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STUDIA UNIV. “BABE§-BOLYAI”, MATHEMATICA, Volume XLIII, Number 4, December 1998

RIGIDITY OF HARMONIC MEASURE OF TOTALLY
DISCONNECTED FRACTALS

ZOLTAN M. BALOGH

Abstract. Let f: V — U be a generalized polynomial-like map. Suppose
that harmonic measure w = w(-,00) on the Julia set J; is equal to measure
of maximal entropy u for f: J; «>. Then the dynamics (f,V,U) is called
maximal. We are going to give a necessary condition for the dynamics
to be conformally equivalent to a maximal one, that is to be conformally
maximal. Namely the purpose of the paper is to prove that if the Julia
set is totally disconnected then w = u implies that the system (f,U,V)
is conformally maximal. This shows that maximal systems are natural
substitutes for polynomials in the class of genereralized polynomial-like

mappings.

0. Introduction

Let f: C — € be a polynomial of degree d. A result of H. Brolin (see [Br])
says that the backward orbits of f are equidistributed with respect to the measure
w : the harmonic measure on the boundary of the domain of attraction to co and
evaluated at oco.

Almost twenty years later the ergodic theory of rational maps has started by
the works of M. Lyubich ([Ly1], [Ly2]) and independently by A. Freire, A. Lopes and
R. Maiié ([FLM], [Mal]). It was established that for any rational map f : ¢ - €

there is a unique f -invariant probability measure p on the Borel o-algebra such that:

W(F(E) = d - u(E) (0.1)

for any Borel set E such that f|g is injective. The measure 4 is the unique f-invariant

probability measure that maximizes the entropy i.e. h,(f) = logd. In the light of
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these works Brolin’s result can be interpreted as the fact that for polynomials we have
W= .

Conversely A. Lopes proved in [Lo] that if we have a rational map f : coC
such that w = s (where w is the harmonic measure on the boundary of an attracting
forward invariant component of the Fatou set) then f is conjugated to a polynomial

by a Mobius transformation’ A simpler proof of this result was given in [MR].

The purpose of this paper is to extend the result of Lopes to the class of
generelized polynomial-like mappings. Let us recall this definition from [BPV], [BV1],
[BV2].

We will be considering triples (f,V,U), where U is a topological disc and
V =ViU- - UV is the union of tapological discs whose closures are disjoint and are
contained in U. Also f; := f|V; is a regular or branched covering V; — U of degree d;
(so “regular” means that d; = 1). By d = d; + - - - + dx we denote the degree of the
map f: V — U. These dynamical systems will be called generalized polynomial-like
systems or GPL. The limit set (= Julia set) is J; = 0K, where Ky =5, f™"(U)
is the filled Julia set.

If k=1, d > 2, we come to a class of polynomial-like systems (PL) introduced
in [DH] and playing an important role in classification of polynomial dynamics.

Being GPL means to be quasiconformally equivalent to a polynomial:

fE€GPL=>3heqc(U): f=h"opolyoh.

The starting point is to see whether the result of Lopes is true under the
weaker assumption w & p. Here ”A” means that w and p are mutually absolutely
continuous and in addition to that we assume that there exists M > 0 such that for

any £ € J and r > 0:

1 pBr)
M S (B <M (02)
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In other words we ask the following question: is it true that if for a GPL
(f,U,V) we have w ~ p does it follow that (f,U,V) is conformally conjugated to a
polynomial?

This is a rigidity-type question aiming to rule out quasiconformal deforma-

tions.

The converse is obviously true: if our GPL is conformally conjugated to a
polynomial then by Brolin’s result and Harnack’s inequality we obtain w & p.

It is quite a suprise to see that the answer to this question is generally neg-
ative. This was shown by M. Lyubich and A. Volberg. Namely a GPL (f,U,V)
was constructed in [LyV] where 4 = w but f is not conformally conjugated to a

polynomial.

To formulate the appropriate question for the class of GPL we call a GPL
system (f,U,V) mazimal if py = wy. Maximal GPL systems have been introduced
in [BPV] as natural substitues for polynomials.

Next we call a GPL system (f, U, V) conformally mazimal if it is conformally

equivalent to a maximal system; that is:
f=H'ogoH,

where H : Uy — Uy is a conformal map and (g, Uy, V) is a maximal system.

In this paper we are going to prove the following rigidity result:

Theorem 4.1 Let (f,U,V) be a GPL with totally disconnected Julia set. Then
wy & py tmplies that (f,U,V) is conférmally mazimal.

The converse of this result follows immediately by Harnack’s inequality.

A weaker form of Theorem 4.1 under the condition of semihyperbolicity of f
was proved in [BPV]. Also in [BPV] it was explained that this result is an analog of a
theorem of Shub and Sullivan (see [SS]) on "wild” (i.e. totally disconnected) J; and

nonexpanding f.
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1. Idea of proof.

Let us start with the following criterion of conformal maximality proven in

[BPV]:

Theorem A Let (f,V,U) be a GPL system. Two assertions are equivalent:
1) (f,V,U) is conformally mazimal;
2) there exists a non-negative subharmonic function T on U, which is positive

and harmonic in U \ K, vanishes on K; and satisfies

7(fz) = dr(2). (Aut)

If v is an arbitrary probability measure on J; then a general theorem [Pa),
says that there exists Jacobian J, = J,(f) on a set of full measure v. It means that
there exists Y C J, »(J\ Y) = 0, and a-v integrable function J,, such that for every
E C Y on which f is 1-to-1 onto f(E) we have v(f(E)) = [g Judv. By (0.1) the
Jacobian of p is J, = d. We denote the Jacobian of the harmonic measure by J,.

For a better exposition I would like to sketch the strategy of the approach in

[BPV]:

-if the dynamics f is semihyperbolic and J is totally disconnected the function
¢(z) = log J, () is Holder continuous on J,
-Holder continuity of ¢ together with w & p is used to prove that there exists

a Holder continuous function u : J — R satisfying the homologous equation:
o(z) —logd = u(fz) — u(z) Ve € J, (1.1)

-starting from (1.1) we can build an automorphic function 7 as required by

Theorem A to prove conformal maximality of (f,U, V).

‘In our more general case we do not have the Holder continuity of ¢ = log J,,.
Therefore the above approach based on thermodynamic formalism is not applicable.
Still we have a modified strategy as follows:

4
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-Pesin theory gives a certain regularity property of ¢,

-we consider the function ¢ = ¢ —log d and the sequence of random variables
{# o f*}x on the probability space (J, u),

-w ~ p implies that [, ¢ du =0,

-using a technique from [DPU] it follows that the sequence {¢ o f*}x*obeys
the law of Central Limit Theorem or CLT

- applying CLT we obtain a function 4 € L?(u) satisfying the homologous

equation:
p(z) —logd = u(fz) — u(z) forpae. z€J, (1.2)

-staring from (1.2) we can construct again the automorphic function 7 re-

quired by Theorem A.

2. Jacobian of the harmonic measure.

In this section we study regularity properties of the function ¢ = log J,,. Our

first ingredient is a result of F. Grishin (see [Gr]):

Lemma B Let o ¢ K C C be a compact set and denote by w the harmonic measure
in C\ K evaluated at co. Let @ be an open set containing K and let u ,v > 0 be two
continuous subharmonic function; positive and harmonic in O \ K and vanishing on

K. Let us suppose that the limit:

u(z)

p(z) = lim X erists for w a.e. ¢ € 0K.
z€EO\K

Then we have that dp, = pdu, where y, and p, denote the Riesz measures

of u and v.

In our applications we put K = J, O =U ,u=Go f and v = G, where G

is Green’s function of C \ J with pole at co.
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Let us suppose for the moment that the limit limzé'ff'f.z %f : exists for w a.e.

z € J. Using that w = AG, wo f = A(Go f) Lemma B gives :

Ju(z) = lim G(f2) forwaezedJ (2.1)
zzng G(Z)

To establish the existence of the above limit we introduce:

Definition 2.1 Let K C C and O be as in Lemma B and let us fir a number 8 > 0.
We say that a set E C O is k-nested if there exist annuli {A;}5_; with the properties:
(1) modA; > 83,
(2) i CO\K,
(3) ECinAx CinAk_1 C...Cin4dy,

where inA; denotes the component of C \ A; containing E.

The existence of the limit in (2.1) will be based on the following result called
Boundary Harnack Principle (see [MaV] or [BV2] for the proof):

Lemma C Let K, O, u, v be as in Lemma B and B > 0 be fired. There exist
C > 0,0< ¢ <1 depending only on K and 3 > 0 such that if E C O is k-nested we

have :

lo o(z) lgv(y)lsb ¢" Vz,ye E\K (2.2)

If we choose as before K =J, O =U, u=Go f, v=G (2.2) becomes:

GUn) . Gl
Gz 6w

for any z,y € U \ J such that {z,y} is k-nested. We also mention that as 8 > 0 will

log <C-gk, (2.3)

be fixed we have C > 0, 0 < ¢ < 1 fixed throughout the paper.
Definition 2.2 A point ¢ € J is called a good point if it is co-tely nested.

We will see that the limit in (2.1) exists for the good points but first we prove:
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Lemma 2.3 Suppose that w & p then there ezists B > 0 such that w a.e. point is a
good point.

Proof. We are going to show that u a.e. point is a good point.
We consider the natural extension ( f J, f) of the dynamical system (f, J, u);
that is :

Fid={(zr)re-n: flan) = a1 (k< -1} = J,
where
F((zk)ke-N) = (£(zk))ke-N-

Then the Borel o-field in J defines a o-field My in J by My := n~'(B) where
= denotes the projection of J onto the first coordinate. It is clear that (f)~1My C Mp.
Finally denote by ji the natural extension of y to J.

A standard fact in Pesin theory (see [Prl] pp.16) shows that for ji a.e. € J
there exists 7 = r(Z) > 0 such that univalent branches f,, of f~" on B(n(%), 7()) for
n=1,2,... such that f,(m(%)) = n((f)~™(%)) exist.

Moreover for an arbitrary A : 1/d < A < 1 (not depending on %) and a
constant C = C(Z) > 0:

o] < Coan and Halr@)
fn@E)| < 0w and SRTEA<C, (2.4)

for every z € B(w(Z,r), n> 0.

Furthermore r and C are measurable functions of .

To use this fact observe that there are C,r > 0 and aset Y C J with i(¥) > 0
such that the above properties hold for Z € Y and for these C and r. As ji is ergodic,
by Birkhoff’s ergodic theorem, there exists a set X C J, ji(X) =1 such that:

L #lk<n @) V)

n—oo n

AY)>0, VieX. (2.5)

Let us put X := m(X) C J. Then u(X) = 1 and our goal is now to prove that there
exists x > 0 such that Vz € X there is N = N(z) with the property that for any

n > N we have that z is x - n-nested. Once this is proved we are done.
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Let us pick z € X and consider # € X such that 7(Z) = z. By (2.5) there
exists N = N(Z) such that if n > N:

#h<n: @ ey > 20 (2.6)

Let A(n,z) := {k < n: f*(%) € Y}. We denote by Bi(z) the component
of f~%(B(f*(z),r)) which contains z. If k € A(n,z) we have that the mapping
f* : Bk(z) = B(f*(z),r) is univalent.

We are going to pull annuli from B(f*(z),r) to Bx(z) using the univalency

of f*. First we have the following:

Claim: There exist numbers 8 > 0, #' > 0 such that for any y € J there exists an
annulus A(y,r) C B(y,r) \ J such that y € inA(y, r) with the properties:

(a) mod A(y,r) > B
(b) dist (A(y,r), y) >

To prove the claim consider an annulus Ag C U such that J C indqg, mod(Ao) =
Bo. Since J is totally disconnected and J = Nf~"(U) there exists Ny > 0 such that
diam Bp, < r for any component By, of f~Ne(U).

For y € J let us denote by An,(y) C Bn,(y) C B(y,r) \ J the component of
fNo(Ap) such that y € inAn,(y). Because Ny is fixed properties (a) and (b) follow
for A(y,r) := An,(y). This proves the claim.

» Let us put now Ax(z) := f~*(A(f*(z),r)) for any k € A(n,z). It is clear
that z € inAk(z), Ax(z) C Be(z)\J, and mod Ax(z) = mod A(f*(z),r) > fo by
the univalency of f*|p, ().

Our annuli will be selected from Ag(z), k € A(n,z); however we need to
exclude some of them to make sure that they are nested inside each other.

To do that we use (2.4) to see that there exists L > 0 (independent of n and
z) such that if k1, k2 € A(n,z), ko > ki + L we have By,_k, (f*'(z)) C B(f*'(z),r).
This implies that z € inAg,(z) C inAy, (z).
8
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By the above consideration we obtain for n > N(z) at least 1 - #A(n,z)
annuli nested inside each other, containing z and with modulus greater than Gy > 0.

If we put now x := %%l we are done by (2.6).
Lemma 2.3 has the following useful:

Corolarry 2.4 There erists a set X C J such that u(X) = 1 and the function
p: X >R by

. G(fz)
=1 1
p(z) ,21?% %8 G0

is well defined and continuous on X.

Proof Let X be the full measure set given by Lemma 2.3 andlet z € X. If y,2 € U\ J
are close to z it follows that {z,y,z} is k-nested for k¥ = k(z,y,2). Furthermore
k — o0 as y,z = z. By Lemma C we have:
G(f2) G(fy)
G(2) G(y)
Now (2.7) implies the existence of ¢(z) for z € X. Furthermore there exists C; > 0
such that if € X and z € U \ J are so that {z, 2} is k = k(z, z)-nested we have:

o(z) ~ log fg{; <Ciogb. (2.8)

log — log

<C-¢. (2.7

To see the continuity at z € X let y € X, y = z. Then {z,y} is contained in a
topological disc D(z,y) which is n(z, y)-nested with n(z,y) = oo as y — z. By (2.8)

we have

le(z) — ()] < 2C1 - "), (2.9)

which proves the continuity of ¢.

As we do not have control on the locations and sizes of the nests we cannot
extend the definition and continuity of ¢ to the whole J.
We would like to mention that whenever we obtain a full measure set X with

a certain property we can assume that it is f-invariant. Indeed , if X is not invariant

9
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we just replace it by:

X=J\( 4 ru\x)).

n>0 m>0

It is clear that X C X, p(X) =1and f~1(X) = X.
We finish this section with a technical result which is based on Lemma 2.3

and will be useful in the next section:

Lemma 2.5 There exists a set Xo C J, p(Xo) > 1—1/20 and numbers 1 > § >
0, K1 >0, K3 >0, Ng € N such that for any n > Ny, = € X the ball B(z,8") is

KLI -n nested by annuli contained in B(z,6 'KL:)

Proof. Let X, Y be the sets considered in the proof of Lemma 2.3 and let us introduce:

Xv={2eX: #{k<n:ff@e¥V} < [‘(2?)-7;, Vn> N}

It is clear that
XN C XN+1 , X = UNZNx)?N YV N1 >0

and hence limy ;00 ﬁ()?N) =1.

If we choose Ny such that ji(Xy,) > 1 —1/20 and put X, := n(Xy,) then
u(Xo) > 1-1/20.

For z € Xy and n > Ny there are x - n annuli nesting z obtained in Lemma
2.3. Let us consider the ones obtained as preimages using univalent branches fi of
fI}k( f(z),r) Tor %= < k < n. Their number is at least %*. By (2.4) these annuli are
contained in B(z,C) - A*"). Furthermore it is easy to see that they are nesting the
ball B(z, c2 - £=) where L :=sup|f’(z)| and Cj, c; are two fixed constants.

Without loss of generality we can assume that C; = c¢; = 1. Let us put § = %

and choose K3 > 0 such that A*3" < § ¥: . Finally choosing K; = i— we are done.

3. Homologous equation.

The purpose of this section is to prove:

10
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Proposition 3.1 Suppose that (f,U,V) is a GPL with totally disconnected Julia set.

If u ~ w there exists a function u € L%(p) satisfying the homologous equation:

p(z) —logd = u(fz) — u(z) forpae z€J

The proof of Proposition 3.1 will be done in several steps. Let us introduce

the function ¢ = ¢ — logd. The first step is to prove:
Lemma 3.2 Under the assumptions of Proposition 3.1 we have [ J ¢dp =0.

Proof. As in the proof of Lemma 2.3 consider the natural extension ( f J, i) of the
system (f,J,p). Let B be a ball in C. We consider the ?good” branches of f~"
defined in B. Following [Z] we say that a branch f;" is ”good” ( or é-good for § > 0)
if:

f; " is well defined and univalent in 2B (3.1)

diamf;"(B) < K -e™™. (3.2)

In [Z] and [PUZ] it was proved that there exists § > 0 such that for every
€ > 0 there exists M € N such that if there are no critical values up to order M in
B then one can find a subset Kp C B = #~1(B) C J with i(Kp) > (1 - é)u(B) and
consisting of ”good” trajectories. (The trajectory & = (zoz—1...2k...) is "good” if
zj is the image of some ”good” branch of f~* defined on B.)

We are going to apply this fact in a similar way as in [Z]: let py,...,p, be
critical values up to order M. Take a small r > 0 and let ¢ > 0. Let B;,...,B, be
centered at p;-s with radius r. Let B be cover of Cc \ U B: by balls of radius r/4. If
r > 0 is small enough then:

i(UpesKp >1—e. (3.3)
Introduce the function 4~S = ¢ o 7 and suppose by contradiction that

/J¢du=/j<f3dﬁ=x>0-

11
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Let us consider the partial sums:

n-1 n-1
Sa(®) =Y $(F (&) = Y ¢(F (r(&))) = S((2)),

i=0 =0

n-1 n-1
5a(®) =3 p(F(8) = ) olfi ((2))) = Sp(m(2)).

1=0 i=0
By Birkhoff’s ergodic theorem there exists X C J, ji(X) = 1 such that for & € X
lim S’,,_(:c) =x>0.
n—oco N

Let us denote by 5

X,={3eX: §"lg—i)>-§-,\7’k2n}.
It is clear that Xp C Xn41, Yo > 0 and X C Us>nXn, YN > 0. It follows that for
€ > 0 there exists N = N(e) such that

A(Xa)>1—¢,¥n>N.
By (3.3) it follows that

iXanf(|J Es)) >1-2¢,¥n > N.
BeB

Consequently there exists B € B and # > 0 such that
XN f‘”(ffB)) > f for infinitely many n € N

Let us denote by X" := m(X, N f~"(Kp)); then u(X") > g.

If z € X" then ¢ = n(&) for some # € X, N f~"(Kp), and thus z is a
preimage of f*(z) € B under some univalent branch f;"lsp. Let us denote the set
of univalent branches of f~"|,p by G,. By the above consideration we have

x"c | £2B). (3.4)
VEGn

Our goal is to show that while u(X™) > 8 we have that w(X") — 0 as n — co. By
(3.4) we write
w(X™) < Y w(fm(2B)NX™). (3.5)
vE€G,

12
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On the other hand £ € X™ implies that

M > X for n > N,
n 2 =
which means that
S,l,(z)>logd”+n-§ for n> N, z € X". (3.6)

Using (3.6) , for any v € G,, we can estimate:

1>w(2BN (X)) = / 52 du(z) >
I (2B)nX =

>d* e w(f"(2B) N X").
Consequently we obtain:
w(f;P@2B)NX") <e 5 .dm (3.7)

Relations (3.5) and (3.7) now give:

wx") < Y (B nXT) < i Y d =

VEGn VEGn

X 1 -n -%n
=e 2 ~m'u§“l‘(fu (2B)) <e .

