Galerkin approximations to the solution of the considered equation. We also
prove that the solution depends continuously on the initial data. Section 3 contains
the main result of our paper. We prove that the solution of the stochastic Navier-
Stokes equation is a Markov process. In Section 4 we give some auxiliary results from

stochastic analysis.
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Frequently Used Notations

- weak convergence (in the sense of functional analysis)
I, indicator function for the set A

EX mathematical expectation of the random variable X
£3(Q) space of all F-measurable random variables u : Q@ = V

with E||ul|? < oo

L3 (Q % [0,T]) space of all F x B([0,T])-measurable processes

u:Q x [0,T] = V that are adapted to the filtration
T

(Ft)eepo,r) and E [ |[u()|ly dt < oo
0

2. Assumptions and formulation of the problem

First we state the assumptions about the stochastic evolution equation that

will be considered.

(i): (8, F, P) is a complete probability space and (F;):¢[o,r] is a right con-
tinuous filtration such that Fy contains all F-null sets. (w(t)):epo,7] is a
real valued standard F;-Wiener process.

(ii): (V, H, V™) is an evolution triple (see [10], p. 416), where (V,]| - ||v) and
(H,]|-|l) are separable Hilbert spaces, and the embedding operator V «— H
is assumed to be compact. We denote by (-, -) the scalar product in H.

(iii): A : V — V* is a linear operator such that (Av,v) > v||v||} for all
v € V and (Au,v) = (Av,u) for all u,v € V, where » > 0 is a constant
and (-,-) denotes the dual pairing.

(iv): B:V x V = V* is a bilinear operator such that
(B(u,v),v) =0 forallu,veV
and there exists a positive constant b > 0 such that
(B(w, v), 2)I* < BllzIf¥ lfullllullvilell|lv]lv

for all u,v,z € V.
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(v): C:[0,T] x H — H is a mapping such that
(a): |IC(t,u) — C(t,v)||2 < Al|u — v||? for all ¢t € [0,7], u,v € H, where )
is a positive constant;
(b): C(t,0) =0 for all t € [0,T];
(c): C(,v) € L4[0,T) forall v € H.
(vi): ®:[0,7]) x H — H is a mapping such that
(a): ||®(t,u) — (¢, v)||?> < pllu—v||? for all t € [0,T], u,v € H, where
is a positive constant;
(b): ®(¢,0) = 0 for all t € [0, T,
(c): ®(-,v) € L4[0,T) forallv e H.
(vii): z¢ is a H-valued Fo-measurable random variable such that E|jzo||* <
0.
Definition 2.1. We call a process (U(t))te[o,T] from the space £Z (Q x {0, T]) with
E|U@)||? < oo for all ¢t € [0,T] a solution of the stochastic Navier-Stokes

equation if it satisfies the equation:

t

+O/(AU(s), v)ds = (zo,v) +O/(B(U(s), U(s)),v)ds (2)

+ /(C[)(s, Ul(s)),v)ds +/(C(3, U(s)),v)dw(s)

0
forallve V,t €[0,7] and a.e. w € Q, where the stochastic integral is understood in

the Ito sense.

Remark 2.2. ff weset n =2,V = {u eW; (G) : divu = 0} H = VL@ and

(Au, v) .~/ Z(‘?:, (;?;l (B(u,v) / Z u, Ba; z]d.v ®(t,u) = f(t)

1,7=1

for u,v,z € V,t € [0,T], then equation (2) can be transformed into (1).

Let hy, ha, ..., hn,--- € H be the eigenvectors of the operator A, for which we
consider the domain of definition Dom(A) = {v € V | Av € H}. These eigenvectors
form an orthonormal base in H and they are orthogonal in V. For each n € N we
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consider H,, := sp{hy, ha,...,hn} be equipped with the norm induced from H. We
write (Hp, || - |lv) when we consider H, equipped with the norm induced from V. We

define by II,, : H — H,, the orthogonal projection of H on Hj,

n

Ik = " (h, hi)hs.

=1
Let A, : Hy, = Hp, By : Hy X Hy — Hp, ®,,C, : [0,T] x H, = H, be defined
respectively by

n n

Ayu= Z(Au, hidhi,  Ba(u,v) = 3 (B(u,v), hi)hi,

Co(t,u) =T1,C(t,u), ®n(t,u) =1L 8@, u), zon =1z

for allt € [0,T], u,v € Hy,.

The existence of the solution of the Navier-Stokes equation (2) is proved by
approximating it by means of the Galerkin method, i.e., by a sequence of solutions of

finite dimensional equations (P,),n > 1.

For each n = 1,2,3,... we consider the sequence of finite dimensional evolution
equations

¢ ¢
(Pa) (Un(t),0) + / (AnUn(8), v)ds = (20n, ) + [ (Bn(Un(s), Un(5)), v)ds

0
t

0
+ / (@n(s, Un(s)), v)ds + / (Ca (5, Un(s)), v)duw(s),
0

0

for allv € H,,t €[0,T] and a.e. w € Q.

We use an analogous method as in [9]. Let (XM) be a family of Lipschitz

continuous mappings such that
1, if 0<e<M,
xm(z)=4 0, if z>M+1,
M+1—z, if z€(M,M+1).
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For each fixed n € N we consider the solution U, of equation (P,) approxi-

mated by (U,’,"’ ) (M =1,2,...) which is the solution of the equation

t

(PM) UFO0) + [(AUH(©),0)ds = (z0m,)
0 .

4 a0 @B (U (), U (), v)ds

t

+ / (B, UM (s)), v)ds + / (Ca(s, UM (5)), v)duw(s),
0

0
for all v € H,, t € [0,7T], and a.e. w € Q. For this equation we apply the theory
of finite dimensional Ito equations with Lipschitz continuous nonlinearities (see [5],
"Theorem 3.9, p. 289). Hence there exists UM € ﬁfH" i) (2 % [0, T7]) almost surely

unique solution of (PM) which has continuous trajectories in H.

Theorem 2.1. For each n € N, equation (P,) has a solution U, € L% (Q2 x [0,T)),
which s unique almost surely and has almost surely continuous trajectories in H. For

each n € N it holds

M—00 te(0,T]

P( lim sup ||[UM(t)-U,(t)|? = 0) =1L

Theorem 2.2. The Navier-Stokes equation (2) has a solution U € L2 (Q x [0,T)),
which is almost surely unique and has almost surely continuous trajectories in H. The

following convergence holds
Jim E||U () - UB?=0 forall te(0,T).

Lemma 2.3. There exists a positive constant ¢ such that

T
2
E sup [[U()]*+ B( / lU(s)i}ds)” < cBllzoll*
te[0,T] 4

The proofs of these results can be found in [2].
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Before we investigate the Markov property for the solution of the stochastic

Navier-Stokes equation, we prove that the solution U of (2) depends continuously on

the initial data zg.
Theorem 2.4. Let (z}Y) be a sequence in H and let o € H be such that
; N _ .2 =
Jim {lzg’ — 2o||* = 0.
Then for each t € [0,T)] it holds

o _ 2 _
Jim E||Un(t) - U@ =0,

N

where Uy is the solution of (2) satisfying the initial condition Uy (0) = zy .

Proof. For allt € [0,7] and a.e. w € Q let

e(t) = exp{ - %/llU(s)”%,ds -(A+ 2\/ﬁ)t},

It follows by the Ito formula that

cOIU() - Un @2 + 2 / e(s)(AU (s) — AUN(5), U(s) — Un (s))ds

¢

= lleo == I +2 [ e()(BU().U(5) = Bl (5), Un(s)),U(s) = Un(e))ds

0
t

0

+ 2/6(3)(@(3,U(s)) —®(s,Un(s)),U(s) — Un(s))ds
+ [etslliet UG - s, Un(a))IPds
0

+ 2/e s)(C(s,U(s)) — C(s,Un(s)),U(s) — Un(s))dw(s).

_ g/e(s)uu(s)n%, lU(s) = Un(s)]|*ds — (A + 2@/e(s)llU(5) —Un(s)|I’ds
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In view of the properties of B we can write

2B(U(s),U(s)) — B(Un(s), Un(5)), U(s) — Un(s))

I

2AB(U(s) — Un(s),U(s)), U(s) — Un(s))

IA

b
;IIU(S)H%/HU(S) Un(s)I* +|U (s) = Un(s)lly-
Now we use the properties of A, ®, C, and those of the stochastic integral to obtain

E s?opt]e(S)IlU (s) = Un(8)II* < llwo — 23|12
s€|l0,

+ 4B sup | f e(r)(C(r, U(r)) = C(r, Un (1)), U(r) — Un (r))du(r)
s€[0,t]

IA

’“F/ sup {e0(r) ~ Ut e
+ §E sup e(s)HU(S) Un ()%,
s€fo,t

where k; is a positive constant and ¢ € [0, T]. By Gronwall’s Lemma we get

E sup e(s)||U(s) — Un(s)lI* < 4eT|jzo — 27 ||?
8€[0,t]

for all t € [0, T1].
We take ¢ := 7}4] , Where Tg is the following stopping time

T, if /nU(s)n%,ds <M
Tg = ° t
inf {t €[0,7T] :/||U(s)|[%,ds > M}, otherwise.
0

Using the hypothesis and the above inequality it follows that for each fixed M € N

we have

lim B|U(TH) - Un (T = 0.
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Applying Proposition 4.1 for T := t, Tar := TY, Qu(T) := |[U(T) = Un(T)|?> we
obtain

. 2 _
Jim BIUN () - UG)IP =o0.

3. The Markov property
Let us introduce the following O-algebras
Owey =0{U(s)}, Ow(ryr<s) :=0{U(r): 7 < s}
and the event
Ow(s)=y) ={w:U(s) = y}.

For the solution U of the Navier-Stokes equation (2) we define the transition func-
tion
P(s,z,t,A) = P(U(t) € AlO(s)=+])
with s,t € [0,T],s<t,z € H,A€ B(H).
In the following theorem we prove that the solution of the Navier-Stokes
equation is a Markov process. This means that the state U(s) at time s must

contain all probabilistic information relevant to the evolution of the process for times

t>s.

Theorem 3.1. (i) For fized s,t € [0,T),s <t,A € B(H) the mapping
y€Hw Ps,y,t,A) €eR
is measurable.
(ii) The following equalities hold
P(U(¢) € AlF,) = P(U(t) € AlO(u(sy)
and
P(U(t) € AIUIU(T):rSs]) = P(U(t) € A|0[U(s)])

foralls,t€[0,T],s<t,yc H,A€ B(H).
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Proof. (i) Let s,t € [0,T],s < t,y € H. We denote by ([7(t.s, y))te[s’T] the solution
of the Navier-Stokes equation starting in s with the initial value y, i.e. U(s,s,y) =y
for a.e. w € Q2.

Let A € B(H). Without loss of generality we can consider the set A to
be closed. Let (an,) be a sequence of continuous and uniformly bounded functions
an, : H - IR, n € N such that

lim Jlan(y) — Ia(y)]| =0 forally € H. (3)

n—oo

By the uniqueness of the solution of the Navier-Stokes equation and from the

definition of the transition function we have

P(s,y,t, A) = E(IA(U(t))|0[U(3):y]) = E(IA(L?(L s, y))).

