UNIVERSITATIS
BABES-BOLYAI




COMITETUL DE REDACTIE AL SERIEI MATHEMATICA:

REDACTOR COORDONATOR: Prof. dr. Lecon TAMBULEA

MEMBRI:

Prof. dr. Dorin ANDRICA

Prof. dr. Wolfgang BRECKNER
Prof. dr. Gheorghe COMAN
Prof. dr. Petru MOCANU

Prof. dr. Anton MURESAN
Prof. dr. Vasile POP

Prof. dr. IToan PURDEA

Prof. dr. Ioan A. RUS

Prof. dr. Vasile URECHE

Conf. dr. Csaba VARGA

SECRETAR DE REDACTIE: Lect. dr. Paul BLAGA



TavYU
/g\_(@ecn 37
/S G1111-NAPOGA

~

1998

Anul XLIII /

UNIVERSITATIS “BABES-BOLYAT”

MATHEMATICA
2 .

Redactia: 3400 Cluj-Napoca, str. M. Kogalniceanu nr. 1 ¢ Telefon: 194315

SUMAR — CONTENTS - SOMMAIRE

»/ S.CoBzAg and C.MUSTATA, Extension of Bilinear Functionals and Best Aproximation
in 2-Normed Spaces ¢ Prelungirea functionalelor biliniare gi cea mai buna aproxi-
mare in spatii binormate ................... e e 1
v R. Covacl, On Some o-Schunck Classes ¢ Asupra unor clase o-Schunck ............ 15
J DoMOKOs ANDRAS, On the Continuity and Differentiability of .the Implicit Functions
for Generalized Equatioﬁs o Asupra continuititii gi diferentiabilitatii functiilor
implicite pentru ecuatii generalizate .................. EXREE R EETTTITTRI, 23
v 1. GANscX, GH. COMAN and L. TAMBULEA, Rational Bézier Curves and Surfaces with
Independent Coordinate Weights e Curbe gi suprafete Bézier rationale cu ponderi
de coordonate independente ........ ... ..ottt eeeeean 29
J/ J. KoLUMBAN and A. S006s, Invariant Sets in Menger Spaces  Multimi invariante in
"spatii Menger ............coiiiiiiiaia.. DU 39
\/’ P.T. Mocanu and GH.ORoOs, Sufficient Conditions for Starlikeness II e Conditii sufi-
ciente pentru stelaritate IL.. ... . ..ottt it iaiiaaeens 49
ROBERT PALLU DE LA BARRIERE, Integration of Vector Functions with Respect to Vec-
tor Measures e Integrarea functiilor vectoriale in raport cu maisuri vectoriale 55

V. PESCAR, About an Integral Operator Preserving the Univalence e Asupra unui ope-

! BBLIOTEC: £+ iLTATII L
DE By .ok
c’6 k I)nn




rator integral care pastreazd univalenta ..............coiiiiiiiiiiiiiiina, 95
C. Suciu, On the Spline Approximating Methods for Second Order Systems of Differ-
ential Equations e Asupra metodelor spline de aproximare pentru sisteme de
ecuatii diferentiale de ordinul al doilea ......... ..ot 99
/ F. SzenkoviTs and V. M10¢, The Schwarzschild-Type Two-Body Problem: A Topolo-
gical View e Problema celor doud corpuri de tip Schwarzschild: o abordare

£ 0203 (oY £ T 111



STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLIII, Number 2, June 1998

EXTENSION OF BILINEAR FUNCTIONALS AND BEST
APPROXIMATION IN 2-NORMED SPACES

S. COBZAS AND C. MUSTATA

Abstract. The paper investigates the relations between the extension prop-
erties of bounded bilinear functionals and the approximation properties in 2-

normed spaces.

1. Introduction

In the sixties S.Géhler ([8] and [9]) introduced and studied the basic properties
of 2-metric and 2-normed spaces. Since then these topics have been intensively studied
and deve loped.The references given at the end of this paper are far from being complete,
containing only the papers related to the problems treated here.

The aim of the present paper is to study the relations between the extension
properties of bounded bilinear functionals and the approximation properties in 2-normed
spaces. In the case of bounded linear functionals on normed linear spaces the problem
was first considered by R.R.Phelps {19]. For other related results see I. Singer’s book
[20].

In the case of Banach spaces of Lipschitz functions similar results were obtained
by the authors (see {1], [18]). The case of bilinear operators on 2-normed spaces has been
considered in [2].

Throughout this paper all the linear spaces will be considered over the field
K=R or K = C. A 2-norm on a linear space X of algebraic dimension at least 2 , is a
functional ||-,-[| : X x X — [0, 00) verifying the axioms:

BN 1) |jz,y|| = 0 if and only if z,y are linearly dependent,
BN 2) ||z, yll = lly, |,
BN 8) Az, yll = 1Al - llz, 1l
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S. COBZAS AND C. MUSTATA

BN 4) |z +y, 2|l < |, 2ll + lly, 2|,
for all z,y,2 € X and X € K (see [9])

If ||-,-]| is a 2-norm on the linear space X then the function p : X® — [0,00)
defined by p(z,y,2) = ||z — 2,y — 2|, ¢,y,2 € X is a 2-metric on X, in the sense of
S.Gahler [8], which is translation invariant, i.e. p(z + a,y + @,z + a) = p(z,y, z) for all
z,Y,2 € X and a fixed element a € X.

For a fixed b € X, the function py (z) = ||, b||, € X, is a seminorm on X and
the family P = {p; : b € X} of seminorms generates a locally convex topology on X,
called the natural topology induced by the 2-norm |-, ||

A pair (X, ||-, -||]) where X is a linear spz;ce and ||, || a 2-norm an X will be called

a 2-normed space.

Remark 1. S.Gahler [10] considered only 2-normed space over the field R of real numbers,

but his definition automatically extends to the complex scalars too.
2. Continuity and boundedness properties for bilinear functionals.

Let (X,||-,-]l) be a 2-normed space and X;, X2 two subspaces of X. A 2-
functional is an application f : X; x X; — K. The 2-functional f is called bilinear
if:

BL1) f(z+2,y+y)=f(2,y)+ f(z,y) + f(«,9) + f(z',¥)
BL 2) f(az, By) = aBf (z,y),
for all (z,y),(«’',¥') in X; x X5 and all ¢, € K.

A 2-functional f : X; x X; — K is called bounded if there exists a real number

L > 0 (called a Lipschitz constant for f) such that

|f (z,9)| < Lilz, yll, (2.)

for all (z,y) € X; x X,.
This notion of boundedness was introduced by A.G.White Jr. [20] whj}leﬁned

also the norm of a bounded bilinear functional by:
|| fll =inf {L > 0 : L is a Lipschitz constant for f} (2.2)
Some immediate consequences of the definition are given in:

Proposition 2.1. (A.G.White Jr. [21].) Let (X,||,-||) be a 2-normed space, X1, X
two linear subspaces of X and f : X; x X2 — K a bounded bilinear functional. Then
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a) f (z,y) =0, for any pair (z,y) € X; X X, of linear dependent elements;
b) f (y,z) = — f (z,y) ,i.e. f is an alternate bilinear functional;
¢) The norm ||f|| of f can be calculated also by the formulae:

Il = sup{|f (z,9) | : (z,y) € X1 x Xa,|lz,yl < 1} (2.3)
= sup{|f (z,9) | : (z,y) € X1 X X, ||z, 9|l = 1}
- Sup{!f (m’y) I/"x) y" : (ZL‘, y) € Xl X Xz,"f, y“ > 0}‘

A.G.White Jr. [21] defined a kind of continuity for 2-functionals, called subse-
quently 2-continuity by S.Gahler [11].

A 2-functional f : X; x X3 — K, where X;, X, are linear subspaces of a 2-
normed space (X, ||,-||) is called 2-continuous at (zo,y0) € X1 X Xo if for every e > 0

there exists 6 > 0 such that |f (z,y) — f (%0, %0) | < € whenever

® e,y = voll <8 and |}z ~ 2,1| < 6, or 0
(#) llzo — z,yll < 6 and ||zo,y0 — yl| < &
A 2-functional f is called 2-continuous on X; x X if it is 2-continuous at every
point (z,y) € X; X Xo.

An example of 2-continuous 2-functional is given by:

Proposition 2.2. (A.G.White Jr. [21, Th 2.2]) If (X,]|-,-||) is a 2-normed space then

the 2-functional ||-,-|| is 2-continuous on Xx\\

It turns out that for bilinear functionals, boundedness and 2-continuity are equiv-

alent and 2-continuity at (0,0) implies 2-continuity on whole X; x X5 :

Theorem 2.3. (A.G.White Jr. [21, Theorems 2.3 and 2.4]) a) A bilinear functional
f: X1 x Xo = K is 2-continuous on X; x X, if and only if it is bounded;
b) A bilinear functional f : X; x Xo = K which is 2-continuous at (0,0) is

continuous on X; X Xs.

S.Gahler [11] remarked that 2-continuity of a 2-functional f on X x X and
its continuity with respect to the product topology on X x X are different notions.
By proposition 2.2 a 2-norm is a 2-continuous functional on X x X, but S.Gahler [11]
exhibited an example of a 2-norm which is not continuous on X x X (with respect to the
product topology) and gave conditions ensuring the continuity of a 2-norm on X x X.

3
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There are also examples of 2-functionals which are continuous on X x X with respect to

the product topology but are not 2-continuous (see also S.Géhler [11]).

3. Extension theorems for bounded bilinear

functionals.

Let (X,]|-,-]|) be a 2-normed space, X1, X2 two linear subspaces of X and f :
X1 x Xy = K a bounded bilinear functional. The extension problem for f consists in
finding a bounded bilinear functional F : X x X — K such that

z) F(m7y) = f(zay)’ for a:u (z,y) € X1 x Xa,
@) |Fl| = lI£1l-
We agree to call such an F' a norm preserving extension or a Hahn-Banach

extension of f. As it was remarked by S.Géahler [11], p.345 Korollar zu S.5 und S.6, the

norm preserving extension is not always possible. Some Hahn-Banach and Hahn type

(3.1)

extension theorems for subspaces of the form Y x [b], where Y is a linear subspace of X,
b € X and [b] denotes the subspace of X spanned by b, were proved in the case of real
2-normed spaces by A.G.White Jr. [21], S.Mabizela [17] and L.Frani¢ [7].

In the following we shall show that all these extension results can be derived
directly from the classical Hahn-Banach theorem. This approach allows to consider
simultaneously both the cases of real and complex scalars.

Our methods of proofs rely upon slight extensions of Hahn-Banach and Hahn
theorems from normed to seminormed spaces. ‘

In what follows (X, p) will denote a seminormed space (over the field K = Ror
C), with p a nontrivial seminorm on X (i.e. p#0). It is well known that a linear
functional z* is continuous on X if and only if it is bounded (or Lipschitz) on X, i.e.

there exists a number L > 0 such that
lz* ()| < L-p(z), for all z € X. (3.2)
A number L > 0 verifying (3.2) is called a Lipschitz constant for z*.

Proposition 3.1. Let (X,p) be a seminormed space, X* its conjugate space and let
¢: X* — [0,00) be defined by

q(z*) =sup{|z” (z)|: z € X, p(z) < 1} (3.3)
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Then
a) |z* (2)| < q(z*) -p(2), forallz € X;
b) q(z*) = inf{L > 0: L is a Lipschitz constant for z*};
c¢) The functional q is a norm on X* and (X*,q) is a Banach space.

Proof. a) Since z* € X* there exists L > 0 such that (3.2) holds. Now, if z € X is such
that p (z) = 0 then z* (z) = 0 too, and the inequality a) is trivially verified. If p(z) >0
then p (;(13 . :z:) =1 so that |z* (Rlﬂ . a:) | < g¢(z*), which is equivalent to a).

b) If L > 0 verifies (3.2) then |z* (z) | < L, for all z € X with p(z) < 1, implying
g(z*) < L. Since L > 0 is an arbitrary Lipschitz constant it follows

q(z*) <inf{L > 0: L is a Lipschitz constant for z*}.
Because ¢ (z*) is a Lipschitz constant for z* it follows that
¢(=") =min{L > 0: L is a Lipschitz constant for z*}

implying the equality b).
¢) It is immediate from (3.3) that ¢ is a seminorm on X*. If z* # 0 and zp € X

is such that z* (zp) # 0 then by a)
0 < |z* (z0) | < q(z*) - p(z0)

implying ¢ (z*) > 0 and showing that ¢ is a norm on X*.
The proof that (X*, q) is a Banach space is standard and we omit it. O

Theorem 3.2. (Hahn-Banach Theorem). Let (X,p) be a seminormed space (over K =
R or C) with p#0, Y a linear subspace and y* € Y* a continuons linear functional on

Y. Define ¢ (y*) by

a (") =sup{ly* (¥)|:y€Y,p(y) < 1}. (34)

Then there exists a continuous linear functional z* on X such that
~ * — *x d
i) a* ly=y" an (3.5)
i) ¢(z*) = a1 (¥*)

where q (z*) is defined by (3.3).
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Proof. The functional p; : X — [0, 00) defined by p; (z) = q1 (¥*) -p(z),z € X isa

seminorm on X and |z* (y)| < p1 (y) forall y € Y, i.e. y* is dominated by p;. By the

Hahn-Banach Theorem (see e.g. [6] or [14]) there exists z* € X* such that
i) 2t |y=y"

i) |z*(z)|<aq1(¥*) p(z), forall z € X.

(3.6)

By (3.6) ii) and Proposition 3.1 b) we obtain ¢(z*) < ¢1 (¥*). The reverse inequality
follows from
g(z*) =sup{|z* ()| : ¢ € X, p(z) < 1}
2 sup{|z* ()| : y €Y, p(y) < 1}
=a(y")-
a

Hahn’s theorem ([6, Lemma II. 3.12) can be transposed to the seminormed case

too

Theorem 3.3. (Hahn Theorem). Let (X, p) be a seminormed space, Y a linear subspace
of X and zg € X \'Y. Then there exists a functional z* € X* such that

i) z*(z0)=1andz* (Y) = {0}

3.7
i) ¢(z*)=6"
where § = inf{p(zo —y):y € Y}.

Proof. Observe that o € X \ Y implies 6 > 0. Let Z = Y+Kzo and let 2* : Z — K be
defined by z* (y + azg) = a, for y € Y and a € K. Obviously that 2* is linear and, for

a#0,
|z* (y + azo) | =|a| < |o| - 67! -p (o y + 20) =67" - p(y + azo)

Since, for @ = 0, |z* ()| = 0 < 671 - p(y) it follows the continuity of 2* and
q (z*) < 671, where gy (2*) = sup{|z* (2)| : z € Z, p(z) < 1}. Taking a minimizing
sequence (y,) CY (i.e. p(zo — yn) — 9, for n = 00), we obtain
1=2" (20 - yn) = 12" (T0 — yn) | < @1 (z*) - P (T0 — ¥n)

which for n — oo gives ¢ (2*) > 61, implying q; (2*) = 67 1.
Now Theorem 3.3 follows from Theorem 3.2 applied to Z and z*. O
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Remark 2. The functional 2§ € X*, x} = § - z*, verifies the conditions:

i) 2} (7o) = 6 and z} (Y) = {0}

(3.8)
i) q(27) =1

Pass now to the extension theorems for bounded bilinear functionals. The reduc-
tion to Hahn-Banach and Hahn’s theorems for bounded linear functionals on seminormed

linear spaces will be based on the following result:

Proposition 3.4. Let (X, ||-,-||) be a 2-normed space (over K = R or C),Z a subspace
of X, b € X\ {0} and let [b] be the subspace of X spanned by b. Denote by py the

seminorm on Z given by
Dy (Z) = ”zyb“, zZ € Z1

and let qp be its conjugate norm on Z*, in the sense of Proposition 3.1. Then
a) If f : Zx [b] & K is a bounded bilinear functional then the functional
2*: Z = K defined by 2* (z) = f (z,b), z € Z is a continuous linear functional on Z and

o (2°) = | fIl.

b) Conversely, if z* is a bounded linear functional on Z, then the 2-functional
f:Z x [b] & K defined by f(z,ab) = az* (z), for (2,a) € Z x K, is a bounded bilinear
functional and

71l = g5 (2%).

Proof. a) Obviously that, for a given bounded bilinear functional f : Z x [b] = K, the
functional 2* : Z — K defined by z* (z) = f (z,b), z € Z, is a linear functional on Z and

12" ()| = |f (2, 0) | < NIFIl - Nz, bll = [l £1] - s (2)

for all 2 € Z, implying that z* is a continuous linear functional on the seminormed space
(Za pb) and

@ (2*) < |IfIl-
On the other hand

If (z,ab) | = |f (0z,b) | = |2" (@2) | < gv (2*) - P (@2) = @5 (2") - ||z, B| = gb (2*) - [|2, @b
7
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implying that g, (2*) is a Lipschitz constant for f, so that ||f|| < g (2*) and, therefore,
71l = gb (2*) -

b) Suppose now that z* is a given continuous linear functional on the seminormed
space (Z, py) and define f : Zx[b] = K by f (2,ab) = a-2*(2), (2,a) € Zx K. Obviously
that f is a bilinear functional and

|f (z,ab) | = laz* (2) | = |2* (a2) | < @ (2*) - p» (a2) =
=5 (%) - lloz, bl = g» (2*) - ||z, @b,
for all (z,a) € Z x K, showing that f is a bounded bilinear functional and that £l <
a (2%).
Taking into account the fact that py (2) = ||z, b|| we obtain
@ (2*) = sup{|z* (2) | : 2 € Z, l2,bl| 1} = sup{|f (2,5)| : 2 € Z, .l < 1} <
< sup{|f (z,0b) | : (2,0) € Z X K, ||z, ab]| < 1} =||f||
Again the equality || f]| = g5 (2*) holds. O

Now we are in position to prove the promised extension theorem.

Theorem 3.5. (Hahn-Banach Extension Theorem, A.G.White Jr. [21, Th.2.7]) Let
(X, ]l -]) be a 2-normed space (over K = RorC), Y a subspace of X, b € X and let [b]
be the subspace of X spanned by b. If f : Y x [b] » K is a bounded bilinear functional
then there exists a bounded bilinear functional F : X x [b] =+ K such that

i) Flyxp=f, and
a) |\FIl =\l

Proof. Let pp : X — [0,00) be the seminorm defined by py (z) = ||z,b]|, z € X, and let

(3.9)

y*: Y = K be given by y* (y) = f (y,b). Then by Proposition 3.4 a), y* is a continuous
linear functional onY and g; (¥*) = || f||, where

q (") =sup{ly* (¥)|:y €Y, o () < 1}. (3.10)

By Theorem 3.2 there exists a bounded linear functional z* € X* such that

z* |ly=y"* and ¢ (z*) = ¢ (y*) ,where

gy (z*) = sup{|z* (z)| : z € X,pp (z) < 1}. (3.11)
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Defining now F : X x [b] = K by F(z,ab) = a-z*(z), for (z,a) € X x K
and applying Proposition 3.4 b) it follows that the bilinear functional F fulfils all the

requierements of the Theorem. (]
The analogue of Hahn’s'theorem for bilinear functionals is:

Theorem 3.6. (S.Mabizela [17, Th.2]) Let (X, ||-,-||) be a 2-normed space over K =R
orC,Y a linear subspace of X, b € X and [b] the subspace of X spanned by b. If zp € X
is such that & > 0, where

§ = inf{Jlzo — y,bll : y € Y} (3.12)
then there exists a bounded bilinear functional F : X x [b] =& K such that

i) F(z0,b) =1, F(y,b=0) forally €Y, and

(3.13)
i) ||F|| = =1

Proof. Consider again the seminormed space (X, py), where py (z) = ||z,b||,z € X, and

apply Theorem 3.3 to obtain a bounded linear functional z* on X such that

i) *(zo) =1 and z* (Y) = {0}, and (3.14)
i) g (a*) =671,-
where ¢ (2*) is given by (3.11).
Defining F : X x [} &+ K by F(z,ab) = a-z*(z), (z,a) € X x K, and
applying Proposition 3.4 b), it follows that the bounded bilinear functional F' verifies the
conditions (3.13) of the Theorem. a

Remark 3. S.Mabizela [17, Th.2] requieres for zo and b to be linearly independent. Ob-
serve that if zg, b are linearly dependent then, by the axiom
BN 1) in Section 1, ||zo,b]| = 0 and a fortiori § = 0, because

0 <6 <|lzo— 0,8l = [|zo, bl =0

Therefore the hypothesis § > 0 forces zy and b to be linearly independent and zo € X\Y,

where Y denotes the closure of Y in the seminormed space (X, ps).

An immediate consequence of Theorem 3.6 is the following result, known also as

Hahn’s Theorem:
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Theorem 3.7. If (X, ||,-||) is a 2-normed space and zo,b are linearly independent el-
ements in X then there exists a bounded bilinear functional F : X x [b] = K such
that:

') F(x07b) = ”170, b”a aﬂd

(3.15)
i) |F|| = 1.

Proof. Putting Y = {0} in Theorem 3.6 and taking into account the linear independence
of o and b, one obtains & = ||zg, b|| > 0.

By Theorem 3.6, it follows the existence of a bounded bilinear functional G :
X x [b] = K such that G (zo,b) = 1 and ||G|| = §7'. Then F = § - G satisfies the
conditions (3.15) of the theorem. O

4. Unique extension of bounded bilinear functionals and unique best approx-

imation

For a 2-normed space (X, ||-,-||), a subspace Y of X and b € X denote by Y,," the
linear space of all bounded bilinear functionals on Y x [b]. Equipped with the norm (2.2),
Ybu is a Banach space (see A.G.White Jr.[20]) The Banach space Xg is defined similarly.

For f € Y,,” denote by E (f) the set of all norm-preserving extensions of f to
X x [b].ie. '

E(f) = {F € X} : F lyxy= f and||F|| = |I£lI} (4.1)

By Theorem 3.5, E(f) # ¢ and E(f) is a convex subset of the unit sphere
S (0,1Ifl) = {G € X} : |G| = || f|I}. Indeed, for F1,F; € E(f) and A € [0, 1],

MR+ A= F) lyxp=f
and
ARy + (1 = z) Bof| < AlE)| + (L= M) |EF= M+ (@ = N LI = 1A

Denoting G = AF} + (1 — A) F; it follows G |y x[pj= f and

10
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Gl = sup{|G (z,ab) | : (,0) € X x K, ||z, 0b]| <1} >
2 sup{|G (y,ad)|: (y,0) € Y x K, ||y, ab]| < 1} =||f|]

For a subspace Y of a 2-normed space (X, ||-,-||) let
Yt ={GeX}!:G¥ x[]) = {0}} (4.2)

be the annihilator of ¥ in X}, ‘
For a nonvoid subset Z of X} the distance of an element F € X, g to Z is defined
by
d(F,Z) =inf{||F - G| : G € Z}. (4.3)

An element Gy € Z such that ||F — Gy|| = d(F, Z) is called an element of best
approzimation (or a nearest point) for F in Z.

