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STUDIA UNIV. BABES-BOLYAIL MATHEMATICA, XL, 2, 1995

ON FACTORIZATION OF GROUP
L VIRAG'

Received: May 19, 1995
AMS subject classification: 20D40

REZUMAT. - Asupra factorizirii unui grup. in aceasta lucrare sunt stabilite
céteva rezultate privind posibilitatea descompunerii unui grup finit in produs
de doul subgrupuri. :

1. Introduction. All groups in this paper are ﬁnite. Let G be a group and
let M be a subgroup of G (in symbols M < G). G is factorizable over M if there
are H < G and K = G such that

G=HK,HNK =M.

In this case H and K fumnish a factorization of G over M and we call K
a complement in G of H over M.

Assume that M < H < G. In this paper we present three theorems which
give criteria for the existence of a complement in G of H over M. Some special
cases are also presented.

We shall begin by reviewing the folloving notions:

* "Babeg-Bolyai" University, Faculty of Mathematics and Computer Science, 3400 Cluj-
Napoca, Romania



I. VIRAG

Suppose that G is a group and that S is a (left) G-set (i.e. S is a set on
which G acts from the left as a group of permutations). For each element a €
S its G-orbit is the subset G(a) = {xa | x € G} of S and its stabilizer in G is

the subgroup G, = {x € G | xa. = a} of G. It is known that |G(a)| = |G: G,|.

2. Results.

THEOREM 1. Suppose that H < G and that S is a G-set. For an element
o € S, the following statements are equivalent:

(1) The subgroup H and the stabilizer G, of o in G furnish a
factorization of G over the stabilizer H, of a. in H.
(ii) The G-orbit G(a) of o coincides with the H-orbit H(a) of a.

(i) |G: G,| = |H: H|.

Proof. Assume that G = HG_, H N G, = H,. Then for x € G we have
x=Yyz,y €E H, z € G,. It follows, that G(a) = {xa | x € G} = {()2)a| y E H,
z€EG,) ={(za) | yEH, z € G,} = {ya | y € H} = H(a). Hence (i) implies
(ii).

Suppose that G(a) = H(w). Then it is immediate that |G : G,| = |H :

H,|. Thus (i) implies (ii).

4



ON FACTORIZATION OF GROUP

Gl=1H- IHIG,| .
Suppose that |G : G,| = |H : H,|. Then |G| = AR Since HN G,
HI||G ¢
= H_, it follows, that |G| = _.l_l_l_l'_ = |HG,|. Therefore G = HG,, HN
[HNG,|

G, = H,. Hence (iii) implies (i).

THEOREM 2. Ass.ume that M < K < G. Then for a subgroup H of G the

Jfollowing statements are equivalent:
()G=HK HNK=M.

(ii) There exists a G-set S and o € S.such that the G-orbit G, of o
ceincide with the H-orbit H, of a. and G, = K, H, = M.

Proof. 1t is easily that the set of left cosets of K in G is a G-set with the
operation (x, yK) — xyK. Assume that a = K.

IfG=HK HNK=M,thenforeveryxEG x=yz, yEH z€EK It
follows, that xK = yzK = yK. Therefore the G-orbit G(X) of K coincides with
the H-orbit H(K) of K. If x € G, then xK = K iff x € K. Hence the stabilizer G,
of K coincides with K and K N H = M is the stabilizer of K in H. Therefore (i)
implies (ii).

The implication (ii) implies (i) is an immediate consequence of Theorem

We note the following particular case of Theorem 1.



L. VIRAG

THEOREM 3. Let H be a subgroup of the group G. Then for a subset T

of G the following statements are equivalent:
(i) The subgroup H and the normalizer N(T) of T in G furnish a

Jactorization of G over the normalizer N(T) of T in H.

(i1) If a subset R of G is conjugate to T in G, then R is conjugate to T
with an element of H.

(iii) |G : No(D)| = |H : N(D)|.

Proof.” The set P(G) of the subsets of G is a G-set with the operation (x,7)
— x'Zx, x EG, Z € P(G). If a =T € P(G), then G, = N«(1), H, = N1),
G(a) = {x'Tx | x € G}, H(a) = {y"'Ty | y € H}. Hence the statements of

Theorem 3 are easily from Theorem 1.