We consider an arbitrary sequence (y,) in H such that lim ||y, — y|| = 0.
n— 00

By using Theorem 2.4 (instead of starting in 0 we start in s) it follows that
im_ BN (t5,5) = Ut 5,9)]12 = 0. (1)

Therefore (ff(t, s, yn)) converges in probability to U(t,s,y). Using (4) and the
Lebesgue Theorem it follows that for all k € N

lim Fay (ﬁ(t,s,yn)) = Fay (U(t,s,y)).

n—00

We conclude that for each k£ € N the mapping
yeH— Eak(lj(t,s,y)) eR

is continuous. Hence it is measurable. By the Lebesgue Theorem and (3) we deduce

that for all y € H

lim Eay (ﬁ(t,s,y)) = EL(U(t,5,9)).

k—o00
Consequently, P(s,-,t,A) = El, ((7(t, s, )) is measurable, because it is the pointwise
limit of measurable functions.
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(ii) First we prove that for each fixed s,t € [0,T],s < t,y € H the random vari-
able U(t,s,y) (considered as a H-valued random variable) is independent of F,. By

Theorem 2.1 we have

lim ||OM(t,s,9) - Ua(t,s,9)|| =0 foreachn € Nand ae. weQ, (5)
M =00

and by Thecrem 2.2 it follows that there exists a subsequence (n’) of (n) such that

lim [|Un(t,s,9) = U(t,s,y)]| =0 forae weQ, (6)
n'—o00

where (ﬁ,fl(t, s, y))te[a,ﬂ and (17,, (t, s, y))tE[’.Tl are the solutions of (PM) and (P,),
respectively, if we start in s with the initial value y. Since for fixed n, M the
random variable (NJ,{” (t,s,y) is approximated by Picard-iteration and each Picard-
approximation is independent of Fs (as a H-valued random variable), it follows by
Proposition 4.2 that U,(t, s, y) is independent of F,. Using (5), (6), and Proposition
4.2 we conclude that U(t,s, y) is independent of F,.

Let A € B(H). Now we apply Proposition 4.3 for F o= Fs, f(y,w) =

Is (f](t,s,y)), &(w) :=U(s). Hence

(1 (0wsv@)|7) =B (u(@wsv@)owm). @

Since the solution of the Navier-Stokes equation is (almost surely) unique it follows

that

U(t,s,U(s)) =U(t) forallte[s,T]and a.e. w € Q.

Then relation (7) becomes

E<1,, (U(t))

f,) = E(IA (U (t)) |0[u<sn)-

Consequently,

P(U) e AI}‘,) =P(Ut) e A]a[U(s)]). ®)
We know

Ows) C Owiryr<s) C Fa-
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Taking into account the properties of the conditional expectation and (8) we deduce

that

P(U(t)GAlo[U(r):rSa]) = (E(U(t)GAIfa)lO'[U(r)zrsd)

E(E (U (t) € AIUlv(an) |0[U<r):r5sl>

P(U(t) € AIU[U(,)]) .

O

Using results from [3] (Chapter 3, Section 9, p. 59) we deduce the following corollary.
Corollary 3.2. (i) For fizred s,t € [0,T),s < t,y € H the mapping
A€ B(H)w P(s,y,t,) ER

is a probability measure.

(ii)) The Chapman-Kolmogorov equation
P(s,y,t,A) = / P(r,z,t, A)P(s,y,r, dz)
H
holds for any r,s,t € [0,T],s<r<t,y€ H,A€ B(H).

Remark 8.3. We have the autonomous version of the stochastic Navier-Stokes
equation if for t € [0,T], h € H we have C(t,h) = C(h) and ®(t,h) = ®(h). In

this case (Uq;(t)) 0.1 is a homogeneous Markov process, i.e., we have
tefo,’

I_’(O,y,t—s,A):P(S,y,t,A) (9)

for all 5,t €[0,T],s<t,y€ H,A € B(H).

Now we prove the above property. Let s,t € [0,T],s < t,y € H. The solution

Us of the Navier-Stokes equation, which starts in s with the initial value y satisfies
t

Ua(0,0)+ [(AVa(r),0)dr = () + [ (B (1), Vo), e

s

t

+ /(<I>(Uq,(r)),v)dr+ /(C(Uq,(r)),v)dw(r)

s
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for allv € V and a.e. w € Q.
We take U(r) = Us(s + r),@(r) := w(s +r) — w(s) for r € [0,t — s]. Then
for U(t — s) we have

-0+ [(AT,0)ar = @)+ [BOE),T0),vdr
0 0

+

O~—T

@O),o)dr+ [ (€O, 0)da()

for all v € V and ae. w € Q. Since (zi)(r)) and (w(r)) have the

ref0,t—s] r€(s,t]
same distribution and because of the uniqueness of the solution of the Navier-Stokes

equation, it follows that U (t — s) and Ug(t) have the same distribution. Hence (9)
holds.

In the case of a homogeneous Markov process we denote
ﬁ(yy tv A) = P(O, y,t, A)

for all t € [0,T],y € H,A € B(H). The Chapman-Kolmogorov equation (see Corol-

lary 3.2) can be rewritten as
ply, s +1,4) = / p(z,t, A)p(y, s, dz) (10)
H
for each s,t € [0,T),y € H, A € B(H).
We consider the following set of probabilty measures on Q2
§:={ul [ llell'uidz) < o0}
H

and define

Tip(T) := /Hﬁ(a:,t, I)p(dz)
for each p € S, t € [0,T]. This mapping has the following properties:
(a) T, : S = S,
(b) Top = p for each p € S,

(¢) Tt4s =Tt o Ty =Ty o T, for s,t,s+t €[0,7T].
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We deduce the result in (a) by observing that Tip is the distribution of U (t) if the
initial condition ¢ has the distribution p (1 € S because of hypothesis (vii)). Then
by using Lemina 2.3 we have Ty € S. For (b) one can make some easy calculations
and (c) follows from (10). Hence (7;); satisfies the semigroup property.
4. Some results from stochastic analysis
Proposition 4.1. Let (Tyr) and T be stopping times, such that
lim P(Ty <T)=0.
M—o00

Let (Qx) be a sequence of processes from the space L% ([0, T] x Q) such that for each
fized M we have

lim E|Qn(Tu)| =0
n—00
and there exists a positive constant ¢ independent of n such that
E|lQn(T)|?<c¢ forall neN.
Then
Jim EJQu(T)| =0.

Proof. Let €,6 > 0. There exists My € N such that

P(nlo <T) S

N ™

By the hypothesis it follows that for this My we have lim E|Qn(7a,)| = 0. Conse-
n—00
quently, there exists ng € N such that

S E1Qn(Thto)| <

N ™

for all n > ng. We write

P(IQn() > )

IA

P(TM0 < ’T) + P({TMO =T}A {lQ"(T)| > 5})

€ e 1 E €
< = P nl{ /M s —F n o a5 =
< 5+ P(10n(Tn) > 6) < 5+ ZEIQu(Tan) < 5+ 5 =

for all n > ng. Hence for all § > 0 we get lim P(IQ,;(T)| > 5) = 0. Therefore, the
n—00
sequence (|Q,,(T)|) converges in probability to zero. From the hypothesis it follows
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that this sequence is uniformly integrable (with respect to w € €2). Hence it converges

also in mean to zero
Jim E|Qn(T)|=0.
O
Proposition 4.2. Let F C F be a O-algebra, (Qr) be a sequence of H-valued random

variables which converges for a.e. w € Q to Q. If each random variable Q,, is

independent of F , then @ is independent of F.
Proof. The random variable @ is independent of Fif
P{llQll < z}n 4) = P(||Qll < =) P(4) (11)

for all € IR, A € F. The hypothesis implies that the sequence (||Q,,||) converges in
probability to ||@||. Therefore, the sequence of their distribution functions is conver-

gent

lim Fyq,)(z) = Fjq(=) (12)

n—00

for each z € IR which is a continuity point of Fjq.
Let z € R,A € F ,6 > 0. First we consider that Fjjq| is continuous in z.
Then using the hypothesis and (12) we get

Jim P({IQall <2} n4) = im P(IQall < 2)P(4) = P(IQIl < 2)P(4).  (13)

We write

P{IQI<z-8}nA) < P({IIQl<z-8)n{IQll<z}n4)

+

P({llQll < = = 6} n{l|@nll > =} N 4)

IN

P({IIQall < 2} 1 4) + P(IlQl - 1Qull

>6).

Analogously we have

P({lIQull < 2} N 4) < PUIQN < = + 61 4) + P (|lIQ 11l

>6).
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Consequently,

P({lIQIl < =~ 5} 01 4) = P(|llQll - 1Qall| > 6) < P(IQull < 2)P(4)

< PAlII < =+ 8} 1 4) + P(flQll - Il

In the inequalities above we take the limit n — co and use (13) to obtain

>6).

P{llQll <z -48}n4) < P(IQIl < 2)P(4) < P{[IQIl < = + 6} N A).
Let 6 \, 0 in the inequalities above. Then
P({lIQll < =} A) < P(l|Qll < z)P(4) < P{IIQIl < =} N A).
Since z is a point of continuity for Fjjq we have
P({llQll < =} n A4) = P{lIQIl < =} N 4).

Consequently, (11) holds and @ is independent of F.
Now we consider that z is not a point of continuity of Fjq. Let (z,) be

a monotone increasing sequence of continuity points of Fjjq which converges to .

Then
Jim Fyqy(zn) = Fien(z),
and because z, is a point of continuity for Fjjq|, we have
P({llQll < zn} 0 A) = P(|QI| < 2a) P(A).
Now we take the limit n — oo and conclude that (11) holds. Hence @ is independent

of . O

Proposition 4.3. Let F C F be a O-algebra, f : HxQ — H be a mapping such that
for each ¢ € H the random variable f(z,-) is bounded, measurable and independent

of F. Let & be a H-valued f'-measurable random variable. Then

E(f(,w)|F) = B(f(¢,w)|0),

where O¢) is the O-algebra generated by the random variable §.

This proposition is proved in [3] (see Lemma 1, p. 63).
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A FIXED POINT THEOREM FOR HICKS-TYPE CONTRACTIONS
IN PROBABILISTIC METRIC SPACES

DOREL MIHET

Abstract. A fixed point theorem for mappings with contractive iterate
at a point on bounded uniform spaces is proved. As particular cases some

fixed point theorems of Hicks - type are obtained.

1. A fixed point theorem

Definition 1.1. Let X be a nonempty set and B be the class of all functions 8 :
X x X — [0, 00) with the properties

B1) Bla,y) =0z =y

£2) B(z, ) = Bly, 2)(V)a,y € X

B3) (V)e >0(3)é>0:(B(x,y) <6,B(y,2) <8) = P(z,2)< ¢

B4) (IM > 0:8(z,y) < M,(V)z,y€ X.

A B - space is a pair (X, f)with 8 € B.

Proposition 1.2 ([1]). If B satisfies 31) — $3) then the family
Up = {Sp,c}e>0, whereSp . = {(z,y) € X*|B(z,y) < ¢}
is a base for a metrizable uniformity on X (which we will call the Ug - uniformity).
The proof is easy to be reproduced.

Definition 1.3. If M is a positive number, ®3; means the class of all functions

¢ : [0,00) = [0, 00) for which there exists & > M such that lim,_, ¢™(a) = 0. (¢" =
popo---0yp).

1991 Mathematics Subject Classification. 54-E70, 47-H10.

Key words and phrases. uniform spaces, fixed point theorem, Hicks-contractions.
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Definition 1.4. Let (X, 3) be a B space and ¢ : [0,00) — [0, 00) be a function. We
say that the mapping f : X — X has a (O — ¢) -contractive iterate at x € X if for
each y € Oy(z) there exists

n = n(y) € N such that

(€>0,2€04(y), By, 2) <€) = P(fy, [ z) < ple),

where Oy (y) denoted the set {f"y|n € N}.