Let
Pz(Fy={G € Z:||F-G||=d(F 2)} (4.4)

denote the set of all elements of best approximation for F' in Z. The set Z is called
proziminal if Pz (F)#@Qforall F € X,',' , Chebyshev provided Pz (F) i8 a singleton for all
F € X} and semi-Chebyshev if cardPz (F) < 1, for all F € X

A subspace of the form Yl of Xf is always proximinal and we have simple

formulae for the distance of an element F € X g to Yb‘L and for the set of nearest points.

-

Theorem 4.1. If (X,||-,-||) is a 2-normed space, Y a subspace of X, b€ X and F € Xg

then
d(FY) =IF lyxpy | (4.5)
Moreover, Y- is a proximinal subspace of X} and
Pys (F)=F~E(F |yxp) = {F~H:H€E(F lyxp)} (4.6)
Proof. Since (F — G) |y x51= F |y (e}, for any G € Yt it follows
L Jy xp Il = I(F = G) lyxm I| LI F =Gl
so that

IF lyxp Il < d(F, Y1)
11
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To prove the reverse inequality observe that f = F |y, ;€ Yb“. Now if H is a norm-
preserving extension of f to X x [b] then F — H € Y;* and

IF lyxg I| = |1H| = IF = (F - H)|| > d (F, %),

proving the formula (4.5).
For H € E(F |yxp)) we have F — H € Y;* and ||[F — (F- H)|| = ||H| =
IIF |y e | = @ (F,Y;') , showing that F — H is a nearest point to F in Y.
Conversely, if G is a nearest point to F in Y- then (F ~G) |yxp= F lyxp
and, denoting H = F — @G, it follows G = F — H and

|H|| = IF - G|l = & (F,%") = IIF ly g |

showing that H is a norm preserving extension for F' |y ) - The equality (4.6) is proved
and since, by Theorem 3.5, E (F lyX[,,]) #0,forall F e X g , it follows the proximinality
of the subspace ¥;* in X}. O

Now we are in position to state and prove the duality theorem relating the
uniqueness of extension and of best approximation. Recall that for normed linear spaces

and bounded linear functionals a similar result was first proved by R.R.Phelps [18].

Theorem 4.2. Let (X,||-,-||) be a 2-normed space, Y a subspace of X and b € X. Then
the following assertions are equivalent:

1% Every f € Y;” has a unique norm preserving extension to X x [b];

2° Y;* is a Chebyshev subspace of the Banach space X}.

Proof. The Theorem is an immediate consequence of the formula (4.6) from Theorem
4.1. O
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ON SOME 0-SCHUNCK CLASSES

RODICA COVACI

Abstract. In this paper, Ore’s generalized theorems given in [4] are used to
study some special o-Schunck classes. Thus we prove that: 1) the equivalence
of D, A and B properties (given in [7] and [3]) on a 0-Schunck class takes place;
2) the “composite” of two o-Schunck élasses with the D property is in turn a
o-Schunck class with the D property; 3) the class D of all o-Schunck classes
with the D property, ordered by inclusion, forms respect to the operations of

“composite” and intersection a complete lattice.

1. Preliminaries

All groups considered in the paper are finite. We denote by o an arbitrary set of

primes and by o' the complement to o in the set of all primes.

Definition 1.1. a) A class X of groups is a homomorph if X is closed under homomor-
phisms.
b) A group G is primitive if G has a stabilizer, i.e. a maximal subgroup W with

coregW = 1, where
coregW = 3{W9/gxG}.

¢) A homomorph X is a Schunck class if X is primitively closed, i.e. if any group G, all

of whose primitive factor groups are in X, is itself in X.

Definition 1.2. Let X be a class of groups, G a group and H a subgroup of G. We say
that:
a) H is an X-subgroup of G if HxX;
b) H is an X-mazimal subgroup of G if:
(1) HxX;
(2) from H[H*|G,H*xX follows H = H*.

1991 Mathematics Subject Classification. 20D10.

15



RODICA COVACI

c) H is an X-covering subgroup of G if :
(1) HxX;
(2) HVIG, Vo & V,V/VoxX imply V = HV,.

Obviously we have:

Proposition 1.3. Let X be a homomorph, G a group and H a subgroup of G. If H is an

X-covering subgroup of G, then H is X-mazimal in G.
The converse of 1.3. does not hold generally.

Definition 1.4. a) A group G is o-solvable if any chief factor of G is either a solvable
o-group or a o'-group. For o the set of all primes we obtain the notion of “solvable
group”.

b) A class X of groups is said to be o-closed if:
G/On'(G)e X = G eX,

where O7(G) denotes the largest normal n'-subgroup of G. We shall call m-homomorph

a w-closed homomorph and n-Schunck class a w-closed Schunck class.
In our considerations we shall use the following result of R. Baer given in [1]:
Theorem 1.5. A solvable minimal normal subgroup of a group is abelian.

2. Ore’s generalized theorems

In [4] we obtained a generalization on 7-solvable groups of some of Ore’s theorems

given only for solvable groups. In this paper we shall use the following of them:

Theorem 2.1. Let G be a primitive w-solvable group. If G has a minimal normal sub-

group which is a solvable w-group, then G has one and only one minimal normal subgroup.

Theorem 2.2. If G is a primitive w-solvable group and N is a minimal normal subgroup

of G which is a solvable 7-group, then Cg(N) = N.

Theorem 2.3. Let G be a w-solvable group such that:
(i) there is a minimal normal subgroup M of G which is a solvable m-group and
Co(M)=M;
16
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(i) there is a minimal normal subgroup L/M of G/M such that L/M is a n'-group.

Then G is primitive.

Theorem 2.4. If G is a w-solvable group satisfying (i) and (#) from 2.8., then any two
stabilizers W, and W> of G are conjugate in G.

3. Some special 7-Schunck classes

Ore’s generalized theorems are a powerful tool in the formation theory of -
solvable groups. This is proved by [5], which we complete here with new results. We first
give a new proof, based on Ore’s generalized theorems, for the equivalence of D, A and

B properties (given in [7] and [3] ) on a 7-Schunck class.

Definition 3.1. ( [7]; [3] ) Let X be a w-Schunck class. We say that X has the D property
if for any m-solvable group G, every X—sﬁbgroup H of G is contained in an X- covering

subgroup E of G.

Remark 3.2. Definition 3.1. has sense because of the existence theorem of X- covering
subgroups in finite 7-solvable groups ( [5] ), where X is a 7-Schunck class. Furthermore,

any two covering subgroups are conjugate.

Theorem 3.3. Let X be a w-Schunck class. X has the D property if and only if in any

n-solvable group G, every X-mazimal subgroup is an X-covering subgroup.

Proof. Suppose X has the D property. Let G be a w-solvable group and H an X-maximal
subgroup of G. Obviously H € X. Applying the D property we obtain that H C F,
where E is an X-covering subgroup of G. But H is X-maximal in G. It follows that
H = F and so H is an X-covering subgroup of G.

Conversely, suppose that in any m-solvable group G every X-maximal subgroup
is an X-covering subgroup. Let G be a w-solvable group and H an X-subgroup of G. If
H itself is X-maximal in G, we put E = H and E is an X-covering subgroup of G. If H
is not X-maximal in G, let E be an X-maximal subgroup of G such that H C E. Then
H C FE and E is an X-covering subgroup of G. So X has the D property. a

Definition 3.4. ( [7];[3] )
a) The n-Schunck class X has the A property if for any w-solvable group G and any
subgroup H of G with coregH # 1, every X-covering subgroup of H is contained in

an X-covering subgroup of G.
17
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b) Let G be a group and S a subgroup of G. The subgroup S avoids the chief factor
M/N of G if SN M C N. Particularly, if NV is a minimal normal subgroup of G, S
avoids N if SN N =1. .

¢) The w-Schunck class X has the B property if for any n-solvable group G and any
minimal normal subgroup N of G, the existence of an X-covering subgroup of G

which avoids N implies that every X-maximal subgroup of G avoids N.

Theorem 3.5. Let X be a w-Schunck class. The following statements are equivalent:

(i) X has the A property;
(i) X has the D property;
(i) X has the B property.

Proof. A proof of 3.5. is given in [3], using some of R. Baer’s theorems from [1]. We
consider the same proof like in [3] for (2) = (3) and for (3) = (1).

A new proof is given here for (1) = (2). This proof is based on Ore’s generalized
theorems. Let X be a w-Schunck class and suppose that X has the A property. In order
to prove that X has the D property we use 3.3. Let G be a w-solvable group and H an
X- maximal subgroup of G. Let now S be an X-covering subgroup of G (S exists by
3.2.). We shall prove by induction on |G| that H and S are conjugate in G. Two cases

are considered:

1) GeX. Then H=S=G.

2) G ¢ X. Let N be a minimal normal subgroup of G. Applying the induction on G/N,
we deduce that HN = SIN, where g € G. Hence H C SYN. Again two cases are
considered:

a) SYN C G. Applying the induction on S9N, we obtain that H and S9 are conjugate
in S9N. Hence H and S are conjugate in G.

b) SIN = G. It follows that G = (SN)?, hence S9N = G = SN. If coregS # 1, the
inductibn on G/coregS leads to H*coregS = 9, where z € G. Then H* C S. So
H?® = S, which means that H and S are conjugate in G. Let now coregS =1. G
being m-solvable, N is either a solvable n-group or a n’-group. Supposing that N

is a m'-group we have N < On’'(G) and

G/07' (G)p(G/N)/(Ox'(G)/N),

18
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G/N = SN/NpS/S3NxX.

So G/O7'(G) € X, which implies by the w-closure of X that G € X, a contradic-

tion. It follows that IV is a solvable m-group, hence by 1.5., N is abelian. This and
G = SN lead to SN N =1 and S is a maximal subgroup of G. From H € l‘é.nd
G ¢ X we have H C G. Let M be a maximal subgroup of G such that H C M.
Applying the induction on M it follows that H is an X-covering subgroup of M.

We consider now two possibilities:
b.1) coregM # 1. Applying the A property on G, M < G, coregM # 1, the X-

)

(ii)

covering subgroup H of M and the X-covering subgroup S of G, we obtain
H C 5%, where £ € G. Hence H = S®. So H and S are conjugate in G.

b.2) coregM = 1. Then S and M are two stabilizers of G. Hence G is primitive.
We prove now that G satisfies (i) and (ii) from 2.3.:

There is a minimal normal subgroup M of G which is a solvable -
group é.nd Cg(M) = M. Indeed, we put M = N. We proved that N is
a solvable w-group and by 2.2. we have Cg(N) = N.

There is a minimal normal subgroup L/N of G/N such that L/N is a '-
group. Suppose the contrary, i.e. any minimal normal subgroup L/N of
G/N is a solvable m-group. Since N is also a solvable n-group, it follows
that L is a solvable 7-group. By 2.1., N is the only minimal normal
subgroup of G. If L is a minimal normal subgroup of G, obviously follows
that L = N and L/N = 1, in contradiction with L/N minimal normal
subgroup of G/N. If L is not a minimal normal subgroup of G, we have
N C L and again a contradiction is obtained by G = SN C SL =G.
So G satisfies (i) and (ii) from 2.3. Then by 2.4., S and M are conjugate
in G, ie. M = 5%, where z € G. But H C M, hence H C S*, where
S* € X. H being X-maximal, it follows that H = S*.

! 4. The “composite” of two m-Schunck classes

Let us note by D the class of all #-Schunck classes with the D property.
19
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Definition 4.1. ([3] ) If X and Y are two w-Schunck classes, we define the “composite”
(X,Y) as the class of all m-solvable groups G such that G =< S,T >, where S is an X-

covering subgroup of G and T is an Y-covering subgroup of G.'
In [3] we proved the following result:

Theorem 4.2. If X and Y are two n-Schunck classes, then (X,Y) is also a - Schunck

class.

Using Ore’s generalized theorems we can prove now:
Theorem 4.3. If X €D and Y € D, then (X,Y) € D.

Proof. By 4.2, (X,Y) is a m-Schunck class. Let us prove that (X, Y) has the D property

using 3.3. Let G be a m-solvable group and H an (X,Y)-maximal subgroup of G. We

prove by induction on |G| that H is an (X, Y)-covering subgroup of G. We consider two

cases:

1) G € (X,Y). Then H =G is its own (X, Y)-covering subgroup.

2) G ¢ (X,Y). Applying 3.2., there is an (X, Y)-covering subgroup P of G. We shall
prove that H = P, where z € G.

Let N be a minimal normal subgroup of G. By the induction on G/N, if we take
HN/N{X,Y)-maximal in G/N and PN/N(X,Y)-covering subgroup of G/N, we have
HN/N C PSN/N for some g € G. Hence H C PYN. Now two possibilities:
a) PSN C G. Applying the induction on PN, for H (X,Y)-maximal in PN and
P9 an (X, Y)-covering subgroup of PYN, it follows that H = (P’)g' = P99 where
g € PIN. So H = P99 ig an (X, Y)-covering subgroup of G.
b) PIN =G. Then G = PN. Again two cases:
b.1) coregP # 1. By the induction on G/coregP, we have H = P?, where z € G.
So H is an (X, Y)-covering subgroup of G.
b.2) coregP = 1. First N is a solvable w-group, for if we suppose that N is a n’-group,
we have N C O7’'(G) and

G/0r’(G)p(G/N)/(O7'(G)/N);

G/N = PN/NoP/PNN € (X,Y)
20
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imply G/O7'(G) € (X,Y), hence G € (X,Y), a contradiction. By 1.5., N is

abelian. From G = PN and N abelian, we deduce that PN N =1, hence P is

a maximal subgroup of G. So P is a stabilizer of G and G is primitive. Then,

by 2.1., we obtain that N is the only minimal normal subgroup of G and by

2.2. that Cg(N) = N. It is easy to notice that HN = G and so, like for P,

we have HN N =1 and H is a maximal subgroup of G. Now we consider two

possibilities:

b.2.1) coregH # 1. Applying the induction on G/coregH, we obtain that H =
P?® (z € G) is an (X, Y)-covering subgroup of G.

b.2.2) coregH = 1. Then H is a stabilizer of G. Let us notice that we are in the
hypotheses of theorem 2.4. Indeed, (i) is true, because N is a minimal
normal subgroup of G which is a solvable n-group and Cg(N) = N.
Further, (ii) is also true, for if we suppose the contrary, we obtain that
any minimal normal subgroup L/N of G/N is a solvable n-group and in
each of the two cases given below we get a contradiction:

(#): If L is a minimal normal subgroup of G, obviously L = N and
L/N = 1, in contradiction with L/N minimal normal subgroup of
G/N.

(#+#): I L is not a minimal normal subgroup of G, then N C L and
G = HN C HL = G, a contradiction.

So we are in the hypotheses of theorem 2.4. It follows that the two
stabilizers P and H of G are conjugate in G, i.e. there is ¢ € G such that
H = P*. But this means that H is an (X, Y)-covering subgroup of G.

O

An immediate consequence of theorem 4.3. is the following;:

Theorem 4.4. The class D, ordered by inclusion, forms respect to the operations of

“composite” and intersection a complete lattice.
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ON THE CONTINUITY AND DIFFERENTIABILITY OF THE
IMPLICIT FUNCTIONS FOR GENERALIZED EQUATIONS

DOMOKOS ANDRAS

Abstract. The aim of this paper is to show that the existence, continuity and
differentiabilty of the implicit functions can be proved at the same time, using
one sequence of succesive approximations of a mapping of two variables. The
proof from this paper unifies methods used in the study of local stability and
sensitivity of the solutions of integral equations [7], variational inequalities and
nonsmooth generalized equations [1, 2, 5, 6]. We will prove the continuous
differentiability of the solution mapping mapping in a neighborhood of a fixed
parameter Ao.

Throughout this paper X will be a Banach space, Y, Z, A will be normed spaces.
Let X and Ap be open neighborhoods of the fixed points 2o € X and \g € A respectively.
We will study the behaviour of the solutions of the following generalized equation:

0 € f(z,)) + G(z) ,

where f : Xo X Ap — Z is a single-valued mapping and G : Xo — Z is a set-valued
mapping.

This problem includes the variational inequalities from the papers [4, 5, 6]. As-
sumption (i3¢) of Theorem 2 appears in both nonsmooth [1] and smooth [2] cases and
generalize the strong-regularity condition for variational inequalities [4, 5]. Theorem 2
also generalize the classical version of the implicit function theorem [3].

Let M C X, N CY. We will denote by L(X,Y) the set of the linear and con-
tinuous mappings from X to Y, by C(M, N) the set of the continuous mappings from
M to N, by B(M, N) the set of the bounded mappings from M to N, by B(zo,r) the
closed ball with center at z¢ and radius r.

We will apply the following result:
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Theorem 1. {7] Let (S,d) and (U,p) be complete metric spaces and let
A:S xU — S xU be a mapping with the following properties."
(i) A is continuous;
(5) there exist the mappings P : S — S, Q : S x U — U such that A(s,u) =
(P(s),Q(s,u)) and

- P is a contraction,

- there exists | € [0,1) such that

P(Q(8,u1),Q(s,u2)) < Ip(u1,uz)

for alls€ S, uy,us € U.
Then for all (s,u) € S x U the succesive approzimations A™(3,u) converge to a unique

(3,@) € S x U, where 5 is the unique fized point for P.

Theorem 2. Let us suppose that A is finite dimensional and :

(1) 0 € f(zo,X0) + G(z0);

(1) f is continuous Fréchet differentiable on Xy X Ag:

(%) there exist an open neighborhood Zy of 0z and a mapping g : Zo — X which is
continuous differentiable on Zy, g(0) = 0 and for all z € Zy

9(2) € (f(T0,h0) + Vaf(@o, Y0)(- —20) + G()) 7 (2).

Then there exists an open neighborhood Agy of Ao and a mapping T: Ay = Xo.such that z
is continuous differentiable on Ag, z(Xo) = T and
0 € f(z(A), ) + G(z(N)), for all X € Ag.

Proof. We can suppose V f bounded on Xy x Ag, and the mean value inequality
for Fréchet differentiable mappings implies that f is Lipschitz continuous on Xg X Ao.
The same is true for g and let us denote by - the Lipschitz constant of g.

We can suppose zo = 0 and we denote by h(z) = £(0, ) + Vzf(0,X0)(z). The
continuity of Vo f at (0,Ao) implies that h strongly approximates f at (0, o) (6], i. e.
for all € > 0 there exists § = §(¢) > 0 such that

If (@1, A) = R(z1) = (f(22,4) = h(z))|| < ellzy — 22l

for all 21,22 € B(0,4d), A € B()o,9).
Let us choose the constants ¢, 4, 3,7 > 0 such that:
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-g-y< 1
- B(0,6) C Xo, B(X0,0) C Ag;
- h(z) — f(z,\) € Zy, for all z € B(0,8), A € B(X,6);
-8<4, r<é;
-9I£(0,A) = £(0, M)l < (1 =€), for all X € B(Ao, 8);
- IVg (h(z) — £(z, X)) © (V2 f(0,%0) = Vzf(z, ) || < a<1,forallz e B(0,r), A€
B(Xo, 8)-
Let us define the mapping F : B(0,r) x B()o,8) =+ X by

F(z,A) = g(h(z) - f(z, 7)) .
For all 7 € B(0,r), A € B()o, 5) we have
IF (@, = llg(h(z) — £z, Il = llg(h(z) — £(z, X)) — g(h(0) — (0, 2]} <
< () = £z, X) — h(0) + £(0, o))l <
< i) = £z, A) = B(0) + F(O, )] + 7II£(0,20) — F(0,M)]| <
< yer+(l—ve)r =r.
Hence F (B(0,r) x B(Xo,8)) C B(0,r).
We can define now the mapping
P : C(B(),3), B(0,r)) = C(B(Xo,3), B(O,))
by P(z)(A) = F(z(}A), ).

Let z1,z2 € C(B()o, s), B(0,r)). Then

[P(z1) = P(z)ll = sup ||P(z1)(A) — P(z2)(MI =
AEB(Roy8)

0,8

= sup )Ilg (h(z1 (V) = F@1(N), X)) = g (h(z2(N)) — flz2(A), | <

AEB(Ao,S

< ye sup |lzi(A) =z (V)| = vellz1 — 22l -
A€EB(X\o,8)

For z € B(0,r) and X € B()\g, 8) we have
IVeF(2, )]l = Vg (h(z) = f(z,2)) ° (V2 f(0, %) = Vof (@A) || < a.
We define now the mapping

Q : C(B(X,s), B(0,7)) x B(B(),s), L(A, X)) - B(B(),s), L(A, X))
25



DOMOKOS ANDRAS

by
Q1)) = VaF @), ) 0y(Y) + VaF (), A) -
Let y1,y2 € B(B(Xo,3), L(A, X)). Then

Q1) - Ql=z, w2)ll = e oup 1Q(=z,¥1)(N) - Qlz,12)MI| =

B(Xo,8)

= sup [[VoF(z(\),\) o @\ - <
AEB(Xo,8)

< sup ||V F(z(A), Ml - llwr(A) = 2 < allyr — well -
XEB(/\o,a)

Using the continuity of Vf and the compactness of B(\g,s) we deduce that for z €
C(B(Xo,8), B(0,r)), the mappings V. F(z(-),-) and V5F(z(-),-) are uniformly contin-
uous on B(Jg, 8), which implies the continuity of Q(~,y).
We apply now Theorem 1, to the mapping A = (P, @) and hence

A(z,y) = (%,7)

for all z € C(B()\g,8), B(0,7)) and y € B (B()o,s), L(A, X)). Let us choose z = 0,
y =0. Then
z1(A) = PO)(\) = F(0,))
and
v1(A) = Q0,0)(A) = VaF(0,)) = Vzi(A).
If y, = Vz,, then
Znr1(A) = P(zn)(A) = F(zn(A), A)

and
Ynt1(X) = VeF(zn(N), A) 0 Vzn(A) + VaF(za(A), A) = VEnsa(A) .
Hence y, = Vz, for all n € N,
zp, =+ in B(B(),s), B(0,7))

and
Vz, =+ 7 in B(B(),s), L(A, X)) .

This means that Vz, converges uniformly to ¥ in B(Ag, 8), so T is differentiable on
intB()\o, s) and VT = 7. Being the limit of a uniformly convergent sequence of continu-

ous functions, 7 is also continuous.
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RATIONAL BEZIER CURVES AND SURFACES WITH INDEPENDENT
COORDINATE WEIGHTS

IOAN GANSCA, GHEORGHE COMAN, AND LEON TAMBULEA

Abstract. A generalization of the rational Bézier curves and surfaces was
made in [3]. In this paper we make another extending of the possibilities
for the modelling curves and surfaces by attaching different weights to each
coordinate of the control Bézier points. Derivatives of high orders in the
initial and final points of the curves are also deduced. Some figures show the
increased flexibility of these partial or total rational Bézier curves and surfaces
comparative with the polynomial and classical rational corresponding to the
same control Bézier polygon. On observes that we do not always have the

convex hull property (Fig.2) and the affine invariance (Fig.3).