This shows that w(X™) < e"%™ and as n can be chosen arbitrarily large we obtain

that 4 and w are singular. This contradiction shows that [ s9du=0.

Let us consider now the sequence {¢ o f*}, of random variables. Our next

step is

Lemma 3.3 There erists a finite asymptotic variance:

n-1 1
0% = 0}(¢) := lim Js(Eizo #0 £')'dn =

n—oo n
=/J¢2dp+2-§/J¢.¢of*dp.

Moreover, the sequence {¢ o f*}x obeys the law of Central Limit Theorem (CLT).

13
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Proof We need to investigate the behaviour of the Perron-Frobenius-Ruelle operator
L : L*(p) — L?(p) defined by:

Lu(z) = %ye;(z)u(y). (3.8)
If z is a critical value we count the preimages in the above sum together with their
multiplicities.

The formula (3.8) is correct if v € C(J) and in this way L : C(J) -+ C(J)
is a well defined linear operator with || L |l¢(s)< 1. We can extend L to L*(u) by
continuity or by formula (3.8) on an invariant set X C J with g(X) = 1 on which
u € L?(u) is defined. We have by Jensen’s inequality that || L ||pacuy< 1. It is well
known ( [Ly1], [FLM]) that L*s = p and thus [;u-vo fdu= [, v-Lu dp. In other
words L : L?(u) — L?(p) is the adjoint operator of

A:L*(p) = L%(y), Au=wuof

Our goal is to prove the following decay property of L¥¢: for any p > 0 ther’e
exist C = C(p) and K = K(p) such that for k > K we have:

1

k
15 lloo< C - 75

(3.9)

Estimate (3.9) gives the first statement immediately. For the second state-
ment we apply a theorem of Gordin (see [Go] or [D] Theorem 1.1.2). Following
exactly the same arguments as in [DPU] - Theorem 5.3 we obtain that the estimate
(3.9) together with Gordin’s theorem imply the second statement.

To prove (3.9) we are going to use a similar idea as in Section 4 from [DPUJ.
The lack of the uniform Hoélder continuity of {L¥¢}, is compensated by Lemma 2.5
and a result of F. Przytycki ([Pr2]).

Let us start by reminding the following fact proven in [DUJ: there exists a
measurable Markov partition @ of J and numbers 0 < A < 1, C > 0 such that for
14
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A€a, f(A)=J pae. and foralln > 1:
p(U{A € V;';lf'j(a) : diam f¥(A4) > C, - A" % for some k=0,1,...,n}) < 1/20.
(3.10)
For n > 0 let ap be the collection of the elements of the partition a" =

V7?23 f~3(a) defined in (3.10) and let o = o™ \ of.

We also are going to use the fact ( see [DPU] Lemma 4.3) that if ¢ € L?(u),
J;¥ dp=0and A>|| ¥ || then

p({z:9(z) < A/ }) > 1/5. (3.11)
The crucial estimate (3.9) follows immediately from the following:

Claim For any b > 1 there exists an integer j(b) such that if j > j(b) and [P¥] < k <

['*] we have the estimate:

I L lloo < (39/40)7. (3.12)

In fact the closer we choose b to 1 the greater value of p can be obtained in
(3.9).
To prove prove (3.12) we introduce the sequence {n;};, n; = [5’] and observe

that since || LY ||oo<|| ¥ ||co it is enough to show that

I L% |l < (39/40) . (3.13)

We are going to use induction over j: let us assume (3.13) for j. By (3.11)

we obtain
u{z: LMg(z) < 1/4-(39/40 }) > 1/5.
Let us introduce the set
Gj:={z: L™¢(z) < 1/4-(39/40) } [ Xo,

where X is the set from Lemma 2.5. Then it is clear that x(G;) > 1/10.

15
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Let us denote by k; = nj4; — n; and define:
o ={A € ad : ANG; # 0}

Relation (3.10) then yields: p(od;) > 1/20 .
First of all we are going to show that for y € UaZ;

L™é(y) < 1/2-(39/40). (3.14)

Observe that if y € UaZ, there exists z € Gj such that y € B(z,C - \¥4).
Consequently there is a constant K3 > 0 such that y € B(z,6 %)

On the other hand by Lemma 2.5 there is a number\of KL‘ »n; annuli nesting
{z,y} and contained in B(z,J'_:%).

Since z € G; gives
LMig(z) < 1/4-(39/40Y,

we intend to estimate the difference

| L) = L™o(w) | = | 35 1d¥g(z) = 3 1/d%4(z) |.
Z2.€f iz 2y €f My

Let us denote by {C?};¢r the collection of the components of f~"3 (B(z, § %Ji))

(From Przytycki’s finiteness lemma (see [Pr2] Lemma 2) it follows that there
exists an integer M = M(Ks,d) such that the degree of the maps: f"i : C;j -
B(z,é%) is at most M.

Using Lemma 2.5 we obtain in C a number of at least K% - n; annuli with
moduli bounded below by a fixed constant 8, = p,(B, M) nesting {z;,z,}. Here we
have used that the modulus of preimages under bounded degree mappings is distorted

by a bounded amount.
Consequently we can use (2.9) to obtain:
6(2z) = d(z)] < C2-qy7,

where 0 < ¢1 <1, 1 = q1 (1, Ka).
16
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.

This implies that for j large enough:
IL* () — L™ ¢(y)] < C2-q7? < 1/4-(39/40),
and (3.14) follows.

For z € J we define G;(z) := f~*i(z) n Ua"c';, and Bj(z) := f~*i(z) \ Gj(z).

We are now ready to estimate:

L) = LN(LYga) = Y, 1/d-IMg(y)+ Y, 1/d - L%¢(y) <

YEG;(z) yEB,(z)
< (39/40Y - 1/d¥ - (1/2- #Gj(z) + #B;(2)) = (39/40) - 1/d - (& — 1/2. #Gy(a).

Finally we use that
#Gj(z) - 1/d% = p(Uaf) > 1/20
and obtain
Lri+ig(z) < (39/40)7+1. (3.15)
Changing ¢ to —¢ we obtain the counterpart of (3.15):
LM+ g(z) > —(39/40)7+,

The above estimates yield (3.13) for j + 1. This finishes the proof of the Claim and

we are done.
The last step toward the proof of Proposition 3.1 is:
Lemma 3.4 Under the conditions of Proposition 3.1 we have a2 = 0.

Proof Let us suppose by contradiction that o2 > 0. Let us consider the function
¢1 = —¢ = logd — p and apply CLT for the sequence of random variables {¢; o f*} .
As in the proof of Lemma 3.2 we consider the corresponding partial sums but now for
the function ¢;. Instead of Birkhoff’s ergodic theorem we apply now CLT: for any
A > 0 we have:

p{E e J : 8a(8) < —A-o-n'?}) o Y(-A),
17
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where $(—A4) = {74 e~ T dt.

Exactly as in the proof of Lemma 3.2 we consider the cover B satisfying the
relation (3.3). Choosing € > 0 in (3.3) to be small we can find # > 0 and a ball B € B
such that:

A{EeJ : Su(#) < —A-0-n''?} 0 FM(KB)) >8>0, (3.16)

for infinitely many n-s.
Let us denote by X" :=n({# € J : S.(8) < —A-0-n/?} n f~"(Kp)).
Then pu(X™) > f# and
x"c |J £r@8), (3.17)
VEGR
where G,, denotes the set of univalent branches f;"|5.

Our goal again is to show that w(X™) — 0 as n — co. As before we have

w(X™) < Y w(f"(@2B) N X"). (3.18)

VEG,
If z € X™ we have

Sn(z) < —A-0-n'/?
or eguivalently
Si(z) >logd" + A-o-n'/2 (3.19)
Using (3.19) we can estimate for any v € Gy,:

1> w2Bn f*(X")) = / eSa (@) dw(z) >
S5 (@B)nXn

> dn . eAn 7y (fm(2B) N X7,
As a consequence we obtain
w(f;™(2B) N X") < e~ A7 gmn, (3.20)
Finally (3.18) and (3.20) give:

ﬂ/2

w(X™) < e~4
18
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As n can be chosen to be arbitrarily large we obtain that the two measures

are singular which is a contradiction proving the lemma.

Based on the above three Lemmas the proof of Proposition 3.1 follows imme-

diately as seen e.g. in [PUZ] Lemma 1.1.

4. Conformal maximality.

In this final section we are going to give the proof of:

Theorem 4.1 Let (f,U, V) be a GPL with totally disconnected Julia set. Then w &5 p

implies that (f,U,V) is conformally mazimal.

Proof. The proof is based on the homologous equation given by Proposition 3.1
p(z) —logd = u(fz) —u(z), pae z€J. (4.1)

Starting from (4.1) we are going to construct an automorphic function 7 that
is required by Theorem A for conformal maximality.

Different kind of homologous equations appear naturally when investigating
the relations between two measures on the Julia set as seen e.g. in [Z], [Vo], [LyV],
[BPV], [BV2]. Also the techniques to handle these equations are different accordingly.
Our approach is based on the main idea in [BPV] and [BV2]; however we have here
the difficulty due to lack of regularity of ¢ and u.

Let us notice first that we can assume that the invariant set X, u(X) =1 on
which (4.1) holds consists of ”good” points (in the sense of Definition 2.2).

i From the proof it will be clear that there is no loss of generality to assume
that there exists a repelling fixed point p € J of f which is not a critical value (i.e.
p # f*(c) for all n > 0 and all critical points of f). Let us consider such p € J.
Notice that p € J is a good point and thus a point of continuity of ¢ = ¢ —logd. Our
first step is to show that

o(p) — logd = 0. (4.2)
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(Warning: (4.2) does not follow from (4.1) since we do not know apriori that p € X.)
Let us denote by B a small disc centered at p such that all components B,
of f~™ B containing p are included in B and B is free from critical points of f.

It is clear that pu(B,) = 4= - u(B) and

n-1
w(B) = /B ¢5+(®) dw(z) where Si(z) = Z(p(f'(:c))
n i=0

Furthermore observe that for any £ € B,()J and ¢ = 0,...,n — 1 we have that
{fi(z),p} is (n — i)-nested. Consequently by (2.9) the inequality

le(£(2)) — ¢(p)| < 2C1 - ¢~
holds. This implies that
1Sa(z) = Sa(p)| < C2 Vz € B,

and therefore there exists A > 0 such that:

T]{" -e"™?(P) . y(B) < w(Bn) < K -e™¢® . w(B).

Consequently ﬁg;:-% ~ en(logd—o(p))
On the other hand w ~ g and thus (0.2) together with the above relation
imply that ¢(p) — logd = 0.

Now we can start the construction of 7. This will be done in three steps:

Step I : construction of 7 on B.

Let us denote by g the inverse branch of f~! : B = B; C B. Notice that
{p,g"z,9" 2} is n — l-nested for any 2z € B, n € N. By (2.8) it follows that

G(gn—lz) n—1
log Ga?) e(p)| < Ci-q
Using (4.2) this gives:
G(gn—lz) n—1
ld - G(g"z) -1 S Cl - q . (43)

20



RIGIDITY OF HARMONIC MEASURE OF TOTALLY DISCONNECTED FRACTALS

Now (4.3) implies that the following limit:
1 — I n n
T (2) := nlgglod G(¢"z),z€B (4.4)

represents a subharmonic function which is harmonic in B\ J and vanishing on J.
Notice also that 7! is automorphic on By: 71(fz) = d- 71(z).
Our next objective is to show that there exists a function u' € L{(p) such

that for any = € X [ By:

(z) - eu(z)-—u‘(z)_ (45)

To define u! € leB(p) observe that for any ¢ € B[ X the sequence {u(g"z)}. is a
Cauchy sequence.

To see this we use (4.1),(4.2) and the inequality:

le(p) — p(g" )| < 2C1 - ¢".

It follows that |u(g”z) — u(g"~1z)| < 2C; - ¢".

Now for z € B(| X we denote by u!(z) := limy_ 0o u(g™z). It is clear that
ul € Lig(p).-

In order to prove (4.5) notice that as ¢ € X is a good point and z — z, there
exists N(z, z) such that {z, z} is N(z, z) -nested and N(z,z) = oo as z = z.

Let us suppose that z,z € B,; z is close to z, thus {z,z} is N(z, z)-nested
for some large N(z,z). By the definition of 7*:

Glz) _ li G(z) _ 17 _Gls"2)

() s -Gl - A Ta() (4.6)

Notice also that {g"z,g"z} is (N(z, z) — No)-nested for some fixed No. Without loss
of generality we can assume that Ny = 0 and hence {g"z, 9"z} is N(z, z)-nested.

Let us put N := N(z,z) and consider i < 2N. Because {¢*"'z,¢' 'z} is
N-nested (4.1) and (2.8) give:

G(g'~12)

d-G(gz) (u(g"'z) — u(g’z))| < C1 - ¢V,

log
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which means
w(gtay—ulgie)-CiaV o G u(gio)—u(gie)tCig™
e < : <e .
= d-G(¢'z) —

This implies:

eu(z)—u(gzN:c)—201N'q < e“(’)'“(QZN”’)"'zC‘N'qN. (47)

Hd G(9Z) -

i=0

1

On the other hand for i > 2N we are going to use that {g*~'z,¢*"'z} is

i-nested and so

eulg =1z)—u(g’z)~Ci-q* < G(gi—lz) < eu(g“‘z)—u(giz)+01-q‘.

= d-Glg'z) —
For n > 2N this implies:
et g™V o)~u(g"r)-Cag™ f[ G’(g‘ 2) < (@ 7)—u(g"z)+Ca-qV (4.8)
|—2Nd G(g Z) -
Now (4.7) and (4.8) imply:
1
u(::)—-u(y":l:)--Ca-q"'/2 G(g’ Z) u(z)—u(g”z)+Ca-q™/?
e H 706 S . (4.9)

Consequently if {z,z} is N-nested (4.6) and (4.9) give:

eu(z)—-ul(z’)-c;,'qN/2< G(z) <eu(z)—u‘(x)+03‘qN/2- (4.10)
= ) =

Recalling that N = N(z, z) — 0o as z — z the estimate (4.10) gives (4.5).

Let us consider now the union of backward orbits of B: O :=J,,5, f™"B.
Step II: extension of 7 to O
Let By be a component of f~" B for some n > 0. We define a function 72 on
By by:
18(2) = Tl(f z), z € By.

We would like to prove that 77 (or a symmetrized version of it) does not depend on
6 (and n).
22
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We are going to calculate first the limit:

lim G(z) for z € f~"(X NB) N By.
PTAAL ; (2)

To do that we write:
Glz) __Gz) _G(f*z) d-G(z) d-G(f*'2)
T(2) g -THfr2)  THfr2) G(f2) T G(fnz)
As n is being fixed we use (4.5) to obtain:

Gl2) _ quio-wisma), (4.11)
zeB,\J HG

Let us take now ny > n1 and two corresponding branches f;. "2, f;™. If
z € By, N By, N f~"1(X) N f~"2(X) by (4.11) we can write:
lim T_"ZI_E.Q u! (173 (2))-ut (S (2)) (4.12)
2€Bg,NBo,\J 63
let us denote by z2 := f*2(z), x1 = f*'(z). Then z;,z2 € BN X and f*2~™1(z;) =
z2. By the definition of u! it follows that u!(z;) = u!(z;). Consequently (4.12)

becomes:
73, (2)

2
zEzE;t\J 1-02 (Z)

=1 for w ae. z€ By, N By, NJ.

Now we can apply Grishin’s lemma (Lemma B) to obtain that A7f, = A7},
on By, N By, and hence the function 1'921 - 7'021 is harmonic in By, N By, and it vanishes
on By, N By, NJ.

Now , either 1'021 = 7921 or Bg, N By, N J is covered by a finite number of real
analytic curves. It’s not hard to see that if the latter happens the whole J can be
covered by a finite number of real analytic curves so this will be the case for any pair
of 8,0, for which By, N By, is not empty.

Furthermore, without loss of generality (see [BPV],[LyV] or [Vo]) we can
consider the situation when the curves are disjoint. Let * be a holomorphic symmetry

with respect to these curves. Instead of 7j we are going to work with
def
T5(2) = 7(2) + ().

The advantage is that now 77 =73 in By, N By,.
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In any case we obtain a function 7 on O such that 1, = 77 (or 77 if the
first possibility “r} = 77 ” always occurs).

It is clear that our function 7 has the automorphic property on f~10.

Since J is totally disconnected there is a number N > 0 such that f~NU C B.

In the last step we are going to extend 7* to the whole U.
Step III: extension of 7 to U

Consider z € U which is not a critical value of f¥. Choose a topological disc
free from critical values of fV and containing both z and p.
Let Vi, be the component of of f~N V| containing the point p and contained

in B. Then the map f~V : V — Vy is univalent and we can define:
™) =d¥r(fN(z)), z€V

It is clear that 7° does not depend on V since T|SVn g = ™. We extend 7° to the
critical values of fV by continuity.

Because 7° is a positive subharmonic function, harmonic on U \ J and van-
ishing on J we only need to check the automorphic property.

To do that let us denote by B; an arbitrary component of f~1B. We are
going to show that 1]%1 = 7%, Since 7* was automorphic on B; this proves that 75 is
automorphic on V; where V; contains B;.

Let us pick z € B; and an appropriate univalent branch f; N of f~N. Put
z1 = f; Nz and by our definition we have 7°(z) = d¥7%(2;). On the other hand

observe that fN*1z, = fz € B.

By the automorphic property of ¢ we have:

™(21) =

1 1
N+ () = FLES! ™(f2).

It follows that 7°(2) = 17%(fz) and consequently, by the definition of 7* in Step II
we have: 75(z) = 74(z) for z € B,. This shows that 1'|5V', is automorphic. As B; was
arbitrary we obtain 1-|5Vi is automorphic for any i.
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This concludes our construction and proves the theorem.

Final Remarks:

Our first remark is that our result holds true for general GPL where the
Julia set is disconnected (whithout being totally disconnected). The reason for this is
that an invariant, ergodic measure with positive entropy is supported on the ‘totally
disconnected part of the the Julia set. This fact follows from arguments used in
[PUZ] or [Z].

After this paper has been written the author has found out about the work of
Anna Zdunik [Zd] where similar problems are discussed in the setting of polynomial-
like maps. The approach in [Zd] is different. It is based on a very elegant idea (similar
to the one in [MR] to apply the Perron-Frobenius operator to subharmonic functions.
In this way the author constructs an invariant measure absolutely continuous with
respect to harmonic measure and then relate this invariant measure to the measure
of maximal entropy. This can be applied also in the case of generalized polynomial-
like maps and our result follows by the method in [Zd]. We think however that
our approach might be useful in treating similar problems and is worthy of future

developpement.
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THE CONTINUITY OF THE METRIC PROJECTION OF A FIXED
POINT ONTO MOVING CLOSED-CONVEX SETS IN
UNIFORMLY-CONVEX BANACH SPACES

ANDRAS DOMOKOS

We will show that a result similar to Holder continuity in Hilbert spaces
of the metric projections of a fixed point onto a pseudo-Lipschitz continuous family
of closed convex sets [6] holds for uniformly-convex Banach spaces. The continuity
of the metric projections with respect to perturbations play an important role in the
sensitivity analysis of variational inequalities in Hilbert spaces [1, 3, 4, 6, 7] and hence
in a wide range of nonlinear optimization, evolution and boundary value problems.
The results from this paper offer us the possibility of extending the studies involving
the metric projections in a larger class of spaces.