3. Applications. We note that if G is a group, then the condition (ii) of
Theorem 3 is satisfied in the following particular cases:

a. H is a normal subgroup of G and 7'is a Sylow subgroup of H.

b. H is a normal subgroup of G and 7' is a nilpotent Hall subgroup of H
([1], Th. 5.8., p.285).

c. H is a normal solvable subgroup of G and T is a Hall subgroup of H
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([1]. Th. 1.8., p.662).
Hence the following applications of Theorem 3 are immediate:
COROLLARY 1 (The Frattini argument). If H is a normal subgroup of
G and T is a Sylow subgr;oup of H, then
G = HN4(T), HN Ng(T) = Ny(T).
COROLLARY 2. If H is a normal subgroup of G and T is a nilpotent
Hall subgroup of H, then
G = HNy(T), HN Ny(T) = N,(T).
COROLLARY 3. If H is a normal solvable subgroup of G and T is a Hall
subgroup of G, then

G = HN,(T), HN Ny(T) = N(T).

REFERENCES

1. Huppert, B. Endliche Gruppen I, Berlin Heidelberg New-York, Springer-Verlag, 1967.
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CONVEXITY AND INTEGRAL OPERATORS
Silvia TOADER’

Received: January 20, 1995
AMS subject classification: 26A51

REZUMAT. - Convexitate §i operatori integrali. in prima parte a lucririi
imbun#tifim un rezultat al lui V. Zanelli §i dim o demonstratie ugoari a sa.
Apoi considerdm cétiva operatori integrali i studiem proprietétile lor relative
la conservarea convexititii de ordin superior. Obtinem astfel o generalizare a
rezultatului din [3].

1. A result of V. Zanelli. In [3] it is proved the following property:
LEMMA 0. Let f [a,©) — R (with a > 0) be a positive, decreasing,
convex function and
F@) = [ (1)
Foras<y k>0, y+ k= x, we have th:z following inequality:
F(y+k) - F(y) - F(x+k) + F(x) s k[f()) -f()]. )
The proof is based on a rather complicated geometrical method. We want
to eliminate some superfluous hypotheses from the enounce and to give a simple
proof of it.

LEMMA 1. Let f. [a,b] — R be a convex function and F be defined by

* Technical University, Department of Mathematics, 3400 Cluj-Napoca, Romania
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(1). For a s y<x<x+ k s b we have the inequality (2).
Proof. Let us consider the auxiliary function:
g&t) =t[f(y) S - Fy+t) + F(y) + F(x +1t) - F(x), t € [0,k].
We have
g'@) = [f(x+0) - f)] - [f+1) -f(] =0

because, by the convexity of f, the conditions x > y and x + ¢ > y + ¢ give:

JE+) 1) | S0 -10) | S0 - 1)
t t

X+t-y

Obviously g(0) = 0 so that g’(f) = 0 gives g(k) = 0, that is (2).
It can be remarked that we have renounced at the following hypotheses

from Lemma 0: a > 0, f'is positive and decreasing and y + k < x.

2. Convex functions of higher order. We must remind some definitions.
Let f. [a,b] — R be an arbitrary function. For arbitrary distinct points x,,
X, ..., X, € [a,b] the divided differences of the function f are defined by
recurrence:
[x; /1 = f(x), [x....x,.; /] =
=([x,...x,_.x,.:f ) - [x,...x;fDIx,,, - x,) 3)

The function f'is called convex of order n (or shortly n-convex) if:

10
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[x,..%,,:f120,Vx,..,x , € l[a,b] ()]
where the points are supposed, as in (3), distinct.

For n = 1 we get convexity and for » = 0 increasing monotony. It is
known (see [2]) that a n-convex function, with » = 1, is continuous on (a,b), so
it is integrable on any subinterval from [a,b].

The main result that we will use is the following:

LEMMA 2. If the function f is n-convex.then:

(%5 s Xisf] S [ Yyui S i %, 5 9, Y 5)

Proof. From (3) and (4) we deduce that:

[x, .. x %, f1 = [x,..,x;f] if x  >x_ This gives (5), step by

step, because the divided differences are symmetric with respect to the points.