1. Introduction

Rational Bézier curves and surfaces are represented by the equations (1) and (2)

respectively n
rt) =5 2ibni® b0, @)
=0 Zw;bn,i(t)
i=0
and
m n
‘r(u’ v) - Z Z _ 'u:‘jbm,i(u)bn,j(v) bij, (u’ v) € [0’ 1]2’ (2)
07203 " wijbm,i(4)bn,j(v)
=0 j=0

where by, i(t) = (7)(1 —¢)"~¢, i = 0,n, b; € R® and b;; € R? are given points. The
positive real numbers w;, ¢ = 0,n from (1), called shape parameters, are used for the
remodelling curve. So, as it is known, if one increases, say wy, then the curve is pulled
towards the points by and if wy decreases then the contribution of by to the curve is
diminished (see Figures 1 and 2; dotted curves and the dash curves are polynomial
Bézier, corresponding to the same control polygon). We also mention the possibility to

control the curvature and torsion at the points by and b, respectively, [1] p.180. Thus

1991 Mathematics Subject Classification. 68U085, 68U07.
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the flexibility of the rational Bézier curves is its characteristic property comparative with

the polynomial Bézier. Similar remark is true regarding to the rational Bézier surfaces.

2. Partial and Total Coordinates Rational Bézier Curves

In the equation (1) the parameter w; affects the all éoordinates (4, ¥4, 2i) Of
points b; in the same measure. Next we attach to each coordinate (z;,y;,2;) of the
point b; different shape parameters (independent weights) denoted by w?, w! and w}
respectively.

The equétion of a rational Bézier curve with coordinate shape parameters is of

the following form

R(t) = [z(t),y(t), 2(t)])"

where
n zp .
2= Y i@
0N wibn,(t)
n i=0v
w?by, ;(t
= Y alni® )
=0y wlbni(t)
i=0
n zp .
Z(t) = nwi bn,z(t) , te [0’ 1]'
i=0 Z wf bn,i (t)
=0
Consider the folowing sets of positive real numbers
W = {wo,w1,... ,wn}, U={1,1,...,1}
and

wt = {wh,wi,... WS}, t € {z,y,2}.

Definitions.

1. We name W* the set of t-coordinate shape parameters.

2. f W% =W and W¥.= W# = U then we name (3) a partial x-coordinate
rational Bézier curve. Analogously one defines another partial variable Bézier curve.

3. A curve is called x,y-rational Bézier if Wt # U,t € {z,y} and W* =U.

4. A curve which is x,y,z-rational will be called a total coordinates rational
Bézier curve.

Remarks:
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1. ¥ Wt = U, for any t € {z,y, 2z}, then equations (3) represent a polynomial
Bézier curve.

2. ¥W* = WY = W? = W, then (3) are parametric equations of a classical
rational Bézier curve.

In the Figures 1 and 2 are illustrated the effects of the coordinates shape pa-
rameters on a partial rational Bézier curve (continous curve). As witness curves we have
taken the classical rational Bézier - dotted curve and the polynomial Bézier - reare dotted

curve. The points b;,i = 0,5 and the coordinate shape parameters are
bo = (=6,6),b1 = (2,0), b2 = (12,7), b5 = (~5,18), bs = (3,23), b5 = (6,18);

for Figure 1: W* =W = {1,1,9,9,1,1}, W¥ = U;
and for Figure 2: W= =W = {1,1,2,4,1,1}, W¥ = {1,3,1,1,5,1}.

Fig.1 Fig.2.

Remarks:

1. If one increases say w? then the curve is pulled towards the straight line (in
R? to the plane) z = z;, because the contribution of z;, to the function z(t) increases.

2. If W? = W then the partial x-coordinate rational and classical rational Bézier
curves have the same function z(¢). From geometrical point of view these curves have
comon tangent, perpendicular on the Oz axis, as can be seen from the above figures.
Similar remarks are valueable if W¥ =W or W =W.
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Fig.3.

3. In the case of total coordinates rational Bézier curve we have independent
control of the scalar functions z(t),y(t) and z(t).

4. If we make a rotation of the coordinate system then, as it is known, the
polynomial and classical rational Bézier curves are invariant [1], p.232, but a coordinate
rational curve one modifies as we can see in fig.3. Fig.3 results from fig.2 if one does a
rotation of the control polygon with angle a = %.

5. Total rational coodonates Bézier curves do not always have conex hull prop-

erty (see figure 2). Denoting

min z; = a;, 2cm maxz; = by,
i=0,n t=0,n
miny,- = az, max ,‘=b2,
i=0,n i=0,n
min 2; = a3, maxz; = bs,
i=0,n =0,n

and taking in view that z(t),y(t) and 2(¢) in (3) are weighted means, one can say that

this type of curve lies in the interior of parallelepiped
D = {(z,y,2)la1 <z < b,a2 <y < bp,a3 <2 < b3}
Concerning to the derivatives of R(t) we have

RO = [#®(0),5P (0,0 0)] .t € 0,1)
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First we will give the expression of the z(*) (t), proceeding as in [1], p.236. From
(3), denoting

p(t) = bus(t)wiz; and w(t) =) bns(t)wS (4)

=0 i=0
results p(t) = z(t)w(t). Further, using the Leibniz’s formula for the computation of
[z(t)w(t)]® on obtains

k
p®(8) = Z (])a:(""’) ®wD) (t) = 2P B)w(t) + Z (J) *=9) (£)w (¢).

j=0 j=1

From here results the following recursive formula

a:(")(t) (t) [ (")(t) z( ) (k—3) (t)w(j)(t)] . (5)

Taking in view (5) and formula 4.19 from [1] p.44, we have

n—k
p(k) &= k)' Z bk 1(t)Ak(w ;) (6)
and
n—j
W) = o= J), gj b ()7 () )

where the forward difference of order m has the expression

8745 = 3017 (™Y ®

q=0

Taking into account (6),(7) and (8), the formula (5) has the following final form

k) n! 1 nk k—
()= 2o mzbn_k.(t)ﬂ 4 (Pt

g=0

9)
k z(*=3)(¢) n—j
_; ( ) (n ,’l)' ]—ZO bn—],t(t) qz—:o( 1)'7 q( ) t+q]
For the particular cases t = 0 and £ = 1 this formula becomes
2®)(0) = [(n k)l Z( 1% q( )w:“’q—
(10)

()t (o)

j=1 q=0
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and
z(k)(1)= [(n k)' Z( l)k q( ) Wn_k+qTn—k+q—
(:‘;‘)’( ) o (1)
z\*70(1
- (-1)i- q( ) wi_j,
Z() (n— ) q_zo ™
Similar formulas we have for y® (t), y(*)(0), y*) (1), 2¥(¢), 2(¥ (0) and 2(¥ (1).
Special interest present the derivatives R(t) and R(t) for t = 0 and ¢t = 1,
respectively.
From (10) and (11) results
. wf w? wf T
R(0) =n | —Azo, —5 Ayo, — Azo| ,
; wy_y wy_y Wy,
R(l):n 'wﬁ A(Bn__l,——wg Ayn—l, w:l Azn——l
and
7(0) = [£(0),5(0),50)] ", &(1) = [5(1), (1), 2(1)]
where
.. n 2/ 2 wi -
z2(0) = — 4 (n—1)[A% (w§zo) ~ ToA’wE] - 2n—-z-Aa:ko0}
ug wg (13)
Z(1) = —1-1'; (n— 1) [A? (wE_yTn—2) — znA%WE_,] — 2n- ";1 Aw‘,’,_l}
wy wn

Analogous formulas we have for ¥(0),%(1),Z(0) and Z(1).

Remarks.

1. Denoting by m(t) and mr(t) the slopes of the polynomial (or classical ra-
tional) and total coordinates rational Bézier curves, respectively, in virtue of (12), we

have
3 x

my(0) = O'w m(0) and my(l) = ——m(1), (14)

T
Wy

so we can control the slopes in by and b, by means of the coordinate shape parameters.
As a consequence, a total coordinates rational Bézier curve do not always have convex
hull property (see Figure 2).

2. Similar remark is valueable relative to the direction cosines of a total coordi-
nates rational Bézier curve in by and b, respectively.
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3. Partial and Total Coordinates Rational Bézier Surfaces

As for curves, we generalize the rational Bézier surfaces by introduceing inde-
pendent coordinate shape parameters. The vectorial equation of this generalized surfaces
is

T
R(u7v) = [x(u’ v), y(u)v)’ Z(U, 'U)] ’

where

m ’w?'bm,i u)b J\U
:L‘(‘U:,'U)=ZE ™ 1? ( ) ”-7( ) Tij»
i=0 j=0 Z Z Wi; b, i (U)bn, 5 (v)
=0 J'—;O
mon Wb, i(u)bn,;(v)
y(u,v) ___ZZ _ :.7 m J Yijy
i=0 j=0 Z > Wb, i ()b, (v) (15)
=0 j=0
m T 'wfbm,:(")b 3 (v)
z(u’v) — ZZ - n.‘l . Zijy
=0 j=0 Z Z w:jbm,i(u)b":j ('l))

v =0 j=0
(u,v) € [0, 1]x[0, 1).

We denote the matrices of the shape parameters and the coordinate shape pa-

rameters, respectively as follows
W =[w;], U=[1], Wt= [wfj], te{z,y,2},i=0,m, j=0,n.

We observe that if W? = W¥ = W? = U then equations (15) represent a
polynomial Bézier surface and for W* = W¥ = W? = W results a classical rational
Bézier surface. The definition 1-4, from curves, one extends to coordinates rational
Bézier surfaces.

In Figure 4 is represented the polynomial Bézier surface corresponding to the

following control points:

=0 | j=1 j=2 =3 | j=4 =5
i=0 | (-4,2,5) | (-3,-1,6) | (-2,1,5) | (-1,3,5) | (-1,5,6) | (0,6,7)
i=1 | (-2,-2,10) | (-2,-1,8) | (-1,1,7) | (-2,3,8) | (-3,5,4) | (-2,7,3)
i=2| (22,9 | B-1,7) | 2,1,6) | -1,2,7) | (-6,3,9) | (-5,4,10)
i=3| (6-2,2) | (5-1,6) | (4,1,8) | (3,3,9) | (2,5,11) | (3,6,9)
i=4 | (12,-2,4) | (10,-1,4) | (8,2,3) | (7.4,3) | (6,5,1) | (6,6,1)
i=5| (8:3,5) | (9,0,7) |(10,2,6) | (8,4,5) | (10,5,6) | (11,6,7)
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Fig.4.

The coordinate rational surfaces from Fig.5 and Fig.6 have the same control net
as the surface presented in Figure 4 and the coordinate shape parameters (wf;, wl;, wh)

are specified for each figure.

Fig.5.
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[ 1

11 11 1 )\
0111 11 1
We=WV=Uanawe=| + » 0 111
1 11 1101
11111 1
\ 1 12011 1)
Fig.6.
(111 11 1)
011 1 1 1 1
o adwr—wr—| 111 1011
1 11 1 1 01
1 11 11 1
\ 1 110 11 1)

It evidently is that we have more possibilities to control the shape of a coordinate

rational Bézier surface.
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INVARIANT SETS IN MENGER SPACES

J.KOLUMBAN AND A.SO0S

Abstract. The purpose of the paper is to extend some results regarding the
self-similar sets from the case of the ordinary metric spaces to the case of

probabilistic metric spaces, introduced by K. Menger.

1. Introduction

In recent years the interest for sets having non-integer Hausdorff dimension is
growing. There were named fractals by Mandelbrot. The most known fractals are invari-
ant sets with respect to a system of contraction maps, especially the so called self-similar
sets. In a famous work, Hutchinson [4] first studied the invariant sets systematically in
a general framework. He proved among others the following:Let X be a complete metric
space and fi,... ,fm : X = X be contraction maps. Then there exists a unique compact
set K C X such that K = %, fi(K). If the maps f; are similitudes, this invariant set
K is said to be self-similar.

Our aim in this work is to generalize the above result for probabilistic metric
spaces introduced in 1942 by K. Menger [5] who generalized the theory of metric spaces,
to the development of which he already brought a major contribution. He proposed to
replace the distance d(z,y) by a distribution function F; j, whose value F; ,(t), for any
real number ¢, is interpreted as the probability that the distance between z and y is less
than ¢. The theory of probabilistic metric spaces was developed by numerous authors,
as it can be realized upon consulting the list of references in [2], as well as those in [8].

The study of contraction mappings for probability metric spaces was initiated by
V.M.Sehgal [10],[11], H.Sherwood [13],[14], and A.T.Bharucha-Reid [1], [12]. For more
recently papers dealing with generalizations and applications one can consult [2] and [6].

In section 2 we shall recall some fundamental notions from the theory of proba-
bilistic metric spaces and prove some new results on the probabilistic Hausdorff-Pompeiu

metric (Propositions 2.4 and 2.5). In section 3 we prove our main result (Theorem 3.1).

1991 Mathematica Subject Classification. 60A10, 28A78, 28A80.
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2. Preliminaries

Let R denote the set of real numbers and R, := {z € R: z > 0}. A mapping
F :R— [0,1] is called a distribution function if it is non-decreasing, left continuous
with inf FF = 0. By A we shall denote the set of all distribution functions F. We set
At :={F € A: F(0) = 0}.

For a mapping F : X x X = At and z,y € X we shall denote F(z,y) by F;y,
and the value of F; 4, at t € R by F; ,(t), respectively. The ordered pair (X,F) is a
probabilistic metric space if X is a nonempty set and F : X x X — A¥ is a mapping
satisfying the following conditions: )

1) Fpy(t) = Fy(t) forall z,y € X and t € R;

2) F;4(t) =1, for every t > 0, if and only if z = y;

3) if Fz 4(s) =1 and Fy ,(t) =1 then F; (s +1¢) =1.

A mapping T : [0, 1] x [0,1] — [0, 1] is called a t-norm if the following conditions
are satisfied:

4) T'(a,1) = a for every a € [0, 1];

5) T'(a,b) = T'(b,a) for every a,b € [0,1]

6) if @ > c and b > d then T(a,b) > T'(c,d);

7) T(a,T(b,c)) = T(T(a,b),c) for every a,b,c € [0,1].

We list here the simplest:

Ti(a,b) = maz{a +b— 1,0},

T2(a,b) = ab,

Ts(a,b) = Min(a,db) = min{a,b},

A Menger space is a triplet (X, F,T), where (X,F) is a probabilistic metric
space, T is a t-norm, and

8) Fry(s +t) > T(Fy,.(8), Fyy(t)) for all z,y,z € X and 8,2 € Ry.

The (¢, €)-topology in a Menger space was introduced in 1960 by B. Schweizer
and A. Sklar [7]. The base for the neighbourhoods of an element z € X is given by

{Uz(t,e) C X : > 0,€ €]0,1[},
where

Uz(t,e) ={y € X : F; 4(t) > 1—¢}.
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If t-norm T satisfies the condition
sup{T(¢,t): t€[0,1[} =1,

then the (t,€) -topology is metrizable (see [9]).

In 1966, V.M. Sehgal [10] introduced the notion of a contraction mapping in
probabilistic metric spaces. The mapping f : X — X is said to be a contraction if there
exists a r €]0, 1] such that

Fi(z).f(v) (rt) > Fa,y(t)
for every z,y € X and t € R;.
For example, if (X, d) is a metric space and G € At, G /£H, in [7] one defines
t .
F-‘B.ll(t) - G(d(z, y)) ’lf T /‘{:y7
and
Fry(t)=H() ifz=y,

where the distribution function H is defined by H(t) =1if¢ > 0, and H(t) =0if ¢t < 0.
If f: X — X is a contraction with ratio r, then it is a contraction in Sehgal sence with

the same ratio. Indeed, we have

Fyta10(rt) = G g7y f(y))) > Glrgi) if 1(®) A1) and s Ay,

Ft(a), 1) (rt) = G(5—=) 2 H(t) if = fy and f(z) = f(y),

d( z,y)
Fi(a).p()(rt) = H(t) = Foy(8) if z=y.
A sequence (Tp)nen in X is said to be fundamental if

hm E z.(t)=1

n,Mm—00
for all £ > 0. The element z € X is called limst of the sequence, and we write lim,_yo0 Zn =
T Or T, = z, if limy 00 Fy 2, (t) = 1 for all ¢ > 0. A probabilistic metric (Menger) space
is said to be complete if every fundamental sequence in that space is convergent. If

(X,d) is a metric space, then the metric d induces a mapping F : X x X — A*, where
F(z,y) = Fy,y is defined by

Fpy(t) = H(t - d(z,y)), t € R.
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Moreover (X, F, Min) is a Menger space. It is complete if the metric d is complete (see
(12]). The space (X, F, Min) thus obtained is called the induced Menger space.

Proposition 2.1. (V.M. Sehgal [10], see also [2] ) Every contraction mapping f : X —
X on a complete Menger space (X,F,Min) has a unique fized point zo. Moreover,
f™(z) = zo for each z € X.

Let (X,F,T) be a Menger space with T' continuous and let A be a nonempty
subset of X. The function D4 : R — [0,1] defined by

Da(t) = sup 0f Fay(s)

is called the probabilistic diameter of A. It is a distribution function from A+. The set
A C X is probabilistic bounded if sup,,oDa(t) = 1. If B and C are two subsets of X
with BN C # @, then

Dpuc(s +1t) > T(Dp(s), De(t)); s,t € R 1)

(see [3, Theorem 10]).
Set

Dt ={F € At :sup F(t) = 1}.
teR

In the following we suppose that (X, F,T) is a Menger space wifh F:XxX —Dtand

T is continuous. In this case every set with two elements is probabilistic bounded.

Proposition 2.2. If A is a probabilistic bounded set in (X, F,T) and b € X, then the
set Ay = AU {b} i3 also bounded.

Proof. Let a € A. Then A; = AU {a, b},hence by (1)

D, (2t) 2 T(Da(t), Fap(t))-
Since sup,c g D4(t) = 1 and supyc g Fo5(t) = 1, we have sup,c g D4, (2t) = 1. O
Corollary 2.1. Every finit set in (X, F,T) is probabilistic bounded.

Corollary 2.2. If A and B are probabilistic bounded sets in (X, F,T), then AU B is
also probabilistic bounded.
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An example for probabilistic unbounded set is the following. Let F : RxR —»D*
be defined by F ,(t) = H(t — |z — y|) . Let N be the set of all natural numbers. Then
Dy (t) = 0 for every t, hence N is probabilistic unbounded.

In a probabilistic metric space (X,F), the set A is said to be precompact if for
every t > 0 and € €]0, 1] there exists a finite cover {C;}ics of A such that D¢, () > 1—e¢
for all i € I. A precompact set A is totally bounded, i.e. for every t > 0 and € €]0,1]
there exists a finite subset B C A such that, for each z € A, there is an y € B with
F; 4(t) > 1—€ (see [2, Proposition 1.2.3.]). In a Menger space with a t-norm T such that
sup,«; T'(a,a) = 1 the converse assertion also holds: a set A is precompact if and only
if it is totally bounded (see [2, Theorem 1.2.1.]).

Let A and B nonempty subsets of X. The probabilistic Hausdorff-Pompetu dis-
tance between A and B is the function F4 g : R — [0, 1] defined by

F4 p(t) :=supT'(inf sup F; ,(s), inf sup F; ,(3)).
a,B(1) o<It) (zGAyeg z,y(8) yeBzeg )

Proposition 2.3. If C is a nonempty collection of nonempty closed bounded sets in
(X,F,T), then (C,F¢,T) is also a Menger space, where Fc¢ is defined by F¢(A, B) :=
Fap foral A,BeC.

Proof. We have, for all A,B€C,

e e S
Fa,p(z) 2 sup T(inf inf Fpq(t), inf inf F(t)) 2

> T'(Daus(t), Daus(t))-

Since by Corollary 2.2, the set AUB is probabilistic bounded, it follows sup,cr F4,8(z) =
1. Therefore, by [3, Theorem 18] (C, F¢,T) is a Menger space. d

In the following we suppose that T' = Min.

Proposition 2.4. If (X,F, Min) is a complete Menger space and C is the collection of
all nonempty closed bounded subsets of X in (t,€)— topology, then (C, F¢,Min) is also a

complete Menger space.
Proof. Let (A;)nen be a fundamental sequence in C and let
A={z€X:¥YneN,3z, eAn,Vt>0,'}Lr2°F,",a(t) =1} (2)
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Let A denote the closure of A. By [3, Theorem 15] we have Fa, 4 = F, %, so we must
show that (i) limp_c0 Fa. a(t) =1, for all ¢ > 0, and (ii) 4 € C.

(i) Let € > 0 and ¢t > 0 be given. Then there exists n.(t) AE N so that n,m > n.(t)
implies Fu,,4,,(%) > 1 —¢€. Let n > n(t). We claim that Fa, a(t) >1—e.

I z € A then there is a sequence (zx)ren With zx € Ay and limg_yo0 Fi, (%) =
1. So, for large enough k > n.(t), we have F,,,,w(%) > 1—e. Thus, since FAn,Ak(%) > 1—¢,
for n > ne(t), there exist y € A, and z € 4;, such that

. t t
M‘"(sz.y(g), Fz,y(§)) >1-g,
hence Fy, (%) > 1 —e. By 8) we have F; ;(t) > 1 — ¢, hence

9;12) :rex’i; sup Fry(s)>1-e (3)

Now suppose y € A,. Choose integers k; < kg < ... < k; < ... so that k; = n and

t €
Fara (51) > 1= 501

for all k > k;. Hence we can choose s < ¢ such that inf,¢a,, 8up,e 4, Fz,2(5%r) > 1— 5T,
Then define a sequence (yx) with yx € A as follows: For k < n, choose yx € A
arbitrarily. Choose y, = y. If yx, has been chosen, and k; < k < ki41,.choose yx € A;
with Fy, 4, (5%r) > 1 — 55r. Then, for k; <k < kit < ... <kj <1< kjq1, we have

8 S 8
F’.'/l .yk(z,'__f) 2 T(Fm.yu,- ('2‘;)’ T(Fyk,- sYhiga (‘2",_,.—1)a seey

38 S €
T(Fyki_l .w.j (?)7Fykj ,y;(g))...) > l - 2'.—_1.
Letr>0,17>0,andchoo§eisothatr> st and 5=y < 7. We have
8 €
Fﬂk'lll(r) 2 Fyg,m(éi—:) >1- F >1 -n.

Hence (yx) is a fundamental sequence, so it converges. Let = be its limit. Then z € A

and we have

Fay®) 2 T(Fen (5 Funa (3)

We choose k such that Fy 4, (£) > 1—e. Since Fyy, (£) > 1—g¢, it follows Fy,,(t) > 1-e.