We denote by (A, d) a metric space and by X a uniformly-convex Banach
space. We suppose X* locally-uniformly-convex. Let wg,z0 € X, Ao € A, and their
neighborhoods Q¢ = B(wo, ) (the closed ball centered at wg and radius r) of wo, Ag of
Xo. Let C : Ag ~ X be a set-valued mapping with nonempty, closed, convex values.
Let us consider the following problem:

- for A € Ag and w € Qp find z(w, A) = Pc(x)(w) € C(A) such that

o = 2@, Il = min Jlw— 2]l (1)
In our context such an element exists for all w € Qp and A € Ap and satisfies

(Jw=-2w,A),z-2(w,A) <0, VzeC(), (2)

where J is the normalized duality mapping.

(2) is equivalent with

0 € —J(w _z("‘”A)) + NC(A)(:"(“’”\)) ) (3)
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where
Nepy(@) = {s" € X* : (2", y—2) <0, VyeC(N)}
is the normal cone to the set C(\) at the point z.

Hence we need to study the sensitivity with respect to A of the following generalized

equation:
0 € —J(w—12) + Ncpy(z) - 4)

For Theorem 1 it is enough to consider (2, d) be a metric space, wg €  and o be a

neighborhood of wg. Let f: X x Qo — X* be a single-valued mapping .

Definition 1. The mappings f(-,w) are p-monotone on X, for all w € Qo, if there

exists an increasing function ¢ : Ry — Ry, with o(r) > 0 when r > 0, such that

(f(21,0) = f(z2,w), 21 — z2) > @(lle1 — zafl)||21 — 22l ,

for all z1,25 € Xo and w € Q.

The following proposition shows that the p-monotonicity assumption is a

natural one in uniformly-convex Banach spaces.

Proposition 1. [5] A Banach space X is uniformly-convez if and only if for each
R > 0 there exists an increasing function pp : Ry — Ry, with pr(r) > 0 when
r > 0, such that the normalized duality mapping J : X ~ X*, defined by

J) = {z" e X" : &, ) = ||z, l2ll = lle*]| } ,
is pr-monotone in B(0, R).

Definition 2. C is pseudo-continuous around (Ao, zo) € GraphC if there exist neigh-
borhoods V. C Ag of Ao, W C Xo of zo and there ezists a function # : Ry — Ry
continuous at 0, with 8(0) =0, such that

CAM)NW C CG(A2) + B(d(A1,A2)) B(0,1) (5)
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forall M, 2 €V.
If the function B is defined as B(r) = Lr, with L > 0, ([2]) then we say that C' is

pseudo-Lipschitz continuous around (Ao, zo).

Theorem 1. Let us suppose that:

a) 0 € f(zo,wo) + Ne(ro)(%o);

b) f is continous on Xy x Qo;

c) the mappings f(-,w) are p-monotone in Xy for all w € Qo;

d) C is pseudo-continuous around (Ao, zo).

Then there exist neighborhoods A1 of Ag, 21 of we and a unique continuous mapping
z : Q) x Ay = Xo, such that £(wg, Ao) = zo and z(w, \) is a solution of the variational

inequality
0 € f(z,w) + Ney(2),

fOT all (w,A) €Qy x Ar.

Proof. Let us note that assumptions b), ¢) imply that ¢(r) = 0, ¢(r)r =0
iff » — 0. We choose positive constants s, r, € such that B(zg, s) C Xo, B(Xo,€) C Ao,
B(wo,r) C Qo, B(d(A, Ag)) < s for all A € B(\g, €) and the pseudo-continuity of C' to

be written as:

C(A1) N B(zo,s) C C(A2) + B(d(A1,A2)) B(0,1)

for all A1, A2 € B(Xo,¢€).
Let A € B(\g,€) and w € B(wg, r) be arbitrarily choosen. Then the inclusion

rg € C(/\o) N B(.’Bo, 8) C C(/\) + Ld(/\,/\o) B(O, 1)
implies the existence of an uy € C(A) such that

llzo — wall < B(d(A, X)) < 5.
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This means that C(A) N B(zo, s) is nonempty for all A € B(Ag,¢). Corollary 32.35
from [8] shows that the variational inequality
0 € f(z,w) + NopynB(eo,s)(®)
has a unique solution z(w, A) € C'(A\) N B(zo, s). So
(f(@(w,)), w), u—z(w,A)) > 0

for all u € C(A) N B(xo, s).
The pseudo-Lipschitz continuity of the set-valued mapping C implies that for z(w, A)
there exists an element ug € C(Ag) such that ||z(w,A) — uo|| < B(d(A, Ao))-

Using the p-monotonicity of (- w) we obtain

¢ (llz(w, A) = zoll) lle(w, A) — zoll <

< {f(=(w, ), w) = f(zo,w), z(w,A) — z0) <
< (fzWw, ), w) = f(zo,w), 2(w,A) — 20) + (f(2o,wo), uo — z0) +
+ (f(z(w,A), w), ur — z(w,N)) =
= (f(zw,A), W), ux — o) + (f(zo,w), uo — z(w,A)) +
+ (f(z0,wo) — f(z0,w) , uo — To) <
< (2w, A), W)l lua = zol| + I (zo, W)l o — 2(w, M| +

+ | f (20, wo) — f(zo,w)||{|uo — o] -
Assumption a) implies that ||f(zo, wo)|| < 0o, and hence using the continuity of f, we
can suppose that ||f(z,w)]| < M < co, for all z € B(zo,s) and w € B(wo, r).
We know also that

lluo — 2oll < lluo — 2(w, M)l + ||z(w, A) — zol| <
< B(d(X X)) +5.

So,

p (llz(w, A) = zoll) llz(w, A) = zol| <

< 2MB(d(A, Xo)) + |If(z0,wo) = f(zo,w)|[(B(d(A, Ao)) + 5) -
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This means that (w, A) = 2o, when (w, A) — (wq, Ag). Thus we can choose neighbor-
hoods Q1 C B(wo,r) of wo and Ay C B(Ao,¢€) of Ag such that z(w, A) € intB(zo, s),
for all (w,A) € 21 x A;. Hence
0 € f(z(w,)),w) + Nepy(z(w, ),
because
Nepy(z(w,A)) = NeynB(ze,s) (2w, A)) ,
for all (w, A) € 2y x A;.
Let us choose A1, Az € Ay and wy,ws € £;.
For z(w1, A1) € C(A) N B(zo, s) there exists us € C(\z), such that
llz(wi, A1) = uall < B(d(A1,A2)) -
For z(w1, A2) € C(A2) N B(zo, s) there exists u; € C(\;) such that

lz(w1, A2) —wal| < B(d(A1, A2)) -
Then
@ (lz(ws, A1) = z(wa, A2)ll) le(ws, A1) — z(ws, A2)l| <
< (flz(wi, M), wi) = fz(wi, A2), wi), 2(wi, M) = 2(wi, X)) +
+ (f(z(wi, A1), w1), u1 —z(w1, A1) +
+ (f(@(w1,A2), w1), w2 — 2wy, A2)) =
= (f(e(wi, A1), w1), u1 — (w1, A2)) +
+ (f(z(w1, A2), w1) , ug — z(wi, A1) <
< 2MB(d(A1, Az2)) -

Hence we obtain that z(w;, A1) = z(w1, A2), when A\; — Az, uniformly for allw; € Q.
We have also that

¢ (llz(wr, A2) — 2(w2, A2)|I) llz(wi, A2) — 2(w2, A2)|| <

< (flz(wi, A2), wi) = f(z(w2, A2) , w1), (w1, Az) — z(w2, A2)) +

+ (f(z(wl”\?') ) wl) ) z(w% A2) - z(wl:’\2)> +
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+ (f(z(w2, A2),w2) , (w1, A2) — 2(w2, A2)) =
= (f(z(w2, A2),ws) — f(z(w, A2),w1), z(w1, A2) — z(w2,A2)) <
< f(@(wa, Az), wa) = f(z(wz, A), wi)lll|e(ws, A2) — 2wz, A2)ll -
Thus z(wi, A2) = (w3, A2), when wy — ws.
The two convergence imply the continuity of z(-,-) at (wz,A2). This point being

choosed arbitrarily the continuity hold in ©Q; x A;.

As a corollary of the previous theorem we can prove the continuity of the
metric projection with respect to perturbations.

Let Q = X and wp € X.

Corollary 1. Let us suppose that:

i) o = Pc(r)(wo);

i) Cis pseudo-continuous around (Ao, Zo).

Then there exists neighborhoods Qf of wo, Ay of Ao, such that z(-,-) = Pc()(-) is
continuous on Qp x Ay and hence z(w,-) = Pc()(w) is continuous on Aj for all

w € Q.

Proof. In the case of a uniformly-convex Banach space with locally-uniformly
convex dual the normalized duality mapping is single-valued, p-monotone on each
closed-ball and continuous from the strong topology of X to the strong topology of
X*.

So, we can define the mapping f(z,w) = —J(w —z) and we can use Theorem
1 to prove the continuity of z(-,-) on Qf x Ag.

Hence for all w € Q the metric projections Pc(x)(w) vary continuously with respect
to A on Ag.

As we have seen, even when C is pseudo-Lipschitz continuous, this continuity
is not the same %—Hélder type as in [6], because the normalized duality mapping is
not strongly-monotone in a general uniformly-convex Banach spaces.

In the case of a Hilbert space, the %-Hélder—continuity with respect to A is a conse-
quence of Theorem 1 and Corollary 1.
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A NUMERICAL METHOD FOR APPROXIMATINGTHE SOLUTION
OF AN INTEGRAL EQUATION FROM BIOMATHEMATICS

C. IANCU

Abstract. ’In lucrare se d& 0 metodd numerici unei ecuatii integrale cu
argument modificat, care modeleazi procesul de rédspandire a unei infectii.

Rezultatul principal al lucr3rii este enuntat sub forma teoremei 5.1

1. Introduction

In the study of the problem which appears in the population dynamics, where

certain periodical phenomena occur, the following integral equation holds:

z(t) = t f(u,z(u))du, teR (L.1)

t—7

where f € C(R x Ry) fulfils the condition of periodicity with respect to ¢, that is
ft+w,z)=f(t,z), forteR, € Ry, w>0. (1.2)
If we suppose that 7 € R4 and
0< f(t,z) <M, fortc Rand z € R, (1.3)

then the problem of finding periodical solutions of equation (1.1) can be considered.

The equation (1.1) can be a mathematical model for the spreading of certain
infectious diseases with a contact rate that varies seasonally. In this case z(t) repre-
sents the proportion of the infectives in population at the time t, 7 is the time interval
an individual remains infectious and f(t,z(t)) represents the proportion of new in-
fectives per unit time. In the papers [1]-[4], it is tackled this important problem and
are given sufficient conditions for existence of non-trivial periodic nonnegative and

continuous solutions of equation (1.1).
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On the basis of these results, the aim of this paper is to present a numerical

method for obtaining the solutions of equation (1.1).

2. The existence and uniqueness of solution
In [5] the following mapping is attached to equation (1.1):
A: Xy - C(R),
which is defined by the right-hand side of (1.1), where

Xy ={zeX|z(t)>0, (V) t€ R},

and
X ={zeCR)| z(t +w) =z(t), (V)t €R}.
Because we have
t4+w t
(Az)(t + w) = / f(s,z(s))ds = fls+w,z(s+w))ds =
ttw—1 t—7

= [ fo.2(o)ds = (am)t)

and

t—r<t, f>0,

it results that X is a invariant subset of A.

If we suppose that

If(t:z) — £, y)| < a(t)lz —yl, (V) t€ R and 7,y € Ry (2.1)

t
/ a(s)ds<g<lforallteR (2.2)
t

-7
then A is a contraction mapping.

The following result is given in [5]:
Theorem 2.1. If the conditions (1.2), (1.8), (2.1) and (2.2) are satisfied, then in
C(R,R}) the equation (1:1) has a unique periodic continuous nonnegative solution
which can be obtained by the method of successive approzimations.

Also, in [3], is proved the following theorem.
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Theorem 2.2. If the following assumptions are satisfied: (i) f(t, ) is nonnegative

and continuous for

—7<t<Tandz>0,T>0

(i1) ¢(t) is continuous and 0 < a < ¢(t) foe —r <t < 0 where the proportion ¢(t) of

infectives in population is known for —7 <t <0, i.e.
z(t) = ¢(t), for —T <t <0

and

0
s =b= [ fs,9(s))ds

(i1i) there exists an integrable function g(t) such that f(t,z) > g(t) for -7 <t < T,

z > a and

t
/ g(s)ds>a for0<t<T
t—T1

(iv) there exists L > 0 such that

|f(t,2) = f(t,y)| < Llz - y|

for allt € [-7,T] and z,y € [a,0), then equation (1.1) has a unique continuous
solution z(t), z(t) > a, for —r <t < T, which satisfies the condition z(t) = §(t), for
—7 <t < 0; moreover,

Oréltas)% |zn(t) —z(t)] > 0 asn = oo

where £,(t) = ¢(t) for -7 <t < 0 (n = 0,1,2,...), zo(t) = b and z,(t) =
t
f(s,2n-1(s))ds, 0<t<T (n=1,2,...).

t—1
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3. The statement of the problem

We consider the nonlinear integral equation (1.1) and we suppose that the
hypotheses of the Theorems 2.1 and 2.2 are satisfied. Then this equation has a unique
solution on the interval [—7, T]. Let ¢ be the solution, which, by virtue of the theorem

2.2, can be obtained by successive approximation method. So, we have

' p(t) = #(t), for t € [-7,0) and for t € [0,T]

we have :
0

polt) = $(0) = b = [ (s, $(s))ds

o) = [ Fs,p0(s))ds

< rad (3.1)
pat) = . f(s,p1(8))ds

oml®)= [ 6 mes(o)ds,

[ -

To obtain the sequence of successive approximations (3.1), it is necessary to
calculate the integrals which appear in the right-hand side. In general, this problem
is difficult. We shall use the trapezoidal rule.

Let an interval [a,b] C R be given, and the function f € C?[a, b).

Divide the interval [a, b] by the points

a=2g<zr1<23< - <zTp=b (3.2)

—a

into n equal parts of length Az = b

Then we have the trapezoidal formula:

b n-1
/ f(z)dz = b 2”n“ [ Fla) + F(6) + 2 f(=i)| + ralf) (3.3)

=1
where 7,(f) is the remainder of the formula.

To evaluate the approximation error of the trapezoidal formula there exists

the following result.
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Theorem 4.1. For every function f € C?[a,b)], the remainder r,(f) from the trape-
zoidal formula (3.3), satisfies the inequality:

b—a)d N
-9 max (2. (3.4)

Irn(f)] <

4. The calculation of the integrals which appear in the successive approx-

imations methods, (3.3) [6]

Now we suppose that f € C%([0,7] x R), and in order to calculate the
integral ¢, from (3.1), we apply the formula (3.3). Then we divide the interval [0, T
by the points:

O=to<ti < - <tn=T (4.1)
where: t; =%_1+h, h= 2%, v=0,1,2,...,i=1,n,n= [%] ([-] is integer part).

Thus we have

ti
Pm(te) = - f(5,om-1(s))ds = (4.2)
= 5% f(tk = 7, m—1(te — 7)) + f(tk, Pm-1(tk)) + 2; s, me_l(ti))] +rmi(f),

where, for the remainder Tm k(f), we have the estimation:

max I[f(sx ‘Pm—l(s))]ls,l’ k= m) m € N.

Irmyk(f)l S 12712 36[0,7']

Taking into account the fact that:

2 s —1(s
s pmor (@l = T EmtlD) o T pmasDy )

2f(s, pm-1(s ’ 1 Pm-188))
e onall gy 4 2Lobmr@

and:
¢

Pm-1(t) = . f(3,om-2(s))ds

t Of(spmea(s)

/ —
¢m-1(t) - et s
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o= [ LIeemal)

t—r 0s?
and denoting by
_ 0% f(s,u)
M= |I<Ix1|?_<')§ dsxr gyea |’
s€[0,T]
ul<R
we obtain

lem_1 ()| < TM1; o1 () < ™M @i (8)] < My

again from here we have:

£ (s, pm-1(3))]5| < Mo (4-3)

where My = M) + 3T M + 72M3 and Mj does not depend on m and k.
For the remainder 7, & (f), from the formula (4.2) we have:

3

Irm,k(f)l S 12712

M,, m=0,1,2,..., k=0,n. (4.4)

In this way we have obtained a formula for the approximate calculation of

the integrals from (3.1).

5. The approximate calculation of the terms of the successive approxima-

tions sequence

Using the approximation (3.1) and the formula (4.2) with the remainder
estimation (4.4), we shall present further down an algorithm for the approximate
solution of equation (1.1).

So, we have:

<P1(tk)=/tk f(s,0(8))ds =

n-1
= -2% [f(tk — 7, p0(tk — 7)) + 2 ; f(ti,o(t:)) + f(te, po(te)) | + rie(f) =
= @u1(te) +rie(f), k=0,n
i) = [ Sl pn(ods = - [f(tk — e =) + ool +

tk—r
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n-1

42 f(ti, G1(8) + r1i(£)) + Flte, 1 te) + rl,n(.f)] +r24(f) =

i=1

= -2% [f(t;c —7,p1(te — 7)) +2 if(t,—,gbl(t.-)) + f(t,,,@l(tk))] + Fak(f) =

1=1

= @a(tk) + Fok(f)-

Observe that 72 k(f) = wa2(tk) — @2(tk).
Taking into account Theorem 2.2,(iv), and the remainder estimation given

by (4.4), we have:

n-1
72.6(F)| < —L [l"m(f)l + ) Ira(Hl+ l"l,n(f)l] +lr2x(Hl <

i=1

< T (T Mot (= 1) Mo+ o Mo ) + —oe Mo =
=2 122 0 12n2 2027°) T 1oz 0 T

T 73 3
= L o Mo(l+n—1+1)+ — Mo =
r3 [(n+ 1)7
- 12n2M0 | 2n

We continue in this manner, for m = 3, ..., by induction, and obtain:

3
L+1] < -ﬁn—z-Mo(TL-l" 1).

Om (k) = % Flte = 7, Pmer (th = 7) + Fmo1,0(f))+

n-—-1

42 f(ti, B (t) + Fm—14(F))+

i=1

+f(tk, Pm-1(tx) + f‘m-l,n(f))} +rmi(f) =

n-1

= 2Ln [f(tk — T, Pm-1(te — 7)) + 22 F(ti, Bm—1(t:)+

=1

+f(tk, Sz’m—l(tk))} + fm,k(f) = ¢m(tk) + Fm,k(f)’ k= 01 n
where
[Fm . (F)] = |‘Pm(tk) - Pm (k)| <
3
= 12n2

1‘4()[‘1"7"_ILm"1 +---+1], k=0,n
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or
73 1—7m[m My
< .
Fmi (I < Tz Mo—T—77~ < o2 = 71

In this way we got the sequence

(S‘sm(tk))meN, k=0,n

which approximates the sequence of successive approximation (3.1) on the knots (4.1),

with the error

~ TaMo :
lom (tk) — $m (te)| < i)’ (5.1)
By Picard’s theorem, (6], we have the following estimation
lp(th) = om (t)] < T - ||s00 ¢1lleo,n- (5.2)

In this way there was obtained the main result of our paper:
Theorem 5.1. Consider the integral equation (1.1) under the conditions of Theorems
2.1 and 2.2. If the ezxact solution ¢ is approzimated by the sequence (Pm(tk))meN,
k =0,n, on the knots (4{.1), by the successive approrimations method (3.1), combined
with the trapezoidal rule (3.3), then the following error estimation holds:

. I m—3 rm M,
o) = Gt S T [0 0 o — pillcnm + 1y (59

m=12..., k=0,n.