Theorem 1.5. Let (X, ) be a Ug - complete B -space. If p € Ppr and f: X = X
is a continous mapping which has a (O — ) - contractive iterate at ¢ € X, then f has
a fized point which can be obtained by the successive approzimation method, starting

from an arbitrary point of Of(z).

Proof. We will show that for every y € Of(z) the sequence {f"y}.en is a Cauchy

sequence.

Lemma 1.6. Let (X,8) be a B space, ¢ € ®p and f : X — X be a mapping
with (O — @) -contractive iterate at * € Oy(x). Then, for every € > 0 there exists
mo = m(y,€) € N such that

B(fMey, fMt™y) <e (V)m € N.

Proof of Lemma. First we show that for every s € N there exists u = u(s,y) € N
such that, for every a > M,

(1) B(F©y, O™y < o*(a), (V) meN.

(1) is true for s = 0, because J satisfies #4) and M < a. Next, for every j > 0, let
us define recursively the numbers v(i) and u(j) by v(0) = u(0), v(j + 1) = n(f*@z)
and u(j+ 1) = u(j) +v(j + 1).

Then we have the following implication :

By, frelmy) < @*(a) = B(FLEHD(fully), fret(fuidtmy)) < p*+(a),
that is

B(FOy, f11Ty) < o* (a) = (FCTDy, fEEHII™Y) < o+ ().
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So, the relation (1) is proved by induction. |

" Now let € > 0 be given. Since ¢ € @y, then there exists a > M such that ¢"(a) — 0.
For this a let us consider so € N for which ¢*°(a) < €. If we take in (1) mo = u(so)

then we obtain

B(fmy, fretmy) <e (V) meN

and the lemma is proved.
Now it is easy to show that {f™(y)} is a Cauchy sequence:
For given € > 0 we consider §(¢) from £3).

By Lemma 1.6 there exists mp € N such that

B(f™y, fmotPy) < 4, (V)p €N,

hence

B(f™y, fy) <8, B(f™y, fAT™y) < 4, (YV) n>mo, (V)m

From (3) it follows that there exists mo = mo(y,€) € N such that
B(f*y, P My) <e, (V)n > mg, (V)m €N,

i.e.{f"(y)}nen is a Cauchy sequence.
Since (X, 3) is Ug - complete, then there exists ux € X, ux = limpo00 f*y.
From the continuity of f it follows that f(u.) = u,. a

Corollary 1.7. If (X,5) is a complete B-space and f : X — X is a continous
mapping with the property that for every y € X there exists n = n(y) € N such that,
for every z € O¢(y),

(e>0,8(y,2) <€) = B(f"y, ["2) < p(e)

then f has a fized point which can be obtained by the successive approrimation method,

starting from an arbitrary point of X.
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2. Applications to PM - spaces

Definition 2.1 ([10]). A PSM space (S,F) is called a H - space if the following
triangle inequality takes place :

(PMsg) (V) >0 (3)8 > 0: (Fpq(6) > 1— 6, Fpe(8) > 1= 8) = Fpr(e) > 1—¢.
Two important examples are
Ezample 2.2.

a) Every o - Menger space (S, F,T) with sup, ., T(a,a) = 1 and infy500(b,b) = 0 is
a H - space.
b) If (S, F,7) is a Serstnev space and the ¢ - function 7 is continuous at (€o, €0), then

(S,F) is 2 H - space (for the basic notions used here see [6], [14] or [15]).

Lemma 2.3. Let r be a strictly decreasing and continuous function on [0,00) such
that r(0) = 1 and there exists a > 0 such that r(a) = 0. If (S, F) is a PSM space and
K, is the mapping defined on S x S by

I{r(pv q) = Sup{t > Oleq(f) S T(t)}

then

a) K, satisfies f4), f1) and 52).

b) Kr(p,q) <t Fulp,q) > r(t)

c) If (S,F) is a H - space then K, satisfies $3) and the uniformity Uk, is the F -

uniformity.

Proof. Let g(t) = Fpq(t) — r(t). Then g is a left conntinous and strictly increasing
function on [0, 00). If we denote A = {t > 0|g(t) > 0} then because g(¢t) > 0if t > a,
we have A C [0, o] and we can choose M = a. So K, satisfies 54).
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Let now p = ¢q. Then from PM1), Fpq(t) = 1 (V)t > 0, so 7(0) = 1 from
which it follows K,.(p,q) = 0. Conversely, if we suppose that K,(p,q) = 0, then
Fpq(t) > r(t) (V)t > 0, so Fpq(0+) =1 and, from PM 1) again, p = q.

B2) follows immediately from PM2) : Fpq = Fgp (V)p,q € S.

b) Let p, q be fixed and m = sup A = K,(p, ¢).

If (z,) C A,z /' m, then, by the left continuity of g it [ollows g(m) < 0 and by the
monotonocity of ¢ we deduce that g(t) > 0 = t > m. So we proved the implication
Fpq(t) > r(t) = K, (p, q) < t. The converse implication immediately follows from the
definition of K, (p,q).

c) Let us suppose that (S, F) is a H - space. We prove that
(V)e > 0(3)d > 0 : (Fpq(d) > 7(9), Fyr(6) > 7(8)) = Fpr(e) > r(e) and then (3)
follows from b).

Let € > 0 be fixed. We choose €; = min(e,1 — r(¢)) and let §; be the ¢,
- correspondent from PM3p). There exists < §; such that 7(d) > 1 — é;. Then,
Fpq(8) > r(8), Fgr(8) > 7(8)) = (Fpq(81) > 1 =81 Fgr(81) > 1 —61) = Fpr(er) >
1—¢1 = Fpr(e) > r(e).

The fact that the Uk, uniformity is the F uniformity immediately follows
from b).

The lemma is proved. O

The mapping dm, m, bellow has been introduced by V. Radu ([12]). Let M be the
family of all functions m : [0, 00) — [0, 00) such that

m1l) m(t + s) > m(t) + m(s) (V)t,s >0

m2) m(t) =0&t=0

m3) m is continous.

Let (S, F) be a PSM space. If f : [0,1] & R is a continuous and strictly decreasing

function with f(1) = 0 and my, my € M, then dp,, m, is the mapping defined on 52
by

dmy,ma (P, q) = sup{t > 0|my(t) < f o Fypq(ma(t)}.

Lemma 2.4. a) (3) M >0 :dm, m,(p,q) <M, (V) p,g €S.
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b) dm, m, satisfies f1),52).

c) dm,ms (P, 9) <t & fo Fpg(ma(t)) <m(?)

d) If (S,F) is a H - space, then B = dm, m, satisfies B3) and the uniformity Up is
the F - uniformity.

Proof. For a) let us observe that lim;—, o m1(t) = 0o and so there exists g > 0 such
that mnq(to) > f(0). From this it follows that dm, m,(p,q) < to (V)p,q¢ € S, because
[ o Fpq(ma(to) < f(0) < mu(to).

b), c¢) and d) follows from [12, Theorem 1]. |

From Lemma 2.8 and Lemma2.4 it follows that if (S, F) is a H - space, then (S, f)
is a B space (in the first case # = K, and M = « and in the second one 8 = dm, m,
and M = tg), and the Up - uniformity is the F - uniformity. Thus we can transpose

the results from the previous paragraph to contractions on H - space.

Theorem 2.5. Let (S,F) be a complete H - space and f : S — S be a continuous
mapping with the property that there exists p € S such that

(V)p € O;(p)@n = nlg) € N: (t > 0,7 € Os(q), Forlt) > 1= 1) = Fry 12 (plt) >
1 — (t), where ¢ € ®1. Then f has a fized point.

The proof follows from Lemma 2.3 (r(t) = 1 —t) and Theorem 1.5.
For ¢(t) = kt one obtains Theorem 1.2 from [11].

Theorem 2.6. Let (S,F) be a complete H - space and f : S — S be a continuous
mapping with the property that for every p € S there exist n = n(p) € N such that,
for every ¢ € O (p),

(t>0,Fpq(t) >1=1) = Fynyn(p(t)) > 1 - p(t), where ¢ € ®1.

Then f has a fired point.

The proof follows from Lemma2.3 with #(t) =1 — ¢ and Corollary 1.7
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Corollary 2.7 ([7, Theorem 1.a)}]). If (S,F,T) is a complete Menger space under
the t - norm T satisfying sup,., T(a,a) =1 and f: S — S is a continuous mapping
with the property that for every & € S there exists n(x) € N such that, for every
v € Os(),

(r>0,Fp(r)>1—7)> an(z),;fn(:)v(g(r)) >1—g(r)

where g : [0,00) — [0,00) is a mapping which satisfies limp_, 00 g™ (r) = 0 for every

r> 0 and g(u) < u (V)u > 0, then f has a fized point.

The proof follows from Theorem 2.6 and Example 2.2.
If T=Min and g satisfies stronger conditions of Browder type, then one ob-

tains Theorem 3.3 from [3].

Theorem 2.8. Let (S,F) be a complete H - space and f : S — S be a continuous
mapping with the property that there exists p € S such that
(V)g € Os(p) 3)n = n(g) € N : (t > 0,7 € O4(q), f 0 Fpq(ma2(t)) < my(t)) =

foFyngn(ma(p(t)) < mi(e(t))
(my, my are like in Lemma 2.4 and ¢ € ®,,), then f has a fired point which is the

limit of the succesive approximations, starting from an arbitrary point of Oy (p).

The proof follows from Lemma 2.4 and Theorem 2.6.
If (S,F) is a H - space of the type (S,F,T) - Menger space under the t -
norm T with sup,., T'(a,a) = 1, then from the above theorem we obtain Theorem 1

from [8].
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A FIXED POINT APPROACH OF THE ASYMPTOTIC BEHAVIOR
OF SOLUTIONS FOR DIFFERENTIAL EQUATIONS OF SECOND
ORDER

OCTAVIAN MUSTAFA, CEZAR AVRAMESCU

Abstract. In an adecquate Banach space the integral operator associated

to the initial value problem

u"+f(t1U,“')=0, tZtO (1)
u (to) =l u'(to) =U,

for some to > 1 (for simplicity) satisfies the requirements of the Schauder-
Tychonov theorem if f(t,u,v) is under a Bihari type restriction. The fixed
point u(t) of this operator is asymptotic to at + b as t = 400, where a, b

are real constants.

1. Introduction

Starting with the paper by Bellman [3], functional analysis is frecquently
involved in studying the asymptotic behavior of solutions for differential equations.
Papers such as those of Massera and Schaffer [5] are now fundamental.

Another important step is made by Corduneanu [4] who uses certain function
spaces to analyze those solutions which go to 4+oco in the same way as some positive
test function g, i.e. solutions z(t) such that |z(t)| = O(g(?)).

Corduneanu introduces Banach spaces like (Cg, ||.||,) below:
Cg={z € C(R4,R™): Az > 0, [2(t)] < Azg(t), t €R}
with the norm

l=(®)|

||f'3“g = fggm

Lucrare elaboratX in cadrul contractului de cercetare cu CNCSIS no. 196, cod 303, din 14.06.1999.
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Such spaces are used also by Avramescu [1] for solutions z(t) such that
|z()| = o(g(2))-

Following these ideas an adecquate Banach space is introduced herein to study
the solutions u(t) of problem (1) which go to some a,t + b, as t — 400, where ay, b,

are real constants.