Therefore we have

sup inf sup F; ,(3) > 1—e. 4
3<It>1/€Aﬂ zep 2(8) @
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By (3) this shows that
F. t) =supT(inf sup F; , inf sup F, 1—-e
Ana(t) Ss<1t) (;EAVSE/?,. =(2) vleA- :eg za(8) > ¢

So limp,_y00 Fa,,4(t) =1, for all ¢t > 0.

(ii) Taking € = 1 in the last argument, we have proved that A is nonempty.

We have to show that A is bounded. Since limp o0 Fa,,4(t) = 1,foralle > 0and
to > 0 we have infyc 4 Supy,c o, Fz,w(to) > 1 —e€and infyca, sup,cp Fz y(to) > 1—€ Ay
being probabilistic bounded, for all € > 0 there is . > to such that inf, ,ea, Fyo(te) >
l—e

For z,y € A there exist u,v € A, such that
Fzu(to) >1—¢€, Fyu(to) >1—¢.
We have
Fry(3te) 2 T(Frulte), Fuy(2te)) 2 T(Fz,u(to), T(Fup(te), Fo,y(t0))) > 1 -

So D4(3t) > 1 — ¢, consequently sup;cg Da(t) = 1. By [3] it follows that Dg = D4.
Since A is bounded, A is also bounded and closed, so 4 € C. O

Proposition 2.5. Let K be the collection of all nonempty compact sets in the complete
Menger space (X,F,Min) and let C be the collection of all nonempty closed bounded
subsets of X in (t,e)— topology. Then (K, Fx, Min) is a closed subspace of (C, F¢,Min).

Proof. First we show that K C C. For this we have to show that any nonempty compact
set A is probabilistic bounded. Let € €]0,1[. For every ¢ > 0, there exists a finite cover
{Ci}ier of A suchthat D¢, (t) > 1—eforalli € I. Let I = {1,...,m} and set C = U2, C;.

For every i € {1,--- ,m} choose an element ¢; € C; and set B = {¢;,--- ,cm}
Then, for C} = C; U B, we have C = U,C;. Let s > 0 such that Dp(s) > 1 —e¢. By

(1) we have

Da(m(t+3s)) > De(m(t+s))>
> T(Dc;(t+s),T(Dcy(t+s),...,T(Dcs,_, (t + 8), Dcs, (¢ + 8)).-.)
2 T(Dc,(t),T(Dc,(t),- -+, T(De,,, (), T(Dc,. (), Dp(8))---) > 1 =,
hence A is probabilistic bounded.
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Let (An)nen be a sequence in K converging to A € C. We shall show that A is
totally bounded. Let € > 0, ¢ > 0, and choose n so that Fa,,4(%) > 1 — ¢. The set A,
being precompact in the (¢, €) -topology, there exist 21, ...z, € A, such that
" t
An g U Uz;(g,e).

i=1
For each x; there is y; € A with Fy, 5,(4) > 1 — €. For y € A there exists ¢ € A, with
F;y(£) >1—c Leti€ {1,..,m} such that z € Uy, (t,€). Then
i t t
Fy,m () > T(F, ,z(g)aT(Fx,za(ﬁ),Fd-'.'.v-'(‘é')) >1—c¢

hence

m
AcJUute).

i=1
Therefore A is totally bounded. The (¢, €)-topology being metrizable and A being closed,

it is compact. O

Corollary 2.3. If (X,F, Min) is a complete Menger space and K is the collection of all
nonempty compact subsets of X in (t,€)— topology, then (K, Fx,Min) is also a complete

Menger space.
3. Invariant sets

In this section we will generalize Hutchinson’s theorem on invariant sets.

Proposition 3.1. Let (X,F, Min) be a Menger space and C be the collection of all
nonempty closed bounded sets in X. Let f1,...,fm : X = X be contractions with ratios
T1,...Tm €]0,1[ and let ¢ : C = C be defined by

#(E) = UL, fi(E).
Then ¢ is a contraction.
Proof. Let r = maz{r;,1 <i <m} and A, B € C. We shall show that

Fy(a),4(8)(rt) 2 Fa,B(t), (5)

for all ¢t > 0.
Forall A,B € C and s < t, we have

Fum_timyum. gumy(rt) > T( inf F, inf Fyu(rs)).
U, £ () U, £1(B) (1E) 2 (ueu‘;: ) oo ® ) u.v(r")’ueu;ﬁ B 0ens % ) u,(r8))

i=17i
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Let 19 and jo be such that

inf su Fy(rs) = inf sup  Fy,o(rs) > inf sup Fyy(rs),
u€U, fi(A) ueug';f}.-(B) us(rs) u€fip(4) veur, £:(B) uv(r8) u€fig(4) ve fi4(B) we

inf su Fyo(rs) = inf su F,4(rs) > inf sup Fy(rs).
vEUL, fi(B) yeur ,I,)f.-(A) us(r8) V€ Lo (B) ueur II;; (A) w(rs) vE £io (B) ue fi4(A) e

Hence

Fm 4 m ¢py(rt) > T( inf F, , inf sup Fy,(rs
Uz £i(A)Ui ‘(B)( )2 (ue}g(A)veif(’B) uo(r8) ueg.l,(B)uefjole) wv(re))

>T( inf sup F,.(rs), inf sup Fy.(rs)) =
- (ueflo(A)vefxorzB) ol )vefxo(B)uefz.RA) o(rs))

= T(inf, 89D Fry 0).10 ) (2), 0 89 Fiy (2),110) (7)), 2

S 70 .
> T(inf, sup Fzy(9), inf sup Fz,y(8))s

where lo = io if infuey, (4)SUDyey; (B) Fuo(rs) < infycs (B) SUPuey;, (4) Fy,u(rs), and

lo = jo else. Therefore we have (5). O

Theorem 3.1. Let (X,F, Min) be a complete Menger space and let f1,....,fm : X =+ X
be contractions with ratios ry,...rm, €]0,1], respectively. Then there exists a nonemply

compact subset K of X such that
fi(K)U ..U f(K) =K.

Moreover, the set K with this property is unique in the space of all nonempty closed
bounded sets in X.

Proof. By Proposition 3.1 the function ¢ : C — C defined by
$(E) = UL, fi(E)

is a contraction, and by Proposition 2.4 (C, F¢,Min) is a complete Menger space. Then,
by Proposition 2.1. there is a unique set K in C such that ¢(K) = K. Moreover, we have
limp_y 400 " (Ko) = K for any Koy € K. Thus, by Proposition 2.5 the set K must be in
K. O

Corollary 3.1. (Hutchinson [4]) Let (X,d) be a complete metric space and f1,..., fm:
X — X be contraction maps with ratios 7y,... ,rm, respectively. Then there exists o
unique nonempty compact set K C X such that K = U2, fi(K)-
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Proof. Let (X, F, Min) be the induced Menger space by the metric d. Since, for each
t>0andice€{1,..,m},

Ff (), £:(v) (rit) = H(rit = d(fi(z), fi(¥))) > H(rit —rid(z,y)) = H(t — d(z,y)) = Fo 4 (t),
the conclusion follows from Theorem 3.1. O
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SUFFICIENT CONDITIONS FOR STARLIKENESS II

PETRU T. MOCANU AND GHEORGHE OROS

Abstract. In this paper we study a differential subordination of the form:

azp'(2) + ap®(2) + (B — a)p(2) < h(2),
where

h(z) = anzq'(z) + ag’(2) + (B ~ @)q(2),
with @ > 0, @+ 8 > 0, and the function ¢ is convex with ¢(0) =1, and

a-p

Our results are obtained by using the method of differential subordinations
developed in [1], [2] and [3]. For 8 =1, ¢(2) = 1+ Az and n = 1 this problem
was studied in [4].

1. Introduction and preliminaries

Let A,, denote the class of functions f of the form:

flz)=2 +@nt12" fap22™2 ., 2 €T,

which are analytic in the unit disc U.

Let A= A; and let §* = {f € 4, Re%%z >0, 7€ U} be the class of starlike
functions in U.

We will use the following notions and lemmas to prove our results.

If f and g are analytic functions in Ujthen we say that f is subordinate to g
written f < g, of f(z) < g(2), if there is a function w analytic in U, with w(0) = 0,
|w(z)] < 1 for z € U, such that f(z) = g(w(z)), for z € U. If g is univalent then f < g,
if and only if f(0) = g(0) and f(U) C g(U).

Lemma A. ([1], [2], [3]) Let q be univalent in U with ¢'(¢) £ 0, |¢] =1, ¢(0) = a and
let p(z) = a + an2™ + ... be analytic in U, with p(z) # a, and n > 1.

1991 Mathematics Subject Classification. 30C45.
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If p(z) # q(z) then there ezist points 2o € U and (o € OU and there ism > n
such that:

() p(20) = q(Co)

(i8) 209’ (20) = mCoq’ (So)-

The function L(z,t), z € U, t € I = [0, o0) is called a Loewner chain or a
subordination chain if L(z,%) = a;(t)z + a2(t)2? + a3(t)2® +... for z € U is analytic and
univalent in U for any ¢ € I and if L(2,t;) < L(z,t2) when 0 < ¢; < t5.

Lemma B. ([7]) The function L(z,t) = a1(t)z + az(t)2* + ... with ai(t) #0 fort >
0 and limy_, |a1 ()] = 0o is a subordination chain if and only if there are the constants
r €[0,1] and M > O such that:

(8) L(z,t) is analytic in |z| < r for any t > 0, locally absolute continuous int >0
for each |z| < r and satisfies |L(z,t)| < Mla;(t)| for |z| < r and t > 0.

(i) There is a function p(z,t) analytic in U for any t > 0 measurable in [0, c0)
Jor any z € U, with Re p(z,t) > 0 for z € U, t > 0 such that

0L(z,t) _ zaL(z,t)
ot 0z

p(z,t), for |z| <r and for almost any t > 0.

2. Main results

Theorem 1. Let g be a convez function in U, with ¢(0) =1,

a-—.

70 a>0, a+8>0 1)

Req(z) >
and let

h(z) = anzq'(z) + ag’(2) + (B - a)q(2) )
If the function p(z) = 1+ pp2™ + ... satisfies the condition:

azp/(2) + ap’(2) + (B — @)p(z) < h(2) 3)
where h is given by (2) then p(z) < q(2) and ¢ is the best dominant.
Proof. Let

L(z,t) = a(n + t)2q' (z) + ag*(2) + (B — &)q(z) = ¥(g(2), (n + t)2d'(2)) (4

If t = 0 we have L(z,0) = anzq'(z) + ag?(z) + (B8 — a)g(z) = h(z). We will show that
condition (3) implies p(2) < g(z) and ¢(z) is the best dominant.
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From (4) we easily deduce:
8L(z,t
z__é_L_z z / z
Z— =(n+t) [1+ 7 (z)

q'(2)

3Lg:;',t!

and by using the convexity of ¢ and condition (1) we obtain:

B—-a

2 r-c
+ 2¢(2) + p

. Hence by Lemma B we deduce that L(z,t) is a subordination chain. In particular, the
function h(z) = L(z,0) is univalent and h(z) < L(z,t), for ¢ > 0. If we suppose that
p(2) is not subordinate to g(z), then, from Lemma A, there exist zp € U, and (o € U
such that p(20) = ¢(Co) with |(o| =1, and zop'(20) = (n + t)¢oq’ (o), With ¢ > 0. Hence

Yo = P(p(20), zop' (20)) = ¥(q(lo), (n + t)¢oq' (Go)) = L(¢o,t), t >0,

Since h(zp) = L(z0,0), we deduce that 9o & h(U), which contradicts condition (3).
Therefore, we have p(z) ~< ¢(z) and ¢(z) is the best dominant. O

!
If we let p(2) = %%Z, where f € A, then Theorem 1 can be written in the

following equivalent form:

Theorem 1°. Let q be a convex function with q(0) =1, and

a-f

Req(z) > % ,a>0, a+8>0.

If f € A, with ﬂzﬁ #0, z € U, satisfies the condition:

01" (@) L g2E) (hy, sev

f(2) f(2)
then
zf'(2) . \\TGAFib
f(2) < 4(z) ‘ CLUJ-NAPOCA 7

an q 18 the best dominant. MA TEIAT\ >
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3. Particular cases

1)Ifweleta=1,52>1,and q(z) = -}—"_‘—;, then

2nz 1+2\° 1+2 _
h(z)—(1~z)2+(l—z) +71—z with y=08-1>0.

If z=¢€%,0< 6 < 2r, then

h(e) = _:' 7~ cotzg +'yicotg =u+iv

H 2
2 sin’ 3
and the domain D=h(U) is the exterior of the parabola u = —§ — "T';ggv". Ify=0,
then D is the complex plane slit along the half-line v =0 and u < - 3.

Using Theorema 1’ we deduce the following criterion for starlikeness:

2 rn !
K fed aa 2010, 2@ .
feA, and @) +4 %) €D then feS

2)Iweleta=1, =0, and ¢(2) = 1—-1— then, h(z)=

ﬁ"*)lz) and h(U)is

the complex plane slit along the half-line v=0 and u < —-+ Using Theorema 1’ we
deduce the following criterion for starlikeness of order 2 :If fe A, with —g—)- #0
satisfy the condition:

2@ Dz a1

) - z)? fz) = 2
In particular:
2 f"(2) n+1 2f'(z)
R[>t - R ®)
Ezample 1.

') _
If f(z)= —sm/\z then fe€ Az, and ) A2,

and by using (5) we deduce that f) € S* (%) for A < 3@
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INTEGRATION OF VECTOR FUNCTIONS WITH RESPECT TO
VECTOR MEASURES

ROBERT PALLU DE LA BARRIERE

Abstract. The algebraic theory of integration with respect to a semi-variation
is outlined. It is applied to the integration of vector-valued functions with re-
spect to a vector-valued measure. Different settings are considered (bilinear
integration, Dobrakov’s integral, tensor integration). Emphasis is put on con-

vergence theorems.

The purpose of this paper is to study the integration of a vector function f with
respect to a vector measure m. This problem may be settled in different settings. In his
pioneering work [1], Bartle supposes f has values in a Banach space F', m has values in a
Banach space E. Furthermore a bilinear map from F' ® E into a Banach space G is given
and the integral of f with respect to m has values in G. A another setting is that of
Dobrakov [DO] : m has values in the space L(X,Y’) of continuous linear operators from X
into Y, f is X-valued and the integral is Y-valued. From the set-theoretical point of view,
Dobrakov’setting may be considered as a particular case of Bartle’s setting. Conversely
it is possible to trz?.nsform a problem given in the Bartle’s setting into a problem in the
Dobrakov’s setting. But the additionnal assumptions concerning mainly the additivity of
m makes the set-theoretical manipulations dangerous. For example Dobrakov supposes
only the o-additivity of m(.)z for every x € X and not the o-additivity in the strong
sense.

Many other contributions appeared in the literature since the pioneering works
of Bartle and Dobrakov. For example, Guessous [GU] supposes that the integral has its
values in the completion of F ® E with respect to a tensor norm (e or «). This setting
will be called the tensor integration. It is studied more recently by Jefferies and Okada
[J.0] and [JE] Chapter 4.

1991 Mathematics Subject Classification. 46G10, 28B05.
Key words and phrases. Vector measures, semi-variation, Bochner integral.
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As many proofs are similar in different settings, the authors often fail to give
complete proofs, referring abruptly to pi'evious papers. This makes the contributions less
and less legible, especially if the reader wish to construct self-cc;nta,ined proofs. The first
motivation of this paper is to avoid this discomfort.

In all the previously quoted works, a generalisation of the ordinary semi-variation
of a vector measure is introduced. This semi-variation is defined as a sub-additive set-
function. In [PB] under the influence of [TH] we modify the definition so as the semi-
variation is defined as a semi-norm on the vector space of simple functions. Or course the
restriction of our semi-variation to sets (i.e. characteristic functions) is the customary
semi-variation. But as two different vector-semi-variations may be equal on sets, our
definition is more powerfull. In particular it is possible to define the integrability of a
scalar function with respect to a vector-semi-variation without taking into account the
objects and setting it comes from. This is very important for the integration of vector
functions with respect to vector measure because it is possible to define the integrability
of a scalar function with respect to the semi-variation inﬂroauced to this special context
(this semi-variation is called below ”contextual semi-variation”). This enable us to define
the Bochner-integrability in a convenient frame and to make easier the connection with
the classical Bochner-integrability with respect to a scalar measure (for the Dobrakov
integral see [DO2] and [PAN]).

Section 1 is designed to recall definitions and fundamental results. Section 2
is devoted to the algebraic theory of integrability of scalar functions with respect to a
semi-variation. This theory is inspired by the work of Wilhelm ([W1,W2]) and is exposed
in {[PB] with more details.

Section 3 is devoted to the particular case where the semi-variation is defined on
a space (7) of T-simple functions, 7 being a o-algebra.

Section 4 is devoted to the integrability of vector functions.

Section 5 is devoted to the definition of the ”contextual” semi-variation, that
means the semi-variation adapted to the spaces E, F, G where the measure, the function
to be integrated and the integral take respectively their values.

Section 6 is devoted to the customary semi-variation of a vector measure that

means the semi-variation adapted to the integration of scalar functions.
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Section 7 is devoted to the general setting. The bilinear form from F x E into
G is denoted by y,z — y ® £ with a view of compatibility with the tensor setting. To
cover simultanuously the setting of Bartle and the setting of Dobrakov, we suppose that
Ay ©m(A) is a G-valued measure for every y € F'.

Section 8 is devoted to the case G is the completion of F ® F with respect to the
tensor norm € or 7. Some special results are derived using the Orlicz-Pettis’s theorem.
The covering of the classical case of the integration of vector functions with respect to a

scalar measure is warranted both for Pettis and Bochner integrability.

1. Preliminaries

We first recall some definitions. A measurable space (T, 7) is a couple formed
by an arbitrary set T' and a o-algebra of subsets of T'. A function f on T with values
in a space F is said to be simple if it is of the form f =Y. 14,£ where {4;} is a finite
T-partition of T and & € F. The vector space of F-valued simple functions will be
denoted by g(7) (or by (T) if F = R).

We reserve the term ”measure” to additive set functions which satisfie some o-
additivity property. If E is a Banach space by a E-valued measure defined on (7, 7) we
mean a additive set function m on T such that m(T) = 3, m(Ty,) for every countable
T-partition {T,,} of T. The convergence of the series is supposed to be valid in the norm
topology. Sometimes to emphasize this property we will write ” (strong) measure” instead
of measure.

There are two ways to weaken the property of o-additivity. The first one is
to suppose o-additivity for a weaker topology that the norm topology. For exemple
if E is the space L(Y, X).of all continuous operators from a Banach space Y into a
Banach space X we may consider the strong operator topology (defined by the semi-
norms A + ||Ay|| for y running over Y') or the weak operator topology (defined by the
semi-norms A — |(z’, Ay)| for 2’ running over X’ and y running over Y). Following
the Dunford-Pettis theorem this two topologies are identical. This situation will be
encountered in section 4.

An another way to weaken the property of o-additivity is to consider two spaces
E and F in duality and a E-valued set function m defined on 7 satisfying the property
that (m(.),y) is a measure for every Y in F. Such a set function will be called a ”weak
measure” (for the-duality (E, F)). We may note that this o-additivity property may be
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considered as the g-additivity for the topology o(F, F'). In fact the two ways of weaken
the property of o-additivity differ from the expository point of view but are able to
handle the same concrete situations.

An important particular case of vector measure is obtained by taking T' = IV
and 7 = P(IN). With any set function m is associated the sequence {m(n)} such that
m(n) = m({n}). The discussion of various forms of the g-additivity property is indeed
the discussion of various notions of summability of a sequence. If F is a Banach space a
E-valued sequence {z;} is said to be summable if there exists S € E such that for every
€ > 0 there is a finite subset of IN such that for every finite J containing I we have
"S —Yics w;" < &. The sequence {z;} is summable iff it satisfies the so called Cauchy
criterion: for every £ > 0 there exists a finite subset I of IV such that ||}, zil| < e
provided J is a finite subset of IV \ I. The Cauchy criterion can be generalized to an
arbitrary locally convex vector space under the following form: for every continuous semi-
norm p on E and every € > 0 there exists a finite subset I of IV such that p (zie J z;) <e
provided J is a finite subset of IV \ I. This criterion may be adopted as the definition
of summability of the sequence {z;} but doesn’t imply that the series 3, z; converges
in E but only in the completion of E (more precisely in the quasi-completion of E). For
instance a sequence {z;} in a Banach space E is weakly summable (that ﬁleans summable
for the topology o(E, E')) iff the sequence {{z;,y)} is summable for every y € E'. Its
”sum” (generally called ”weak sum”) belongs to the o(E, E')-completion of E i.e. E”.

To end this section let us recall that a control measure of a vector measure m is
a measure p such that VA€ T p(A) =0 <= m(A) =0. Any vector measure has a
control measure ([PB] theorem V.46).

2. Integrability with respect to a semi-variation

In this section we outline the algebric construction of the space of integrable
functions with respect to a semi-variation as developped in [P.B.]. We refer to this

treatise for detailed proofs.

Definition 2.1. Let T an arbitrary set and £ a vector sub-lattice of R”. A semi-norm

v on L is said to be a Riesz-semi-norm iff the two following conditions are satisfied:
0<fi<f = v(fi) <v(fa)

v(f) =v(f])
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A Riesz-semi-norm is said to be a semi-variation if the following property is satisfied

(o-subadditivity):

ifa€Lyandf <D fo = o(f) <Y v(fn)
n=1 n=1
or equivalently:

oo [e o]
fifaeLandlflS Ml = w(H) <Y 0(f)
n=1 n=1
The condition f < 377, fa (pour f, f, € £;) means that for every ¢t € T, one
have f(t) < 3°.° , fa(t), this last inequality being satisfied in particular if Y oo | fn(t) =
+00. Qur aim is to extend a semi-variation v on £ to a space £! (v) such that the latter
space is complete and £ is dense in £1(v). The first step is to define the space L*(v) de
L of ”not to large functions”. Let us put:
. oo (e <]
L(v) = {f e R | € L:fIS) Ifnland D v(fa) < +oo}
n=1 n=1
It is easy to prove that £*(v) is a vector sublattice of IRT and contains £. On this space,

we define:

v*(f) = inf { Y olfa) | e LIAISY Ifnl}

n=1 n=1
A routine checking proves that v* is a semi-variation on £*(v) which extends v.

The second step is to define £!(v) as the closure of £ in £*(v) (equipped with
the semi-norm v*). The elements of £!(v) are called integrable with respect to v or
v-integrable.

From the construction, it results the following theorem:
Theorem 2.2. L1 (v) is a vector sub-lattice et v* is a semi-variation on L*(v).

The completeness of £!(v) is given by the following theorem whose proof is very

simple.