Proof. We have
le(te) — Em(te)l = le(te) = @m(tx) + m(te) — Bm(te)] <

< () = em(te)l + lom(tr) — Gm ()]
which, by virtue of formulae (5.1) and (5.2), can also be written

3M0

[o(te) — Gm (t)] S 1— ”‘PO ‘Pl”C[o T+ E‘T(T—_)

and, from here, it results immediately (5.3). The theorem is proved. O
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SOME ANALYTIC INTEGRAL OPERATORS AND HARDY
CLASSES

GHEORGHE MICLAUS

1. Introduction

Let A denote the set of functions f(z) = z + azz% + ... that are analytic in
the unit disk U and S denote the subset of A consisting of univalent functions. In [4]

the authors show that the integral operator

Ipo(f)(z) = [% / ’ f"(t)sa(t)t"‘dtr 1)

maps certain subsets of A into S.

In (2] and [3] were obtained Hardy classes for integral operator (1) and

I[f)(z= [‘:# /0 ’ Jid (t)t"‘ldt]%, z€eU. (2)

In this paper we obtain Hardy classes for these operators using the ”open

door” function [4], a special mapping from U onto a slit domain.

2. Preliminaries

Definition 1. Let ¢ be a complex number such that Re ¢ > 0 and let

1 1
N =N(c) = fioe [|c|(1+2Re c)z +Im c] .

If h is the univalent function h(z) = T2£V_z_2_ and b = h~!(c) then we define
-z

the ”open door” function Q. as

_ [z+b>
QC(Z)_h\l+Ez , z€eU.
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From its definition we see that Q. is univalent, @.(0) = ¢ and Q,(U) = h(U)
is the complex plane slit along the half-lines Re w = 0, Imw > N and Re w = 0,
Imw< —N.
Definition 2. Let f and g be analytic in U. The function f is subordinate to g,
written f < g or f(z) < g(2) if g is univalent, f(0) = g(0) and f(U) C g(U).

For f analytic in U and z = re'’ we denote

1 27T " ?
— f(ret "dﬁ) , for0<p<oo
My(r, f) = (2”/0 | ( )
sup |f(re'?)], for p = oco.
0<b<2n

A function is said to be of Hardy class H?, 0 < p < oo if M,(r, f) remains
bounded as r — 17, H is the class of bounded analitic functions in the unit disk.

We shall need the following lemmas:
Lemma 1. [5] Let Q. be the function given by Definition 1 and let B(z) be analytic
function in U satisfyz’ﬁg B(z) < Qc(2).

If p is analytic in U, p(0) = 1 and p satisfies the differential equation zp'(2)+
B(z)p(z) = I then Re p(z) >0, z € U.
Lemma 2. [4] Let a,8 € C, Re (a+48) > 0 and let ¢ be analytic function in U with
P(0)=1,p(2) £0in U. If f € A satisfies

22) | 2¥(2)

e + o) +6 < Qas4(2) 3)
and F is defined by
FE) = 1106 = [(@+9) [ e p0a] ™ (4
then
Re [(a+5)ZF'(Z)] >00iFES
F(z) '

Moreover, if a + 6 > 0 then F € S* (starlike functions).

Lemma 3. (Prawitz, 1927) If f € S, then f € HP, p< %
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3. Main results

Theorem 1. If 3>0,v>0, f€ A and %;()z) < Qctz) then

I(f) e H, X=-"—, g¢<
where I is defined by (2).

Proof. The operator I as given by (2), can be written as I : I = Gy o G2 where

Gt = (52 ﬁ”""))

cne =+ | ora) "

Bzf'(z)
f(2) .
operator F' defined by (4) to maps in G;. Hence G2(z) € S* and G2 € HY, ¢ < 3

If in Lemma 1 ¢(z) = 1 then condition (3) to maps ———~ < Q.(2) and the

. B+
On the other hand if f € HP then ff+Y ¢ H#7% and f_ﬂizl € H#%. Hence

B+ 3 1
(L__z‘yﬁ) € H7¥ and we obtain G, € HPE if f € HP. Since Gz € HY, ¢ < 3
weobtainGloGzeHF”%,q<§. ]

Corollary 2. Let a,d complez numbers with Re (a + §) > 0 and ¢ analytic in U,
9(0) =1, p(z) # 0, z € U. If f € A and satisfying (3) then F € H*, A < —;— (F
defined by (4)). Ifa+8 >0 then F € H% and F' € H*.

Theorem 3. Let Q. "open door” function and B(z) analytic in U satisfying B(z) <
Qc(2). Let ¢ an analytic function in U, ¢(0) = %, and 2¢'(2) + B(z)¢(z) = 1. Let
o, 3,8 be real numbers B > 0, ad > 0 and ¢ analytic in U with ¢(0) = 1, p(z) #0,
z €U. If f € A satisfies (3) then

A3 1
P -1 -
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Proof. From Lemma 1 we have Re ¢(z) > 0. Hence Re - ¢( ) > 0 and — ¢( ) € H*,

A < 1. The integral operator Iy, as given by (1) can be written as: Iy, = Go F
IOy
where G(z) = (——) and F is defined by (4).

27¢(2)
From Lemma 2, F € S* and from Lemma3, F € H?, ¢ < L . Since m € H*
applying Holder’s inequality we obtain p ¢ B Fo+3(z) € H¥ where
q .
p= /\a + § gA ¢< 1
T Ma+d)+q’ 2
A5 « + ]
Hence
gApB 1
G(F) € H?, = <=, ALl
() eH, p=3arere 752
(]
References

[1] Duren, P.L., Theory of H? Spaces, Academic Press, New York and London, 1970.

{2] Miclus, Gh., Integral Operator of Singh and Hardy Classes, Studia Univ. Babeg-Bolyai,
Mathematica, 42, 2(1997), 71-77.

[3] Micldusg, Gh., Some Integral Operators and Hardy Classes, Studia Univ. Babeg-Bolyai,
Mathematica, 41, 3(1996), 57-64.

[4] Miller, S.S., Mocanu, P.T., Classes of Univalent Integral Operators, J. of Math. Anal.
Appl., New York and London, 151, 1(1991), 147-165.

[5] Mocanu, P.T., Some Integral and Starlike Functions, Rev. Roumaine Math. Pures Appl.,
31(1986), 231-235.

Miaa1r EMINEsScU COLLEGE,3900 SATU MARE, ROMANIA

50



STUDIA UNIV. “BABE§-BOLYAI", MATHEMATICA, Volume XLIII, Number 4, December 1998

DIFFERENTIAL AND INTEGRAL OPERATORS PRESERVING
FUNCTIONS WITH POSITIVE REAL PART AND HARDY CLASSES

GHEORGHE MICLAUS

1. Introduction

Let H(U) set of denote the functions analytic in the unit disk U = {z: |z| <
1}. In [4] the authors develop differential and integral operators preserving functions
with positive real part.

In [2] and [3] sharp results concerning the boundary behaviour of I(f), Iy(f)
and Iy ,(f) when f belongs to the Hardy spaces H?, 0 < p < oo, where I(f), I4(f)
and Iy ,(f) is the integral operator defined by:

Ifl(z) = [ﬁZ# /0 ’ fﬁ(t)t“f-ldtr, z € U, (Singh, 1973) (1)

=

Ig(f)(2) =

ﬂ+7/0’ [@]a :Q(tt_)]dtaﬂ-ldt]p, z€U (2)

z

=

B+
27¢(z)

In this paper we obtain results for the Hardy classes of these integral operators

Iso(f)(2) = [ /Oz fa(t)<P(t)t6_1dt- , 2z €U (Miller, Mocanu, 1991) (3)

when f satisfy some differential conditions.

2. Preliminaries
For f € H(U) and z = re'® we denote

1 2T . ﬁ
M(r, f) = (2—7;f0 |f(7'6’0)|"d0) , for 0 < p < o0

T
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and
My (r,f) = sup |f(re’9)| for p = co.

A function is said to be of Hardy class H?, 0 < p < oo if M(r, f) remains
bounded as » — 1=, H* is the class of bounded analytic functions in the unit disk.
We shall need the following lemmas:

Lemma 1. Let A> 0 and B,C,D : U — C with

Re B(z) > A @)
[Im C(2)]? < [Re B(z) — A]Re [B(z) — A —2D(z)].

If f is analytic in U with f(0) =1 and
Re [A2°f"(2) + B(2)zf'(2) + C(2) f(2) + D(2)] > 0 (5)

then Re f(z) > 0.
Lemma 2. Let n# 0, n € C, Re 7 > 0 and ¢, ¢ analytic functions in U, p(2)¢(z) #
0, »(0) = ¢(0), and

o 78(2) +26'(2) ¢(2)
@S @ ©
~ Let f be analytic in U with f(0) =1 and Re f(z) >0, z€U.
If f is defined by:
PO = s [ 00 e0a )

then F is analytic in U, F(0) =1 and Re F(z) >0, z € U.
Lemma 3. Let § and v be complex numbers with By > 0, Re 8 >0, Rey > 0, ¢
and ¢ be analytic in U with p(2)¢(z) # 0, ¢(0) = ¢(0) and w be analytic in U with
w(0) = 0. Suppose that (4) holds with

1

A= B D(z) = —w(z)
1 #z) | 2¢'(2)
e = ﬂ[‘””” FOREON ®

W [ WG (@)
e = [("* o) e (55 )]
Let f be analytic in U with f(0) =1 and Re f(z) >0,z € U.
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If f is defined by:
R = 5o [ 80001 ['110) + wiolotetasat @)

then F is analytic in U, F(0) =1 and Re F(z) >0,z € U.

Lemma 1-3 was proved in [4].
Lemma 4. [1) If f € H(U) and Re f(2) >0, z € U then f € H?, p< 1.
Lemma 5. If f € HP, b > 0 and I is the integral operator of Singh (3) then

(i) if B> p then I[f] € H7=5;

(ii) if B < p then I[f] € H*™.
Lemma 6. If f € H?, g€ HY, p,q,,3,0 € R} then

- Pq __Bpa
(2) 1f 6p+aq < 1 then Ig(f) € H5P+aq-—rq;

(ii) if Jp’jf

1
Lemma 7. If f € H?, p € HY, p €H", a,3> 0 then

(i) if pq < p+ aq then I, [f] € HrFordosr=ser ;
(i) if pg > p+ aq then Iy ,[f] € HT.

Lemma 5 was proved in [2] and Lemma 6 and Lemma 7 was proved in [3].

oo
- > 1 then Iy(f) € H®.

3. Main results
Theorem 1. Let be A > 0 and B,C,D : U — C satisfying condition ({). If f
analytic in U, f(0) =1 and
Re [A2?f"(2) + B(z)zf' (z) + C(2)f(2) + D(2)] >0, A; €C
then
F(2) = Ao+ ALf(2) + Aof?(2) + -+ A f"(2) €H®, A< L.

Proof. From Lemma 1 and Lemma 4 we have f(z) € H*, A < 1. Hence we deduce

ff(z)eH %. By applying Minkowski’s inequality we obtain the result. 0

Theorem 2. Let A > 0 and B,C, D : U — C satisfying conditions (4) and f analytic
inU, f(0) =1and (5). If 3 >0, v € C and I is integral operator of Singh (1) then
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(i) if B> 1 then I[f] € H#*X, A< 1;
(ii) if B < 1 then I[f] € H™.

Proof. From Lemma 1 and Lemma 4 we obtain f(z) € H*, A < 1. From Lemma 5

we obtain the result. ]

Theorem 3. Let be § # 0, Re § > 0 and ¢, ¢ analytic functions in U, with o(z)¢(2) #
0, p(0) = ¢(0) satisfying condition (6), f analytic in U with f(0) =1 and Re f(z) >
0, z € U and F defined by (7). If 8> 0, v € C and I is defined by (1) then:

(i) if B> 1 then I[F] € H?* A< 1;

(i) if B <1 then I[Fl € H®.

Proof. From Lemma 2 and Lemma 4 we deduce F € H*, A < 1, and from Lemma 5

we obtain the result. O

Theorem 4. Let be n # 0, n € C, Re > 0 and ¢, ¢ analytic functions in U, with
o(2)8(2) £ 0, $(0) = $(0) and satisfying ().

If f analytic in U, f(0) = 1,"Re f(z) > 0, z € U, F defined by (7) and I,
defined by (2) then:

LA

(i) zf6A+Pa#<1then Ip[fl€ HoFai=a, 0< A< 1,0< p< 1;
o Au
(i) zf&z\+ap

<1lthen Ip[fle H®,0< A<, 0<p< 1.

Proof. From Lemma 2 we obtain Re F'(z) > 0 and from Lemma 4 we deduce F(z) €
H*, p < 1. Since Re f(z) > 0 we have f € H*, A < 1. Applying again Lemma 6 we
obtain the result. O

Remark [. An analog result we can obtain for F' defined by (9).

Theorem 5. Leta=1, >0, v e C, Rey >0, §d =4, ¢ and v analytic functions
in U, with p(2)¢(z) # 0, ¢(0) = ¢(0) satisfying (6) and f analytic in U, f(0) =1,
Re f(z) >0, z € U, then

I‘i’,‘P[f] € Hpﬂ’ p<l1.

54



DIFFERENTIAL AND INTEGRAL OPERATORS

Proof. From Lemma 2, for n € C*, Re > 0,

1 /z -1
F(z) = —— )p(t)t" L dt,
()= 795 |, 10000
we have Re F(z) > 0. Hence F € HP, p< 1.
For n = « we obtain

T B+q [? 1
= /0 FO)p(t)1dt € HP

and
¥ .
——14,, € HPP
B+~ "
and
I¢.¢p € pr.

O

Theorem 6. Letp # 0, n € C, Re p > 0 and ¢, ¢ analytic functions in U, with
o(2)d(z) # 0, (0) = ¢(0) satisfying (6). Let be f analytic in U, f(0) = 1, Re f(2) >
0, z € U and F defined by (7). If iy, is defined by (3), @, 8,7, > 0 and g € H?,
0<A<1,0<p<1 then

(i) if pA < p+ a) then Ur ;(g) € HPFendetosn ;

(i) if pA > p+ al then Ips(g9) € H™.

Proof. From Lemma 4 we have f € H*, A < 1. From Lemma 2 we obtain Re F(z) > 0

1 1
—— > 0. 4 — N .
and Re ) > 0. From Lemma 4 we have ) EH!, u<1

Applying again Lemma 7 replacing ¢ with F, ¢ with f and f with g we
obtain the result. O

Remark 2. An analog result we can obtain for F defined by (9) or g is defined by (9).
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AVERAGING INTEGRAL OPERATORS AND HARDY CLASSES

GHEORGHE MICLAUS

1. Introduction

Let H(U) denote the spaces of analytic functions in the unit disk U = {z :
2] > 1} and Hy = {f € H(U) : f(0) = 0}. If K C H(U) then an operator
A : K = H(U) is said to be an averaging operator on K if A(f(0)) = f(0) and
A(NHU] C co f(U), for all f € K, where co f(U) is the convex hull of f(U). In [4]

was obtained the integral averaging operator:

AN = 75 [ rorea (1

and in [6] was obtained the second-order averaging integral operator

2 = 1 2 o) yep-1 [ )P
PO = orors || St [ S0 s(o)dsat @

In this paper we obtain Hardy classes for these operators and we obtain
result for a more general operator A, ¢ € Hy defined by A,(f) = A(f) + F'(0)A(p),
@ € Ho.

In [2] and [3] were obtained Hardy classes for integral operators

; }
I[f](Z)=[-ﬂ—Zl /0 f"(t)t“"ldt] , 2z €U (Singh, 1973) (3)
L@ = [222 [ prtyetntar]”, seu ()

In this paper we obtain Hardy classes for these operators, using averaging

operators.
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2. Preliminaries

For f analytic in U and z = re'® we denote

1 2m " ':?
— f(ret pd0) , for0<p< oo
e = (ae ) e
sup |f(re'?)], for p = o0.
0<6<2m

A function is said to be of Hardy class H?, 0 < p < oo if My(r, f) remains
bounded as r — 17, H® is the class of bounded analytic functions in the unit disk.

If f,g analytic in U, then function f is subordinate to g, written f < g or
f(2) < g(2), if g is univalent, £(0) = ¢g(0) and f(U) C g(U).

A function h is said to be convex if h is univalent and h(U) is a convex
domain.

It is easy to show that an operator A : K — H(U) is an averaging operator
on K if and only if [f € K, h convex and f < k] = A(f) < h.

We shall need the following lemmas.

Lemma 1. Let h € Hy, conver and let A > 0. Suppose that k > ﬁl- and
B(z),C(z), D(z) are analytic in U and satisfy
Re B(z) > A+ |C(z) — 1| —Re [C(z) = 1]+ k|D(2)|, z€U. (5)
If p € Hy satisfies the differential subordination
AZ*p"(z) + B(2)zp'(2) + C(2)p(z) + D(2) < h(z) (6)

then p(z) < h(z).
Lemma 2. Let § € C, § # —1,-2,... and let p,¢ € H(U) analytic functions with
p(2)¢(2) #0,z€U. If

Re B(z) 2 |C(z) - 1| -Re [C(z) - 1], z€U, (7

where B(z) = % and C(z) = W—)—, then the integral operator A defined

by (1) is an averaging operator on Hy.
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Lemma 3. Let a > 0, B,y € C, with Re § > —1 and Rey > —1 and let p, ¢
analytic functions with ¢(z)¢(2) #0, 2 € U. Let

B(z)=a|f+7y+1+ —ZZES) + ZZ;S)]
/ / / / (8)
— 2¢'(2) 2¢'(2) z¢'(2)
cw=a|(s+53) (" 25+ (55 )] |

If 6 € Hy and Re B(z) > a — |C(z) — 1] — Re [C(z) — 1] + 4|6(2)|, z € U,
then the operator

Fo[f] = Ff1+ F'(0)F[8], f € Ho

where F is defined by (2), is an averaging operator on Hj.
These lemmas were proced in [5].
Lemma 4. If f € H?, 8> 0 and I is the integral operator of Singh (3) then
(i) if B> p then I[f] € H?=5
(i) if B < p then I[f] € H™.
Lemma 5. If f € HP, p € HY, % €H", o, >0 then
(i) if pg < p+ aq then Iy ,[f] € H ravir o=
(i) of pg > p+ aq then Iy ,[f) € H'.

Lemma 4 was proved in [2] and Lemma 5 in [3].

3. Main Results

4
Theorem 1. Let h € Ho, be conver and A > 0, k > O B(z),C(z), D(z)
analytic in U satisfies (5) and p € Hy satisfies the differential subordination (6) then

p(z) e H*, A< 1.

Proof. From Lemma 1 we obtain p(z) < h(z). From subordination theorem of Little-
wood [1] we deduce My (r,p) < My(r, k). Since h is convex is very know that h € H?*,
A < 1. Hence p(z) € H* A < 1. O

Theorem 2. Let § € C withd # —1,-2,... and ¢,¢ € H(U) with p(2)¢(z) # 0,
z € U, satisfying conditions (7) and A is operator defined by (1) then A(f) € HP,
p<1, forall f, f € Hy.
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Proof. From Lemma 2 the integral operator A is averaging operator on Hy. Hence
I[f1(U) C co f(U) for all f € Hy. Since co f(U) is convex domain, from conformal
mappings’s theorem (Riemann) there is a function g analytic in U such that g(U) =
co f(U). Since g(U) is convex domain we deduce that g is convex. Since M (r, I[f]) <
M) (r, g) we obtain I(f) € H?,p< 1. O
v29'(2)

Theorem 3. Let v € C with Re v > 0 and let g € Hy with Re 9G)

A is defined by

>0inU. If

z) = _7_ : =1,
A[f)(z) P /0 f(@)g(t)~ g (t)dt
then A[f]) € HP, p< 1 for all f € Hy.