3. Arithmetic integral means. To generalize the result from [3] we
consider, for a fixed k > 0, some operators.
Let C[a,b] be the set of continuous functions on [a,b]. For f € Cl[a,b] we

denote by I,(f) the function defined by:

x+k

FN® = [fOd, ¥ xsb-k
Then we define:

11



S. TOADER

AN E = L FN®
a sort of arithmetic integral mean and:
E(N ) = A4()x) - fx)
an "excess" function. We get so the operators F, , 4, and E, defined on C|a,b]
and with values in C[a, b—k]. To study some of their properties, we give simple
representation formulas for them.
As:
k
F(N@ = ! fGe+ydt
making the substitution ¢ = ks, we havé:
1
A @) = ‘[ S (x+ ks) ds
and so
1
E(f) () = J [f(x +ks) - f@)] s.
Thus E,(f) = 0 if fis increasing and Lemma 1 asserts in fact that E,(f) is
increasing if fis convex. We generalize this result as follows.
THEOREM 1. If the function f is n-convex, then F(f) and A(f) are
also n-convex but E(f) is (n—1)-convex.
Proof. If x,, ..., x,., are distinct points from [a, b—k] we have

1
(X5 %, 5 A(N] = ![x, +ks,..,x,, +ks;f]ds = 0

12
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and
(%5 n X, EL)] = :!’([xl+ks,...,xml +ks;f] = [, ...x,,;f])ds = 0
by Lemma 2. So the affirmation follows for A,(f) and E(f). As
F(f) = kA(f), it is true also for F(f).
We remark that the operator E, can be defined similarly by:
E(N)®) = f(x+k) - 4())®)
having the same properties.
Let us define also the operators F, 4, E: C[a,b] — C[a,b] as follows. For
fin C[a,b] we put:
F(f) @) = }f(t) dt
A(f)(x) = F(f;(X)/(x-a)
and
E(f)(x) = f(x) - A(S) ().
Using the substitution ¢ = a + s(x-a), we have:
AN () = :[f (a + s(x-a)) ds
and
E(f)(x) = :{[f(X) = f(sx + (1-s)a)] ds.

Thus, as above, we can prove

13
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THEOREM 2. If the function f is n-convex then so is also A(f), but E( f)
is (n—1)-convex.
The first result is well known (see [1]) as it is also known that under the

same hypotheses, F(f) is (n+1)-convex.

REFERENCES
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ON SOME INEQUALITIES
USEFUL IN THE THEORY OF CERTAIN
HIGHER ORDER DIFFERENTIAL AND DIFFERENCE EQUATIONS

B.G. PACHPATTE’

Received: March 6, 1995
AMS subject classification: 26D15, 26D20

REZUMAT. - Asupra unor inegalitiiti din teoria ecuatiilor diferentiale gi
cu diferenfe de ordin superior. fn lucrare sunt stabilite noi inegalitati
integrale §i discrete care pot fi folosite in teoria ecuatiilor diferentiale de ordin
superior §i a ecuatiilor cu diferente.

Abstract. In this paper we establish some new integral and discrete
inequalities which can be used as handy tools in the theory of certain new

classes of higher order differential and difference equations.

1. Introduction. The fundamental role played by the integral and discrete
inequalities in the development of the theory of differential and difference
equations is well known. In the literature there are many papers written on
integral and discrete inequalities and their applications in the theory of

differential and difference equations, see [1-8, 10-12] and the references cited

* Marathwada University, Depariment of Mathematics, Aurangabad 431 004,
(Maharashtra) India



B.G. PACHPATTE

therein. Although stimulating research work related to integral and discrete
inequalities used in the theory of differential and difference equations has been
undertaken in the literature, it appears that there are certain classes of
differential and difference equations for which the existing results on such
inequalities do not apply directly. This amounts to finding some useful integral
and discrete inequalities in order to achieve a diversity of desired goals. Our
main objective here is to establish some new integral inequalities and their
discrete analogues, which can be used as handy tools in the study of certain new
classes of higher order differential and difference equations. We also present
some immediate applications to convey the importance of our results to the

literature.