»

Theorem 2.3. Let f, be a sequence € L (v) such that Y oo | v*(fn) < co. Put:

1) = { ey fn(t), of this series is absolutely convergent
otherwise an arbitrary value

Then f € L1(v) and imy v*(f — Zle frn) = 0. In other words: Z::;l fn converges to

fin L1 (v).
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Proof. We have |f| < 3°>° | |fn| and therefore (by virtue of the o-subadditivity of v*):
oo
v*(f) <D v*(fa)
n=1

Moreover ‘ f- Zﬁ=l fn’ < Y onsn | fnl, and therefore:

v (f - Efn) < Z v*(fn)

n=1 n>N
As the limit of the latter expression is 0, the proof is completed. O

Let N be the set of all ¢ such that ) >, fn(t) is not absolutely convergent. Il
we modify f on N, then we get a function f’-such that v*(f — f') = 0. In particular
1y € £'(v) et v*(1x) = 0. This incite to introduce the following definitions:

Definition 2.4. Let v be a semi-variation on the vector lattice £ C IRT. A function f is
said to be v-negligible iff v*(f) = 0. A set A C T is said to be v-negligible iff v*(14) = 0.
A property toncerning elements of T' is said to be true almost everywhere with respect
to v (in short v-a.e.) if the set of ¢t € T' where it is false is v-negligible.

If P is a property concerning functions defined on a subset of T, then a function
f defined on T is said to have essentially the property P if there exists a negligible set
A such that the restriction of f to the complement of A has the property P.

The most usual properties of negligible functions and sets are given in the fol-

lowing theorem.

Theorem 2.5. (1) If f est v-negligible and if |g| < |f|, then g i3 v-negligible. In partic-
ular if A C T is v-negligible and if B C A, then B is v-negligible.

(2) Any countable union of negligible sets is negligible.

(3) A function f is v-negligible iff {t € T'| f(t) # 0} is v-negligible.

Theorem 2.3. appears now as a variant of the standard Lebesgue’s theorem on
series.

Let {fn} be a sequence in £!(v) converging to an element f. Then there exists
a subsequence { fs(x) } such that 3, v*(f4(x)) < 00. By Theorem 2.3., { f4(x)} converges
v-a.e. to f. Hence every converging sequence in £!(v) has a subsequence converging
v-a.e.. On the other hand remark that if {f,} is a convergent sequence in £!(v) which
converges pointwise to a function f, then {f,} converges to f in £!(v).
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Notation. The quotient of £ (v) with respect to v* is denoted by L' (v). It is a Banach

space.
We shall now define an important class of semi-variations.

Definition 2.6. A semi-variation v on a lattice £ is said to be exhaustive ! iff it satisfies
one of the equivalent following properties:
(1) every increasing and majorized sequence {fn} is a Cauchy sequence with
respect to v.
(2)
[o o]
f'n€£+ ’ f€L+ ’ anSf =>li'?lv(fn)=0

n=1
The equivalence between the two properties is easy to prove.
The natural norm on 1! or cg is exhaustive. On the other hand the natural norm
on 1% is not exhaustive.

A somewhat technical proof leads to the following result:
Theorem 2.7. If v is an ezhaustive semi-variation, then v* is ezhaustive on L1 (v).

The main result concerning exhaustive semi-variations is the theorem of domi-
nated convergence. First remark that if v is a exhaustive semi-variation on £ and {f,}
is a positive increasing majorized sequence in £(v), then putting f(t) = lim, f,(t), we
have f € £L!(v) and f is the limit of f, in £!(v). In fact {f,} is a Cauchy sequence by
virtue of the exhaustivity of v . As an easy consequence, if {f,} is a decreasing sequence

in £!(v) converging pointwise to 0, then this sequence converges to 0 in £ (v).

Theorem 2.8. [Theorem of dominated convergence] Letv be an exhaustive semi-variation
on L. Let f,,h € L (v) such that |f,| < h. If f, converges pointwise to a function f,

then f, converges to f in' L1 (v).

Proof. Put g, =sup{|fp — fol | p,q > n}.
We have: g, = limy, gn,m with: nm =sup{|fp — fol | n < p,g <m}

1The term "exhaustive” has been suggested to me by [KA]. [ am far from affirming it is the best one. Wilhelm
uses the term ”saturable”. Swartz uses the term "strongly bounded”. Bartle ([?]) speeks of the *-property. Lewis [LE]
uses a similar concept under the name ”variationnel semiregularity”. A Banach lattice is said to be "order bounded” if
condition (2) is satisfied. Of course all this terms refers to Sdifferent settings. One can only say that the are used to

define similar properties.
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On the other hand 0 < gmn < 2k , gn,m € L1(v) and the sequence m — gp, m is
increasing. Therefore (see the preliminary remarks), g, € £1(v) for all n. Furthermore
the sequence {g,} is decreasing and converge pointwise to 0. Now |f, — fx| < gn for all
k > n and therefore |f, — f| < gn. Hence f, — f € L*(v), f € L*(v) and v*(fr — f))

converges to 0. O

It is common in Convex Analysis to extend convex functions defined on a convex
subset into a function defined on the whole space and taking the value +o00 outside the
domain of definition of the original function. Adopting the notation used in Convex
Analysis, for every ] — 00, +00]-valued convex function f, we shall denote by dom(f) the
"effective domain” of f, i.e. {t| f(t) # +oo}.

Definition 2.9. Let T be an arbitrary set and £ a vector sub-lattice of RT. One call
extended semi-variation on £ any sub-linear symmetric function v defined on £ with
values in [0, +oo] such that:

0<fi<fo = v(fi)<v(fa)

v(f) =v(lf)

fifa€Liandf <Y fo = v(f) <D v(fa)
n=1

n=1

or equivalently

fHifn€Land|(1f) <D Ifal = o(f) <) v(fa)
n=1

n=1
It is easy to verify that dom(v) is a vector sub-lattice of £ and that the restriction
of v to dom(v) is a semi-variation as defined in Definitions 2.1. An extended semi-

variation is said to be exhaustive if its restriction to dom(f) is exhaustive.

Theorem 2.10. Any pointwise supremum v of o family {v;} of extended semi-variations

13 an extended semi-variation.

Proof. The two first properties in Definition 2.9 are plain. Now suppose:

[y fn € Lyandf < an

n=1
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For every i, we have v;(f) < Yoo, vi(fn). But for every f, we have v(f) = supv;(f).
Therefore v;(f) < ), v(fa). Taking the pointwise supremum in the left hand member

gives: v(f) < 32, v(fn)- O

It’s worthwhile to note that the pointwise supremum of a family of exhaustive extended
semi-variations may fail to be exhaustive. For instance let T' be a compact set. For every
t € T the function f + |f(t)| is an exhaustive semi-variation on the space C(T"), but the

semi-variation f — sup,c |f(¢)| is not exhaustive unless T is finite.

3. Semi-variations on measurable spaces

Let (T,7) be a measurable space. £(7) or £ denotes the space of T-simple
functions. We shall apply the results of Section 2 to the case £L =€&.

Theorem 3.1. Let (T',7) be a measurable space and v a semi-variation on €. For

every function f € L'(v), there ezists a function f' € L'(v), T-measurable such that
v(f-f)=0

Proof. Let us témporarily denote by £*7 and L7 respectively the subspaces of 7-
measurable elements of £*(v) and £!(v). Let us look at Theoreme 2.3. Suppose f, €
L7, The set N where the series Y>>, fn(t) doesn’t converge absolutely belongs to 7.
If we put f(t) = 0 for ¢ € N, then f € £L1'7. Consequently L7 is complete. Now
let f € L1(v). There exists a sequence f, € £ such that lim,v*(f — fn) = 0. As
{f.} is a Cauchy sequence in £17, it converges to a element f’ € £7 and we have

v (f-f)=0. O
Note that the quotient of £'7 by v* is L!(v).

Definition 3.2. A measurable space (T,7) is said to be complete with respect to a

semi-variation v on £(T) if
ABeT , BCA, v(14)=0 = BeT

Lemma 3.3. Let (T, T) be a measurable space and v a semi-variation on €. Let A be

v-negligible. Then there exists B € T such that A C B and v(15) =0

Proof. Suppose v*(14) =0. Let € > 0. According to the definition of v*, there exists a
sequence { f,,} of elements of £, (7) such that 14 <), v fnand ), v v(fn) < €. Put
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B={teT| ¥, cnfa(t) >1}. Then B€ T and 15 < Y, v fn - Therefore according
to the o-subadditivity of v: v(18) < 3, cw v(fn), and v(1B) <e&.

Taking € = 1/n (n € IN), we get a sequence of elerﬁents B,, € T such that
A C By, and v(1p) < 1/n. Taking B = (), ¢y Bn, we get A C B and v(1p) =0. O

Theorem 3.4. Let (T, T) be a measurable space and v a semi-variation on £. Define
T' as follows:

A€eT <= 3B € T such that v*(Ay B) =0

Then T’ is a o-algebra and (T, T') is complete with respect to v.

Proof. Let A € T' and B € T such that v*(Avw B) = 0. We have Ayy B = A°vy B¢ and
therefore 4° € T".

Now let {A,} be a sequence of elements of 7’ and, for every n, B,, € T such that
v*(An v Br) = 0. We have |J,, An v U,, Bn C U,, An ¥V Bn. That implies {J,, A, € T".
Hence 7" is a o-algebra. Plainly this o-algebra is complete with respect to v. O

Proposition 3.5. Let (T,T) be a measurable space and v & semi-variation on E(T).
Then we have T' = {AC T |14 € L (v)}

Proof. If A € T' there exists B € T such that v*(14 — 1p) = 0. Therefore 14 € L} (v).

Conversely suppose 14 € L(v). Then there exist N € 7 and a 7-measurable
function g such that 14 = g on T'\ N. Supposing ¢ = 0 on N, we have g = 15 and
v*"(Ay B)=0ie AT a

Definition 3.6. Let (T, 7) be a measurable space and v be a semi-variation on (7). A
real function f is said to be v-measurable if it is the limit v-a.e. of a sequence of 7-simple

functions.

Theorem 3.7. Let (T, T) be a measurable space and v a semi-variation on E(T). Then
f i3 v-measurable iff f is measurable with respect to the o-algebras T’ (theorem 3.4.) and
Bor(R) (in short T'-measurable).

Proof. Plainly every 7’-simple function coincides v-a.e. with a 7-simple function. Sup-
pose f is 7'-measurable and therefore the limit v-a.e. of 7'-simple functions. Then f is
v-a.e. the limit of 7-simple functions.

64

[



INTEGRATION OF VECTOR FUNCTIONS WITH RESPECT TO VECTOR MEASURES

Conversely suppose f is v-a.e. the limit of 7-simple functions f,. Let N € T
such that v*(1y) = 0 and 17\ n f5 converges to 1p\n f on T'. As 1p\n f, is T-measurable,

17\n f is T-measurable. For every A € Bor(IV) we have
A vAnNf) A CN
Therefore f~1(A) € T'. Hence f is T'-measurable. O

Consequently any pointwise limit of v-measurable functions is v-measurable.

Proposition 3.8. Let (T,7) be a measurable space and v a semi-variation on E£)(T).
For every v-integrable function f and every bounded v-measurable function g the function

fg s v-integrable.
Proof. Let g be v-measurable and bounded. Define g,, as follows:
gn(t) =h27"if f(t) € {h27",(h+1)27"}

Then g, € (7') and |gn — gm| < 27" if m > n. On the other hand let {f,} be a sequence -
of elements of £(7") such that f,, converges v-a.e. and lim, v(f — f,) =0. Pickk, K € IR
such that Vn € IN  v(f,) < K and |gn| < k. Then we have:

Jngn — fm@m = (fn ~ fm)gn + fm(gn - gm)

and therefore:
|fngn — fmgm| = k|fn = fm| +1fm| 27"
and
V(fngn — fmgm) = kv(fn — frm) + K277
Hence lim, v(fnfr — fmgm) = 0. The sequence {fgn} is a Cauchy sequence in £'(v)

and converges v-p.p. to fg. We conclude that fg € L(v). O

Theorem 3.9. Let (T',7) be a measurable space and v a semi-variation on £(T). Sup-

pose f € L'(v) and g v-measurable. If |g| < |f| then g € L' (v) .

Proof. We have g = f(g/f) (with g(t)/f(t) = 1if f(t) = 0). By the preceding proposition
g is v-integrable. O
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Definition 3.10. Let (T, 7) be a measurable space and v be an exhaustive semi-variation
on (£,7). A sequence {f,} of v-measurable functions is said to converge v-almost uni-
formly to a function f iff for every € > 0, there exists a v-measurable set A, such that

v*(T \ Ac) < e and f,, converges uniformly to f on A..

Theorem 3.11. [Egorov] Let (T, T) be a measurable space and v be an ezhaustive semi-
variation on (£,7). A sequence {fn} of v-measurable functions converges v-a.e. to a

Junction f iff {fo} converges to f v-almost uniformly.
PB. Thorme I1.31. O

4. Integrability of vector functions

Definition 4.1. Let (T, 7) be a measurable space and v a semi-variation on (7). Let E
be a Banach space. An E-valued function f is said to be v-measurable if f equals v-a.e.

the limit of a sequence of 7-simple functions.
If f is E-valued v-measurable function then ||f(.)||g is v-measurable.

Definition 4.2. Let (T, 7) be a measurable space and v a semi-variation on (7). Let
E be a Banach space. Then £}(v) denotes the space of all v-measurable functions such
that || f()lig € £'(v).

Theorem 4.3. L1 (v) is a vector space.
Proof. Let us prove

flg€Lp(v) = f+g€Lipb)

We have ||(f + g) (O < IFOI+1lg()]l- Hence ||(f + g)(.)]| is v-measurable and majorized

by an integrable function and therefore is integrable. O

The space L};(v) is endowed with the semi-norm £ = || [[f()llg ll¢1()-
The quotient of £1,(v) by the v-a.e. equality will be denoted by L} (v).

Theorem 4.4. Let v be a semi-variation on (T). Then the space L}(v) is complete.

Proof. Let us prove that every sequence {f,} of members of L} (v) with:

z fall g o) < o0

nelN
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has a sum in L (v) . Put gn = ||fa()ll. By definition [|fallz () = llgnllz(,) and
therefore:

Z ”gnllcl(v) < o0

nelN
Lebesgue’s theorem on series yields:

Y lgmt)<oo  v—ae.
neN
Hence there exists a v-negligible set N such that for every t ¢ N, we have:
o fa®lle < 00
neiN
The space F being complete, for every ¢t ¢ N there exists f(t) € F with
f&)y=")_ falt)

neiN
For t ¢ N, put k,(t) = "ZpSn fp(t)"F and k(t) = ||f(#)|l - If a T-measurable positive
function is majorized by an element of £!(v) then this function belongs to £!(v). Hence
we have kn € £1(v) because kn(t) < 3, <, I fp(t)]l. On the other hand k(t) = limp kn(t)
forallt ¢ N.

For m < n, we have:

[kn(t) —km(t)] = Z Fp(t) E fp(t)
p<n F p<m
< IDoAHB- fp(t)
p<n p<m
= Z fp(t)
p=m-1
Hence:
"kn - km”c,(u) < Z fp(-) Z fP
p=m+1 Flig, ) p=m+1 L},(v)

That implies the sequence {k, |n € IN} is a Cauchy sequence in £1(v). As kn(t) con-
verges to k(t) for all ¢ ¢ N, we have k € £L!(v), which proves f € L}(v)). It remains to
prove that the sequence {f,} converges to f in £}.(v) . We have:

N
‘f oy T 1 S 1.0

n=1 n>N a>N

D on

n>N

LE(v) £1(v) £1(v) £1(v)
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As the limit of the last expression is null, the theorem is proven. O

Theorem 4.5. [Theorem of dominated convergence] Let v be an ezhaustive semi-variation.
Suppose {f,} is a sequence in L} (v) and h € L} (v) such that ||fo()|| < b v-ae. If

fn(t) converges v-a.e. to a function f, then f € L, (v) and f, converges to f in L1 (v).

Proof. Applying Theorem 2.8 to the function || f,(.)|| proves ||f(.)|| is integrable so f €
L} (v). Applying this theorem to the function ||f,(.) — F(.)|| proves that f,, converges to
fin L} (v). O

5. The contextual semi-variation

Let (T,T) be a measurable space. We are given three Banach spaces E, F and
G and a bilinear continuous application y,z = y ® z of F x E into G. The 4-uple
(E,F,G,®) will be called a bilinear context. Let us consider a mapping m of 7 into E
such that for every y € F, A — y © m(A) is a (strong) measure on 7 with values in G.
A particular case of such a mapping is an E-valued (strong) measure.

If f is a T-simple functions with values in F', then its integral with respect to m
is defined by

ff®m=Zye®m(A,~)

if {A;} is a finite partition of T and f = }_;14,y;. Define [, fOom = [(14f) ©m. Then
the application A = [, f ®m is a (strong) measure with values in G which is denoted
by f O m.

Let us first define a semi-variation of m which we shall call ”contextual” semi-

variation because it depends on the context (E, F, G, ®). For every h € put:
wt) =sw{| [ rom| | 7emtson<m}
G
and w(A) = w(14). Then
w(A) = sup { 3" y; o m(B;)|| | {B;} finite partition of A,y; € F, [ly;l| < 1}
i

For every partition {A4; | i € IN} of A, one have:

w(d) <) w(A)
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Indeed let {B;} be a finite partition of A and y; € B(F). We have:

Il

> llys om(B))ll D> yiom(B;n4)
J 7 i

= D2 yiomBin4y
i J

< Y ID_viom(B;in A)
i J
< D w(A)

)

This gives the announced inequality. More precisely the following result holds:
Theorem 5.1. w s an extended semi-variation.
Proof. (0) An easy checking gives:

0<fi<fo = v(fi) Lv(f2)

(1) Let us first prove that {A,} being an increasing sequence in 7 whose union is T,
then w(h) = lim, w(14_ h). We may suppose h > 0.

(1a) Suppose w(h) < . Let € > 0. There exists a function f = 3 ;; 18,¥i,
where {B;} is a finite partition of T', {y;} a family of members of F, such that |14, (.)y;|| <
het wh)—e < |I3;yi ©m(B;)|. For every n € IN, put fp, = 14, f, te. : fn =
i 1Bina.yi. We have [ foOm = Y,y ®©m(B; N A,). For every i € I, we have
lim, y; © m(B; N A,) = y; © m(B;), because y; © m(.) is a strong measure. Therefore
there exists IV such that

n>N — “/f@m—/fn@m“Se

Hencen > N =  w(h)—2¢ < [ fn®m with ||fo(.)|| < h. The assertion is proved.

(1b) Suppose w(h) = oo. Let M > 0. There exists a function f = Y ;c; 11,9,
where { B;} is a finite partition of T, {y;} a family of members of F', such that ||14,(.)y;]| <
h et ” If Om” > M. Defining f, = f14,, one sees that there exists NV such that

n>N = “/f@m-—/fn@m <e

Thereforen > N — J fa®m > M —e. The assertion is proved.
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(2) Let us prove that
hhn€r y D hn2h = Y wha) 2w(h)
n n

Let g, = :zo hpet A, = {t € T | gn(t) > (1 —€)h(t)}. The sequence {A,} is increasing

and its union is T. We have g, > (1 — €)14,h, and therefore w(g,) > (1 — e)w(1a, h).
Furthermore w(gn) < 3°7_ow(hy). Hence

3 wllhy) > (1~ eJu(ia, b)
p=0

Making n converge to +00, we get: -
D w(hy) > (1 - e)w(h)
P

As € is arbitrary:

ZM(hp) > w(h)
P

Proposition 5.2. Suppose m is a (strong) E-valued measure. If f €p, then

ﬂf fom| < [0l var(m)

Proof. Let f = ), &4, with & € F and {A;} a finite T-partition of 7. We have
JF®@m=73,;& ®m(4;), and therefore

| som

IA

Yl o m(4)

I

> llgl im (Al
< DNl var(m)(4:)

S50 vas(m)

O

Corollary 5.3. Supposem is a (strong) E-valued measure. The contextual semi-variation
w 18 majorized by var(m). In particular if var(m) is o-finite, then the same is true for
w.
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In the case w is exhaustive, we may introduce an important class of integrable

functions.

Definition 5.4. Let w be exhaustive. A function f from T into F is said to be Bochner-
integrable iff f € L} (w).

Note that we have restricted the notion of Bochner-integrability to the case w
is exhaustive. Without this restriction the definition of Bochner-integrability would lead
to pathological facts as we shall see further.

As we have

VAeT,fer (fOom)A<Lu(f())
and as r is dense in L},(w), the map A — (f ®m)(A) may be extended by continuity to
L} (w) and the map A — (f ® m)(A) is a vector measure. We may put:

(BOCHNER) / ) fom=(fom)4)

Theorem 4.5. may be translated into the following theorem.

Theorem 5.5. [Theorem of dominated convergence] Let w be exhaustive. Suppose {fn}
is a sequence of Bochner-integrable functions and h € L) (w) such that ||fo( )|l < h
w-a.e.. If fo(¢) converges w-a.e.to a function f, then f is Bochner-integrable and f,

converges to f in L (w).

6. The intrinsic semi-variation of a vector measure

Suppose m is an E-valued measure. Taking F = IR and G = E, the contextual
semi-variation w is called the intrinsic (or scalar) semi-variation of m and is denoted by

m*. In other words we put:

Vh e m®(h) =sup{"/f m“ I feplfl< |h|}

and m*(A) = m®(14).
When no context is present, the name ”semi-variation” will refer to the intrinsic
semi-variation.

The following theorem is fundamental in the theory of vector measures.

Theorem 6.1. The semi-variation m® of a measure m is ezhaustive.

Proof. [PB] Theorem VI.10. g
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Let v be a sen:;i-vaﬁation on (T, T) and j be the canonical mapping of (7', 7)
into L'(v). It is easy to prove that if j is a measure then its semi-variation is v and that if
v is exhaustive then j is a measure. As a consequence we have the next Proposition. Let
us first give a notation. If v be a semi-variation on (T, 7), Vv denotes the set of all real
measures (considered as linear forms on (T, 7)) majorized by v. By the Hahn-Banach

theorem the following formula holds:

Vie (T, T) v(f)=sup {/fu lue Vv}

Proposition 6.2. Let v be a semi-variation on (T,T). The following properties are
equivalent: )

(1 ) v 13 ezhaustive

(2) For every decreasing sequence {A,} of elements of T with empty intersection,
one has lim, v(4,) =0

(8) For every countable T -partition {T,} of T, one has lim, v(T},) = 0.

(4) Vv is relatively weakly compact. 2

Proof. (1) implies (2) by the theorem of dominated convergence.

Suppose (3) fails. Then we can find § > 0 and a countable family {B,} of disjoint
elements of 7 such that v(B,) > 8. By replacing By by By N (T \ U, B,) we obtain a
partition {By} such that v(B,) > §. Putting A, = Up>,B, we contradict (2). Hence
(2) implies (3).

Suppose (3) holds. Let {A,} be a sequence of elements of 7 with empty inter-
section. Putting T, = A, \ A,41, we obtain a partition {T,}. Hence lim, v(T,) = 0 and
a fortiori lim, v(A,) = 0. Hence (3) implies (2).