2. The fixed point technique applied to the study of asymptotic behavior

Consider the initial value problem
u’ + f(t,u,u') =0,t > 1
{ u(to) =Uo  u'(t0) = Ui
when the following hold true:
(1) The function f(t,u,v) is continuous in D = {(¢,u,v) : t € [to, +00), u,
v € R} and f(¢,0,0) = 0 for every t > ¢o.

(i1) There exist three continuous functions h, g1, g2 : Ry — Ry such that

£t w1, 0) = £t )] < hD0s (U272 (o — wa) @

where for s > 0 the functions g,(s), g2(s) are positive and nondecreasing,

[oe]

A= [ sh(s)ds 00
to/ (s <+ 3)
and
r
312]591(7')92(") =t @
and
91(0)g2(0) = 0. (5)

On the real linear space X(t) = {u € C*(to, +oo;R) : t_l)l_l_m u'(t) = ay,
p 0

t_l}g_noo[u(t) — ayt] = by; ay, by € R} we introduce the norm

lull = supu(6)] + hu(t) = at] + 420y
t>to

Proposition 2.1. The space (X (to),]|.||) is complete.
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Proof. Consider (f;)n>1 a Cauchy sequence in X(tp). Then the sequence of deriva-
tives, (f},)n>1, is uniformly convergent on [to, +00) to a continuous function g while
(fn)np1 is pointwise convergent on [to, +00) to a certain function f. The Weierstrass
theorem regarding sequences of derivable functions (see Niculescu [7], Theorem 6.5.4,
p. 283-284) shows that f is a C'—function on [tg,+o0) and f' = g. Furthermore,
(fn)n>1 has local uniform convergence to f since for every € > 0 there exists N(g) > 0

such that

10}
t

t
- $l <eg t>1g
for every n > N(e). In this way,

sup |fa(t) — f(t)| <eT, n> N(e)
t€fto,T]

for T'> 0 fixed. The usual € — N(g) technique shows that f € X(¢o) and

l. = i =
na oo tn = 41 L0 br = s

and %ﬂ goes uniformly to -f—%ﬂ on [tg,+00) as n — +oo and f,(t) — ay,t goes
uniformly to f(t) — ast on [to, +00) as n — +o0.
Finally, f, goes to f in X(¢y) as n — +oo. a

The operator T : X (tg) — X (20) is defined by

t

(Tu)(t) = Urt + Uy — f (t — 5) f(s, u, u')ds.

to

One has the following estimations:

Ty — Tuz) (1)) < 01 (lles — wallg(flus — uzu)f h(s)ds
@ =Tu)Ol < g, ([uy - us g2 (lus - uzu)fms)ds
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and

00

/|f(s,u1,u’1)|ds——/lf(s,uz,ug)lds (6)

t

gu(lws = uslgalus —wall) [\
< , t/sh(s)d.s

for uy,us € X(to) and t > to. The values of ary, bry can be computed from
o0
ary = Uy — [ f(s,u,u')ds
to
bro =Uo+ [ sf(s,u,u’)ds,
to
since lim {t f f(s,u,u')ds} = 0 for every u € X(to). Using u(t) = 0, this follows

easily from (6) since f(¢,0, O) = 0fort > t;. We need also the formula (T'u)(t)—aryt =
Uo+fsf(s u, u ds+tff.s u,u')ds.

to
All of this shows that T Xy C Xy and

ITu1 — Tusll < 3Ag1(J|ur — uall)ga(|lur — wal]), w1, ua € X(to). (7)
A compactness criterion on X (?g) is the one below.

Proposition 2.2. Let M C X(to) satisfy the next properties:
(1) For every € > 0 there exists L > 0 such that

W' () < L, u(t) —aut| < L

for everyt >ty andue M.
(i1) For every e > 0 there exists §(e) > 0 such that

Iu’(tl) - u’(tz)l <eg, Iu(tl) - u(tg) - au(t1 - tz)l <E&g

for every ty, ty > to, with |t; —t2| < d(e), and ue M.
(ii1) For every € > 0 there exists Q(¢) > 0 such that

[U/(t) — au] <&, |u(t)—aut—by| <e

for everyt > Q(e) andu € M.
Then, M 1is relatively compact in X (to).



A FIXED POINT APPROACH

Proof. A simple consequence of the compactness criterion on C{ = {u € C(to, +o0; R™) :

lim u(t) =y, ly € R®}. See Avramescu [2]. O
t— 400

We introduce the straight line 2o(t) = Uit +Up. Thus, T(0) = z¢. According

to (4) f’;lggl(llroll+f5rya(llroll+f) = 400 and from (3) there exists b > ||zo|| such that

b
g1{[zol[+b)ga([[zoll+5) -
The set Do = {u € X(to) : ||u — zo|| < b} is closed and convex.

[ee]
3 [ sh(s)ds <
to

Theorem 2.3. The requirements below are satisfied:
(a) TDo C Do.
(b) If H s bounded in X (to) then TH is relatively compact in X (to).

(c) The operator T s continuous in X (ip).

Proof. For (a) one has the estimation

o]

ITu — o]l < 3g1(llzoll + b)ga(lzoll + b) [ sh(s)ds < b.

to

For (b) one has to test the properties (i), (ii) and (iii) from Proposition 2.2.
For (i), if M = sup ||h|| then
heH

ITh|| < L = ||zo]| + 3Ag1(M)g2(M),

according to (7) since T'(0) = xq. For (ii), if ¢; > t2 > to then one has the following

estimations:
[(Tw)'(t1) — (Tw)' (22)| Sgl(M)QZ(A{)]Ih(S)dS
and 2
[(Tw)(t1) — (Tw)(t2) — azuits —2)|
Sgl(M)yz(M){fh(S)ds+]lh(8)ds}(t1 —t3).
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For (iii), again, one has the estimations below:

(T4 () — aral < 9 (M)2(30) [ h(s)ds
and

[(Tu)(t) — arut — bru| < 91(M)g2(M) / sh(s)ds + |R(u)| (),

(e o)

where R(u)(t) =1t [ f(s,u,u')ds. According to (6), tJE_IPwR(u)(t) = 0 uniformly with
t

respect to u € H since R(0) = 0 and

|R(u)(t)| < gl(M)gg(M)/sh(s)ds, u€ H.

The requirement (c) is justified by (5). If u, goes to u in X(¢o) as n = +o0
then

I Tun — Tull < 3Ag1(Jlun — ull)g2(llun — ull) = 0
as n — +00. O

According to the Schauder-Tychonov theorem (see Rus [9], Theorem 7.42, p.
58-59) the operator T" has a fixed point u(t) in X (¢o). This is exactly the desired
solution of problem (1).

Note. Whenever (2) is replaced by the Lipschitz type restriction
U —u
17t wa,00) = £t w2, 00)] < B2 1 1oy — )

and (3) is valid the operator T : X(to) — X (fo) becomes a contraction under some
Bielecki type norm. See Mustafa [6].

In what regards the term h‘-‘—{"—" in (2) it appears to be a natural requirement.
See Rogovchenko [8], Theorems 1-3.

Since (4) implies that
= +o00,

ds r
/ 7(9205) = 2R G ga(r)

to
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which is the standard Bihari condition, (4) itself can be properly refer to by a Bihari

type condition.
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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLIV, Number 4, December 1999

ON THE RELATION BETWEEN ABSOLUTELY SUMMING
OPERATORS AND NUCLEAR OPERATORS

CARMEN PARVULESCU AND CRISTINA ANTONESCU

Abstract. It is known that every absolutely summing operator acting
between C (), where Q is an arbitrary compact set, and a space, F, with
the Radon-Nikodym property is nuclear.

The purpose of this paper is to show that composing a weakly
compact operator with an absolutely summing one we obtain a nuclear
operator even the space, F, has not the Radon-Nikodym property.

We give, also, a proof for the "factorisation” theorem and we put

an interesting problem.

1. Preliminaries

1.1. Notations. Let E, F be Banach spaces over the field T'. T' is the set of real,
or complex, numbers.

1) L(E,F):={T : E — F : T is linear and bounded}.

2) E* .= L(E,T).

) Ug:={cx€E ||| <1}.

4) Let e* € E* and e € E, (e,e*) :=¢* (e) .

5) Let e* € E* and f € F. We denote by e* ® f the following operator:

e Q@f:E— F,(e"®f)(e) =(e,e*)f.

1.2. Definition [5]. Let F be a Banach space. A subset A C FE is said to be
weakly compact if it is compact in the weak topology, o (E, E*) .

1.3. Definition [5].  Let E, F be Banach spaces and T € L(E, F). T is said to be
weakly compact if TUg is relatively weakly compact.

Key words and phrases. Absolutely summing operator, nuclear operator, weak compact operator, space

with Radon-Nikodym property, space with the extension property.
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1.4. Definition [3].  Let E,F be Banach spaces. An operator T € L(E,F) is
called absolutely summing (T" € ABS(E, F)) if there is a constant ¢ > 0 such
that:

n n
Z"T:c,-” < c-sup {Z [(zi,z*)| : 2" € UE.} ,

i=1 i=1
for every finite family of elements ¢, z,,...,z, € E.

For every T € ABS(E, F) we define: « (T) :=infec.

1.5. Definition [3].  Let E, F be Banach spaces. An operator T € L(E, F) is said

to be nuclear if there is a representation:

o0
T=Y e®fi
$=1

where e € E* and f; € F, for every natural i.

We write T € N(E, F).

1.6. Definition [1].  Let (©2,)_, u)be a finite real measure space and E a Banach
space.

We say that E has the Radon -Nikodym property with respect to (2, _, u)
if, for each u—continuously vector measure ¥ : ) — E of bounded variation, there is
g € Ly (p, E) such that ¢ (A) = [gdp for every A€} :

We say that E has the l{adon -Nikodym property ( E has the R.N.p) if

E has the Radon -Nikodym property with respect to every finite real measure space.

1.7. Examples of spaces with the R.N.p.[1]. 1) Every reflexive space.(Phillips’
theorem)

2) Let F be a Banach space. If £ = F* and, in addition, F is separable then
E has the R.N.p.

3) Let I be an arbitrary set, / # @. Then [; (I) has the R.N.p.

4) Let 1 < p < 0o and X be a space with the R.N.p. Then L, (X, u) has the
R.N.p.
920
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1.8. Examples of spaces without the R.N.p.[1]. 1) (co,]|||lo,), Where co =
{z ={zn}, :2n €T and z, - 0}, ||2||, :=sup|e,].
. n

2) Ly (p), where p is a finite and non-purely atomic measure.

1.9. Definition[7].  The Banach space F is said to have the extension property
ifevery T € L(E, F), where E is an arbitrary Banach space, can be extended to any
Banach space E containing F as a suspace, where the extension T :E — F is linear

and bounded.

1.10. Example [7}.  The Banach space (I (T),]||lo,) has the metric extension
theory.

1.11. Theorem (the ”Domination” theorem)[3]. Let T € L(E,F). T €

ABS(FE, F) if and only if there is a regular normalized measure p on Ug. such that:

ITz]| < = (T) / (z, 2%} dpe (27)
Uge

for every z € E.

1.12. Corolar [3].  Let J be the inclusion from C () into Ly (), where Q is a
compact set and p is a measure with the properties from the ”domination” theorem.

Then:

J € ABS (C (), L1 ().