Proof. fin A ¢(z) = [g(2)]""1¢’(2)z} " and ¢(z) = [g(2)]’ 2~ 7y~ then is satisfying
condition (7) and from Lemma 2, A is averaging operator in Hy and from Theorem

2 we obtain the result.

Hence we obtain some particular results. For y =1, &« = 1 and g(z) = z we

have the operator
1/ fydte HP, p<1.
2 Jo

Since, the Libera’s operator is

% /0 " )t

we obtain Hardy classes for that operator:
2 Z
-[ f(t)dt € HP, p<1.
zJo
1 .
For vy =0, ¢(z) = 3 and ¢(z) = 1 we obtain
1 1% f(@t
Alfl(z) = —/ 1) 4 €H?, p<l.
2/ t
Hence, we have Alexander’s operator

z
/ f@)t~'dt € H?, p< 1, forall f, f € Hy.
0
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Theorem 4. Let be vy € C, v # —1,-2,... and let ¢, $ analytic functions with
e(2)¢(z) # 0, z € U and satisfying conditions (7). If Iy, is defined by (4) and
a=1,8 =7 then I ,[fl€ HP* B>0,0< A< 1, forall f € Ho.

Proof. The operator Iy, can be written as: Iy, = BoA where B(f) = (B+7)f(2))#
and A is defined by (1). Since f € HP applying Hélder’s inequality we obtain B(f) €
HPP_ From Theorem 2 we have A(f) € H*, A < 1 for all f € Hy. Hence B(A(f)) €
HP* and Iy ,(f) € HP* for all f € Ho. a

Theorem 5. If§ € C, § # —1,-2,..., p,¢ analytic functions and p(z)$(z) # 0,
z € U satisfies conditions (7), and A is the integral operator defined by (1) substituting
v with § and I is the integral operator of Singh (3) then:

(i) if B> 1 then I(A) € HF¥ A< 1

(i1) if 0 < B < 1 then I(A) € H®, for all f € Hy.

Proof. From Theorem 2 we deduce A € H*, A < 1. From Lemma 4 we obtain the
result. O

Theorem 6. Let a > 0, B,y € C, with Re 8 > —1 and Re vy > —1 and let ¢, ¢
analytic function with ¢(2)¢(z) # 0, 2 € U. Let F : Hy — Hy defined by (2) and
suppose that are satisfying (8).

If0 € Hy and Re B(z) > a—|C(z) —1]—Re [C(z) — 1] +4|6(z)|, z € U, then
the operator Jo[f] = F[f] + f'(0)F[8] we have Jo(f) € H*, A < 1, for all f € Hp.

Proof. From Lemma 3 we obtain that Jy is averaging integral operator. Hence
Js[f1(U) C co f(U), where co f(U) is convex domain. From Riemann’s theorem exists
a convex function g such that g(U) = co f(U). Hence we deduce M) (r, Jy) < Mx(r,g),

and we obtain the results. O

Remark 1. Analog with Theorem 4 we can obtain results for Hardy classes for I[Jp]
where I is the integral operator of Singh.
Remark 2. Analog with Theorem 7 [2] we can obtain results for Hardy classes for the

n-order integral operator of Singh.
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SUR LES OSCILLATIONS ENTRETENUES PAAR UNE FORCE
PRESQUE PERIODIQUE DANS LE SENS DE BOHR

ADRIAN MUNTEAN AND TEODOR 8. GROSAN

Abstract. Dans cet article nous allons présenter le phénomeéne physique
des oscillations entretenues par une fonction prériodique et nous allons
insister sur une modélation plus fidéle des oscillations par les fonctions
presque périodiques dans le sens de H. Bohr [3,6]. Ensuite, nous allons
pérturber la force extérieure jusqu’aune force presque périodique et nous
étudierons sur un cas particulier, al’aide d’un algorithme de Fox Goodwin,

de divers évaluations numériques de la solution de I’équation d’état [2,4].

1. Oscillations entretenues

Souvent, dans ’étude des oscillations harmoniques, on ignore I'influence de
la force de frottement, mais si ’on tient compte de ’influence du milieu, I’importance
de 1a fonction de frottement augumente en déterminant toutefois un amortissement
du mouvement oscillatoire. Le sens de cette force s’oppose au sens de la vitesse du
point materiel et, en plusieurs cas, elle est proportionelle & celle-ci: Fy = —yv, ou ¥
est un réel positif nommé coefficent d’amortissement.

Dans plusieurs problémes pratiques nous sentons le besoin d’anéantir
I’influence de la force de froticinent pour obtenir des variations controlables des
oscillations, nous désirons donc d’entretenir les oscillations. Pour réaliser cette chose
nous devons imprimer & I’oscillateur une énergie de ’extérieur [2], [4], [7].

2. Le modéle physique
2.1. La premiére approrimation
On suppose que notre systéme est soumis a P’action des trois forces: la force

élastique F, = —kz, ol k est la constante d’élasticité, la force de frottement Fy =yv
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et une force paralléle & ox, dont I’intensité est une fonction périodique de temps
F :[0,4+00[R, décrite de F(t)= Fysinwt, Fo,w€R.
L’équation de mouvement prend la forme suivante:
mz" + vz’ + kz = Fysinwt
ou bien,
" ' 2 Fo
z" + 20’ +wie = -r;l-smwt, (1)

ou §=4(7)>0, m>0 et wg, wE R sont les pulsations du mode de travail et de la force
d’entretien. Si on regarde la relation (1) on observe facillement qu’une solution de

I’équation linéaire homogéne est
z1(t) = Ao exp(—dt) sin(y/w3 — 62t + o), ol A,po €R
et une solution particuliére pour la méme équation (1) a la forme:
z2(t) = Asin(wt + ¢), ol Aet e sont des réels inconnus.

Le mouvement décrit par la solution (2) de ’équation (1) est en régime stationaire si
les oscillations du systéme ont lieu & une fréquence égale a celle de la force d’entretien
est qui est bien differente de la fréquence propre.

Les réels A et ¢ on les déterminent en remplagant la rélation (2) dans

P’équation (1) de la fagon suivante:
—Aw? sin(wt + p) + 26w A cos(wt + ) + wi Asin(wt + @) = % sin(wt)  (2)

En développant sin(wt+¢) et cos(wt+¢) nous obtenons, par une simple iden-

tification des coeflicents, le systéme:

A(w? — w?)sinp + 20wAcosp = 0 .

A(w% - Wz) cosp + 20wAsinp = -E"{L

La résolution du systéme (4) nous montre que:

Fy

A=
my/(wd — w?) + 462

20w
et tgp = W’ quand w? # w.
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En général, les oscillations ne sont pas en phase avec la force de ’entretien,
la valeur de I’amplitude A este une fonction de la pulsation w de la force d’entretien,

Pamplitude éxtréme Ay, étant obtenue quand

dA d’A
a:)-((«)) =0et a—w—z(w) < 0.

De cette maniére mnous avons obtenu maintenant une pulsation

wy = /wi—262 > 0 pour laquelle amplitude du mouvement prend la
valeur maxime. Dans ce cas w, s’appelle pulsation de résonance.
Fy
A = Alw,) = .
mazr ( r) om 50),-

2.2. Les fonctions presque périodiques dans le sens de Bohr

Un sousensemble S C R est relatif dense s’il existe un numeré positif 1, de
maniére que [a,a+1]NS#@ pour tous les acR.

Soit f: R—R une fonction bornée, et soit € >0 fixé arbitrairement. Nous

définissons 1’ensemble

T(f,e) ={r€R: |f(t + ) — f(t)] < € pour tous les tER}.

Une fonction f: R—R est presque périodique dans le sens de Bohr si pour tout € >0,
I’ensemble T(f,e) est R-relatif dense.
On note cela par fEAP(R).

Intuitivement, on remarque que les fonctions presque périodiques ne
s’éloignent trop des fonctions périodiques.

2.2.1. Théoréme. Soit f: R—R une fonction. Les suivantes proprietés ont
toujours lieu:
a) Si feAP(R), alors f est uniformément continue sur R;
b) Si feAP(R), geAP(R), alors nous avons f+g€AP(R) et f-geAP(R);
c) Si fEAP(R) et si f’ est définie sur la doite réele, alors nous avons f’€AP(R) si et
seulement si f’ est uniformément continue.

La démonstration de cette théoréme ainsi que la théorie de ces fonctions, se

trouvent dans le travail [3].
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2.3. La deuziéme approrimation

Nous nous trouvons maintenant dans la méme situation d’un systéme oscil-
latoire harmonique mais cette fois dans un milieu & frottement. Cette fois-ci la force
éxterieure ne sera plus d’une intensité périodique de temps, elle sera d’une intensité
presque périodique dans le sens de Bohr, phénoméne beaucoup plus approché de la
réalité comparé a la stricte périodicité pratiquement inézistente.

Soit donc la fonction F: [0,4-00]—R définie par F(t) = Fy(t) cos(wt), ol wER
et Fo€AP(R). '
Avec le support de la théoréme 2.2.1. on déduit que FEAP(R), I’équation (1) devenant

cette fois
z" + 262’ + wlz = F(t), pour z€RE et t€[0, +oo].

Nous comptons sur ’aide des moyens de 1’analyse numérique pour la résolution de
cette derniére équation.

3. La méthode de Foxr Goodwin

Fox Goodwin est une méthode spécialisée dans la résolution des équations

differentielles linéaires de la forme suivante:
Y’ +a(z)y +b(z)y + c(z) = 0, ol z€]a, b]
Pour formuler le probléme de Cauchy, nous formulons les conditions initiales
y(a) = o, ¥/ (a) = %-

L’ algorithme va calculer les valeurs de y en differents noeuds. Nous nous fixerons sur

les n+1 noeuds construits de la maniére:

b—a

:ck=a+kb—:—l-2=a+kh, quand k€{0,...,n}et h = ,n>0.

Pour un k fixé, on note g, ax, bx, cx les valeurs de y, a,b et ¢, calculés dans le noeud
Tk-

L’algorithme est:

. h -t h _ _
Uk42 = (1 + 50k+1> [— (1 + ‘é‘ak+1) Gk + (2 — h2bky1)Prt1 — h20k+1] )
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dont ’erreur de la méthode est:
1 .
M2 = 1-2-h4y(4)(z'k+1), ou kefl,...,n}.

On observe que pour le bon fonctionnement de 1’algorithme nous avons besoin de
deux valeurs de départ go et §, . La valeur go = y(a) = yo nous ’avons et la valeur
# se calcule en dévéloppant en série de Taylor [5].

4. Un exemple numérique

Nous nous fixons maintenant sur le suivant probléme de Cauchy:

z” + 0.5z' + 10z = (cos 314.16t + cos 17.72t) cos 314.16¢
2(0)=0 , ou t€[0,10].  (4)
z'(0) =0

C’est bien claire que la fonction Fy(t) = cos 314.16t+cos 17.72t est presque périodique
dans le sens de H. Bohr et Fy n’est pas périodique, chose qui souligne une fois de
plus le fait que I’éspace de fonctions périodiques n’est pas un éspace dans le sens de
Banach. Le théoréme 2.2.1.b) justifie que Fo€AP(R). Pour montrer que Fy n’est pas

périodique nous reprenons la formule générale
Fo(t) = coswt + cos /wt, ou te[0, +oo].
Supposons que Fy soit périodique, donc il existe T' > 0 avec la proprieté
Fo(t + T) = Fo(t), pourt > 0. (5)

En posons t=0 dans la relation (6) nous obtenons coswT + cos v2wT = 2, et nous

avons

coswl =1=2T = 2£’:—”,n€N

cos V2wl =1=+2T = 2'J}"‘,mGN

d’olion remarque que v/2 = ™ ce qui est absurde. Donc notre supposition est fausse.

11 résulte que Fy(t) coswtEAP(R) et aussi la fonction
F(t) = (cos 314.16t + cos 17.72t)cos314.16t€c AP (R), pour t€[0, 3].
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Ce résultat peut etre facilement généralisé en prenant a la place de F une somme finie
ou infinie des fonctions presque périodiques dans le sens de Bohr, en tenant compte
de la structure d’éspace vectoriel topologique de AP(R) .

En appliquant la méthode de Fox Goodwin nous obtenons les suivantes eval-

uations pour la solution presque périodique du probléme de Cauchy (5). On a:

Tableau de variation de ’oscillation

nr. | i z(t) nr. | t z(t)

crt. crt.
0 |0.0 0 15 | 1.5 | 1.72321463
1 0.1]-1.22521782| 16 | 1.6 | 1.19096839
2 10.2(-2.22468138 | 17 | 1.7 | 0.55492908
3 10.3|-3.88867235| 18 | 1.8 | -0.11387726
4 |04]-3.17627549 | 19 | 1.9 | -0.739344
5 105(-3.08133364 | 20 | 2 |-1.23563397
6 |0.6]-2.62782693 | 21 | 2.1 |-1.55284929
7 10.7{-1.90001404 | 22 | 2.2 | -1.68048322
8 |0.8)-1.01691794| 23 | 2.3 | -1.61115265
9 |0.9|-0.08499254 | 24 | 2.4 | -1.35509455
10 | 1.0 | 0.79002186 | 25 | 2.5 | -0.96647346
11 | 1.1 | 1.49523771 | 26 | 2.6 | -0.50920916
12 | 1.2 | 1.95475125 | 27 | 2.7 | -0.0287871
13 | 1.3 | 2.14632511 | 28 | 2.8 | 0.41838172
14 | 1.4 | 2.06395769 | 29 | 2.9 | 0.76669407

Nous remarquons dans le tableau antérieur , que P’oscillation x(t) est la petite
pérturbation d’une fonction périodique, mais qui est entretenue tout de méme dans
un interval temporel bien détérminé.

Les valeurs de ce tableau ont été obtenues & 1’aide d’un programme en C++
dont P’erreur de méthode est celle précisée auparavent . Le programme va aussi pour
d’autres fonctions F(t). Pour le méme probleme on peut utiliser aussi la méthode
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d’Adams-StSrmer on obtenant résultats semblables avec une erreur peu differente de
la notre.

On regardant les donées obtenues on remarque un aplatissement de
Poscillation, & cause de la force de friction [5]. Cet aplatissement est assez fort dans
des milieux fluides compressibles et il est fort brusque dans des millieux fluides
incompressibles. Le modele mathématique pour ’entretien des oscillations presque
périodiques est identique a celui qui étudie les phénomenes de résonance et de
battements dans les circuits RLC, plus exactement, I’étude de regime tranzitoire se
fait d’habitude avec un modele mathématique qui introduit les distributions presque
périodiques et aussi une transformée de Fourier tout a fait spéciale. Mais tout cela

sera realisé dans un prochain travail.
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A CHEBYSHEV SYSTEM APPROACH TO THE BOUNDARY
BEHAVIOUR OF THE SUBLINEAR FUNCTIONS

A.B. NEMETH

Abstract. The aim of this note is to show that the problem of the aug-
mentation of a function system consisting of the coordinate functions of
a parametrization of a convex surface in R*~! with 0 in its interior, to
a Chebyshev system of order n — 3 [9] has its natural interpretation in
the contex of the boundary behaviour of a strictly sublinear or a strictly

superlinear function.

A strictly convex or strictly concave real function can be defined by the
condition that its graph intersects every straight line in at most two distinct points.
In this definition we have to do in fact with the two dimensional subspace of the
affine functions which augmented by the strictly convex (or strictly concave) function
in question to a three dimensional space, becomes a space having the property that
each nonzero element of its vanishes in at most two points. A possible generalization
of the convexity notion introduced this way is the following: Consider an arbitrary
two dimensional subspace P of the space C(Q) of continuous real functions defined
on the connected Hausdorff space Q. Then f € C(Q) is convex with respect to P if
every member of P, can agree with f in at most two distinct points. Suprisingly this
generalization goes not far from the real function case: the notion is consistent for the
case of @ compact if and only if this is homeomorphic with a (compact, connected)
subset of the circle S! [5].

Starting with the above generalized convexity notion (a two dimensional un-
derlying vector space and a convex function with respect to it) and trying to get a
natural extension, we can follow two lines. To consider for instance an n — 1 dimen-

sional subspace P,_; in C(Q) and to call f € C(Q) convex with respect to it, if
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this f agrees with each member of P,_; in at most n — 1 distinct points. Again, this
generalization is consistent for connected compact Q if and only if @ can be imbedded
into S and the imbedding can be surjective only when n is odd [5].

A second way is the following: to consider an n — 1 dimensional subspace
P,y of C(Q) (n > 3) and to consider f € C(Q) convex with respect to P,_; if
it agrees with n — 2 linearly independent elements of P,_; in at most two distinct
common points.

In the case n = 3 the two convexity notions coincide.

The first generalization has an old history. It goes back to Popoviciu (see (8]
and [11]) and is used in the constructive function theory (see also [3] and [4]). The
second one is not explored explicitely, but it corresponds to a natural geometrical
picture (this is emphasised also by the content of our note). We note that this second
generalization can be consistent also for rather strong topological conditions on Q.
This follows from some results in topological setting in [6].

Both the above two generalized convexities can be interpreted as augmenta-
tion of a given system of functions by a function to another system with prescribed
properties.

The aim of this note is to show that the problem of the augmentation of a
function system consisting of the coordinate functions of a parametrization of a convex
surface in R"~! with 0 in its interior, to a Chebyshev system of order n — 3 [9] has its
natural interpretation in the contex of the boundary behaviour of a strictly sublinear
or a strictly superlinear function. Our geometric approach as well as the method
used in proofs are prolific in both the convex analysis and the theory of Chebyshev

systems. They emphasise the strong relation existing between these two fields.

1. Parametrized convex surfaces in R*~!

We say that S™~2 is the standard n — 2 sphere if it is the subspace of the
Euclidean space R"~! consisting of the set of points with the distance 1 from the
origin of a Cartesian system in R”~!. We say that the set C in R*~! is a topological
n — 2 sphere or a closed surface if it is the homeomorphic image of S"~2. Denote by
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& a homeomorphism from S™~2 to C. Then ¢ will be called a parametrization of C.
If ¢ =(p1,--.,Pn-1), then p;, 7 =1,...,n—1 will be called the coordinate functions
of a parametrization of the surface C.

We are particularly interested in the case when the topological n — 2 sphere C
in R"~! is a convex (or a strictly convex) surface in the sense that it is the boundary
of a convex (or respectively, of a strictly convex) body in R*~!. A body Bin R"~! is
a closed, connected and bounded set with non empty interior. The body B is convex
if and only if every straight line containing an interior point of its, meets its boundary
C in exactly two points. This follows from basic properties of convex sets (see e.g.
[10]). Therefore a straight line can meet a convex surface C in a set having at most
two connected components. If the convex surface C contains no line segment, then
it is called a strictly convex surface and the set B it bounds, a strictly convex body.
Thus the closed surface C is strictly convex if and only if any straight line in R*~1!
can have an intersection with C' consisting of at most two points.