Suppose (2) holds. For every countable 7-partition {Ty,} of T, one has

limo(T\ |J Tn) =0
" n<N

That means the canonical mapping j of (T, 7) into L!(v) is a measure and v is its semi-

variation. Therefore v is exhaustive. Hence (2) implies (1). The equivalence between (3)

2 People working with set-defined semi-variations would be interested by the set Ov“of all scalar measures u
such that p(A) < v(A) for all A € 7. As Vv C 8v if 8v is relatively weakly compact then the same is true for Vv.
Conversely if Vv is relatively weakly compact then (2) shows that for every decreasing sequence {Ay } of elements of T
with empty intersection, one has litn, u(An) = 0 uniformly with respect to u if 4 runs over 8v and that means 8v is

relatively weakly compact.
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and (4) is a direct consequence of the Hahn-Banach theorem:

o(T'\ U Tn)-—‘suP{l‘(T\ U Ty) I [LGV'U}

n<N n<N
and the equivalence between uniform o-additivity and relative weak compactness in the

space of real measures. O

As a byproduct of the proof we have the following result:

Lemma 6.3. Let v be a semi-variation on (T,7). If v is not ezhaustive, then there

exists § > 0 and a countable partition {T,} of T such that v(T,) > 6

Let us remark that if {m,} is a sequence of vector measures defined on (T, T)
then m, (A) converges to 0 uniformly with respect to A iff m?,(T") converges to 0. The

following result plays an essential role in the next sections.

Theorem 6.4. [Vitali-Hahn-Saks] Let (T, T,p) be a measure space, E a Banach space
and {my,} a sequence of E-valued measures. It is assumed

(1) all the my, are absolutely continuous with respect to .

(2) for every A € T, the sequence {mn(A)} converges.

Then:

Ve > 0 3dn such that p(A)<n = [Imn(A)|| <€ foralln € IN
Eqgquivalently:
Ve > 0 3n such that p(A)<n = mp(4)<eforallne N

Proof. Cf [DS] II1.7.2. O

Corollary 6.5. With the hypothesis of Vitali-Hahn-Saks theorem, the sequence {m,} is

uniformly o-additive.

Corollary 6.6. With the hypothesis of Vitah’-Hahn-S"aks theorem, if one puts
VAeT m(A) = li;n my(A)

then m is an E-valued measure.

Proof. Cf [DS] 1V.10.6. O
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Remaark 6.7. The theorem of Vitali-Hahn-Saks and its corollaries may be easily deduced
from the case of scalar measures (e.g. [PB] Theorem XV.9). Suppose first E is separable.
Then there exists a sequence {£,} in B such that ||z|| = sup, (z, &) for every z € E.
The measures (my(.), &) satisfie the hypothesis of the Vitali-Hahn-Saks theorem for

scalar measures. Therefore
Ve dn  plA)<n = [(ma(A), &) <€
and consequently
Ve 3n  pA)<n = |ma(A)l<e

Consequently (E being supposed to be separable) the vector measures m,, are
uniformly o-additive.

In the case E is not supposed to be separable let {Ax} be a countable partition
of T and T’ the o-algebra generated by this partition. The restrictions of the mea-
sures {my,} to 7’ have their values in a separable space and therefore are uniformly
o-additive. But this implies the {my,} are also uniformly o-additive as well as the
{(mn(.),y) | n € IN,||ly|]| < 1}. Hence this family of measures is relatively weakly com-
pact. By the Dunford-Pettis theorem ([PB] theorem VIL.18) we have

Ve 3n  wuA)<n = VWnelN|y|<1l [ma(d),y)|<e
and therefore
Ve 3n wA)<n = VneN |mn(d|<e

Ezample 6.8. Let F and E two Banach spaces and suppose F' C E’ and that F is a
norming subspace for E. Fory € F, z € E put y©®z = (y,z). Suppose m is an E-valued
measure. Let us compute the contextual semi-variation w.

By Corollory 5.3., we know that w < var(m). Let us prove that the equality
holds.

Let h €4 with h = }_ . 1p;2; where {B;} is a T finite partition of T and z; € .
We have

w(h) = sup {Z (s> m(Au'))}
ij
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where the sup is taken over all finite partitions {A;;} of B; and ||¢;|| < 2;. For every
i,j we have
sup { (615, m(A45)) | 11s31) < 25} = 2 Im(Ag)]
and therefore

w(h) = sup {sz [lm(Ai ) I {Ai;} finite partition of Bj}

ij

= sup {Ezjz||m(A,~,~)|| | {A;;} finite partition of BJ-}
7 i

3 #yvar(m)(B;) = [ b vas(m)
j

Finally we obtain the announced equality: w = var(m). The integral of a function f
with respect to m may be denoted hy f (f , m).

Ezxample 6.9. Dinculeanu considers in his treatise [DIN] the following situation. Two
Banach spaces are given as well as a L(Y, X)-valued additive set function m. It is
supposed that for every y € Y, m(.)y is o-additive, i.e. is a X-valued measure. This
property is nothing but the o-additivity of m for the strong operator topology on L(Y, X)
(see section 1).

Given f € its integral with respect to m is given by

[rom=mu it 5=Y &

with {A;} being a finite 7-partition of T' and §; € F. This setting has been intensively
studied by Dobrakov([DO1] and [DO2]) so we will refer to it as the Dobrakov setting. We
suppose that the mapping m(.)y is o-additive for every y € Y so the Dobrakov setting
is a particular case of the bilinear one with E = L(Y, X),F =Y,G = X,y©Qu = uy.

Following the Orlicz-Pettis theorem the assumption on m is equivalent to the
following: for every y € Y and every 2’ € X' the mapping (m(.)y,z') is a measure. That
means m is a weak measure for the duality (L(Y, X),Y ® X').

Let Z be a subspace of X' norming for X. For every z € Z the mapping y,u —
{z,uy) is a bilinear form. We may consider the measure m, such that m,(A4) = zm(A)

for every A € T. For every simple function f we have:

/fmz=<z,/f®m>
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Let us compute the contextual semi-variation w of m. We have for h €,:

wwy = sw{|[ rom| | 100 <n}
= s {(= [ fom) [ 10N <1l <1}
= sup {| [ ma)| | h700 < et < 1]

sup { / h var(m;)

We will now show how a problem of integration in the bilinear setting may be

el <1}

transformed into an equivalent one in the Dobrakov setting. Let (E, F,G,®) a bilinear
context and m a E-valued set function such that y ® m(.) is a G-valued measure for
every y € F. For every A € T let p(A) € L(F,G) defined by p(A4)y = y ©® m(A) for every
y € F. For u € L(F,G) and y € f put yQu = @y Suppose f € with f = ) . &4,
where {A;} is a finite T-partition of T' and &; € F. We have:

[ 1er=3cena) = S pde = S eom(a) = [ fom

Let us compare the contextual semi-variations w and @ of m and p. We have for every

h €4

w(h) = sup{

Z"‘A"’f"“ | 3o Nesli 1, < h}

= sup{llﬁ.'@m(Ae)ll | le&'lllm Sh}

= w(h)

Hence @ = w.
If m is an E-valued (strong) measure, then p is a L(F, G)-valued (strong) mea-

sure. Indeed we have
lp(A)]l = sup {p(A)y | y € Br} =sup {y ©m(4) | y € Br} < ||o||{Im(A)ll
But we can only prove the inequality p* < ||®]| m®.

Ezample 6.10. The following example stems from [DO1] (example 7). Put 7' = IN and
T = P(IN). Use the Dobrakov setting with X =11, Y = cqg. Suppose we have a bounded
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sequence {£,} in co. For every A C IN define m(A) € L(I*,co) by m(A)z = Y, 4 zes-

For every z € 1', m(.)z is a cp-valued measure. Furthermore we have

D omb

teA

Im(A)|| = sup {

EQEE 1} = sup {ll&ll | t € A}

Hence if limy, ||£,|| = 0 then m is a L(1*, cp)-valued measure.
By choosing appropriately the sequence {¢;} we can manage to get the contextual
semi-variation w being finite but not exhaustive. For example choosing
61 = [1701():- --]
€2 = 63 = [0)1/270’0,~ . ]

=&=6 = [0,0,1/3,0,0,...]

Then one finds that for any h €, one has:

w(h) = sup{ Z(f(t))tftl | fen . 17O h} =D hd)&
teN teN
In particular:
w(4) = th
teA

We get w([k,k+ 1,k+2,...] =1 for every k € IN and therefore the following

condition fails: limw(Ax) = 0 whenever {A} is decreasing and has empty intersection.

7. Bilinear Integration

In this section we consider a bilinear context (E, F, G, ®). Given an E-valued set
function such that y @m(.) is a G-valued measure for all y € F' we define the integrability
and the integral of a F-valued function with respect to m. The contextual semi-variation

is denoted by w.

Lemma 7.1. Let {v,} be a sequence of (strong) vector measure on a measurable space
(T, T). There ezists a positive measure p on (T, T) such that u(A) =0 <= vy(A) =0

for every n.

Proof. Let py, be a control measure of v,,. It suffices to take p =3 27"u,/ |luall. O

.
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Lemma 7.2. Suppose w o-finite. Let {fn} be a sequence of simple functions converging
w-a.e. to 0. Suppose for every A € T, the sequence {(fn ® m)(A)} converges. Then it

converges to 0, uniformly with respect to A.

Proof. Let N € T such that w(N) = 0 and f, converges on T'\ N to f. Replacing f,
by 17\n fn, doesn’t modify f, © m and brings us to the case f, converges everywhere
to 0. Let p be the measure associated with the sequence {f, ®m} by the preceding
lemma. As the measures f,, © m are absolutely convergent with respect to u, following
the Vitali-Hahn-Saks theorem, there exists n such that

pA<n = lI(fnom)(4)ll<e/2

Now by the Egorov’s theorem, as f,, converges to 0 w-a.e. (and therefore u-a.e.), there
exists C,, such that u(T"\ C,) <7 and f, converges uniformly to 0 on Cy,.

As w is o-finite we may suppose w(Cp) < oco. Indeed let us consider a countable
partition {Ti} of T such that w(T%) < 0o. Put Sy = U<, Tn and Ry = U5, Th- We
first take Cj, such that u(7T'\ C;) < 7/2 and {f»} converge; uniformly to Cy. For k large
enough, one have u(C;, N Ry) < €/2. Taking Cy = C7 N Sk, we obtain u(T'\ Cy) < 77 and
{fn} converges uniformly to Cy,.

Now have:
(fn@m)*(T) < (fnOom)*(Cy) + (fnOm)* (T \ Cp)
But
(fa @m)*(Cy) <w(lc, £
There exists N such that
n>N = [fa®l <e/2w(Cy) forall teC,
That gives
n>N = (from)*(T)<e/2+e/2=¢

O

Definition 7.3. Suppose w is o-finite. A function f from T into F is said to be integrable
iff there exists a sequence {f,} of simple functions such that

(1) fn converges w-a.e. to f

(2) For every A € T, the sequence {(f, ©® m)(A)} converges.
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The preceding lemma ensures that if two sequences {f»} and {f},} fulfill the con-
ditions of the preceding definition, then for every A € T, the two sequences {(f, @ m)(A4)}
and {(f}, ®©m)(A)} have the same limit. If f is an integrable function, one may put:

[tom=tmtom@)  [fom=lm(t,omm)

A glance at Corollary 6.6. shows that the mapping A — [, f©@m is a G-valued measure.
This measure will be denoted by f ® m.
Any integrable function f is w-measurable (i.e. is w-a.e. a limit of simple func-

tions) as well as the function ¢ = || f(2)]]

Lemma 7.4. The conditions of the preceding definition are supposed to be satisfied.
Then (fn, ® m)(A) converges uniformly to (f ®m)(4) for A€ T.

Proof. Let p the measure associated with the sequence {f, ®m} by lemma 7.1.. Let
€ > 0. There is 7 such that

pA)<n = (from)*(4) <ecand (fOm))(4)<e

There exists C, such that u(T \ C,) < n and f, converges uniformly to f on C;,. As w

is o-finite, we may suppose w(C,) < co. Then we have
(fn = H)@m)*(T) < (fn — £) @m)*(Cy) + (fn @©M)*(T'\ Cy) + (f ©m)*(T'\ Cy)
There exists N such that
n>NteC, = |f)-fu®)l<e

Then we have:
((fa = f)om)*(T) < ew(Cy) + 2

and therefore lim, ((f, — f)@m)*(T) =0. O d
Lemma 7.5. Let f be integrable and C € T. Then 1¢f is integrable and
VAeT (lcf om)(A) = (fOmM)(ANC)

Proof. Let {f,} be a sequence as considered in Definition 7.3.. One easily checks that
(1cfrn @ m)(A) = (frn © m)(AN C). Therefore lim,(1c f, ©® m)(A) exists for all A € 7.
Therefore 1¢ f is integrable and passing to the limit gives the announced equality. O [
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Theorem 7.6. Let w be o-finite and ezhaustive. Then every Bochner-integrable function

is tntegrable.

Proof. (1) Suppose first w is finite. Then by [PB),Théoréme VIIL.13., f is dense in L, (w).
Let f € L% (w). There exists f, € which converges to f in Ll.(w). By extracting a
sub-sequence, we may suppose that f, converges to f w-p.p.. But for all A € T, we

have:

I(fa ©m)(4) = (fp @ M)Al < wlllfa() = HoOI) = I1fn = foll c1 (w)

Hence the sequence {(f, ®m)(A4)} is a Cauchy sequence in F. That proves f is inte-
grable. )

(2) Suppose now w is o-finite. Let {S,} a increasing sequence of members of T
such that for every n, w(S,) < 00 et UpS, = T. Let f € L} (w). For every n, there is
fn €F, null outside Sy, such that ||f — fullc1 () < 1/n. The proof is achieved as in (1)
by using the sequence {f,}. O

Theorem 5.5. takes the following form:

Theorem 7.7. [Theorem of dominated convergence] Let w be o-finite and ezhaustive.
Suppose {fn} is a sequence of Bochner-integrable F-valued functions and h € L1 (w) such
that || fn()l| < b w-a.e.. If fo(t) converges w-a.e. to a function f, then f is Bochner-
integrable and f,, converges to f in L},(w). Moreover [ f, ©m converges to [ f©m and
((fn — f) ©m)*(T') converges to 0.

Ezample 7.8. TakeT = IN,T = P(IV). Then f is integrable iff the sequence { f(k) © m(k)}

is summable.

Proof. (1) Suppose {f(k) ® m(k)} is summable. For n € IN, define f,(k) = f(k) ift <n,
= 0 otherwise. Then f, €r and f,(k) converges to f(k) for all k. As f, = 1j0,n)f, We

have by lemma 7.5.:

(fnom)(A)= D f(k)om(k)

k<n,kcA
Hence f is integrable and

(f © m)(4) = lim(f ©m)(4)

In particular
(f ©m)(k) = lim(f, @ m)(k) = f(k) ©m(k)
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(2) Suppose f integrable. Then f ®m is a summable sequence. By lemma, 7.5. we have
(f @ m)(k) = (L1{x} f) @ m)(IN), i.e. (f ©m)(k) = f(k) ® m(k). Hence the sequence
{f(k) ®m(k)} is summable. o

Lemma 7.9. w is supposed to be o-finite. Let {f,} be a sequence of integrable functions
converging w-a.e. to 0. Suppose the sequence {(fn, ® m)(A)} converges for every A€ T.

Then this sequence converges to 0, uniformly with respect to A.
Proof. As for lemma 7.2.. 0O

Theorem 7.10. [First theorem of convergence] The semi-variation w s supposed to be
o-finite. Let {f,} be a sequence of integrable functions such that:

(1) fn converges w-a.e. to a function f

(2) For every A€ T, (fn ©m)(A) converges in F

Then f is integrable and (f, © m)(A) converges to (f © m)(A) uniformly with
respect to A. In other words lim,((f, — f) ©m)*(T) =0.

Proof. Let {h,} a sequence of simple functions converging w-a.e. to f. Let y as defined
by lemma, 7.1. using the measures {f, ®m |n € N} J{h, ©m |n € IN}. Then f, —h,
converges to 0 w-a.e. and therefore y-a.e..Let { Dy} be an increasing sequence of members
of T such that f, — h, converges uniformly to 0 on Dy and limg u(T\ Dg) = 0. Asw
is o-finite, we may suppose w(Dy) < co. Put D =J, Dy and N =T\ D. For every k,
choose ny, such that sup {||fn, (2) — hn, (B)|| | t € Dx} < 1/kw(Dy). Put gx = 1p,unhn,-
Then {gx} is a sequence of simple functions which converges w-a.e. to f .

For A C N and every n € IN we have (f, ©m)(A) = 0 and (h, ©m)(4) =0

and therefore:
((gx — frn) @m)*(T) = ((gk — fnr) ©m)*(D)
< (9% = fru) ©m)°(Di) + ((gk — fr) ©m)*(D \ Dx)
= (g% = fnr) @ m)*(Dg) + (fn, @©m)*(D \ D)
< 1/k+ (fo ©m)*(D \ Dy)
Let us appl& the Vitali-Hahn-Saks theorem (Theorem 6.4.) to the sequence of measures
{fn. ©m | k € IN}. For every € > 0, there is 7 such that u(C) <n => (fa, ©m)*(C) <
e. But there exists K such that k > K = u(D \ Di) < 7. Then we have k > K =

(fax @ m)*(D \ Dg) < e. That proves limg(f,., @ m)*(D \ D) = 0.
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It follows that limk((g — fn,) ©@ m)*(T) = 0. Then for every A € T, we have
lim((gx © m)(A4) = (fn, ©m)(4)) =0
The sequence {(gr ® m)(A)} converges and
lim(gx © m)(4) = im(fn, ©m)(4) = lUim(f» ©m)(4)

This proves that f is integrable.

For every integrable function f, put p(f) = (f ® m)*(T). One has p(f — fn,) <
o(f — gr) +p(gk — frn,) and therefore limg p(f — fr,) = 0. But applying lemma 7.9. to the
double sequence {f, — fa'}, one gets limy, n p(fn — fnr) = 0. Therefore lim, p(f — fr) =
0. = o

Lemma 7.11. w is supposed to be o-finite. Let f be a measurable function with values
in F and {f,} be a sequence of simple functions such that:

(1) fn converges w-a.e. to f

(2) for every A € T, the sequence {(fn ® m)(A4)} converges.

Let given a sequence of simple real functions {\,} such that A\ (t) < 1 and
lim, An(t) = 1 for everyt € T. Then for every A € T, one has lim,(fr, ® m)(4) =
limp ((An fn) © m)(A4)

Proof. Let p as defined by lemma 7.1. using the measures {f, ©® m} Let € > 0. Thereisg
such that u(A) <7 => ||f» © m)(4)|| < &. Then there exists C,, such that u(Cy) < nand
on Cy, A, (%) converges uniformly to 1 and f,, () converges uniformly to f(t). Furthermore

we may suppose w(Cy) < co. Then we have
(fn @m)(A) = ((Anfa) @ m)(4) = (1 = Anfn) © m)(A4)

= (1=} fn @m)(AN Cp) = (Anfu @ M)(AN(T\ Cp)) + (fn @m)(AN (T \ Cy))
The following inequalities hold:

”((1 - /\n).fn O] m)(A N Cfl)“ < Q(Cn) glelg()\n(t) - 1) *

IAnfr @ m)ANT\C)II < (fnOm)*(T\Cy) <€

l(from)(ANT\CHI < (fa@m)*(T\Cp) <e
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There exists N such that n > N = sup,ep(An(t) — 1) < e/w(Cy). Forn > N,
we get:
[(fn @m)(4) = (Anfn) @ m)(A)|| < 3¢

This allows to conclude. | O

Lemma 7.12. w is supposed to be o-finite. For every integrable function f, there is a
sequence {frn} of simple functions such that

(1) fn converges w-a.e. to f

(2) for all A € T, the sequence {(frn ®m)(A)} converges.

(3) for alln, || fu O < NFOI -

Proof. Let {fn(t)} a sequence which fulfills the 2 first conditions. Let us consider a
sequence {ky} of simple functions such that 0 < k,(t) 5. I fn(®)]] et limy, kn(t) = || f (@)l
m-a.e. and define A\, (t) = inf {1,k,(2)/ || fa(®)||}. By replacing fn(t) with A, (£) fn(2), we
get a sequence which by the preceding lemma fulfills the 3 conditions. O

Proposition 7.13. w s supposed to be o-finite. Let f be an integrable function with
values in F and h € such that ||f(.)|| < h. Then

‘ |72+

Proof. Let {fn} a sequence as defined by lemma 7.12.. One has: ||f,(.)|| < h, and
therefore || [ fa® m|| < w(h) The announced inequality is obtained by passing to the
limit. a

<w(h)

Corollary 7.14. For every h €, we have :

/f@m

Recall that in a Banach space E, a sequence {z,} is said to be weakly summable

w(h) = sup { ]

| 1 integraie, 11Ol < 1}

iff the sequence {(zn,y)} is summable for every y € E’. This definition is equivalent
to the following property: the linear mapping ¢ + 3, tn,z, from coo (the space of
eventually null sequences) into E is continuous. Consequently there is a bijection from
the space of weakly summable sequence onto the space L(copg, E). A sequence {z,} and
a linear mapping 9 corresponds to each other by this isomorphism iff ¢(t) = ), tnZn
for every t € co.
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Proposition 7.15. Suppose w is finite. Then for every countable T -partition {T,} of
T and every sequence {yn} in Br, the sequence {y, © m(Tys)} is weakly summable.

Proof. For every finite subset A of IV and every t € cgp vanishing outside A, we have:

Z ta(yn © m(Tn)) = Z(tnyn) © m(Tn) <w(4) < Q(T) <o
neEA neA

O

Lemma 7.16. Suppose w i3 finite but not exhaustive. Then there exists a T -partition
{Tn} of T and a sequence {yn} in Br such that {y, © m(Ty)} is weakly summable but

not summable.

Proof. Following Lemma 6.3. there exists § > 0 and a T-partition of T such that
w(T,) > 8. Following the definition of w there exists for every n € IN a finite family
{Ynx | kK € K} of elements of By and a finite T-partition {T,,x | k € K} of T}, such
that

> Ynk Om(Tnp)| > 6

kEK,

The sequence {ynx @ m(Ty )} is weakly summable but not summable.. O

Recall that if w is finite and exhaustive then every bounded w-measurable func-
tion is Bochner integrable hence integrable. The following corollary proves that this

property characterizes exhaustivity.

Corollary 7.17. Suppose w is finite but not ezhaustive. Then there ezists a bounded

measurable non integrable function.

Proof. Put f(t) = y, for t € T,. Suppose f is integrable. Then we have y, © m(T}) =
(f ©m)(Ty) and the sequence {y, ©® m(Ty,)} is summable. We get a contradiction. O

Recall that a Banach space is said to have the Bessaga-Pelszyrisky property iff every
weakly summable sequence is summable. The classical theorem of Bessaga-Pelszynsky
states that a Banach space has the Bessaga-Pelszyinisky property if and only if it contains

no copy of cg.