1.13. Theorem (the ”Factorization” theorem) [3]. Let E,F be Banach
spaces, F' having the extension property, and T' € ABS(E, F). Then there exist
the operators:

1) A€ L(E,C(Ug-)),

2)Y € L(Ly (p),F), where p is a regular, positive, normalised, Borel mea-
sure on Ug-, likewise in the ”domination” theorem,
such that: T=Y o J o A, where J is the inclusion from C (Ug.) into L, () .
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Proof. ( authors’adaptation)
Construction
1) Let A: E — C(Ug.) be defined, for every ¢ € E, by: Az := J;, where
Jg : E* 5 T, Jg (2*) = (2, 2*), for every z* € E*.
From the definition it follows that A € L (E,C (Ug.)), ||Az|| = ||J=|| = |||,
the corolar of the Hahn-Banach teorem, and further ||A]j = 1.
2) We consider now the inclusion,J, from C (Ug.) into Ly (4). From the
corolar 1.12 we obtain that J € ABS (C (Ug-), L1 (n)) -
3) Let Y : Im (J o A) — F be defined by ¥ ((J 0 4) z) := Tx.
We prove now that Y € L (Im (J o A), F).
a) The linearity is obvious

b) |7 (7 0 4)2)| = liT2l| < 7 () - Mool dn(a) =
=n(T): [ Ve (@)ldp(a) = (D) el = (7)o )]l
So Y is bounded on Im (J o A).

F has the extension property so Y can be extended to Y defined on L; ().

In conclusion we obtain the announced factorization of 7T O

1.14. Remark [3]. If F has not the extension property the factorization of an
operator

T € ABS(E, F) is as follows:

T=YoJoA, where A€ L(E,C(Ug+)), J is the inclusion from C (Ug.)
into Im(JoA)EC Ly (p)and Y € L (m, F) .

1.15. Theorem (Davies, Figiel, Johnson, Pelczynski) [5]. Let E, F be Ba-
nach spaces. Every weak compact operator S : E — F can be factorised through a

reflexive Banach space.

1.16. Theorem [3]. Let 2 be a compact set and F' a space with the R.N.p. Then
every T'e ABS(C (), F) is nuclear.
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2. Result

2.1. Theorem. Let E, F, G be Banach spaces, F having, in addition, the extension
property.
If S: F — G is weak compact and T € ABS(E, F) then S o T is nuclear.

Proof. From the factorisation theorem it follows that 7' = Y o J o A, likewise the
factorization theorem, and from teorem 1.15 it follows that S = U o V, where V €
L(F, R), R being a reflexive space, and U € L(R,G).

Further SoT'=UoV oY oJoA.

From the following facts VoY oJ € ABS (C (Ug-, R)) and R is a space with
the R.N.p. we obtain that V oY o J is nuclear.

In conclusion SoT =U oV oY oJ o A is nuclear. O

3. Open Problem

Let E, F be Banach spaces, F' having, in addition, the R.N.p. Any T €

ABS(E, F') admits a factorisation, likewise in the ”factorization” theorem. So:

T=YoJoA,where A: E— C(Ug),J:C(Ug:) = Im(JoA)C Ly (u),
Y :Tm(Jod) = F.

From the facts that Y o J € ABS (C (Ug.),F) and F is a space with the
R.N.p it follows that Y o J is nuclear.

In conclusion T'=Y o J o A must be nuclear.

But it is false because we can give a contraexample.

If we consider the identity from {; to ls, I : l; — Iy, this operator is ABS and
Iy , being a Hilbert space, is a space with the R.N.p., it follows that I : {; — 5 must

be nuclear. But it is false because I :l; — I3 isn’t even compact.
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CLASSES OF MENGER SPACES WITH THE FIXED POINT
PROPERTY FOR PROBABILISTIC CONTRACTIONS

VIOREL RADU

Abstract. We present the most important contributions to the theory
of probabilistic contractions of Sehgal type and a new method of obtain-
ing fixed point theorems on Menger spaces under Archimedean triangular

norms.

1. Some history

1.1. Introduction. The notion of a Probabilistic Metric has been introduced by K.

Menger in 1942 as a function
]-'
Sx 53 (p,q) > Fpq €Dy

where D, is the set of all distribution functions F, for which F(0) = 0, and the
following axioms are imposed:
I. Fzy=¢pifandonlyifz =y

. Fpy =Fy, Vz,y€ X.

Iy Foz(t+8) > T(Foy(t), Fy:(s))
Here T': [0, 1] x [0, 1] — [0, 1] is supposed to satisfy the conditions: T is nondecreasing
in each variable , it is symmetric and T(1,1) =1, T(a,1) >0V a > 0.

Thus the the first idea of Menger was to use distribution functions instead

of nonegative real numbers as values of the metric .The second useful idea was the

formulation of the triangle inequality (I1pr) .

1991 Mathematics Subject Classification. 54-E70, 47-H10.
This note is a written version of the invited lecture presented at the “1999 Cluj-Napoca Seminar on

Fixed Point Theory and Applications” . The author is indebted to Professor 1.A.Rus — the “life-blood”
of the 30 years old Seminar — for this invitation.

Key words and phrases. Menger spaces, fixed point theorems, probabilistic contractions.
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A. Wald in 1943 proposed the following triangle inequality , accepted by

Menger himself in subsequent works:
({1y) Fpq > Fprx Frq
which admits a natural interpretation
Prob{dist(p,q) < } > Prob{dist(p,r) + dist(r,q) < z}

if the ”distances” are considered independent random variables .

. B.Schweizer &A.Sklar in 1960 (see also [47]) reconsidered the problem
of the triangle ienquality by imposing the associativity for T; thus ([0,1],T) is a
commutative semigroup with 1 as unity and T(a,b)<Min{a,b} Min, Prod and W =
Maz{Sum — 1,0} are the most important t-norms ; (S, F,T) is called PM-space and
T a triangular norm or t-norm.

In the same works they introduce two new important notions, the (g, A)-
topology ( F-topology, strong topology), generated by {Np(e,A)}e>0, e(0,1) and the
(€, A)-uniformity( F-uniformity),generated by {U(e, A)}eso, ae(o,1)(see 2.1. below).

In the same year Schweizer, Sklar and R.Thorp proved that ifsup, ., T(x, z) =
1, then the (g, \) -uniformity exists and it is metrizable.

Later on, J.Nagata & B.Morrel and, independently, U.Hohle, proved that
the above condition on T is the weakest one which ensures the existence of the F-

uniformity.

In 1962 -1963, A.N. Serstnev proposed a new formulation of the triangle in-

equality , by means of a nondecreasing (semigroup) operation 7 on D4( a t-function)
IlIs Fpq> 7(Fpr,Frq), 7: Dy X Dy = Dy ,7(Ho) = Ho

and has formulated explicitly a metric-like function which seemingly agrees with the

uniformity , namely
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Later on I observed that d does not verify yhe triangle inequality , and therefore this
is not an adequate example.Serstnev introduced also the notion of random normed
space!.

Now we present some results concerning the

1.2. Fixed Point Principles in Menger spaces. In 1966 V.M Sehgal & A.T
Bharucha- Reid(see [50] and [51]) have introduced the notion of probabilistic contrac-
tion on Menger spaces, namely functions f : S — S s.t. thereisan L , 0 < L <1,

for which

(PC)  Fip,rq(Lz) > Fpy(2),Vz >0,
and they proved the following
E1. Any probabilistic contraction on a complete Menger space (S, F, Min) has a fired
point , which is the limit of the successive approzimations, defined by pny1 = fpn,

that is a principle of Banach- type holds for the.t-norm Min .

In 1976 , G.L.Cain and R.Kasriel proved the above theorem of Sehgal&Bharucha-
Reid by a different method :  If dy(p, q) = sup{z, Fpq < b} is defined on (S, F, Min),
then dy is a semimetric on S and {db}sc(0,1) generates the (g, A)-topology ; and they
obtained the Banach’s principle from a classical result for (S, {ds}).

In 1971, H.Sherwood gave an example of a complete Menger space (S, F, Tr,)
together with a probabilistic contraction with no fixed points(see also[47]).

A fundamental result has been obtained by O. Hadzié¢ in 1978 (cf [9], [10],
[11] and [15] )which extended the class of t-norms for which th. BP. holds:
E2. If T 1s continuous and T™ are equicontinuous at = 1 , then the B.P. holds in

every complete Menger space (S, F,T)

LAt the West University of Timigoara a Seminar on PM-spaces has been createg in 1972. The most part
of the contributions to this Seminar are due to D.Barbu,Gh.Bocsan, Gh.Constantin, I.Istri\escu, D.Mihet, V.Radu
and D.Zaharie. A number of 125 papers have been issued in preprints and most of them aﬁxeared in well known
periodicals. A series of monographs (three volumes until now) has been created. Some of the ',oiﬁbso( the Seminar
are Measures of noncompactness , Fized points , NonArchimedean PM-spaces,Construction of deterministic metrics and

Random operators &equations.
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In 1983 I have shown that the condition of continuity of T can be dropped . Also I
obtained the following characterization of the t-norms of Hadzié- type :

E3.The following are equivalent , for a continuous t-norm T,
a) {T"} is equicontinuous at = =1

b) Ya€(0,1), 3b € [a,1) such that T'(b,b) =b

By using this result one can obtain the following:

E4. Let T be a continuous t-norm . Then the B.P. holds in every complete Menger
space (S, F,T) if, and only if, T is of Hadzicé- type.

ES5.The following are equivalent

a) There exists a complete (S, F,Ty,) in which the Banach’s Principle fails;

B) There exists a complete (S,F, Prod) complete, in which the Banach’s Principle
fails;

v) There exists a complete (S, F,T), where T is not of Had%ié- type t-norm, in which
the Banach’s Principle fails.

E6. EJ s essentially equivalent to the classical Banach Principle.

Remark. In the general case for equicontinuous T™ (at £ = 1) one can use a method
similar to that proposed by Cain & Kasriel, by using a countable family of pseudo-

metrics:

by /‘ 1, T(bmbn) = b,

da(p,q) = inf{t, Fpe(t) > bu},n=1,2,..

i
1.3. Hicks contractions and generalizations. In 1983, T,L.Hickks has introduced

a different condition for contractions

(en) 3L <1:Fpy(t)>1~t = Fyppq(Lt) > 1— Lt

and has shown that
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E7. Every ci-contraction on a complete Menger space (S, F, Min) has a unique fized
point , which is the limit of the succesive approzimations .
The idea of Hicks’ proof is as follows:

- Construct a metric p on S, for which

- (S, p) is a complete metric space and f is an L strict contraction on (S, p).
- Apply the classical B.P.

I essentially extended the above result in two directions(see e.g. [40, 42]).

(a) E7 remains true for every T > W and the proof is similar to that of Hicks ;
(b) The result of Hicks is true for every t-norm with the property sup, ., T'(t,t) = 1.

If we observe that the condition (cj) can be rewritten in the forms :

t>1— Fpe(t) = Lt >1— Fyppe(Lt)

t>hoFpg(t) = Lt>hoFrppe(Lt)

where h(u) = 1 — u, u € [0, 1], we can give more extensions.

Let M be the family of mappings m:[0, co] — [0, o0], such that

a) m(t) =0 <= t=0;
b) m is continuous ;

c) m(t+ s) > m(t) + m(s).

Lemma. Let US/{suppose that
/
(i) meM;
(ii) h :[0,1] = [0,00] is @ continuous decreasing function, and k(1) = 0;

(iti) (S, F,T) is a Menger space,with T > T),.

Then

P(P,9) = kmn(p, q) := sup{t , m(t) < ho Fpy(t)}

gives a metric which generates the (g, A)-uniformity.
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Theorem 1.3. Consider a complete Menger space (S, F,T) and a self mapping f of
S such that

h o Fpq(t) < m(t) = ho Fyppq(Lt)] < m(Lt)

where h is as the Lemma , with h(0) < co. Then f has a unique fized point (which is

the limit of successive approzimations).