A straight line in R*~? is the intersection of n — 2 hyperplanes, i.e., it is the

locus of the points z = (z?,...,z"~!) € R"~! satisfying a system of the form
d+dal 4. +d " 1=0, j=1,...,n-2 1)
with
(d,...,d_), ji=1,...,n—2 (2)

linearly independent vectors (the normal vectors of the mentioned hyperplanes).
According to our above observations the surface C = ¢(S™"2) with the
parametrization ¢ = (¢1,...,Pn—1) is convex (respectively, it is strictly convex) if

and only if the equations
06+61‘P1(Q)++03;_150n—1(Q)=0, Jj=1,...,n-2 (3)

possess a set of solutions ¢ € S™~2 having at most two connected components (possess
at most two distinct solutions ¢ € S™~2) for every set (2) of n—2 linearly independent

vectors.
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Let us consider now instead of the vectors (2) the vectors of the form
Cj=(¢'3»c1i,~--,01._1), j=1,...,n—2. (4)

If the vectors ¢y, . .., cn—2 were linearly independent but the vectors (2) were
not, then the system (1) were incompatible and the equations (3) could not have any
solution ¢ € S™~2.

By gathering the above observations we arive to the following statement:
1.1. The surface C in R*~! with the parametrization ¢ = (p1,...,Pn—1) is convez
(respectively, it is strictly convez) if and only if for each set (4) of n — 2 linearly
independent vectors the system (3) can have a set of solutions ¢ € S*~2% consisting
of at most two connected components (respectively, this set of solutions can have at

most two distinct points).

2. Chebyshev systems

Denote by C(Q) the vector space of the real valued continuous functions
defined on the connected topological space Q. The set {©o,¥1,...,¢n-1} C C(Q)
is called an (n, k) system (or a Chebyshev system of order k — 1 [9]), if it is linearly
independent and any k linearly independent elements in sp{@q, 1, - . ., Pn—1} possess
at most n — k common zeros in Q. An (n, 1) system is a so called Chebyshev or Haar
system ([3], [4]). By a weak (n,k) system we mean a set of functions of the above
form relaxing the last requirement in the above definition to the following one: any
k linearly independent elements in sp{¢o,¢1,.-.,¥n-1} can have a set of common
solutions having at most n — k connected components. A weak (n, 1) system is called
a weak Chebyshev system. Weak Chebyshev systems have been defined in [2] for the
case () an interval in R by an oscillation condition. For this particular case the notion
agrees with ours (other equivalent conditions were considered in [1]).

We are especially interested in the case when k = n—2. An (n,n — 2) system
(a weak (n,n — 2) system) is for n = 3 a Chebyshev system (respectively a weak
Chebyshev system).
74



A CHEBYSHEV SYSTEM APPROACH TO THE BOUNDARY BEHAVIOUR OF THE SUBLINEAR FUNCTIONS

We have the following relation of (n, n—2) systems with the surface parametriza-
tions:
2.1. Let C be a topological n — 2 sphere in R™~! wuth the parametrization ¢ =
(p1,---,9¢n-1). Then C is a convex surface (respectively, it is a strictly conver sur-
face) if and only if the set of functions {1,p1,...,on-1}, where I is the constant 1
function on S™~2, is a weak (n,n—2) system (respectively, it is an (n,n—2) system).

To verify this statement we note that by 1.1 C is a convex surface (respec-
tively, it is a strictly convex surface) if and only if for every set of n — 2 linearly
independent vectors (4) the system of equations (3) can have a set of solutions ¢ in
S™—2 with at most two connected components (respectively, this set consists of at
most two points). This is nothing but the requirement that any n — 2 linearly in-
dependent elements in sp{1,1,...,n—-1} have a set of common zeros possessing at
most two connected components (respectively, this set consists of at most two points).
That is, the convexity of C' (the strict convexity of C) is equivalent with the fact that

{1,¢1,...,¢n-1} is a weak (n,n —2) system (respectively, it is an (n,n — 2) system).

3. Wedges and cones

A non empty subset W in R" is called a wedge if W+W C W and if tW C W
for each non negative real number ¢. A wedge is obviously a convex set which contains
the vector 0. The wedge K is called a cone if K N (—K) = {0}. Thus the wedge K
is a cone if and only if from u, —u € K it follows that u = 0.

The subset F of the wedge W is called a face of W, if it is a wedge and if the
conditions u € F, v € W and u — v € W imply that v € F.

Any wedge contained in a cone is itself a cone, hence the face of a cone is a
cone.

The face F of the wedge W is called proper face if {0} # F # W.

We gather next some results which we shall use later. Most of them are easy
consequences of the definitions or are standard results of the theory of convex sets
(see e.g. [10]).

3.1. If W is a wedge and intW # @, then W + intW C intW.
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3.2. No proper face of a wedge W can contain points of intW.

3.3. If a subspace L of dimension 2 of R" contains three affinely independent
points of the boundary 8W of the wedge W, then L NintW = 0.

3.4. If-W is a wedge with intW # @ and if L is a subspace of R" with
LNintW = 0, then there exists an n — 1 dimensional subspace H of R" with L C H
and H NintW = 0.

3.5. If W is a wedge in R™ with intW # 0 and if H is a hyperplane through
0in R" with HNintW =0, then F = HNW is a face of W. If F # 0, it is a proper
face.

The closed cone K in R is called strictly convex cone if it possesses only one
dimensional proper faces. The condition dim K > 2 is here intrinsic.

3.6. The intersection of two wedges is a wedge. The intersection of two
strictly convex cones is a strictly convex cone if the dimension of the intersection is

>2.

4. Sublinear and superlinear functions

Consider the function f : R*~! — R (n > 2). The graph, epigraph and
hypograph of f are the sets

grf={(z,) ER" ' x R: f(z) =1},

epif = {(z,t) e R* ' x R: f(z) < t},

hypof = {(z,t) € R""! x R: f(z) >t}
respectively. If f is continuous then these sets are closed and int(epif) # 0, int(hypof) #
9.

The function f : R*~! — R is called positively homogeneous if f(tz) = tf(z)
for each ¢ € R"*~! and each t € R*~! and each t € Ry = [0, +00). The function f is
called subadditive (superadditive) if f(z +y) < f(z) + f(y) (f(z +y) > f(z) + f(v))
for any z,y € R*~1. If f is both positively homogeneous and subadditive (positively
homogeneous and superadditive) then it is called sublinear (respectively, superlinear).

The function f is superlinear if and only if —f is sublinear.
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The sublinear (superlinear) function f : R*~! — R is called strictly sublinear
(strictly superlinear) if the equality f(z + y) = f(z) + f(y) for non zero z and y
implies that z and y are positive multiple of each other.

The property of a function of being sublinear, superlinear, strictly sublinear
or strictly superlinear can be expressed geometrically using the notions of wedges and
cones:

4.1. The positively homogeneous continuous function f : R*! — R is

(a) sublinear (superlinear) if and only if epif (hypof) is a wedge;

(b) strictly sublinear (strictly superlinear) if and only if epig (hypof) is a
strictly conver one.

We prove the statement (b) for the sublinear case. The other cases can be
similarly handled.

Suppose that f is strictly sublinear and denote K = epif. If (z,s) € K (that
is, if f(z) < s) and t € Ry then tf(z) < ts and by the positive homogeneity of f we
get f(tx)ts, that is, (tz,ts) = t(z,s) € K which shows that tK C K, Vt € R,.

Let be (z,s),(y,t) € K. Then f(z +y) < f(z) + f(y) < s+t and hence
(z+y,s+t)€epif =K. Thatis, K+ K C K.

We have proved that K is a wedge. Suppose that F is a proper face of K.
Then F C 0K since by 3.2, FNintK = 0. By the continuity of f, grf = K. Hence
F C grf. Suppose now that (z,s),(y,t) € F. Then (z + y,s+1t) € F since F is a
wedge. But then F(z+y) = s+t = f(z) + f(y). According to the strict sublinearity
of f, if z and y are non zero vectors, it follows that y = rz for some r > 0. But then
f(y) = f(rz) = rf(z) = rs. That is, (y,t) = r(z, s). In conclusion, dim F = 1.

If (z,s),—(z,s) € K, then f(z) < s and f(—z) < —s. By the sublinearity
of f we have —f(z) < f(—z). These relations give f(z) = s and f(—z) = —s. Thus
0= f(z — z) = f(x) + f(—z). From the strict sublinearity of f it follows then that
z = 0, Hence s = 0 and we conclude that K is a cone.

Suppose now that f is positively homogeneous and K = epif is a strictly
convex cone. Assume that there exist some linearly independent vectors z,y € R*~!

such that f(z +y) = f(z) + f(y). Put s = f(z), t = f(y) and consider the space L in
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R™"! x R engendered by the vectors (z,s), (y,t). From the definition of K we have
intK # 0. The vectors (z, s), (y,%) and (z +y, s +t) are affinely independent and are
contained in grf = K. Hence L NintK = @ by 3.3. According 3.4 there exists a
hyperplane H with L C H and HNintK = @. Then F = KN H is a face of K by 3.5.
But dim K > 2 and we get a contradiction with the hypothesis of strict convexity of
K. Thus f must be strictly sublinear.

5. Traces of sublinear and superlinear functions on convex surface

Let f : R*~! & R (n > 3) be a sublinear function and let D C R"~! be a
convex body with 0 € intD. Denote C = dD. We shall in this case say that C is a
convex surface with 0 in its interior. It is standard question in the global optimization
to search the maximum of f on D. Obviously, it suffices to get its maximum on the
boundary C of D. It is also immediate from the position of C that the values of f on
C determine this function. This motivates the investigation of the sublinear function
f on convex surfaces like C.

Let ¢ : S 2 = C, ¢ = (¢1,-..,9n-1) be a parametrization of the closed
surface C. We can describe the béhaviour of a function g : R*~! — R on C by the
function g o ¢ called the trace of ¢ on C.

The geometrical approach we have outlined enables us to answer (using the
notions introduced in section 2) the question whether or not a real function ¢ :
S"~? — R can be the trace on a convex surface with 0 in its interior of a sublinear
(or strictly sublinear) function. We have in this contex the following result:

5.1. Let C be a convez surface in R™~! with 0 in its interior having the parametriza-

tion¢:5""%2 - C, ¢=(p1,--.,9n-1). Then the continuous function
0:S" 23R

(a) is the trace on C of a continuous sublinear or superlinear function if and

only if the set of functions

{50:9011-"1900—1} (5)

is a weak (n,n — 2) system;
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(b) is the trace on C of a continuous strictly sublinear or strictly superlinear
function if and only if (5) is an (n,n — 2) system.

We shall prove the assertion (b). The proof of (a) is similar.

Suppose that f is strictly sublinear and ¢ = f o ¢. We have to show that (5)

is an (n,n — 2) system. To this end, let us take n — 2 linearly independent elements

in sp{p,P1,. ., Pn-1}:
cg‘P+C{‘P1+"‘+Cj_1‘Pn-l; j=1,...,n-2 (6)

The vectors ¢; = (c(’;,c'{, .. .,cf;_l), Jj=1,...,n—2 are linearly independent. Hence

the set of solutions of the system
dul 4+ _jur 4 du =0, j=1,...,n—2 (M

(in u = (u!,...,u")) is a two dimensional subspace L of R". Let us identify the
domain of f with the subspace ™ = 0in R". Then epif is by 4.1(b) a strictly convex
cone K with grf being its boundary. There exist three possibilities: L N dK = {0},
LNOAK consists of a ray from 0 on grf or LNJK consists of two distinct rays on grf
from 0.

Consider the surface C; = ¥(S"~2?) C R™ having the parametrization ¥ =
(¢1,-.-,Pn-1,9). Then geometrically C; is the intersection of grf with the cylinder
with the generator parallel with the axis Ou® and the base C in R"~!. From the
configuration of C each ray from 0 on grf intersects C; once. Hence the plane L of
dimension 2 consisting of the set of solutions of the system (7) has an intersection
with C; which is the empty set if L N 3K = {0}, it contains a single point if L N K
is a single ray and it consists of two points if L N 8K consists of two rays. The

intersections of C; with L are given by the solutions in ¢ € $"~2 of the system
p(a) +cli(a) + -+ h_1pa-1(e) =0, j=1,...,n-2. ®

Since ¥ = (y1,...,9n-1, %) is one to one, to each intersection point of L with C; cor-
responds exactly one solution ¢ € S"~2 of the system (8). By the above observations

on the intersection of L with C; we conclude that (8) can have at most two distinct
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solutions ¢ € S”~2 which is nothing but the condition for (5) to form an (n,n — 2)
gystem.

Conversely, let us suppose that ¢ € C(S"~2) is a function with the property
that (5) is an (n,n — 2) system. Consider C; as being the set W(S"~2) with ¥ =
(P1,--.,¥n-1,9). Then ¥ is a parametrization of the surface C;. the set C =
$(5"~2) € R*~! with R"~! the subspace of vectors in R® with the last component
0, is a closed convex surface containing 0 in its interior. Hence every ray from 0 in
R™=1 intersects C in exactly one point.

Let 9 be the Minkowski functional with respect to 0 of D = coC. We define
the function f : R*~! = R by putting

0 if =0,

f() = :
Y@)p(¢~ (e/(z)) i z#0

The trace of f on C is ¢. Indeed, if z € C, then ¢(z) = 1 and z/9(z) = z.
Hence f(z) = ¢(¢~!(z)) and denoting ¢ = ¢~(z), we have that

.

(f 0 6)(q) = w(q)-

The function f is positively homogeneous since ¢ is so. Hence grf is engen-
dered by a moving ray with center 0, running on Cj.

The function f is strictly sublinear or strictly superlinear. If none, then no
epif, no hypof can be a strictly convex cone by 4.1. This means that there exists a
straight line d in R", not passing through 0, which meets gr f, the boundary of epif
(and of hypof) in at least three distinct points uj, uz2, us.

Consider the two dimensional plane L through 0 engendered by d. This plane
can be represented as the set of solutions of a system of the form (7) with the vectors
(d,...,é_,), i =1,...,n—2 being linearly independent.

The plane L will meet C in the points u;,us,us. Let be g; = ¥~ 1(u;),
j = 1,2,3. Then ¢i,q2,q3 will be distinct solutions of the system (8), where the

vectors
¢ =(ch&l,...,ch_y), i=1,...,n=2
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are linearly independent. This means that (5) cannot be an (n,n — 2) system, con-

tradiction which completes the proof.

6. Augmentation of a parametrization to (n,n — 2) systems

Let the set of functions

{1, s Pn1} CC(S*?) 9)

be the coordinate function of a parametrization ¢ of a closed surface C in R"~!. We
say that a continuous function ¢ : S*~2 — R is an augmentation to a weak (n,n — 2)

system (to an (n,n — 2) system) of (9) if

{pi01, . pn-1} (10)

is a weak (n,n — 2) system (is an (n,n — 2) system).

We have seen (section 2) that if (9) are the coordinate functions of a parametriza-
tion of a convex (strictly convex) surface in R"~!, then the function ¢ = 1 is an
augmentation to a weak (n, n —2) system (to an (n, n —2) system) of (9). Conversely,
if any constant nonzero function augmentation (9) to a weak (n,n — 2) system (to
an (n,n — 2) system), then the functions (9) must be the coordinate functions of the
parametrization of a closed convex (a closed strictly convex) surface.

We are prepared to consider the augmentation to a weak (n,n — 2) system
(to an (n,n — 2) system) of the set of coordinate functions of the parametrization of
a convex surface in R®~! with 0 in its interior.

Let (9) be the set of coordinate functions of the parametrization of a convex
surface C in R*~! (n > 3) with 0 in its interior. The augmentation ¢ € C(S*"2) to a
weak (n,n — 2) system (to an (n,n —2) system) (10) will be called sublinear (strictly
sublinear) if ¢ is the trace C of a sublinear (of a strictly sublinear) function (see
5.1). The superlinear (strictly superlinear) augmentation is defined similarly.

Using this terminology we have the following result:

6.1. Let (9) be the set of the coordinate functions of a parametrization of a convez
surface.

(a) The set of the sublinear (superlinear) augmentations ¢ of (9) to (10)
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(b) The set of strictly sublinear (strictly superlinear) augmentations ¢ of (9)
to (10)
is invariant with respect to the multiplication with positive scalars and ils invariant
with respect to taking the pointwise mazimum (the pointwise minimum) of two ele-
ments.

We prove (a) for the sublinear case. The invariance of the set of augmenta-
tions with respect to the multiplication with positive scalars is obvious.

Let ¢ and ¥ be two sublinear augmentations. Then ¢ and 3 are traces of
the sublinear functions f and g respectively. The function max{f, g} is sublinear and
possesses as trace on C the function max{y,¥}. Thus by 5.1 max{p, ¥} will be a
sublinear augmentation.

(b) Suppose that ¢ and 1 are strictly sublinear augmentations of (9). If
f,9 : R*~! = R are the strictly sublinear functions with traces ¢ and 1 respectively,

then epif and epig are strictly convex cones. Since the relation
epi(max{f,g}) = (epif) N (epig),

and since the set on the right hand side is a strictly convex cone (see 3.6), max{f, g}

is a strictly sublinear function. The trace of this function on C is max{¢, ¥}. Hence

{ma'x{soy ¢}) P1,-- 5 Son—l}
is an (n,n — 2) system.
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ON CERTAIN NEW CONDITIONS FOR STARLIKENESS AND
STRONGLY-STARLIKENESS

GHEORGHE OROS

Abstract. In this paper we will obtain conditions for starlikeness and
strongly-starlikeness starting from the differential subordination of the for-
m:
azp'(z) + p’(z) < h(z), where a >0,
h(z) = anzqd'(z) + ¢ (2),
and g is a convex function in the unit disc U, with ¢(0) = 1 and Re ¢(z) > 0,

n > 1. We will obtain our results by using the differential subordination
method developed in [1], [2], [3].

1. Introduction and preliminaries
Let A, denote the class of function of the form:
f(z) = 24 app12™ ! Fappoa™t? 4.

which are analytic in the unit disc U = {2 |2| < 1} and let 4 = A;.

We let #[a, n] denote the class of analytic functions in U of the form:
f(2)=z+apnz" +app2" +..., z€U

and let

. _ 2f'(2)
S —{feA, Re =0 >0,z€U}

be the class of starlike functions in the unit disc U.
For A € (0, 1] let

zf'(z)

f(2)

denote the class of strongly-starlike functions.

s={rea

arg

I<,\g,zeU}
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We will need the following notions and lemmas to prove our main results.

If f and F are analytic functions in U, then we say that f is subordinate to
F, written f < F or f(z) < F(z2), if there is a function w analytic in U with w(0) =0
and |w(z)| < 1, for z € U and if f(z) = F(w(z)), 2 € U. If F is univalent then f < F
if and only if f(0) = F(0) and f(U) C F(U).

Lemma A ([1], [2], [3]). Let ¢ be univalent in U with ¢'(¢) #0, |¢| =1, ¢(0) = a
and let p(z) =a+ppz+ ... be analyticin U, p(z) # a and n > 1.

if P £ q then there exist 2o € U, (o € OU and m > n such that:

(i) p(z0) = a(Go)

(i) zo(p'(20) = moq' (Co)-

The function L(z,t), z € U, t > 0 is a subordination chain if L(z,t) =
a1(t)z + aa(t)2? + ... is analytic and univalent in U for any t > 0 and if L(z,t1) <
L(z,t2) where 0 <t < ta.