Corollary 7.18. If G has the Bessaga-Pelszyrisky property and if w is finite, then w s
ezhaustive.
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We give more characterisations of the Bessaga-Pelszyrisky property in the fol-

lowing theorem.

Theorem 7.19. For a Banach space G the following properties are equivalent:

(0) G has the Bessaga-Pelszyrisky property

(1) G contains no copy of co

(2) For any linear contest (E,F,G,®) such that the conteztual semi-variation
w i finite, w 13 exhaustive

(3) For any linear contezt (E,F,G,®) such that the contertual semi-variation

w s finite, every w-measurable bounded function is integrable.

Proof. (0) <= (1) is the Bessaga-Pelszynisky theorem.
(1) = (2) : if (2) fails the (3) fails by virtue of corollary 7.17.
(2) => (3) : indeed every bounded w-measurable function is Bochner integrable
(3) = (2) by corollary 7.17.
(2) = (1) : Example 6.10. shows that if G = cg, then there exists a bilinear
context for which w is not exhaustive. This remains true if G contains a copy of cp.

Hence if (1) fails then (2) fails too. (W

Swartz ([SW2] Theorem 1) proved the following result: Let X be a arbitrary
infinite dimentional space. The there exists a sequence {m,} in L(X,co) such that
{mnz} is a summable sequence in cq for every £ € X and a bounded sequence {£,} in
X such that the sequence {m,&,} is not summable. This result may be translated easily
into a sharpening of the part (2) = (1) in the preceding theorem.

We now go on to a convergence theorem of Vitali type. The following theorem

([DU] proposition 1.1.17 and corollary 1.5.4) is usefull.

Theorem 7.20. Let {v;} be an arbitrary family of G-valued measures. Suppose that for
all i, v; is absolutely continuous with respect to a positive measure . Then the following
properties are equivalent:

(1) {vi} is uniformly o-additive

(2) For every decreasing sequence {Ax} in T whose intersection is empty, the
sequence {v;(Ax)} converges to 0 uniformly with respect to ‘

(8) For every e > 0 there ezists n such that

p(A) <n=>vj(A) <e
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Proposition 7.21. Suppose w is o-finite. Let {f,} be a sequence of F-valued integrable
Junctions such that f, converges w-a.e. to a function f. If the sequence {f, ©m} is
uniformly o-additive, then the sequence {(f, ® m)(A)} converges for every A€ T.

Proof. Let p the measure associated with the sequence {f, ® m} by lemma 7.1. Let
€ > 0. There exists 7 such that u(A4) <7 = [|(fn © m)(4)|| < . Then there exists C,
such that u(T'\ C,) < n and that f,, converges uniformly to f on C,. As w is o-additive,

it may be assumed that w(Cy,) < co. We have:

(fa @ m)(A) = (fp @ m)(A) = ((f — fp) ©m)(ANCy)
+(fa @m)(AN(T\Cp)) + (fr @m)(AN (T\ (Cy))

and the following majorations:

{(fn = fo) ©m)(ANCY)ll w(Cy) sup ||falt) = f(Il
teANC,

I(Ffn @m)(AN(T\ Cy)ll £ (fa ©m)*(T'\ Cy)
I(fp @m)(AN(T\CHll < (fpom)*(T'\ Cy)
There exists N such that n > N = sup,canc, |fa(t) — fp($)l| < €. Then

n>N = |[(fn0om)(A4) - (f @m)(A)l < w(Cp)e + 2

Hence the sequence {(f, ® m)(A)} is a Cauchy sequence for every A € T. O

Corollary 7.22. Suppose w is o-finite. Then a F-valued function f is integrable iff
there exists a sequence {fn} of simple functions such that:
(1) fn converges w-a.e. to f

(2) the measures f,, © m are uniformly o-additive.

Proof. If f is integrable, then there exists a sequence {f,} of simple functions such that
(fn ©® m)(A) converges for every A € T. The Vitali-Hahn-Saks theorem asserts that (2)
holds.

Conversely if (1) and (2) hold then proposition 7.17. asserts that (f, © m)(A)

converges for every A € 7. Hence f is integrable. O

Theorem 7.23. [Convergence theorem of Vitali type | Suppose w is o-finite. Le {f.}
be a sequence of integrable functions such that:
(1) fp converges w.a.e. to a function f
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(2) the measures f, ® m are uniformly addstive
Then f is integrable and (f, ©® m)(A) converges uniformly to (f © m)(A). In
other words lim,,((f, — f) © m)*(T) =0.

Proof. Proposition 7.21. asserts that the hypothesis of theorem 7.10. are satisfied. O
To end this section we state a result that permits integration by pieces.

Proposition 7.24. Let {Tx} be a countable T -partition of T. Suppose a function f
is such that 11, f is integrable for every k € IN. Then f is integrable iff the sequence
{f14.f ©m} is summable whenever Ay € T and Ay C Tj.

Proof. Tt is easy to prove that the condition is necessary. Suppose it is satisfied. Put

fmy = EkSn 17, f. Then f(,,) converges everywhere to f. For A € 7 we have:

(o @m)(A) = 3 / (Larm, f) ©'m

k<n
Hypothetically the right hand member converges for n — oo. Following Theorem 7.10.

[ is integrable. d
gr

8. Tensor integration

In this section we shall first be concerned with the special case where m is a
vector measure and G is the vector space F &, E (the completed space of F ® E with
respect of the norm £). The symbol ® has to be replaced by ®. After which we will
replace the e-norm with the w-norm. We put L}(m) = L}.(m*®).

A essential tool will be the following notion that enables us to state generaliza-
tions of the Orlicz-Pettis’s theorem. Let E be a Banach space and H be a subset of E'.
Then H is said to have the Orlicz-Pettis’s property iff every E-valued sequence z such
that the sequence {(zn,y)} is summable for every y € H is summable in E. The classical
Orlicz-Pettis’s theorem asserts that E’ has the Orlicz-Pettis’s property. This notion is
discussed in [TH], Appendice II. The following proposition is an easy consequence of the

definitions.

Proposition 8.1. Let (T,T) be a measurable space, E a Banach space and H a subset
of E'. Let m be a map from T into E such that the map A — (m(A),y) is a measure for
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ally € H. If H has the Orlicz-Pettis’s property with respect to E, then m is a ”"strong

measure”, i.e. for all countable T -partition {T,,} of T, one has.
m(T) =Y _ m(Ty)
for the (norm) convergence in E.
Let f ep. If f =3 &14,, ({A:i} being a finite partition of T and §; € F), then:
[1om=% aom4)
Lemma 8.2. Let f €r. Then:
|/ sem| <fleym
Proof. One has:
If®@mll. = sup {Z (&,') (m(4s),7') | 2’ € B(E"),y € Qf(F')}

= sup {/ (F(),¥"Ymy | &' € B(E"),y € %(F’)}

IA

sup { [ 1709 a1 2 € B € B}

IA

sup { [1sOlimat 12 € ve(E')}
= m O

]

Proposition 8.3. For F ® E endowed with the e-norm, the contextual semi-norm w s

me®.

Proof. By lemma 8.2., for every f €, we have || [ f @ m||_ < m*(||f(.)|l) and therefore
w(h) < m®(h) for every h €R.

For the converse inequality, let us pick y € F' such that ||y|| = 1 and consider the
measure (F ® E)-valued measure y ® m such that (y® m)(A) =y®@m(A) forall A€ 7.
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A easy checking gives: (y ® m)® = m®. On the other hand:

womr® = sw{|[svem] |in<n}

Feae] )
<)
| 1|;z,-1,,;(.>y

= sup {}_jz,-(wm)(A,-) |

= sup{
= sup{

w(h)

3 (aiw) @ m(43)

/(Z zilay) ® ml

)

This proves m® < w. O

IA

Consequently the following definition agrees with Definition 5.4..

Definition 8.4. A F-valued function f is said to be Bochner-integrable with respect to
.the E-valued measure m iff f € LL.(m).

Definition 8.5. A F-valued function is said to be scalarly integrable with respect to
the E-valued measure m iff (f(.),y') € L!(my ) for all 2’ € E' and all ' € F'.

In this case for all z’ € E', all y’ € F’' and all A € T, wf, f ® m denotes the
element of (E’' ® F')* such that

<“/A f®m,m'®y’>= [ Oyme

A F-valued m-measurable function f is said to be e-Pettis-intégrable iff:
(1) f is m-scalarly integrable
(2)wf,fO®meF @ Eforall A€ T.

Ezample 8.6. Every Bochner-integrable function is e-Pettis-integrable.

Plainly if f is e-Pettis-integrable, then the map A — wf 4 f®m is a weak measure

for the duality (F &, E, F' ® E'). But we have more:

Theorem 8.7. If f is e-Pettis-integrable, then A wf, f ® m is a strong measure with
values in F ®, E. This measure will be denoted by (f ® m)..

Proof. Indeed following [TH] (Appendice II, Corollaire IL.7), F' ® E' has the Orlicz-
Pettis-property for F & E. O
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Theorem 8.8. Any F-valued e-Pettis-integrable function is integrable in the sense of

Definition 7.3. and conversely.

Proof. (1) Suppose f is e-Pettis-integrable. If is Bochner-integrable, consider a sequence
{gn} in p such that f =lim, g, in £}, (m). By extracting a subsequence we may suppose
gn converges to f m-a.e.. Then f is integrable in the sense of definition 7.3.. Consider now
the general case. For every e-Pettis-integrable function f let us put p(f) = (f ® m)2(T)
Let us take a countable 7-partition {T%x} such that que 17, f € L}(m) for all k. For
every k, there exists a sequence {g,x | n € IN} in p(m) such that g, x vanishes outside
Tk, gn,x converges m-a.e. to flp, and p(fly, — gni) < %2"’. Let us put Sk = Up<xTh
and Ry =T\ Sk.

For all n, let K (n) be such that p(f1Ry,,) < £ Put gn = X4 se(n) In,k- Then

gn converges m-a.e. to f and we have:

P(f=9n) < P(flRyn, — 9n) +P(flRy ()

< Y p(fin — gng) +P(flrg(wy)
k<K (n)
< 2/n

As the sequence {g,} converges m-a.e. and lim,p(f —g,) = 0, f is integrable in the
sense of Definition 7.3..

(2) Suppose now f is integrable in the sense of Definition 7.3.. Pick =’ € E'
and y' € F'. One have lim,, (f,(t),y') = (f(t),y') m-p.p.. On the other hand for every
A €T, the sequence n ++ [, (fn(.),y') mar converges. Hence by [PB] (théoréme 15.10),

(fn(')’yl) €L (mz') and
lifxzn/A (fn(-)s y,) Mg = /A (£()s yl) Mg

So f is scalarly integrable.
For A € T, put P(A) = lim, f, fn ® m. One have P(4) € F ®e E. By the
Vitali-Hahn-Saks theorem, P is a strong measure. Moreover for all ' € E’ and all

v eF,
(P2 @) =lim [ (1209 mar = [ (FO.¥)me

Therefore f est e-Pettis-integrable. O
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Ezample 8.9. If E = R, i.e. if m is a scalar measure, then Bochner integrability of a
F-valued function in the sense of definition 8.4. coincides with Bochner integrability
of a F-valued function in the usual sense for m-measurable functions. The e-Pettis-
integrability is nothing but the usual Pettis-integrability. A glance at theorem 8.8 shows
that a F-valued function f is Pettis integrable if there exists a sequence {f,} of simple

functions converging m-a.e. to f such that [, f,m converges for every A € T.

Ezample 8.10. Taking F = IR we obtain the following definition. If m is a E-valued
measure a scalar m-measurable function f is Pettis-integrable iff

(1) f € LY(my) for every ¢’ € E'

(2) defining wf, fm € E'* by

V' e E',AeT <w/ fm,:z:’>=/fm,r
A A

we have wf, fme Eforall A€ T.

By theorem 8.8. this definition is equivalent to the following: there exists a
sequence {f,} of T-simple functions such that f, converges m-a.e. to f and [ 4 fam
converges for every A € 7. The standard theory of integrability of scalar functions
with respect to a vector measure shows the above definition is in fact equivalent to the

Bochner-integrability i.e. to the property f € £1(m).

We go on to the case F ® E is equipped with the n-norm. We suppose that F
has the the approximation property, so as F &, F is a subspace of F &, E.

Definition 8.11. A F-valued m-measurable function will be said to be w-Pettis-integrable

if it is e-Pettis-integrable and if furthermore f®m is a (F &, E)-valued (strong) measure.

For f to be e-Pettis-intégrable, it is not sufficient f ® m to have its values in
F &, E. It is necessary f ® m to be strongly ¢ addditive. The following theorem gives
a very general condition for this condition to be fulfilled.

Theorem 8.12. If F' ® E' has the Orlicz-Pettis’s property with respect to F & E, then
every e-Pettis-integrable function f such that f @ m has values in F &, E is w-Pettis-
integrable.

In particular if F et E are separable and if F has the metric approzimation
property, then every e-Pettis-integrable function f such that f ® m is (F & E)-valued
i3 7-Pettis-integrable.
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Proof. The first asssertion follows from Proposition 8.1..
For the second assertion call to [PB] (théoréme X1.37): the metric approximation

implies:
VX€F&E |X|,=suwp{(X,B)|BeE ®F,|B| <1}

By [TH] (théoréme I1.3 de 'appendice II), this implies that F’ ® E' has the Orlicz-Pettis’s

property for F &, E. The conclusion is now immediate. O

Proposition 8.13. If f €p, then

|/ rom

Proof. It is a particular case of Proposition 5.2.. ad

< / £l var(m)

Corollary 8.14. The contextual semi-variation w attached to the integration with values
in F &, E is majorized by var(m). In particular if var(m) is o-finite then the same is

true for w.

Theorem 8.15. Suppose w o-finite. Any F-valued 7-Pettis-integrable function is inte-

grable in the sense of Definition 7.3. and conversely.

Proof. (1) Suppose f is n-Pettis-integrable. If is Bochner-integrable, consider a sequence
{gn} in F such that f = lim,, g,, in £} (w). By extracting a subséquence we may suppose
gn converges to f ma.e.. Then f is integrable in the sense of definition 7.3.. Consider now
the general case. For every n-Pettis-integrable function f let us put p(f) = (f ® m)5(T)
Let us take a countable 7-partition {T%} such that que 14, f € Lk (w) for all k. For
every k, there exists a sequence {gnx | n € IN} in p(m) such that g, ; vanishes outside
Tk, gn,x converges m-a.e. to flz, and p(flz, — gnx) < 227F. Let us put Sp = Up<xTh
and Ry =T\ Sk.

For all n, let K (n) be such that p(f1r,(,) < 7+ Put gn = 3 4<x(n) In,k- Then

gn converges m-a.e. to f and we have:

p(f—gn) < p(fl'RK(n) ~gn) + p(fIRx(..))

< Z p(flTl. - gn,k) +p(f1RK(n))
E<K(n)

2/n

IA
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As the sequence {g,} converges m-a.e. and lim, p(f — g,) = 0, f is integrable in the
sense of Definition 7.3..

(2) Suppose now f is integrable in the sense of Definition 7.3.. Then it is &-
Pettis-integrable by Theorem 8.8.. Furthermore f ® m is a strong measure with values

in F ®, E. Hence f is n-Pettis-integrable. O

References

1] R. Bartle A general bilinear integral, Studia Math., XV, pp. 337-350

2] 1. Dobrakov, On Integration in Benach spaces I, Czech. Math.Journal, 20 (1970), pp.

511-536

[3] 1. Dobrakov, On Integration in Banach spaces II., Czech. Math.Journal, 20 (1970), pp.

680-695

N. Dinculeanu, Vector Measures, ,Pergamon Press, 1967

N. Dunford, J. Schwartz, Linear Operators I., Interscience, 1958

J. Diestel, JR. Uhl, Vector Measures, A.M.S. Math Surveys 15, 1977

A. Grothendieck, Produits tensoriels topologiques et Espaces nucléaires, Memoirs of the

A.M.S.,16 (1955)

[8] A. Grothendieck, Sur les applications faiblement compactes d’espaces de type C(K), Cana-
dian J. Math, 5 (1953)

[9] M. Guessous, Intégration de fonctions vectorielles et de multi-applications par rapport &
une multi-mesure These, Université de Rabat, 1988

10] B. Jefferies, Evolution Processes and the Feynman-Kac Formule Kluwer, 1995

11] B. Jefferies, S.Okada, Bilinear Integration, Rocky Mountain Math. Journal, to appear

12] P.R. Halmos, Measure Theory, Van Nostrand, 1967

13} N.J. Kalton, Topologies on Riesz groups ans applications to Measure Theory, Proc. London

Math. Soc., 28 (3) (1974), pp. 253-273

14] 1. Kluvanek, G. Knowles, Vector Measures and Control Systems, North Holland, 1976

15} P.W. Lewis, Some regularity conditions on vector measures with finite semivariation, Rev.

Roumaine Math. Pures Appli., 15 (1970)

[16] T. Panchapagesan, On the Distinguishing Features of the Dobrakov Integral, Divulgaciones

Mateméticas, 3 (1) (1995), 79-114

17] R. Pallu de La Barriérre, Intégration Editions Ellipses, Paris, 1997

18] C. Swartz, Integrability for the Dobrakov integral, Szec. Math J, 30 (1980), pp. 640-646

19] C. Swartz, Integrating bounded functions for the Dobrakov integral, Math. Slovaka, 33
(1983), pp. 141-144

[20] C. Swartz, Integrating bounded functions for the Dobrakov integral, Correction, Math. Slo-
vaka, 35 (1985), pp. 98-98

[21] G. Thomas, L’intégration par rapport & une mesure de Radon vectorielle, Ann. Institut
Fourier, XX (2) (1970)

[22] M.M. Wilhelm, Integration of functions with values in a normed group Bulletin de
I’Académie Polonaise des Sciences, XX (11) (1972), pp. 911-916

[23] M.M. Wilhelm, Real integrable spaces, Colloquium Mathematicum, XXXII (2) (1975), pp.

233-248

INSTITUT DE MATHEMATIQUES, UNIVERSITE PIERRE ET MARIE CURIE, PLACE JUSSIEU,

75005 PARIS
E-mail address:  rpbmath. jussieu.fr . URL: http://www.math jussieu.fr/"rpb

~ S O

93




STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLIII, Number 2, June 1998

ABOUT AN INTEGRAL OPERATOR PRESERVING THE
UNIVALENCE

VIRGIL PESCAR

Abstract. In this work an integral operator is studied and the author deter-

mines conditions for the univalence of this integral operator.

1. Introduction

Let A be the class of the functions f which are analytic in the unit disc U =
{z € C;|z| <1} and f(0)= f'(0)—1=0.

We denote by S the class of the function f € A which are analytic in U.

Many authors studied the problem of integral operators which preserve the class

S. In this sense an important result is due to J. Pfaltzgraff [4].

Theorem A. [4] If f(z) is univalent in U, a a complez number and |a| < %, then the
function

Gae)= [ e de (1)
i3 univalent in U.

Theorem B. [3] If the function g € S and a is a complez number, |o| < J-, then the
function defined by

z
Gan ()= [ I ()" du @)
o
is univalent in U for all positive integer n.

2. Preliminaries

For proving our main result we will need the following theorem and lemma.

1991 Mathematics Subject Classification. 30C45.
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Theorem C. [1].If the function f is regular in the unit disc U, f(2) = z +a22> + ...
and

01 53| <

for all z € U, then the function f is univalent in U.

3)

Lemma Schwarz 1. [2]. If the function g is regular in U, g(0) = 0 and |g(2)] < 1 for
all z € U, then the following inequalities hold

l9(2)] < || 4)

for all z € U, and |¢’(0)] < 1, the equalities (in"inequality (4) for z # 0) hold only in the

case g(z) = ez, where |e] = 1.
3. Principal result

Theorem 1. Let v be a complex number and the function g € A, g(2) =z +a22> +....

If
h" (z) 1
< = (5)
7@ n
forallz€ U and
1
7l < T (6)
n 2
(11+2) n+2
then the function
Z
Grnla) = [ 19" )
0
i3 univalent in U for alln € N* — {1}.
Proof. Let us consider the function
z
16) = [ )" du. ®
()
The function
"
he) = = £ )

v F(2)’
where the constant 7y satisfies the inequality (6) is regular in U. From (9) and (8) it
follows that

7 nz"~1g" (")
hz) = m[ wioR ] (10)
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Using (10) and (5) we have

Ih(2)| < 1, (11)
for all z € U. From (10) we obtain h(0) = 0 and applying Schwarz-Lemma we have
1 1f"(z) -1
— [ < 2|1 < |2 12
i | Ty S < (12)
for all z € U, and hence, we obtain
z2f"(z n
(1-12) |22 < ot (- ) (13)
Let us consider the function Q:[0,1] = R, Q(z) = (1 — z2) z™; z = ||,z € U, which has
a maximum at a point £ = ;_'Jﬁ-,' and hence
n 2
% 14
Q(z)<((n+2)r)n+2 (14)
for all z € (0,1). Using this result and (13) we have
" 3 2
1— 2 Zf (Z) < n ) . 1
=10 1Ty | <M \mvs) ez (18)
From (15) and (6) we obtain
n
1-12) |29 < 4 16
(-1 | 27| < (19)

for all z € U. From (16) and (8) and Theorem C it follows that G, is in the class
S. O

Observation. For n = 2, we obtain |y| < 4 and the function G2 is in the class S.
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ON THE SPLINE APPROXIMATING METHODS FOR SECOND
ORDER SYSTEMS OF DIFFERENTIAL EQUATIONS

CORINA SUCIU

Abstract. One proposes an approximation method for the solution of the
systems of p second order differential equations by means of spline functions.
‘There is studied the error estimation and the stability of the proposed method.

1. Introduction.

Consider the following system of nonlinear second order differential equations
with the initial conditions:
{ vi@) = filz,y,...9p)
yi(To) = %0, ¥i(zo) =¥ig, i=1Lp
where f; € C7([0,1] x RP), i=1,pand r,p € IN.

The approximate solution of a system of 2 equations of second order was con-
structed by Th. Fawzy, Z. Ramadan and A.Ayad [1,2]. In this paper we propose a
generalization of the method, for system of p equations. The system (1) can be trans-
formed in a system of n equations of the first order, but the order of the method presented
is O(hot™+2m), The order of the method presented by G.Micula and Maria Micula[5],

for system of n equations of first order, is O(h*+™+™).