Remarks.

(1) If T' > T4, then f is a p-strict contraction and the classical BP can be applied .
In this case h(0) may be oo.
(2) The formula

p(p,q) = sup{t, m(t) <1 - Fpq(ma(t))}

where F,q(t) = Prob(d(p, ¢) < t), gives a metric for the convergence in probability
, extending the case m; (t) = ma(t) = ¢, when one obtains the Ky Fan metric.
(3) The above ideas and methods have been used and extended by many authors(see

[4], 5], [6, 7], [11, 13, 14, 15], [25], [48], [54]).

1.4. Some comparisons. The followi : examples, essentially taken from the very
interesting paper [48], clarify tl@azfdence of the two types of contractions:
1. Let (S, d) be a metric spa('e”, and f:S — S an L— isometry: d(fp, fq) = Ld(p, q).
If we set Fpq(z) = 7Td(p.)» then we obtain a Menger space (S, F, Min).
(a) fis a probabilistic contraction, since Fyprq(Le) = Fpq(€).
(b) Tt is easily seen that p(p, ) = 2d(p, ¢)/(d(p, q) + sqr(d®(p, q) + 4d(p, q))) ;and

p(p,q) = 1 for d(p, qg) = 1,50 f cannot be a strict contraction on (S,p).
2. Let $={0,1,2,...} and d(p,q)= max{L?, L7}, L € (0,1). Define

0, z < d(p,q)
Fpe(z) =4 1-d(p,q), d(p,g)<z<1
1, z>1
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If we take f(p) = p+ 1, then f is a Hicks contraction . Now if 1 >z > L; , z >
Ld(p,q), then d(fp,fq) = Ld(p,q) < = < Land Fyp 1q(z) = Fpy1441(z) =
1—d(fp, fg). On the other hand qu(Lll) =1, that is Fyp yq(2) < Fpq(£5) and so

f is not a probabilistic contraction.

3. Generally , if we have a probabilistic contraction f, then p(p,¢) < ¢ = e >
L= Fpg(e) = Fpgle) > 1—€ = Frppele) 2 Frppq(Le) 2 Fpgle) > 1—€ =
p(fp, f1) < e, thus p(fp, fq) < p(p, ¢),that is f is nonexpansive.This explains in
some sense the counterexamples of type Sherwood.For more details,examples and

counterexamples, see [48], [42] and [15].

2. The “fixed point property” for t-norms

2.1. Probabilistic (semi)metric spaces. Let D, be the family of all distribution
functions F' (nondecreasing and left continuous on R, with inf F = 0 and sup F = 1)
for which F(0) = 0. For every a > 0, ¢, will be the unique element of D4 for which
€a(a+) — €afa) = 1.

Definition 2.1.1 (cf. [46],[47],[7],[42]). Let X be a nonempty set and F : X x X —
D, a given mapping (F(z,y) will be denoted by Fyy). The pair (X, F) is called a
probabilistic semimetric space (shortly PSM-space) if

I. Fpy=¢pifandonlyifz =y

II. Fpy =Fy: Y2,y € X.

If any kind of ”triangle inequality” is verified we use the term probabilistic

metric space (PM-space). The weakest one is that proposed in [46):
Ilgs [Foy(t) =1, Fy,(t) =1] = Fp(t+s) =1
If there exists a triangular norm T [46] such that

Iy oot +5) > T(Fay(t), Fya(s))
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then one uses the term Menger space. A more general form for 111y, giving o-

Menger spaces, has been formulated by using some operations o on [0, 00), instead of
the addition (cf. [42], [44]).

In [18] is proposed the inequality
IIIg Ve > 036 > 0s.t. [Fpy(d) > 1-0, Fy,(8) > 1-6] = Fz,(e) > 1-¢

which has been generalizated as

Iy Ve > 038> 0 5.6 [hoFay(8) <8, hoFy(8) < 8] = hoFyy(e) < ¢
by using additive generators h (cf. [39], [41], [42]).
For every PSM-space (X, F) we can consider the sets of the form

Uepr ={(z,y) € X x X, Fpy(e) >1-1}, e>0,1€(0,1)
which generates a semiuniformity denoted by 4+ and a topology 7. Namely,
OeTriftVee O3>0, Ae(0,1)s. t. Usa(z) CO

Actually Ur can also be generated by the family of the sets V5 := Us 5.

Proposition 2.1.2. Let (X,F) be a PSM-space and define the two- place mapping
(1) k(z,y) = sup{t|t < 1— Fyy(t)}. Then k is a semi-metric (of Ky Fan type) on X

and
(2) k(z,y) <0 & Foy(d) >1-46,V6 >0,

which shows that k generates the topology Tr (and the semiuniformity Ur ).
The proof is easy to reproduce (cf. [16], [40], [17]).

Ezamples 2.1.3.

(i) If d is a semi-metric on X and we set Fry := €4(¢,y) then (X, €q(,)) is a PSM-

space and k(z,y) = min(d(z,y),1).

(i1) Let X be the family of all classes of R-valued random variables on a probability
measure space (2, K, P). If we set F(z,y) = Fjz—y, the distribution function
of |z — y|, then (X, F,W) is a Menger space and k is the Ky Fan metric of
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the convergence in probability (cf. [19]). Here R can be replaced e.g. by any
separable metric space (with |z — y| = dist(z, y)).
It is to be noted that, generally, k¥ need not be a metric. In order to ensure the veri-
fication of the triangle inequality for k, T. L. Hicks [17] proposed the following form
of the triangle inequality for (X, F):

IIT . [Foy(t) > 1—t, Fys(8) > 1~ s8] = [pp(t+s) > 1—(t+s)
and he observed that the property I11! holds for every Menger space (X, F,T) for
which T > W.

As a matter of fact one has the following

Proposition 2.1.4. Let T be a t-norm such that the property (I11') holds for every
Menger space (X, F,T). Then T > W.

Proof. This will follow from the following well known example. Let X = {z,y, z}, Fzy =
Fye, Fy; = Foy, Fzy, = Fyp, where

0 t<0 0 t<0
Foy(t) =4 a t€(0,1] , Fp:(t) =4 b te(0,1] ,
1 t>1 1 t>1
0 t<0
Fpe(t) =< T(a,b) te(0,1]
1 t>1

and Fyr = Fyy = F,, = 9. Then (X,F,T) is a Menger space (for which T is the
best t-norm) and k(z,y) = 1 —a, k(y, z) = 1 —b, while k(z,2) =1 —T(a,b). Thus we
see that k(z,2) < k(z,y) + k(y,2) & T(a,b) >a+b-1. |

Remark 2.1.5. Let (X, F,T) as in the above proof and suppose that T'(a, ) < a+b—1.
Therefore 0 < a@,b < 1 and there exists p > 1 such that ((1 — a)i +(1=b)F)P >
1—T(a,b). Thus (1 —a)r + (1—b)7 > (1— T(a,b))7 and we see that k,, given by
kp(u,v) = sup{t[tP < 1— F,,(t)}, is verifying the triangle inequality. This shows that
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the more general formulae proposed in [39], [41] and [44] can give metrics in many

situations.

It is easy to see that for each m € M there exists ¢,, > 0 such that m : [0,t,,) —
[0, 00) is strictly increasing and invertible. If we set, for any PSM-space (X, F),
(1m) km(z,y) = sup{t|t > 0,m(t) <1 - Fry(t)}

then k,, is a semi-metric. Moreover
(2m) km(z,y) < 6 & Fzy(d) > 1 —m(d)

from which it follows that k,, generates 7 and Ur.

This suggests the following definition, which extends (I11'):

Definition 2.1.6. A PSM-space (X, F) for which takes place the following triangle
inequality

IIT™ . [Fpy(t) > 1—=m(t), Fy;(s) > 1—m(s)] = Fe(t+s) > 1—m(t+s)
is called PM-space of type M.

In [35] there are presented some fixed point theorems in these classes of PM-

spaces.

2.2. On the fpp for triangular norms. As we have seen,probabilistic contractions
have been introduced by V. M. Sehgal [50]. It is now well known that every proba-
bilistic contraction on a complete Menger space (S, F, Min) has a unique fixed point,
which is the limit of succesive approximations. In [53] H. Sherwood constructed com-
plete Menger spaces together with probabilistic contractions which do not have fixed
points. O. Hadzié [9] introduced a class of t-norms for which the contraction principle
holds [10]. In [38] we proved that a continuous t-norm has the fixed point property
iff it is of Hadzi¢-type.

In the present section, we further investigate the fixed point property of t-
norms, by using the structure of continuous t-norms as given in [32]. Essentially we
prove that a t-norm does not have the fpp iff in a neighborhood of 1 it has a behavior
similar to that of W = Max(Sum — 1,0). Thus the counterexample of H. Sherwood
can be generally used for all t-norms which are not of Hadzié-type.
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Let I denote the closed unit interval. A t-norm is a two-place function T :
I x I = I such that T is associative, commutative, nondecreasing in each place and
such that T'(a,1) = a for each a € I. For a fixed t-norm T', T™ is defined inductively
on I by

1) THe)=g, T (2) = T(T™(2),2)

We say that T is of h-type (and write T' € H) if {T™} is equicontinuous at z = 1.
The following result is a consequence of [37], [38] and [32)]:

Lemma 2.2.1. (i) If T verifies the condition
(2):Va €(0,1),3b € [a,1), st T(b,0)=0b

then T €.
(i) If TeM. and T is continuous, then (2) holds.

Theorem 2.2.2. Let T be a continuous t-norm. Then T ¢} iff

(3) 3a € [0,1) such that T'(a,a) = a,T(z,z) < z,Vz € (a,1)

Proof. By Lemma 2.1, T ¢ H iff (2) is false. If 3ag € (0,1) such that For each
b € [ao,1) one hasT(b,b) < b, then let

a=lim T™(ao).

Since T™*!(ag) < T™(ao) < ao, then a € [0,1) always exists. Moreover,
as T?™*1(ag) = T(T™(ao),T™(ao)) and T is continuous, then a = T(a,a). Let
b € (a,a0). If T(b,b) = b, then a = T™(a) < b =T™(b) < T™(ag), that is b < a, a
contradiction.

Thus, if (2) is false then (3) holds. The converse is obvious. O

Remark 2.2.3. The number a in (3)-is uniquely determined and will be denoted by

ar.

From (3) and [32] we obtain the following
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Theorem 2.2.4. Let T be a continuous t-norm. Then T ¢ H iff there exist ar €

[0,1) and an increasing bijection ht : [ar, 1] — [0, 1] such that

(4) : T(a, B) = hp' [T (hr(e), b (8))], Vo, B > ar

where T, = W or T, = Prod (T. depends only on T).
The following lemma is easy to reproduce:

Lemma 2.2.5. Let T be a continuous t-norm, T ¢H

(i) If (S, F,W) is a Menger space, then (S,e”~!, Prod) is a Menger space
with the same (g, A)-uniformity;

(ii) If (S, F,T.) is a Menger space, then (S,h3' o F,T) is a Menger space
with the same (e, \)-uniformity;

(i) If (S, F,T) is a Menger space, then (S,hr o F,T,) is a Menger space

with the same (g, A)-uniformity. (the notations are as in Theorem 2.4).

One says [38] that T has the fized point property (f.p.p.) iff every probabilistic
contraction on a complete Ménger space (S, F,T) has a fixed point (it is obvious
that this fixed point is unique and it can be obtained as the limit of the succesive
approximations).