Lemma B ([7]). The function L(z,t) = a1(t)z+az2(t)z%+. .., witha;(t) # 0 fort > 0
and cl—lglo |@a1(t)] = oo is a subordination chain if and only if there are the constants
r € (0,1] and M > 0 such that:

(i) L(z,t) is analytic in |z| < r for any t > 0, locally absolute continuous in
t > 0 for every |z| < r and satisfies |L(2,t)| < M|ay(t)| for |z| < r and t > 0.

(ii) There is a function p(z,t) analytic in U for any t > 0 measurable in
[0,00) for any z € U with Re p(z,t) > 0 for z€ U, t > 0 so that

0L(z,t) ZBL(z, t)
ot 0z

p(z,) for 2| <7

and for almost any t > 0.

2. Main results

Theorem 1. Let o > 0 and let q be a convex function in the unit disc U, with

q(0) =1, Re ¢(2z) > 0 and let

h(z) = anz¢'(z) + ¢*(2), 1)

where n s a positive integer.
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If p € H[1,n], satisfies the condition:
azp'(z) + p*(2) < h(z) (2)
where h is given by (1) then p(z) < ¢(z), and g is the best dominant.
Proof. Let
L(z,1) = a(n + 1)z’ (2) + ¢°(2) = ¥(q(2), (n + t)2¢(2)). 3)
If t = 0 we have
L(z,0) = anzq'(z) + ¢*(2) = h(2).

We will show that condition (2) implies p(z) < ¢(z) and ¢(z) is the best
dominant.

From (3) we easily deduce:

20L(2,t)

ey @], 2,
8L(z,t) _( +t) [1+ q/(z) ] + aq( )

at
and by using the convexity of ¢ and condition Re ¢(z) > 0, from Theorem 1 we obtain:

20L(z,t)
Re 22— > 0.

Hence by Lemma B we deduce that L(z,t) is a subordination chain. In
particular, the function h(z) = L(z,0) is univalent and h(z) < L(z,0), for ¢t > 0.

If we suppose that p(z) ié not subordinate to ¢(z), then, from Lemma A,
there exist zo € U, and (o € OU such that p(29) = ¢({o) with |(o| = 1, and zop'(20) =
(n + t)¢oq’ (o), with t > 0.

Hence

Yo = ¥(p(20), 20P'(20)) = %(9(¢o), (m + )Coq’(¢o)) = L(Co, %), £ > 0.

Since h(zo) = L(z0,0), we deduce that vy ¢ h(U), which contradicts condi-
tion (2). Therefore, we have p(z) < ¢(z) and ¢(2) is the best dominant. a
87



GHEORGHE OROS

If we let p(z) = iﬁ-gl, (where f € A,), then Theorem 1 can be written in the following
equivalent form:
Theorem 2. Let a > 0, q be a conver function in the unit disc U, with q(0) = 1,
Re q(z) >0,n > 1.

If f € A, with l—gﬂ #0, z € U, satisfies the condition

zf'(z)
f(2)

J(@, f;2) < h(2),

where h is given by (1) then

1 o

and q 1s the best dominant.

In the case a =1 this result was obtained in [4].

3. Particular cases

1) If we let g(2) = 1 + z, then
h(z) =1+ (an+2)z+2%, n>1

and Theorem 1 can be written as:
Theorem 3. Let @ > 0, and let n be a positive integer.
If p € H[1,n], satisfies the condition:

azp'(z) + p*(2) < 1+ (an + 2)z + 22,
then

p(z) <1+2z

and this result is sharp.
In this case Theorem 2 becomes:

Theorem 4. Let a > 0, and let n be a positive integer.
If f € A,, with -f—(}l # 0, satisfies the condition

zf'(2)
f(z)

J(a, f;2) < 1+ (an + 2)z + 2?
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then
2f'(z) /14
f(2) 1+

and this result is sharp.
2) If we let g(z) = 3%, then

_14+2(14an)z+22
h(z) = =2 .
and Theorem 1 becomes:

Theorem 5. Let o > 0 and let n be a positive integer.

If p € #[1,n], satisfies the condition

14+ 2(1 + an)z + 22
asp/(5) +57(e) < HOE LS,
then
1+ =z
plz) < 1-2

and this result is sharp.

Theorem 2 becomes the following criterion for starlikeness:
Theorem 6. Let a > 0, and let n be a positive integer.

If f € A,, with Lgﬂ # 0, satisfies the condition

2f'(2)
f(2)

14+2(1+4an)z + 22
(1-2)

J(a, f;2) <

then f € S*.
A
3) If we let g(z) = (}—‘t_i) , where 0 < A < 1, then

z

o= (222) 12+ ()]

and Theorem 1 becomes:

Theorem 7. Let a >0, 0 < A < 1, let n be a positive integer and let
h(z) = 1+2z\* [ 2aniz + 1+2\* (142 A= 9anAz + 1+ 2\M?
T \l-2z 1-22 1—-z) | \1-2 (1-2)2 1-z '

(4)
If p € H[1,n], satisfies the condition:

azp'(z) +p*(2) < h(2),
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p(z) < (ii)

From Theorem 2 we deduce the following criterion for strongly-starlikeness.

where h is given by (4), then

and this result is sharp.

Theorem 8. Let a > 0, 0 < A < 1, and let n be a positive integer.
If f € Ay, with ﬂzﬂ # 0, satisfies the condition

zf'(2)
f(2)

J(a: I Z) < h(Z)

where h is given by (4), then
f € S*[A

By choosing certain subdomains of A(U) we can deduce the following partic-
ular criteria for strongly-starlikeness.
Corollary 1. Let0<A<1,n>1,a>0.

If f € A,, with %ﬂ # 0, satisfies the condition

Iar {zf((;)J( ; z)} < ¢o(n,a, A), (5)
where
A 142 2o
ng + + AT
do(n, o, A) = —+a.rctan =X (1 ;2 S (6)
%{%) ? cos"T’r

then f € S*[A].

Proof. The domain h(U), where h is given by (4) is symmetric with respect to the
real axis. Therefore, if z = €%, then in order to obtain the boundary of h(U) it is
sufficient to suppose 0 < 6 < .

Letting cot? =t and h(e'?) = u + iv, we find:

(7)

u(t) = t)« [ am\a(l +t2) + (b2 - az)t’\]
v(t) = t* [2822(1 + £2) + 2abt?]

An
2

An

where a = sin 2 and b = cos a5
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We also have:
anA(] 4 ¢2) + tr+1sin AF
tA+1 cos —2-

¢ = ¢(t) = arg h(e'?) = '\T” + arctan

From (8) it is easy to show that the equation ¢’(t) = 0, has the root:

to= /2

1-X
and
ftnzi51¢(t) = ¢(to) = ¢o(n, A)
where ¢g(n, A) is given by (6).
We deduce that the sector {w : |argw| < éo(n,a, A} is the largest sector
which lies in A(U). Hence (5) implies

2f'(2) ;
f)
where h is given by (4) and Corollary 1 follows from Theorem 2. O

J(@, f;2) < h(z)

Corollary 2. Let0<A<1,n>1,a>0.
If f € Ay, with ﬁ;l # 0, satisfies the condition

Im ;(()) J(a, f;2)| < V(n,a,N), )
where V(n, a, A) = v(to), with v given by (7) and to is the root of the equation:
4t**sin Aw 4 an(A + 1)t? cos %{ + an(A — 1) cos :\; =0 (10)

then f € S*[)].

Proof. From (7) we deduce:
o — A2 [an(/\ -1)b + an(A+ l)bt2 +4abt)‘+1]

2 2
and the equation v'(t) = 0 becomes (10).
Hence
V(n,a,A) =v(to) = mléw(t)
and we deduce that the strip [v| < V(n, @, A) lies in h(U). Therefore (9) implies

2f'(2)
f(2)

J(a, f;z) < h(z)
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and Corollary 2 follows from Thereom 2. 0

Corollary 3. Let0<A<1,n>1,a>0.
If f € A, with —f%l #0, z € U, satisfies the condition:

2f'(2) ]
Re J(o, f;2) > U(n,a, A 11
(L s(a 0] > Uiaa )
where U(n, a, A) = u(tg), with u given by (7) and 1, is the root of the equation:
4t*+! cos Aw — na( + 1)t% cos %7[ —na(A— 1)sin );—" =0 (12)

then f € S*[)].

Proof. From (7) we deduce:

ana(A-1) ane(A+1)
2 2

and the equation v/(t) = 0 becomes (10).

u' = xr2 [— 2 4+ 2(6% — az)t""’l]

Hence
U(n,X) = u(te) = IPZagcu(t)
and we deduce that the half-plane {w : Re w > U(n,a, )} lies in h(U). Therefore

(11) implies

Zf,(z) a,f;z z
f(z) J( )f’ )*h()

and Corollary 3 follows from Theorem 2. O

4. Examples
1) fwelet n=1,a =3, A= 1, then from (6) we deduce

11 T 1
do (1,5,-2-) = Z+arctg (l-l-gm) = 1.7027...

and by Corollary 1 we have the following result:
If f € A, with £2 £ 0, 2 € U and:

o[ (i) <o

then f € S* [%], i.e.
z2f'(z
f(2)

arg

) T
<4.
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2) f welet n =2, a =1, A= 3, then from (6) we deduce

11 T V2
do (2,-2-,5)—z-+arctg <1+§—§-) =1.863...

and by Corollary 1 we have the following result:
If f € Ay, with L& £ 0, 2 € U and:

zf'(z) zf'.(z) zf"(z)
la’g e (f(z) T

+1)”< 1.863...

then f € S* [-;-], i.e.

HHweletn=2a= %, A= %, then from (6) we deduce

12\ = 2458 .3
¢0 (2, 5, g) = § + arctg —'g-%:-'—'-%—- =2.2725...
and by Corollary 1 we have the following result:

If f € Ay, with L& £ 0, 2 € U and:

zf'(z) (Zf'(z) zf"(z) )”
ar + 1 < 2.2725...
* T T T
then f € S* [2] ie.
zf'(z)| =
argT(z)— < 3
4) If welet n =2, a = 1, A= %, then from (6) we deduce
11\ = 1+ 2% _
¢0 (2, 5, 5) = 'é‘ + al'Ctg m =1.2792...

and by Corollary 1 we have the following result:
If f € Ag, with £2) £ 0, 2 € U and

w19 (04 580 ).

then f € S* [3] i.e.
z2f'(2)
“"g 1(2)

5) f welet n =2, @ = 1, A = 1, then equation (10) becomes:

<7|'
6.

16t% +3vV2t2 -2 =0
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which has the root ¢ = 0.1846... Hence by Corollary 2 we deduce the following

result:
If f € Ay, with £2) £ 0, 2 € U and:

i [65 (75 7+ <0

then f € * [4].

6) If we let n = 2, @ = 1, A = 1, then equation (12) becomes: 3t* —1 =0
and from Corollary 3 we deduce the following result:

If f € Ay, with £2) £0, 2 € U, and:

L [e0G) (20 | 2P
Re 70 (f(z) )

+ 1)” > —0.610...
then f € S* [1].
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ON THE UNIVALENCE OF AN INTEGRAL OPERATOR

VIRGIL PESCAR

Abstract. In this paper we investigate the conditions of univalence for
vy
the analicity and univalence in the unit disc of the integral [ [M] du.

u

1. INTRODUCTION

Let A be the class of analytic functions f in the unit disc U = {z € C; |z| < 1},
f(0) = f/(0) — 1 =0 and S be subclass of univalent functions in the class A.

Kim and Merkes [3] investigated the univalence of the integral [; [ﬂfﬁl]7 dé.
THEOREM A [3]. If the function f belongs to the class S then for any complex

number v, |7| < % the function

isin S.
2. PRELIMINARIES

We will need the following theorem and lemma for proving our main result.
THEOREM B [1].If the function f is regular in the unit disc, f(z) = z+az2%+...

and

- |2

for all z € U, then the function f is univalent in U.

LEMMA SCHWARZ [2]. If the function g is regular in U, g(0) = 0 and [g(2)]| < 1

<1 ()

for all z € U, then the following inequalities hold

lg(2)] < |21 ®)
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for all z € U, and |¢’(0)] < 1, the equalities (in inequality (3) for z # 0) hold only in
the case g(z) = ez, where |¢| = 1.
3. MAIN RESULT

THEOREM 1. Let v be a complex number and the function A € S, h(z) =
z24a22+ .- If

zh (z) _
i< @
for all z € U and
< 28 )
then the function
[
pe= [ 22 ©

is in S.

Proof. Let us consider the function

z u Y
f(2) =/o [ﬁ(u—)-] du. ()
The function
)= LH ®)

where the constant v satisfies the inequality (5) is regular in U. From (8) and (7) it
follows that

, zh (z)
=[5 -1). ©)
Using (9) and (4) we have

lp(z)| <1 (10)

for all z € U. From (9) we obtain p(O) = 0 and applying Schwarz-Lemma we have

2f"(2)

T <l (11)

I*rl
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for all z € U, and hence, we obtain

zfl/(z)

— 2|2 1,12
(- 1) |25 < bl (1 1)1 (12
— 152 -2 :
Because II:ll?lc (1—12)?) |zl = m,from (12) and (5) we obtain
1
1) 2@ <, 13
(1= 1) || < )
for all z € U. From (13), (7), (6) and Theorem B it follows that F, is in the class
S. O
References

{1] J. Becker, Lownersche Differentialgleichung und quasikonform fortsetzbare schlichte
Funcktionen, J.Reine Angew. Math., 255(1972),23-43.

[2] G. M. Goluzin, Gheometriceskaia teoria funktii Kompleksnogo peremennogo, ed. a Il-a,
Nauka, Moscova, 1966.

[3] Y. J. Kim, E.P.Merkes, On an integral of powers of a spirallike function, Kyungpook
Math. J., Vol. 12, No. 2, December 1972,249-253.

” TRANSILVANIA® UNIVERSITY OF BRA§OV, FACULTY OF SCIENCE, DEPARTMENT
OF MATHEMATICS, 2200 BRASOV, ROMANIA

97



STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLIII, Number 4, December 1998

ON AN INTEGRAL OPERATOR

VIRGIL PESCAR

Abstract. In this paper we investigate the conditions of univalence for
v
the analicity and univalence in the unit disc of the integral [’ [9-(-'9-] du.

u

1. INTRODUCTION

Let A be the class of the functions f which are analytic in the unit disc
U={z€C;lz| <1} and f(0) = f/(0)—1=0

We denote by S the class of the function f € A which are univalent in U.

The integral operators which transform the class S into S are prezented in
the theoremes A and B, which follow.
THEOREM A [2]. If the function f belongs to the class S then for any complex

number 7, |y| < § the function

z v
o= [ [E2] o
0
isin S.
THEOREM B[4]. Let o, 3,7 be complex numbers and h(z) = z + a2z +... a

regular and univalent function in U. If

(i) ReB > Rea > 0

and

(ii) lv] < Ee2 for Rea € (0,3)
or

|7l < & for Rea € [1,00).

then the function 4
%4@=PA%“{%?YMF @
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belongs to the class S.

2. PRELIMINARIES

We will need the following theorem and lemma for proving our main result.
THEOREM C [3].Let a be a complex number, Rea > 0 and f(z) = z +az2%2+---
be a regular function in U. If

1-— | zIZRea
Rea

z f/l ( Z)
f'(2)
for all z € U, then for any complex number 3, Ref8 > Rea the function

<1 (3)

1
B

Fate) = [ [ 0wy @)
is in the class S.

LEMMA SCHWARZ [1]. If the function g is regular in U, g(0) = 0 and |g(2)] < 1
for all z € U, then the following inequalities hold

lg(2)] < Iz] ()

for all z € U, and |¢’(0)] < 1, the equalities (in inequality (5) for z # 0) hold only in

the case g(z) = ez, where |¢| = 1.

3. MAIN RESULT

THEOREM 1. Let a,v be complex numbers, Rea = a > 0 and the function k € S,
h(z) =z+azz2+.... If

zh (z)
fo < )
for all z € U and
!2011!
2a+1) "3
MR- . ™)

then for any complex number 8, Re § > a the function

Gan(e) =[5 [ (22’ du]% ®)

is in the class S.
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Proof. Let us consider the function
Zh u v
f(z) = f [ﬁ] du. ©)
0 u
The function
12f"(z)
)= ———=
PO =1
where the constant + satisfies the inequality (7) is regular in U. From (10) and (9) it
follows that

(10)

— zh'(z)
= 5 1] (y
Using (11) and (6) we obtain

lp(z)] <1 (12)

for all z € U. From (11) we have p(0) = 0 and applying Schwarz-Lemma we obtain

B < (13
for all z € U, and hence, we have
R s (1)
Because ,‘ﬁ‘,‘_}_’f 1—I:|’“ 2| = (2a+12) gz, Jfrom (14) and (7) we obtain
= lzlza z}f,/;(z;) <1 (15)

for all z € U. From (15), (9) and Theorem C it follows that G 4 is in the class S. O
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ON BROWDER’S FIXED POINT THEOREM

ADRIAN PETRUSEL AND AUREL MUNTEAN

1. Introduction

In 1968 F.E. Browder stated the following fixed point principle in topological

vector spaces:
Theorem 1.1. ([3]) Let X be a Hausdorff topological vector space and K be a
nonempty, compact, conver subset of X. Let F be a multivalued operator such that
F: K — Pey(K) and for each y € K the set F~1(y) := {z € K| y € F(z)} is open.
Then there erists o in K such that o € F(xo).

The key tool in his proof is the compactness of the set K, which is used
to construct a continuous selection for T and, in the same time, permett to apply
Schauder’s fixed point theorem.

The first purpose of this note is to give another proof for this theorem, using
the notion of locally selectionable multivalued operator. The virtue of this proof is
that one use the compactness of K only for the application of Schauder’s theorem.

On the other side, using the property of decomposability as substitute for
convexity in Theorem 1.1, we get the second main result of the paper: a selection
principle for multivalued operators with decomposable values.

We follow the notations and symbols from [7].

2. Main results

The concept of locally selectionable multivalued operator has been introduced
because these set-valued maps do posses continuous selection on paracompact topo-

logical spaces.
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Definition 2.1. Let X,Y be two nonempty sets and F : X — P(Y) a multivalued
operator. Then a singlevalued operator f : X — Y is a selection for F iff f(z) € F(z),
for each z € X.

Definition 2.2. Let X be a nonempty set and F : X — P(X) a multivalued operator.
Then z¢ € X is called a fixed point for F iff zg € F(zo).

The fixed points set for F' will be denoted by FizF.

Definition 2.3. ([1]) Let X,Y be two topological spaces. We say that F : X —
P(Y) is locally selectionable at o € X iff for all yo € F(xo) there exist an open
neighborhood N (z¢) of zo and a continuous map f : N(xg) — Y such that f(xo) = yo
and f(z) € F(z), for all z € N(zo). F is said to be locally selectionable if it is locally
selectionable at every zg € X.

Remark 2.4. ([1]) Any locally selectionable multivalued operator is lower semicontin-
uous.

The main tools in our proof of the Browder fixed point theorem are:
Lemma 2.5. ([1]) Let X,Y be two topological spaces and F : X — P(Y) a multivalued
operator. If F~1(y) is open for each y € Y then F is locally selectionable.

Lemma 2.6 ([1]) Let X be a paracompact space and F be a locally selectionable
operator with nonempty, convez values from X to a Hausdorff topological vector space
Y. Then F has a continuous selection.