2. Description of the approximating method.

Let L; be the
Lipschitz constants satisfied by the functions f'-(q) ,i=1,p, q=0,r:
P
1520, 9p0) = I @y, p2) S LY lyin — wsl (1)
i=1

V(Z,y1,15- -« 1¥p,1)s (Z,¥1,25-- - ,¥p,2) in the domain of definition of fi, i =1, p.
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Let A be a partition of the interval [0, 1]:
A:0=20<2:1<...<Zp <Tp41<...<Tp=1, h:=x}4; — 25, k=0,n -1

Assume that f; € C7([0,1] x IR?) and that the modulus of continuity of the functions

1 is w(y{™*, h), and w(h) = maxw(y{", h).
=1

WP

The functions fiq— R depending of z, y1,...,yp are given from the following
algorithm:
Set f,-(o) = f; and if f,.(q—l) are defined, then:

¥(@) = £9) = 0@ + @)+ + £TD (2 @)

where 2z = (z,y1,--. ,¥p)-
We define the spline functions approximating y; by 8; a, = 1,p, for zx <ty <
tm-1<... <t £t <z < Zpy1, k=0,n—1 a partition of the interval [z, Tx41], in the

following way:

sia(z) = "’%c) =™ (@) + 5,7 (2h) (@ — 23) + (3)
+ / £t @), s ) dtrdt
Tr Ty

where s, _l(a:o) =1Yi0, 8 , i (a:o) = yio and m is a positiv integer number.

In (4) we use the following m iterations:

sg?,],(z) = ,k l(a:;,) + s”c 1(-"’1:)(1? - ) +J_Zo (x( :kz))t M'(:,k) @
m k@) = ik 1(""") + s:k 1(-"7k)(17 zx) + (5)

E I .
+ / fi(tm—j+l,3[1],k1](tm—j+l)a~ . p,k Nt 1)) dtm—jrrdt
zx J ke

M3 = [P (ar, s (@h), 8 (2h), G =T,m

It is clear by construction that s;a € C'[0,1], ¢ =I,p.

3. Error estimation and convergence.

The following notations will be used y(’) =y, D(gy) for i =T,p, j =07 F1
and k = 1,n — 1. The exact golution y; := E Li=Tpof (1) can be written in the
following form:
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¢ By Taylor’s expansion, for y[ 1 holds:

r+1,.(9) (D
[ ] y (6: k) r
Nz) = ,Zo i L —(;,T2),—(w—3k) +2 (6)

where &k €2k, Tepa1[, i =1,p.

e For 1 < j < m the exact solution y[’] is given by:
W@ = W¢+%*@—wﬂ+ )

+ / fa(tm—1+1»y1 (tm—.1+l)’ . ,yL" “(tm—j41))dtm_jr1dt
T

kY Th

wherei=1,p, ,j=T,m, k=0,n—1
The error is defined by the usual way, for i =1,p, k=0,n — 1:
ei(z) = |yi(z) — si,a(@)] , ei(x) = |yi(z) — 5i,a(2)] (8)
eik = Yk — sia(@e)| 5 ey = Wix — 5ialzs)l

Lemma 3.1. [1] Let a and B be nonnegative real numbers, § # 1 ‘and {A;}r, bea

sequence satisfying the conditions:
Ao >0, Ai+l S-a+ﬁAi7 1=0,1,...,k

then the following inequality holds:

ﬂk+1 -1
Apy1 < BF Ap + o=
-1
Lemma 3.2. [1] Let a and B be positive real numbers , and {A;}, be a sequence
satisfying :
A >0, 4; <a+BAi,i=1,... ,m-1.
then

m—2
AP Ap+a ) p

=0

Definition 3.1. For any u € [Tk, Zk4+1), K = 0,n— 1, j = I,m we define the operator
Ty; by:
P
Thj(w) =Y ™ () - W%n

i=1
whose norm is defined by:

IT;ll := max {Tx;(u)}
UE[Zk,\Tr41]
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Lemma 3.3. For any u € [Tk, Tk+1], k =0,n — 1, j = 1,m, the following estimations:

r+2

mll <A{1 L i h 9
1 Zemll < {1+ Z( +2)|}§e,k+;eak+1’w( )( 5 (9)
with L = ma.x{Ll,Lg,... , p}, and
) 4 b4
IToall <@ eir+bY ehs+ch>™  w(h) (10)
=1 i=1

hold, where a, b, ¢ are constants independent of h:

¢ = E(I’TL) ”(sz) .o(jiz)!

j=0 N j=

- E

j=0

Proof. Using (5) and (7) we get:

I () — s )] < fyis — oIy (o)l + I — 51 o)l — e +

lz zi) 2 RO @y 1= o™ (rr2) (r)
Z ( T 2)' k - Mi,k l + _"'(r_f___z)-!'—"yi ({‘yk) - Mi,k I (11)

From (9) and (2), we can see that:

p
L.'{Z yik — ,,k 1(""5)'} <L Zey, (12)

j=1 j=1

+2 j
W™ - M3

IA

14
{2 (&) - M| < w(y{™?, ) + L D ek 13)

Jj=1
where w(y§r+2),h) is the modulus of continuity of function y("+2). Using (13) and (14)

in (12), we obtain:

P T pi+2
9w) — SO )] < exn +help + LS esn S A 4
uE(zy.,zk.H]I (u) Bi,k(u)l — e’rk + e‘hk + ij_-zle.'hk '=ZO (l + 2)!
h""" w(h)hr+?
14
Adding in (15) for i = 1, p, we get:
> i) ek Yo el s
ITemll S {1+pL ) 551 ) ik + ) €ix+Pr—oyw(h) (15)
= G+ & pt (r+2)!
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For computing ||T%;||, we use (6), (8) and (2):

™) — sl )] < lyis — sUR (@6)] + Ik — silp0s (20l — zel+

+L; / f {Zlyzm—"—l](tﬁ-l)"s[m—] U(tj11) Yt dt
T YT

=]
lyi™ () — [mnﬂ(uﬂ < eix + hejy + Lil[Trja)l dtj+1dt
ue[zk zk+1] zp JZn
and the result is:
P P h2
Tl <) e+ ) €in+ PL-2*”TI=(J'+1)|| (16)
i=1 i=1

Applying Lemma, 3.2 we get from (17):

il < (B)" Wi +Z(e, chn > (Z)

Jj=0

and, using (16), it can be shown that:

ITull - < {g(%)jw(‘—’zf)mg(j—jﬁ}gei,w

7=0 i=1

P
<a Z e+ bZeg’k + ch*™*"w(h)
for

i=0
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Lemma 3.4. For e;, €] defined in (9), there exist constants {di}, {di2},
{dis}, {dis}, {dis}, {ci1}, {ci2}, i = 1, p independent of h such that the following inequal-
ities hold:

. p
e(x) < (L+daheir +hdi Y e+ hdinely +

E
P

+ hd;s Z € + ca K220 (h) (18)
7

14
ei(x) < hdieir +hdia Y ejn + (1+ hdis)el, +

i=1
J#i
P
+ hdis Y €} + cinh®™ Hw(h) (19)
7
Proof. Using (8), (6) and (11) we estimate:
@) = <lyik- s£t7,1 L@R)] + bk — 8k (@)l — z) +
+ L / / {Z ™M) - sl (k) Yty dt <
Tk Y Th j=1
< ek + hej g + Lil|Tha| dtldt <
T YZx
L; L; L;b
< 1+ e + %hZej.k + (14 el +
=
Lib, & LiC, omiri2
+ Thz;e;’k + —2—h ™2u(h)
=
i
So, for d;; = _I_;_c_z’ ,dio = 1+d3, diz = L2b’ cih = _I%c_ we obtain (19). Similarly we
prove for e}. O
Using the matrix notation:
E(@@) = (e(a)s--- ep(2),€1(2),--- sep(2)T
Ek = (el'k, e ,ep,k,e'l’k,. . ,e;,,k)T
Cc = (611,021,--- »Cp1,C12,C225- -+ ,sz)T
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E(z) < (I + hA)Ey + Ch2™r+14(h)

where I is the unit matrix of order 2p x 2p and

If for the mafrix M =

{ dn

dn

din dia
dyy  dao

dyg dis
dyg  das

dis ... )
dag

dis
das

/

(m;;) we defined the norma by:

1M} = max 3 jmss|
J

then on the basis of (21) we can write:

IE@N < 1+ RIADIER] + ICIR* ™+ w(h)

The inequality holds for any z € [0,1]. Setting z = x4 it follows:

Using Lemma 3.1 and noting that || Eg|| = 0, we get:
1
IE@)I < (1+hlAD* Bl +IIC ||h2"'+'+lw(h)(
Iic ||( Al _

Now it follows strighforward:

where By

We estimate the difference |y§q+2) (z) -

IA

IEg+nll < @ +RIADIER] + [CIR*™ ™+ w(h).

IA

llAll

DAZ™ 0 (h)

+HIAPA -1

1+ hljAll -1

egj) (z) € Bow(h)R?>™* for i =0,p, j =0,1

_ el ian _
=

|y (z) —

19 (1,00 )s s g 0(00)) = = 10 (1,80 V1), s ()] <

LToall € Lelay e+ 3 e + k™)) < B k™)

J—

{0 = |2

dxat+2

j=1

y,"‘]( )=

1) is a constant independent of h.

o™
d q+2 ‘lk

st (w)l ¢=07,i=Tp

(@) =

(20)

(21)

(22)
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for Bi1 = L;[p(a + b)By + c] a constant independent of h

Thus, we proved the following result:

Theorem 3.1. Let (y1,... ,yp) be the exact solution of the problem (1) and (s1,a - -. ,8p,a)
be the approzimate solution for the problem (1). If f € C7([0,1] x IRP), then the following
estimations hold for z € [0,1]:

W (2) — A @)] < Buw(R)R™T = O(R2™+7+e)
where ¢ = 0,7 + 2 and B;3, i = 1,p are constants independent of h.

4. Stability of the method

For new initial conditions,

¥i(zo) = Yi0» Yo(o0) = y;fo , we defined the approximate solution by:

wia(z) = f'"ll(zk)+w,k L (@e) (@ = z3) +
+ / : fi[tl,wg";-ll(tl),...,wl'" (e, )]dtrdt (23)

where w (a:o) :=yjo and wi (:vo) y,o, i=1,p, k=0,n—1
In (24) we use m iterations, for o <ty < ... <t <t <z < T4, like in (5)
and (6).

We use the following notations, for i =1,p, k=0,n— 1:

lwi(z) — 8:(2)], &;* (z) = |w}(z) — s}(=)|

lwi(ze) — s:(zx)], €% = |wi(ze) — 5i(za)|

e; ()

I

*
€k

M = (D@l @), i =T

and we define the operator:

Tigj(w) —le ") - s N(w)|,u € [, ex41), k=0n =1, 5 =T,m

i=1

with the norm:

1T;11 = TR}
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Lemma 4.1. For any u € [Tk, Tk+1), k=0,n — 1, the estimations

ITzall < {1+pLZ G +2),}Ze,,k+2e,,, (24)
j=0 i=1
P ) 4 ,
ITHll < @) el +b) eln (25)
=1 i=1

hold, where

7=0
m—1 3
_ pL
s = 2 (%)
Jj=0

The proof is similarly with the proof of Lemma 3.3.

Lemma 4.2. For e}, e, i =1,p above defined, the following inequalities hold:

|4 p
ef(z) < (L+duh)ei, +hdi Y €} s+ hdinely + hdig €} (26)
= p
’ 4 , ) 4 ,
e: (SL‘) < hd.-4e;',k + hdis E e;’,, +(1+ hdis)e:,k + hd;s Ee;:k (27)
= =7

where the constants are defined in Lemma 3.4.

The proof is similarly with the proof of Lemma 3.4.

Using the matrix notation
E'@) = (@) ep@) el @) ep @)
Ef = (&g r€ppr€ipse--rhp)”
then, the estimations (27 — 28) can be write in the following form:
E*(z) < (I +hA)E}
where I and A are defined matrix. Applying Lemma 3.1, we get:

I1E* (@)

IA

A n
-+ il < (1+ L0 g <

A

el Bl < B*IIES |

where B* = ell4ll ig a constant independent of h.
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Hence:

e; (z)

e (z)

IA

B Egl| (28)

A

< BY|E||

fori=1,p.

For |w{**? (z) — s{"*?(z)|, ¢ = 0, we obtain, like in (23):

|w§q+2)(m)—s$q+2)(w)l < BillEsl|

where Bj; = pLi(a + b)B* is a constant independent of h.

Thus we proved the following result:

Theorem 4.1. Let (s1,...,8p) be the approzimate solution of the problem (1) with
the initial conditions yi(zo) = ¥io0, ¥i(T0) = ¥}, © = L,p and let (wy,...,wp,) be the
approzimate spline solution for the same system, but with the initial conditions: y;(z¢) =
Yio» Yi(®o) = y;,'o, i =1,p. Then the inequalities:

lw® (z) - 89 (2)| < Baal B3l

hold for all = € [0,1], ¢ =0, + 2, where Bjs, i = 1,p, are constants independent of h
and || B3|l = maxi{|ys,0 — ¥iol, [¥h0 — vi0l}-
5. Numerical example

. Consider the following system of differential equations, for p = 2.
y'=y+z-e* y0)=1, ¥'(0)=0
z" =y;i-z—e", z(0)=1, 2'(0)=0
The method is tested using this example in the interval [0,1] with step 0.1 , where
r =0, m = 1. The result are tabulated at z = 1.

The analytical solution is:
y = e -z
z = e *+z

To test the stability of the method, we solve the above example with the new initial
conditions:

y(0) = 1.000001, 3'(0) = 0.000001

z(0) = 1.000001, =2’(0) = 0.000001
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The results are:
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The convergence The stability
e1| 1.48222E-05|e} | 3.28131E - 06
e; | 1.15977E —04 | e’ | 4.48373E — 06
ey | 2.41293E-03 | e} | 6.53131E — 06
e2 | 1.48222E—05 | e} | 3.28133E — 06
eo | 1.15977E —04 | e | 4.48370E — 06
ey | 2.41293E-03 | e}’ | 6.53132E — 06
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THE SCHWARZSCHILD-TYPE TWO-BODY PROBLEM: A
TOPOLOGICAL VIEW

FERENC SZENKOVITS AND VASILE MIOC

Abstract. The Schwarzschild-type two-body problem (associated to a force
function of the form A/r + B/r® A, B > 0), which models several problems
of nonlinear particle dynamics, is being tackled from the standpoint of topol-
ogy- The corresponding mechanical system is fully characterized, and the first
integrals of energy and angular momentum are pointed out. These integrals
are used to settle the invariant manifolds and the bifurcation set for the whole
allowed interplay among the field parameters, the total energy level, and the
angular momentum. The orbits on each manifold are interpreted in terms of
physical motion. Besides recovering motions characteristic to classical models,

entirely new types of motion are found.

/

1. Introduction

The theory of orbits in a force field characterized by a force function of the
form A/r + B/r® (with r = distance of a particle to the field source; A,B > 0 con-
stants) constitutes an extensively discussed subject. This theory, which models concrete
problems belonging to astrophysics, stellar dynamics, celestial mechanics, astrodynamics,
cosmogony, etc., was approached by various methods, both qualitative and (especially)
quantitative.

Many authors studied quantitatively the motion in such a field (see, e.g., Brum-
berg, 1972; Chandrasekhar, 1983; Damour and Schaefer, 1986), generally in a relativistic
context, showing that the analytic solution of the problem can be obtained in closed form
by means of elliptic functions. But the analytic form of these solutions hides the general
geometric properties of the model.

As to the rather few qualitative approaches, they dealt mainly with the reg-

ularization of motion equations (see, e.g., Saari, 1974; Belenkii, 1981; Szebehely and

1991 Mathematics Subject Classification. B8F0B; 7T0F05; TOF15.
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Bond, 1983; Cid et al., 1983). In addition, the quoted authors used only Sundman-type
transformations of time.

Stoica and Mioc, 1997 studied qualitatively the problem for any A # 0, B # 0,
and provided a complete geometric and physical description of the orbits.

Following Smale’s topological program (see Smale, 1970, Iacob, 1973 or Abra-
ham and Marsden, 1981), the aim of this paper is to determine the topological type of
the energy-momentum invariant manifolds, determined by the first integrals of energy
and angular momentum, and the set of bifurcation points, in whose neighbourhood the
topological type of the invariant manifolds is changing. Using the geometrical proper-
ties of the invariant manifolds, the types of physical motion are briefly characterized for
A,B > 0.

2. Basic Equations

It is clear that the Schwarzschild-type two-body problem can be reduced to a
central force problem (e.g. Arnold 1976). Within this framework, the motion of the
particle is confined to a plane. We shall use polar coordinates (r,8), and follow the
treatment presented by Abraham and Marsden (1981, p.656).

The mechanical system with symmetry which describes the problem is (M, K, V,G),
where:

M = (0,00) x S! is the space of the polar coordinates (r,8), regarded as a

Riemannian manifold endowed with the metric
((Tl,el,fl,él)’ (r2,02,f2,92)> = 172 + 11720162,

dots marking time-differentiation;
K is the kinetic energy of the metric above, whose expression on the cotangent
bundle T* M is

(1) K (r,6,pr,p9) = (0} + p5/7°)/2,

Pr, pg denoting the momenta;

V is the potential energy, given by

(2 V(r,0) =-A/r — B/ra;
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G = SO(2) = S! is the Lie group that acts on M by rotations (= denoting
isomorphism). Observe that G acts by isometries and leaves V invariant (cf. Abraham
and Marsden 1981).

The Hamiltonian of the system is
3) H(r,0,pr,p5) = (0} +p5/7")/2 ~ Afr — BJr®.

The momentum mapping J : T*M — R is given by J(r,0,p,,ps) = pg, and is
invariant under the action of G.

Consider x = (r,0) € M and the mapping Jx : TaM — R. The expression
Jx : (pr,ps) > pp of this mapping shows that Jy is surjective for all x € M. In other
words,

A={xe M| Jx:TyM — R is not surjective} = 0.

Note that dJ = dpy, therefore J has no critical points on T* M.

The problem admits the first integrals of energy and angular momentum, respec-

tively:
(4) H("" 071’1’7?0) = K(T, G,Pr,Po) + V(T) = hv
(5) J(r,0,pr,p9) = pg = C,

where h and C stand for the integration constants of energy and angular momentum.

3. Effective Potential Energy

Eliminating ps between (3)+(4) and (5), one gets

(6) p; =2(h - Vo),
in which
(7 Vo (r)y=V(r)+C?*/(2r*) = —-A/r + Cc?/(2r*) - B/r3

denotes the so-called effective potential energy.

Settled the constant angular momentum C, one sees by (6) that the real motion
is possible only in the domains V¢ (r) < h, where h is a fixed total energy level.

The graph of the function Vo = V¢ (r) in different cases, for all values C' de-
pending on A, B is plotted in Figure 1.
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AVe C* > 16AB

C*=16AB |

12AB < C* < 16AB (] C* = 12AB

N C* < 12AB

FIGURE 1. The graph of the effective potential energy:

4. Bifurcation Set and Topological Type of Invariaﬁt Manifold

To study the motion, we use the invariant manifolds I,c = (H X D7k, 0),
whose defining equations are (4) and (5). Obviously, the topological type of I, ¢ depends
on the condition V¢ (r) < h, and because of the rotational symmetry, each component
of I ¢ is a product, S! being one of the factors. Using the graphs of Figure 1, and
observing their significance as regards the allowed domains for r to have real motion, we
are able to identify the invariant manifolds diffeomorphic (=) with In,c on which the
phase curves lie.

To synthesize all possible cases, les us establish and plot the bifurcation set
H x J, defined as the set of couples (h,C) € R? for which the energy-momentum mapping
H x J fails to be locally trivial, in other words, those points in whose neighbourhood the
topological type of the invariant manifolds is changing (see e.g. Abraham and Marsden
1981).
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First we determine the set of critical values ¥y, ; C Yxxy, defined by the

conditions

2
8) Zhxs={(h,C) €R? | h=Vo(r),V5(r) =0} = [ J{(h,C) € R? | h = (her)s},

i=1
where
9) (hery; =Ve(rs), i=1,2;
and
(10) = CHCDHVOT-12AB -,

24
are the critical points of the effective potential Vo (r), (V&(r) = 0).

After some computations we obtain the set of critical values:

(11) Tyus = {(h,C) € R? | 108 B%h? + 2C*(18AB — C*)h + A%(16AB — C*) = 0}.

The graph of this curve is plotted in Figure 2 and has two components, defined
for i = 1,2 by:
(12)

C?(C* - 184B) + (-1)+}(C* - 12AB)§}
108 B2

{(h,C) € R? | h = (hep),} = {(h,C) € R? | B =

Note that the complete picture of the set of critical values is symmetric to the
C = 0 axis, and this symmetry occurs in all the nexts.

The complete bifurcation set is:
(13) Thxs = Zyys U{(h,C) € R? | h = 0}.

For different values of the energy and angular momentum constants we found
seven cases. The corresponding sets in the (h, C) plane are noted in Figure 2 with (a),
(b), ..., (g). In different cases the topological type of the invariant manifolds and the
type of orbits in the configuration space is:

(a) If the energy and angular momentum constants are in the domain {(h,C) €
R?2|h > 0,h > (her)1(C)}, then the invariant manifold is diffeomorphic with the reunion
of two disjont cylinders (I, ~ S°xS? xR), and the corresponding orbits in configuration
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(b)

(®) h = (her)2

@ (€ h = (her)s

PATTT S
® (2)

FIGURE 2. The bifurcation set.

space are ejecting from collision and tending to infinity (0 = 00), or coming from infinity
and tending to collisions (0o — 0).

(b) If (h,C) € {(h,C).€ R2 | h >0,k < (her)1(C)}, then I, o ~ S° x ST x R,
but in this case the orbits are comming from infinity and then tending back to infinity
(00 = o), or are ejecting from collision and tending back to collision (0 — 0).

(c) If (h,C) € {(h,C) € R? | h < 0, (h¢r)2 < h < (her)1}, then I o =~ (S xR)U
(S x S1), is the disjont reunion of a cylinder and a torus. The orbits type is (0 — 0),
or there are periodic or quasiperiodic orbits (P/QP).

(d) If (h,C) € {(h,C) € R? | (h < 0,h < (her)2) or (b < 0,h > (her)1)}, then
I c ~ (S* x R) (one cylinder), and the orbits are of the (0 — 0) type.

(e) If (h,C) € {(h,C) € R? | (h = (her)1),C* > 124AB}, then I ¢ is diffeo-
morphic with the reunion of two cylinders which are intersecting in a circle. In this case
unstable equilibrium orbits (UE) may exist, or the orbits are of the type (0 — UE), (UE
— 0), (00 = UE), (UE — ).
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(£) I (h,C) € {(h,C) € R? | (h = (her)2),C* > 12AB} then I, ¢ = (S* xR)US?
(disjont reunion of a cylinder and a circle), and the orbits are of type (0 — 0) or (SE),

stable equilibrium.

(8) If C* = 12AB,h = (her)1 = (Rhor)2 = —2%34B | then I, ¢ is homeomorphic
(and not diffeomorphic in this case) with S x R, and the orbits are of type (UE), (0 =
UE) or (UE — 0).
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