If T € H, then it is well known that T has the f.p.p. and this can be proven by
different methods( [10], [38], [3]) or is a consequence of the classical Banach principle
[37].

For t-norms which are not of h-type we have the following

Theorem 2.2.6. Let T be an arbitrary but fized t-norm such that T ¢H. Then the
following are equivalent

(i) T does not have the f.p.p.;

(i1) Prod does not have the f.p.p.;

(iii) W does not have the f.p.p.

Proof. Firstly we observe that the constructions in Lemma 2.5 do not change the
property of f of being a probabilistic contraction. Therefore the equivalence (ii)< (iii)
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results for Lemma 2.5 (i), for Prod > W. The fact that (i)=(ii) or (iii) is a con-
sequence of Lemma 2.5. (iii). The implication (ii) and (iii)=>(i) is a consequence of

Lemma 2.5. (ii), and the theorem is proved. O

In [53] it is proved by an example that W does not have the fixed point property.

Thus we have the following

Corollary 2.2.7 ([38]). If T is a continuous t-norm such that T' ¢H, then T does
not have the fized point property.

3. Some “iff”conditions for the f.p.p. in the archimedean case

From the above it seems very clear that in order to can hope to obtain some
kind of fixed point theorems in the case of Archimedean(or not of Hadzic type) t-
norms, one has to impose supplementary conditions either on the probabilistic con-
tractions or on the probabilistic metrics.

Some positive effort has been made in this sense by H. Sherwood [53], R. M.
Tardiff [55], V. Radu [42, 43] and E. Par3u & V. Radu [34, 35].

Nevertheless we think that the problem has not yet a satisfactory answer,
especially for concrete purposes. This is seen from the following simple case of affine

mappings on E-spaces:

Ezxample 3.0. Let Lg(0,1) be the space of all classes of random variables on the
Lebesgue measure space ((0,1), £, A) and fix the element w defined by the mapping
t — et. Let S be any closed (for the convergence in probability) linear subspace of

Ly(0, 1) which contains w and 1. Now define fon S by
fp=Lp+(1-Ljw
when L is fixed in (0, 1). It is easily seen that
ffpo=L"po+(1-L"w—-w=fw

On the other hand, the distribution function of w has the value 0 for z < e and 1— -

for ¢ > e, such that [ InzdF, () = +oo. Therefore the conditions of [55] are not
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verified for I'\yuw, With X # u. At the same time, for every k£ > 0,
1 1 1 k €m0
/ wk (¢)dt > / wk (t)dt > / (14 7)dt=1-c—klnc— oo
0 € €
which shows that we cannot hope to work in any Lebesgue space Lg(0,1):
Po € Lk(O, 1) fPpé Le(0,1),n > 1

The aim of this section is to obtain a characterization of the probabilistic
contractions, on complete Menger spaces under Archimedean t-norms, which have a
fixed point. Our method of proof is very simple and is based upon a new family of
metrics which all generate the strong F-uniformity and seem to be appropriate for

studying probabilistic contractions.

3.1. A family of semi-metrics on PM- spaces. In the following lemma we intro-
duce a family of nonnegative functions which measure the distance betwecn €¢ and

the elements of Dy .Let k be a (fixed) positive real number.

Lemma 3.1.1. The one-place mapping éx : Dy — Ry, given by
(1) O(F):= 21;15{1"‘[1 - F(z)le™"},
has the following properties:
(7)) dk(F)=0 <=> F = ¢q;
(i¢) If Fy < Fy, then 8x(F1) > 6x(F2);
(#5) Ok(Ao F) < MR8, (F),YA > 1;
(iv) §*He~® < 8k (F) < max{d*,dkke %},
where § = §(F') := sup{t|t <1— F(t)} is the écart of Ky Fan.
(v) 6k(fn) = 0<=> Fp(z) = 1, for each z > 0.

Proof. We will give only the proof of (iv):

a) 6k (F) = sup{z*[l - F(z)]e™=} > 6*[1 - F(8)]e=® > 6"+ e~?;

b) If 0 < & < 6, then zF[1 — F(z)]e=* < 6*. If § < =z, then 1 — F(z) <
1-F(6+0)<34.

Therefore z¢[1 — F(z)]e™® < dzFe™* < dkFe*. 0
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Proposition 3.1.2. Let (S, F) be a probabilistic metric space and define
(2) ex(p, 9) := 0k (Fpq) = sup 2" [~ Fpq(z)le™®,Vp,0 €S
z

Then
1° ex is a semi-metric for the strong F-topology;
2° e generates the F-uniformity, if the latter exists;

3° If (S, F,W) is a Menger space, then

(3) (p)q) - ok(P, ‘I) = {ek(p, q)}iﬁ

gives a metric on S. Moreover, (S, F) is complete if and only if (S,0%) is complete.

Proof. 1° and 2° follow from Lemma 1.1. and the definitions. In order to prove 3¢,

let us recall that (S, F, W) is a Menger space iff the following inequality holds
(4) 1= Fpe(x) < 1— Fpr(tz) + 1= Fro[(1 —t)2),Vp,q,7 € S,Vz € R,Vt € [0,1]
If we fix p,q,r € S, then we have, for each z > 0:

g¥[1 = Fpq(2)]le™ < 2F[1 — Fpp(tz)]e™™ + 2F[1 — Fq[(1 - t)z]e~ 797, vt € (0,1)

Then

1

2*[1 = Fpq(z)]e™® < v ex(p,r) + (1—_12)—1‘—6[,(1', q9),Vte€ (0,1)

This implies the inequality.
1 1
ek(pv q) S t_kek(p’ 'I’) + Wek(ra Q),Vt € (0) 1)
and we easily obtain that
{ex(p, )} P < {ex(p,r)} ™ + {en(r, )}

that is f; verifies the triangle inequality.
The last part of the proposition follows from the inequality (v) of the Lemma
1.1. 0O
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Remark 3.1.8. The above proof shows that if, instead of (4), we have
(4) 1= Fpg(z) < 1= Fpr(z) +1— Fry(x),VYp,q,7 € S,Vz €R,

that is (S, F, W) is nonArchimedean, then e, itself is a metric which generates the

F - uniformity.

3.2. An iff condition for probabilistic contractions to have a fixed point.

We are in position to give a slight improvement of the results from [42, 43] and [34]:

Theorem 3.2.1. Let (S,F,T) be a complete Menger space such that T > W. If

f:S — S is a probabilistic contraction, that is
z
(8) Frpsq(z) > qu(f)»v” €R

for some L € (0,1) and all pairs (p,q) € S x S, then the following are equivalent
(5.1) f has a fized point
(5.2) There exist p € S and k € (0,00) such that

Ex(p) = i\;po{m"[l — Fppp(@)]} < 00

Proof. The implication (5.1) = (5.2) is obvious:

p=fp = Fpp(x)=1,V2>0=> Ex(p)=0

Now suppose that Ej(p) < oo for some p € S and k € (0,00). From the
definition of d; we see that dx(Fpsp) < Ex(p). If we take into account the inequality
(5), then we get
(1= Fyppap(@)le™® < 1= Fypp(£)]e™ = L¥{()H 1= Fppp(£)]}e™ < I¥ B (p),which
shows that

. 1

(6) 6(fp, f2p) < L7+ (Ex(p)) 7+
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If we apply (6) for f*, which verifies (5) with L" instead of L, then we obtain

8) D 0u(fp, f+p) < {D (LFT) HEk(p)} T < o0
n=0

n=0
This clearly implies that (f”p)n >0 is a Cauchy sequence in the complete metric space
(S, 0k), thus it converges to some point p. € S. Since (5) implies also the continu-
ity of f ,then p, is a fixed point which is uniquely determined and globally attrac-
tive: Fynpp, (2) > Fpp, ({5) = L. O

Remarks 3.2.2. a) Simple examples show that f is generally not contractive relatively
to i (or ex).

b)The suppremum in (5.2) may be infinite for some different values of k or
for different points in S. This can be seen from the simple case of the Example3.0.

and fp = Lp+ w. Let a € S such that
sup z*[1 — Fq(2)] < 00

and take p = Aa + tiyw. Our condition (5.2) is verified, for p — fp = A(1 — L)a.
Clearly f has a fixed point p, = -l—_l-zw and it is easily seen that Ex(p.) = oo.
On the other hand the inequality

(10) / InzdFpe(z) < 400
1

does not hold for pairs p = Ap., ¢ = pp. with A # p. Thus we could not apply the
results of Tardiff [55], which imposed (10) for all pairs (p,q) in S x S.

¢) Our condition (5.2) is verified if there exists an element p such that
Fpgp(tp) = 1 for some ¢, > 0 (H. Sherwood in [53], Corollary) imposed this con-
dition for all F,,) '

d) The condition (5.2) is verified if Fp s, has a finite k moment. Thus Theorem
2.1. slightly extends our results in [34, 42]:

Corollary 3.2.3. If T > W and (S, F,T) is a complete Menger space, then a given
probabilistic contraction f on S has a fired point if and only if there exist k > 0 and
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p € S such that
0
1) [ etdBygp(a) < +oo
[ee]

Proof. Tt is well known and easy to see that lim;c 2%(1 — Fpap(z)) = 0, if (11)

holds. O

Remark 3.2.4. A t-norm T is Archimedean if and only if there exists an increasing

homeomorphism & : [0, 1] — [0, 1] such that
(12) T(a,b) = h™'(Ti(h(a), h(})))

where T, = W or T, = Prod (see Theorem 2.2.4).
Since ab > a+ b — 1 for all a,b € [0, 1], then we obtain the foolowing.

Theorem 3.2.5. Let (S,F,T) be a complete Menger space such that T > Ty for
some increasing homeomorphism h : [0,1] — [0,1]. Then a probabilistic contraction
f of S has a fized point if and only if there erist k > 0 and p € S such that

(13) sup,s0¥[L = h o Fpyp(a)] < +o0
The proof follows from the fact that (S,h o F, W) is seen to be a complete Menger
space, Q.E.D.
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Jean-Pierre A ubin, Mutational
and Morphological Analysis— Tools
for Shape Evolution and Morphogene-
sis, Systems & Control: Foundations
& Applications, Birkhauser Verlag,
Basel-Boston-Berlin 1999, xxxvii+425
pp., ISBN 0-8176-3935-7 and 3-7643-

3935-7.

The aim of this book is to develop
a kind of differential calculus on met-
ric spaces (without any linear struc-
ture) both for single-valued maps be-
tween two metric spaces E,F (mu-
tational analysis) and for maps be-
tween their power spaces P(E), P(F)
(morphological analysis). This last
kind of maps includes set-valued maps
(ie. from E to P(F)) as well as
maps from

P(E) to F). This new approacch al-

set-defined maps (i.e.

lows the treatment in a unified way
of the ”multiverse” of various kinds

of differentials, codifferentials and
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derivatives—graphical, contingent, ad-
jacent, paratingent, circatangent— for
maps, sets and set-valued maps, which
evolved from the harmonious universe
of Fermat, Newton and Leibniz. Let’s
us quote from the Introduction-" The
loss of differentiability paradise was
the punishment inflicted on those ex-
ploring the set-valued purgatory, de-
priving the sinner of the grace of dif-
ferential and integral calculus”. The
aim of the author is to regain some
of this ”lost paradise” by considering
maps as graphs, an idea going back
to Fermat and Descartes, instead of
pointwise approach which consists in
regarding set-valued maps as single-
valued from E to P(F).