The first result of this note is the following:

Theorem 2.7. Let X be a paracompact vector space, K a nonempty, compact, conver
subset of X and F : K — P, (K) a multivalued operator such that for each y € K,
F~(y) is open. Then FizF # 0.

Proof. From Lemma 2.5, F is locally selectionable. Lemma 2.6 implies the existence
of a continuous selection f : K — K of F. A simple application of the Schauder’s
fixed point theorem concludes the proof. O

For the second part of the paper, consider (7.4, #) a complete o-finite and
nonatomic measure space and E a Banach space. Let L!(T, E) be the Banach space
of all measurable functions v : T — E which are Bochner u-integrable. We call a

set K C L(T, E) decomposable iff for all u,v € K and each ¢ € A we have that
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uxa + vxm\a € K, where x4 stands for the characteristic function of the set A (see
also [6]).

An userful result is:
Theorem 2.8. ([4]) Let K be a bounded, decomposable set of L'(T, E). Then the
Kuratowski’s index of the set K is the diameter of K.

The second main result of this paper is:
Theorem 2.9. Let E be a Banach space such that L'(T, E) is separable. Let K be
a nonempty, paracompact, decomposable subset of L'(T,E) and F : K — Pye.(K)
be a multivalued operator such that F~(y) is open, for each y € K. Then F has a
continuous selection.
Proof. For each y € K, F~1(y) is an open subset of K. Since K is compact, the open
covering (F~!(y))yex admits a locally finite, open refinement, so K = U F~Y(y;),
yi € K for J C N. Let {¢;}jes be a continuous partition of unityj:l;lbordinate
to (F~1(y;j))jes. Using the same construction as in the proof of Lemma 3.1 from
[7] (see also Proposition 1.1 - Proposition 1.3 in [5]), we get a continuous function
f: K=K, f(z) = Z fi(z)x;(x), where f;(z) € F(x) for each ¢ € K. This function
is a continuous selecft?gn for F. OO
Remark 2.10. A ”decomposable” version of the Browder’s fixed point theorem is an
open problem. It is well known that a compact, decomposable subset of L!(T, E)
consists of only one point (see Theorem 2.8). On the other hand, each closed, de-
composable subset of L!(T, E) has the compact fixed point property (see [2]). The

problem is if there exists a continuous, compact selection for F.
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SOME OBSERVATIONS ON CONFORMAL METRICAL N-LINEAR
CONNECTIONS IN THE BUNDLE OF ACCELERATIONS

MONICA PURCARU

Abstract. In the present paper we treat some special classes of conformal
metrical N-linear connections on E = Osc*M, which preserve the nonlin-
ear connection N. We analyze the role of the torsion d-tensor fields T{o),
S(1) and S(z) in this theory and we study the semi-symmetric conformal

metrical N-linear connections, which preserve the nonlinear connection N.

1. Introduction

The geometry of k-osculator spaces presents not only a special theoretical
interest, but also an applicative one. Motivated by concrete problems in variational
calculation, higher order Lagrange geometry has witnessed a wide acknowledgment
due to the papers {7 — 11] published by Acad.dr.R.Miron and Prof.dr.Gh.Atanasiu.

The various applications of the Lagrange geometry of order k in Physics and
Mechanics are considerable [14].

In the present paper we introduce the conformal metrical d-structure notion
on E = Osc? M, we define the conformal metrical N-linear connection notion (§2), we
analyze the role of the torsion d-tensor fields T{g), S(1) and S(2) in this theory, and we
study the semi-symmetric conformal metrical N-linear cconnections, which preserve
the nonlinear connection N(§3). As to the terminology and notations we use those

from [12], which are essentially based on M.Matsumoto’s book [4].

1991 Mathematics Subject Classification. 53C05.

Key words and phrases. osculator bundle, N-linear connection, conformal metrical structure, torsion.
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2. The notion of conformal metrical N-linear connection

*Let M be a real n-dimensional C*°-differentiable manifold and (Osc?M, w, M)
its 2-osculator bundle, or the bundle of accelerations. The local coordinates on E =
Osc®M are denoted by (z*,y(!),y(2)¥). If N is a nonlinear connection on E, with
the coeflicients N(1)ij» N(2)ij’ then let DT'(N) = (L;k,C(l);k,C(z);k) be an N- linear
connection on E. We consider a metric d-structure on E, defined by a d-tensor field
of the type (0,2), let us say g;;(z*, y1)*, y(®)), symmetric and nondegenerate.

We associate to this d-structure Obata’s operators:
. 1 . . vir 1o )
Q5 = 5(6;6; ~9si9""), Q%7 = 5(6;6j +9:9'"), (2.1)

where (g*/) is the inverse matrix of (g:;).

Obata’s operators have the same properties as ones associated with the
Finsler space [12]. Let Sz(E) be the set of all symmetric d-tensor fields of the type
(0,2) on E. As is easily shown, the relation for a;j, b;; € S2(E) defined by:

aij ~ bi; < Ip(e, ¥V, yD) € F(E) | aij = by, (2.2)
is an equivalent relation on S3(E).

Definition 2.1. [14] The eguivalence class § of Sa(E)/~, to which the metric d-

structure g;; belongs, is called conformal metrical d-structure on E.

Definition 2.2. An N-linear connection DT'(N) = (L;k,C(l);-k, C(z)_;: ) on E, is said
to be compatible with the conformal metrical d-structure §, or a conformal metrical

N-linear connection, if the following relations are verified:

(@)
Gijlk = 2wk 8ij» 9ii | 1= 2M(a)kgij, (@ =1,2), (2.3)

where wy = wi(z,y(V, y?), Majk = ,\(a)k(a:,y(l),y(z)), (a = 1,2) are covariant d-
(@)
vector fields and | and | denote the h-and ve-covariant derivatives (a = 1,2) with

respect to DI'(N).
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Theorem 2.1. [14] The set of all conformal metrical N -linear connections on E,

which preserve the nonlinear connection N, DT'(N) = (L}k, C(l);:k’ C(z);"k) is given by:
. . 0 . .
Lik —Lfk +Q5 X%, Clayik =Claik 55 Yoy (@ =1,2), (2.4)

where ng’ Y(1)Jk’ Y(Z)Jk are arbitrary tensor fields of the type (1,2) and D I‘ (N) =
0
(LJ,‘, 0(1) ko C(z) J,‘) are the coefficients of an arbitrary fized conformal metrical N-

linear connection on E.

3. Some special classes of conformal metrical N-linear connections

We shall try to replace the arbitrary tensor fields X}, 1/(1);k, Y(2);:k in The-
orem 2.1 by the torsion d-tensor fields ) ijk, S(l)‘jk, S(z)‘jk' We put:

('o)ijk = %9“ (-‘ﬂhT(O) hjk - !thT(o)h wt gkhT(o)h jl)’
(3.1)
() ik = 39" @S0y 51 = 9inS(ay" 1k + IS0y 1), (@ =1,2).

Theorem 3.1. Let T(o) ijk, 5(1)i ko S(Z)‘ ik be given alternate d-tensor fields. Then
there exists a unique conformal metrical N -linear connection DI'(N) =

= (Lj.k, C(l);k, C(2);k) with respect to §, having T(o)‘jk' S(l)‘jk’ 5(2)‘jk as the torsion
d-tensor fields. It is given by:

0 0
L =L +T(0)" jk> Clayik =Clayjk +5(a) ik (@=1,2), (3:2)

0 0 0
where DT (N) = (L Yer C(I)Jk’ C(z)]k) is an arbitrary fized conformal metrical N-

linear connection on E.

Theorem 3.2. There erists a unique conformal metrical N -linear connection DI'(N)

on E, whose torsion d-tensor fields Ty, S(a), (@ = 1,2) vanish.
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Definition 3.1. [15] An N-linear connection DT'(N) = (L}, C(l);.k, C(z);’k) is called

semi-symmetric if the torsion d-tensor fields 1"(0)‘jk, S(l)i ko 5(2)‘ jk have the form:

T(o) ijk = 755 (T(o)d% — T(O)k‘s;:)>
i 1 i i (3.3)
Stay ik = =1 (S(@)i%k — S(akd;), (@ = 1,2),

where T(q); = T(O)iji’ S(ay; = S(a)iji’ (a=1,2).
Putting 0; = 755 T(0)5, T = m=1S(@ir Ty s S(ay 'jar (@ = 1,2) given

by (3.1) become:

Tioy' ik = 29450+, Sty ik = 25 T(eyrs (@ =1,2). (3.4)

From Theorem 3.1 we have:

Theorem 3.3. The set of all semi-symmetric conformal metrical N-linear connec-

tions on E, which preserve the nonlinear connection N, DT'(N) =

= (Lj-k,C(l);:k,C(z);k), is given by:
i 0f ir
ij =Lj+ 2ij¢7r;
(3.5)

. o ¢ .
Clayik = Clayik + 2450y (@ =1,2),

0 L
where D T (N) = (L}, C(1)jk» Ciajx) 15 an arbitrary fized conformal metrical N-

{inear connection on E.
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ON THE STABILITY OF THE ALTERNATIVE METHOD

DAMIAN TRIF

Abstract. The stability of the alternative method is investigated. An op-
timization of the volume of computation for the numerical approximation

of a solution of the equation Lu = Nu is also given.

1. Introduction

The stability of the fixed point iteration procedures has been investigated by
A M. Harder and T.L. Hicks [1]:

Definition 1. Let (X,d) be a metric space, T : X — X, zo € X and the iteration
procedure 241 = f(T,z,). If 2z, — p, where p is a fized point of T, let y, € X and
en = A(Yat+1, (T, yn))- If €n = 0 implies y, — p then the iteration procedure f is
T-stable relating to T .

If T is a contraction, a theorem of Ostrowski [1] shows that the iteration

procedure f(T,z,) = Tz, is T-stable:

Theorem 1. Let T : X — X be a contraction on the complete metric space (X,d).
Let p a fized point of T, o € X, Tny1 = T2, n = 0,1,... be. Let y, € X and
én = d(Yn+1,TYn), n=0,1,.... Then

1. d(p, yn+1) < (1 = k)" (en + kd(yn, Yn+1))

2. d(p, ) < dlp, 2 ) + KM d(m0, 1) + 3 ey

3. Yo = p tf and only if e, — 0.

If X is a Banach space, E : Xg — X is a linear operator and N : Xy = X
is a nonlinear operator, let us consider the equation Eu = Nu , v € Xp N XN.
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If E is an invertible operator, this equation is equivalent to u = E-1Nwu, a
fixed point problem for T'= E~IN. If T is a contraction, Theorem 2 applies. If T
is not a contraction or F is not invertible, the equation Fu = Nu is studied by the
alternative (Lyapunov-Schmidt) method. Using an idea of Sanchez [2] it is easy to
conclude that the alternative method is T-stable. An optimization of the volume of
computation for the numerical approximation of the solution of the equation Eu = Nu

by the alternative method is also given.

2. The stability of the alternative method .

Let X be a Banach space, E : Xg — X a linear operator, N : Xy — X a
nonlinear operator and we suppose that
a): there exists a projection P : X — X such that X = R(P) ® R(I — P)
and PE = EP
b): there exists H : R(/ — P) = R(I — P), a linear operator such that
H(I — P)Eu= (I — P)ufor all u € Xg
EH(I - P)Nu= (I — P)Nuforallu € Xn
c¢): all the fixed points of P+ H(I — P)N are in Xg.

Theorem 2. Eu = Nu if and only if
(I-P)u=H(I-P)Nu
P(EPu—Nu)=0
Let D : R(P) — R(P) be a linear, invertible and with bounded inverse

operator. For a,b > 0 we define
C ={(v,w) |v € R(P),|lv - vl < a,w € R(I - P),|jw]| < b}

where vg € R(P) is an approximation of the solution of the equation Eu = Nu.
On C we define ||(v,w)|| = ||v|| + ||w||. Let p € N,u = v + w where (v,w) € C,
w® = w,w' = HI — P)N(v+ w'"!), for i = 1,2,..,p+ 1 and W = wPt!. Let
V =v—D"'P(Ev— N(v+ W)). We define an operator on C by T(v,w) = (V, W).
We remark that in the paper of Sanchez [2], p = 0.
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Theorem 3. If

1. there exists n > 0 such that (v,w) € C implies ||N(v+ w)|| < g

2. H(I — P) is a bounded operator and ||H(I — P)|| < b/n

3. there exists o > 0 such that ||D’1|l o < 1 and if (v1,w), (vz,w) € C then
|D(v1 — v2) — P(Evi — N(v1 + w) — Eva + N(v2 + w))|| < o |jv1 — va]

4. there ezists v > 0 such that (vo,w) € C implies

| D~ P(Evo — N(vo + w))|| <v < (1- | D7} 0)a,
then T applies C into C.
Proof. From (v,w) € C we have (v, w*) € C for all k thus
Wl =lH(I - P)N(v+w)l| <b/n-n=1b

We have also

IV = voll < | D~} ID(v — vo) = P(Ev — N(v+ W)) — P(Evo — N(vo + W))|| <
< | DM ellv = vl + (1= | D7 0)a < a

Theorem 4. If the conditions 1-4 of theorem 4 hold and

5) there erists L > 0 such that if u; = v; + w;, (vi,w;) € C,i = 1,2 then
INu1 — Nug|| < Llus — uel|
6) p=||D|| o+(1+| D~ 1P| L)(8+...487F') < 1, whered = |H(I — P)|| L,

then T s a contraction.
Proof. Let T(v;, w;) = (Vi, W;),i=1,2. We have
W1 = Wall <|[H(I = P)|| L(Jlvr ~ vell + llwf — whl])
But
1w} — wBl < (fos = vall + [~ = w3~ ) I1E (L = PYIL

thus

W1 = Wall < llor = val[ (6 + ..+ 6°F) + 07+ |lwy — wo|
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Consequently,

Vi — V|| + ||Wy — Wal| < [|| DY o + (L + || D~1P|| L)(8 + ... + 67F")] Jlvs — vo]| +
+(1+ || D71 P|| L)8P*+ ||wy = wall < p(llor = vall + [[wr = wal])
Hence T has an unique fixed point (v, w) = (V, W) € C that may be obtained by the

iteration procedure (Vg41, wk+1) = T'(vk, wk).

Theorem 5. If the conditions of the theorems 4,5 hold, then u = V+W is a solution
of the equation Eu = Nu.

Proof. We have w! = W,..,wP = W, that is W = H(I — P)N(V + W). Then
V=V -D"'P(EV — N(V + W)) and consequently, P(EV — N(V + W)) = 0 and

Eu = Nu from theorem 3.

3. The optimization of the numerical computation of the solutions

We approximate the 2r—periodic solutions of the equation

—u”(t) = f(t, u(t))

Let X be the Banach space of 2r—periodic, continuous functions u : IR —

R, |jul]] = sup |u(t)|, f a continuous, 27— periodic function on t, differentiable in
€[0,2n

u, with locally bounded derivative. Let Xg = H2(0,27), Xy = X, Eu = —u”,Nu =
f(')u)'
Ifue X let

[e ]
ag .
5 + kE_l(ak cos kt + by sin kt)
his Fourier series. We define, for m € IN,,

m
_ % .
Ppu= 5 + ,;_l(ak cos kt + by sin kt)

(o]
H(I = Pplu= Z (ak cos kt + by sin kt) /k?
k=m+1
iFrom [3] we have |H (I — Pp,)|| = 0 when m — oco. For an approximation vy € P X

we define the sequence w® = H(I — Pp)N(v+w*™1), w® =0, for s =1,2,...,p+ 1.
If m is sufficiently great then (v,w®) € C if ||v — wl|| < @, v € PpX. The second
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equation P(EPu — Nu) = 0 becomes an equation for the Fourier coefficients of v,
F(c) =0, where ¢ = (ao/2,a1,b1,...am, by).
If the Jacobian J(co) of F in vy is invertible, let D = J(co) and we use a

theorem of Urabe [4]:

Theorem 6. Let us consider the system F(c) = 0,F = (F1,...,F,), ¢ = (¢1,...,¢n)
for n € IN. We suppose that F € C'(2) and that there ezists k € [0,1) and § > 0
such that

1. Qs ={c€PuX|llc—co]| <} CQ
2. |[J(c) = I(co)l| < k/M

3. Mr/(1-k)<$

where M > ||J‘1(co)|| , 7 > ||[F (o)l -

Then the system F(c) = 0 has an unique solution ¢ € Qs and ||c— co|| <
Mr/(1— k).

For a sufficiently great m the conditions of theorems 4,5 are consequences
of the hypothesis of the Urabe’s theorem. Hence the 2w—periodic solution u of the
equation —u"” = f(t,u) is u = V + W, where W is obtained by a fixed point iteration
procedure for Py + H(I — P»)N and V is obtained by the Newton’s algorithm for
the system F(c) = 0 (every step requires the iterations for W).

We consider the following error sources:

a) The computation of the Fourier coefficients (cf. [5]) of w* = H(I —
Pp)N(v+w'™1).

Theorem 7. Ifg(t) isp times continuously differentiable, 2m—periodic and his Fouri-
er series s
ap >
5 + Z(ak cos kt + bx §1n kt)
k=1
then the Fourier coefficients may be approzimated by

2N 1 2N
ar & v Zy(t,-)cos nt; by ~ v Zg(t,-) sin nt;

i=1 1=1
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where t; = (2i — 1)x/(2N),i=1,..,2N and k = 1,..., N — 1 and the approzimation

error is
2n

1/2
20,(N — 1) [2—17; / g(m(t)?dt]

0
where

1 1 1/2
”"(N_l):‘/i[fvzp e ]

(N 1)~ —-p+1/2

b) The truncation of the Fourier series at rank N — 1 (cf. [5]). We have

27 %
<ap(N-1) [% [’ dt]

0

N-
9(t) — 5 - Z (ak cos kt + by sin kt)
k=1

Consequently, if w® is approximated by @* we have
l

llw? — &|| < 2VN —m ap(N—l)[ fN(v+w’"‘)(")(t) dt| (o (m)—o(N)+

I——l

Ll

4oV 1) [ N (4w 02 el

where
1

o (m) = < ) ,lz)
i=m+1

At every step we have an error ¢, < K (N, — 1)7P+1/2 where

27
K= \/2]’2—_1 (1 + 2m> o (m) ransagc li2—lﬂ_-0/N (v+ wS—l)(p) (1) dt]

f Ny<Nfors=1,2,..,85.

Py
2

The whole error for S iterations is
AR A L K
"W 'T’H-ll So—5+ —_ 775 = €0
I<i=5 ,.z:;o' (N; =12
for a computational effort proportional to 2 (Ng + ... + Ns).
Our problem is now to minimize this effort for a given error 9. Let S € IN.

We have to minimize Ny + ... 4+ Ng if

S bo
E - ! = ot~ 1 = As
= U
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By the Lagrange multipliers rule, let

S
1

i=0

We have the system

Ap—3) .
_W/—Z——Ofow—O,l,...,S

s

Z 1

=0 0" (Vi — 1)P—1/2 °

from where )
(0’%%1 — 1) -1

Ny = 3
AT g (e*ﬁ - 1) a3
fori=0,1,...,5. Now we can choose S for which the computing effort is minimum.

As an example, let us consider the equation (cf. [5])
u” =sint —u® ()

Form=1,p=2,6 =04, Ng =4, Ny =4, Ny =5, N3 =7, Ny = 10, N5 = 14,
Ng = 20 and at every step the fixed point W was obtained by 64 evaluations of
Nu = sinu — u® (instead of 120 evaluations if at every step we choose N = 20, for

the same precision).
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