Author’s approach is motivated by
numerous applications to nonsmooth
problems in viability theory, image
processing, shape optimization, visual
dynarnic

control, interval analysis,




economic theory, biological morpho-
genesis, front propagation.

The basic notions are those of tran-
sition on a metric space, of mutational
structure, and of mutation of a map.
On a normed space E one can take as
mutations the applications 9,(h, z) =
z + hv, (h,z) € [0,1] x E,v € E,
yielding the set of éirect.ional deriva-
tives as the mutation set of a single
valued map. Despite the loss of the
linearity, the author succeeds to trans-
fer most of basic results of differential
calculus and differential geometry in
vector spaces to mutational calculus.

The prototypes for the concept
of the mutation of a map are those
of shape derivatives and velocities in
tubes developed by J. Céa and J.-P.
Zolesio.

The basic tools of mutational anal-
ysis, including Cauchy-Lipschitz type
existence theorems for mutational
equations, inverse function theorems
on metric spaces, Newton’s mutational
method, a.o., are treated in the first
two chapters, which form the first part

of the book- Mutational Analysis in
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Metric Spaces. The second part, Mor-
phological and Set-Valued Analysis,
contains three chapters. The third
part of the book, Geometrical and
Algebraic Morphology, contains two
chapters.

There are also an Appendix deal-
ing with set topologies, coarea for-
mula and variational equations, Gron-
wall and Filippov estimates, differen-
tial inclusions.

The author, a well known specialist
in the field, has published a lot of re-
search papers and several monographs
(from which two at Birkhauser- Vi-
ability Theory (1991) and Set- Valued
Analysis (1990), the last jointly with
H. Frankowska).

Providing new tools for the study
of shapes and and images, problems
appearing in many fields of current re-
search, this new monograph will get a
large audience, including mathemati-
cians, computer scientists, physicists,
biologists (as stated in the Introduc-
tion, the author intends to treat bio-
logical applications in a forthcomming

monograph).

S. Cobzag



LokenathDebnath, Nonlin-
ear Partial Differential Equations for
Scientists and Engineers, Birkhauser
Verlag, Basel-Boston-Berlin 1997, 616
pPP., ISBN: 3-7643-3902-0

The book provides an introduction
to nonlinear partial differential equa-
tions and to the basic methods for
finding the solutions of these equa-
tions. In order to make the book
self-contained, the first chapter deals
with linear partial differential equa-
tions and their methods of solution
with examples and applications. The
book is intended to serve as a reference
work for those seriously interested in
advance study and research in the sub-
ject, for its applications to other fields
of applied mathematics, mathematical
physics and engineering science.

The book is designated as a new
source for modern topics dealing with
nonlinear phenomena and their appli-
cations for future development of this
subject. Iis main features are:

- thorough coverage of derivation
and methods of solutions for all
fundamental nonlinear model equa-

tions which include Korteweg-de

Vries, Boussinesq, Burgers, Fisher,
nonlinear reaction-diffusion, Euler-
Lagrange, nonlinear Klein-Gordon,
sine-Gordon, nonlinear Schrédinger,
Whitham equations,

- systematic presentation and expla-
nation of conservation laws, weak so-
lutions and shock waves,

- several nonlinear real-world models
that include traffic flow, flood waves,
chromatographic models, sediment
transport in rivers, glacier flow, roll
waves,

- solitons and the Inverse Scattering
Transform,

- nonlinear instability of dispersive
waves with applications to water
waves.

The book also contains 450 worked
examples, examples of applications
and exercises, from the areas of par-
tial differential equations, geometry,
vibration and wave propagation, heat
conduction, electric circuits, dynami-
cal systems, fluid mechanics, plasma
physics, quantum mechanics, nonlin-
ear optics, physical chemistry, mathe-
matical modeling, population dynam-

ics, mathematical biology.
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I strongly recommend this mono-

graph as a reference book for a diverse

NicolaeDinculeanu, Vec
tor Integration and Stochastic Integra-
tion in Banach Spaces, John Wiley
& Sons, Inc., New York-Singapore-
Toronto 2000, xv+424 pp., ISBN 0-
471-377738-4.

The aim of the present book is to de-
velop stochastic integration in Banach
spaces. Extensions of stochastic in-
tegration to Hilbert space setting has
been considered by H. Kunita in 1970,
who used an isometry between some
L2-type spaces of processes. This
approach was not based, like in the
classical real-valued stochastic anal-
ysis, on measure theory and vector
integration, and cannot be extended
to Banach spaces (the method essen-
tially relies on inner product tech-
niques). The first attempt to an ap-
proach based on integration with re-

spect to a vector measure belongs to

J. Pellaumail (1973), but due to the .
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readership, for graduates and profes-
sionals in mathematics, physics, sci-

ence and engineering.

Damian Trif

lack of a satisfactory vector integra-
tion theory, it works only for real-
valued processes. The main idea of
the author of the present book is to
use integration of vector-valued func-
tions with respect to vector measures
of finite semivariation, as developed by
J. K. Brooks and N. Dinculeanu, J.
Math. Anal. Appl. vol. 54 (1976),
348-389, and appearing here for the
first time in book form.

The book consists of two parts.
The first part , Chapter 1. Vector
integration (121 pp.) and the para-
graphs 18, 20, 29 and 31, concern vec-
tor integration. It contains a brief
and clear exposition of basics of vector
measures and vector integration. Here
the proofs of some theorems are only
sketched or even skipped, the reader
being refered to other texts as, e.g.,
author’s treatise N. Dinculeanu, Vec-
tor Measures, Pergamon Press, Ox-
ford 1967, or those by N. Dunford and
J. Schwartz, or by J. Diestel and J.




Uhl. The core of this chapter is §5,
dealing with the integration of vector-
valued functions with respect to vec-
tor measures with finite semivariation.
The highlights are: the Riesz repre-
sentation theorem, the integral repre-
sentation of continuous linear opera-
tors between LP-spaces, the Stieltjes
integral with respect to vector-valued
functions (of one or two real variables)
with finite semivariation.

For the part of stochastic integra-
tion the reader is assumed to be famil-
iar with the calssical theory of real-
valued stochastic processes. The key
notion is that of summable process
which play in this theory the role
played by the square integrable mar-

tingales in the classical theory. In this

JoséFerreiros, Labyrinth
of Tough-A History of Set The-
ory and its Role in Modern Math-
ematics, Historical Studies—-Science
Networks, Birkhauser Verlag, Basel-
Boston-Berlin 1999, xxi + 440 pp.
ISBN: 3-7643-5749-5.

context a new class of stochastic pro-
cesses emerges— the processes with in-
tegrable semivariation. The stochastic
integral with respect to such a process
can be computed pathwise, as a Stielt-
Jjes integral with respect to a function
with finite semivariation. A special at-
tention is paid to Ito integral formula
(and entire chapter, Chapter 6, is de-
voted to this formula).

The book is clearly written and
contains a lot of material, some ap-
pearing for the first time in book form,
which is of interest mainly for re-
searchers in stochastic processes and
vector integration. The book can be
used as a reference text as well as
a text-book for advanced graduate or

post-graduate level courses.

Stefan Cobzag

Set theory is generally considered as
the work of a single man, Georg Can-
tor, who developed alone this basic
discipline, which deepiy affected the
shape of modern mathematics. This
excessive concentration upon the work
of G. Cantor has led to another mis-

conception, namely that set theory has
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its roots in the needs of mathemati-
cal analysis, and that the successfull
application of set-teoretical concepts
in algebra, geometry, and all other
branches of mathematics, came after-
wards in the early 20th century. It is
the aim of this book to show that the
things are not quite so and, contrary to
some general ideas on the development
of modern mathematics, concepts of
set theory were crucial for emerging
new ideas in algebra, arithmetic and
geometry. Moreover, all these develop-
ments antedate Cantor’s earliest inves-
tigations in set theory, and it is likely
that some motivated his work. First
of all, one emphasizes the role played
by R. Dedekind in the birthplace of
set theory by his work on ideal the-
ory (e.g. Dedekind introduced the ac-
tual infinite unambiguously and influ-
entially before Cantor).

The book is divided into three
parts. Part I, The Emergence of Sets
Within Mathematics, emphasizes the
flux of ideas between different domains
leading to the use of set theoretical
concepts in the foundation of various
mathematical disciplines, culminating

with the discovery around 1868-72
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by Cantor of the realm of transfi-
nite set theory. Part Il, Entering the
Labyrinth-Toward Abstract Set The-
ory, analyzes the crucial contributions
to abstract set theory made in the last
quarter of the 19th century, Cantor’s
path-breaking contributions and the
foundational work of Dedekind, with
a detailed discussion of the complex
interraction between these two great
mathematicians. This part ends with
a discussion of the paradoxes which
emerged in the newly created theory,
especially connected with the notion
of the ”set of all sets”. Part III, In
Search of an Ariom System, contains
a synthetic account of the evolution
of set theory up to 1950, concentrat-
ing on foundational questions and on
gradual emergence of modern axioma-
tization, including an analysis of the
foundational crisis, constructivist al-
ternatives, Godel’s work on the inde-
pendence of the Axiom of Choice and
of the Continuum Hypothesis.

The book is a fully revised and ex-
panded version of a book published
originally in Spanish ” El naciemento

de la teoria de conjuntos”, Madrid



1993, which in turn was based on the

doctoral dissertation of the author.

J-L.Brylinski,R.Brylins
ki, V.Nistor,B. Tsygan,P.
X u (Eds.) - Advances in Geometry,
Birkhauser, Boston - Basel - Berlin
(Progress in Mathematics, vol.172),
1999, 399 + IX pp., Hardback, ISBN
0-8176-4044-4, ISBN 3-7643-4044-4
The seventeen articles included in this
book are elaborated versions of com-
munications presented at the Cen-
ter for Geometry and Mathematical
Physics at Penn State University be-
tween 1996 and 1998.

The spectra of communication is
rather large, but they can be grouped
into several fields, including:

e symplectic geometry, quantization
and quantum groups (deformation
quantization of Kahler manifolds, op-
eratorial methods, Yang-Baxter equa-
tions, completely integrable Hamilton-

ian systems a.o.),

The book is of interst for a large
audience, first of all researchers in the
history and foundation of mathemat-
ics, but also for mathematicians work-
ing in various areas and for philoso-

phers.
S. Cobzas

e geometry of holomorphic bundles
over algebraic manifolds and their
moduli spaces (symplectic cobordism,
Witten’s formula for volumes, moduli
spaces of arrangements of lines in the
projective plane and of linkages in the
Euclidean plane, differential graded
Lie algebra modeling moduli spaces of
flat bundles over open Kahler mani-
folds),
e secondary characteristic classes for
holomorphic bundles (Quillen metrics
on determinant line bundles, differen-
tial geometry of bundles over some
special classes of manifolds),
e quantum cohomology ring of com-
plex flag manifolds and its algebraic
properties.

I am not going to say who are the
authors, because I should enumerate a
list of twenty mathematicians (includ-

ing some of the authors). All of them
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are well known for some important re-
sults in their fields of research. The
articles were refereed in a journal style
such they should get all the credit.
The subjects touched in the com-
munications included in the book are
among the most active in modern
mathematics. The articles include
both new results and review material.
Of course, the book is not for begin-

ners, the reader is supposed to have a
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solid background in aalgebra and dif-
ferential geometry, but if this is the
case, then he will benefit from the
reading of the book, both for the infor-
mation and for the new lights shaded
on some classical topics, suggesting,

maybe, new directions of research.

Paul A. Blaga