2. Statement of results. In what follows we Ilet
R = (-0,o), R =[0,%)and N, = {0,1,2,...}. For any function z(m), m €

N,, we define the operator A by Az(m) = z(m+1) — z(m) and all m > n, mn €

n

N,, we use the usual conventions Ez(s) =0 and Hz(s) = 1. We use the

s=m S=m

following notations for simplification of details of presentiation. For 1 € R, and

some functions r(f), i = 1, 2, ..., n, we set

16



ON SOME INEQUALITIES

F[t’ rl’rZ’ ""rn-l’rn] = rl(t)!rz(sz) t!"‘3(‘5'3) r4(s4) !rn-l(sn-l) X

"n—l

x J. r(s)ds,ds, ..ds,ds,ds,

(r)‘[rg(sa)t[r( )Jr(ss) J”.(s-,) x

X Jrn(s”) ds ds _, .. dsgds,ds, +

’ -
+r,,@) ‘[ r.(s)ds, +r().
For m € N, and some functions r(m), i = 1, 2, ..., n, we set

Hlm,r,r,,...,r,,1,]

s5,-1 5-1 5,71 5,71

= rl (m)z_ r2(s2)z r3(s3)2 r4(s4)"‘ x Z rn—l(s -—l) E rn(sn)

5,20 5,20
o m Y (sa)z% r <s4>2 s Y r s )Y rs) +
5,=0 A 5,.,=0 s,=0 .

+ r”_l(m)z-: r.(s,) + r,(m).

s=0

Our main result is given in the following theorem.

17



B.G. PACHPATTE

THEOREM 1. Let (1), a(t), b(®), p(t), i = 1, 2, ..., n be real-valued
nonnegative continuous functions defined for t € R,.
¥/
:
y(0) s a(f) + b(t)!F[s,p,,pz,..., _»P, Y] ds, 2.1
for allt € R,, then

) = a(t). + b(t)!ﬁ[s,pl,pz,...,‘ _,p,a) %

'
x exp(fF[‘c,pl,pz,..., 1> P, b dv) ds, 2.2)

for allt €R,. :
(ii) Let G(r) be a continuous strictl, increasing, convex and
submultiplicative function for r =z 0, G(0) = 0, lim G(r) = , a(f), B(t) be

r—>o

positive continuous functions for t € R, and a(t) + () = 1. If

W) s at) + b(HG !F[s, PysPys s Pyt P, GO ds], (2.3)

for all t € R,, where G is the inverse of G, then

W) = a() + b(HG™ !F[s, PysPys s Pyy» P,0G(@a™)] x

X exp (IF [x.p,. 055 5P, P,BG(BB™)] ) dS], 24

forallt €R,.

18



ON SOME INEQUALITIES

(iii) Let W(y) be a real-valued continuous, nondecreasing, subadditive and
submultiplicative function defined on interval I = [y,, ©) and W(y) > 0 on (y,,
®), yo'= 0 is a real constant, W(y,) = 0. If

: ¢
o) = a(t) + b(t) [F[s, PysPys s Pty PV () ds, 2.5)
forallt ER,, thenfor 0 st <t
' .
WO = a(t) + (O [Q(c()) + ‘[F[s,pl,pz, s Doy P,W(D)] ds], (2.6)
where

o(f) = J’F [5,P,.Py» s B, P, W(a)] d, Q.7

* ds :
Q(u) = ! 08 u = u, with u, > y,, (2.8)

Q™! is the inverse of Q and t, € R, be chosen so that

Q(c() + j'F [s.p,.Pys s P, P,W(b)]ds € Dom (Q™),
Jor all t € R, lying in the interval 0 <t < t,.
We next establish a more general version of Theorem 1 which may be
convenient in some applications.
THEOREM 2. Let (1), a(t), b(H), p(t), i = 1,2,...,n be real-valued
nonnegative continuous functions defined for t € R,. Let f: R} — R, be a

continuous function which satisfies the condition

19



B.G. PACHPATTE

(A) 0 < f(t,u) - f(t,u,) < k(t,u) (u, - u,),
fort €R, and u, = u, = 0, where k : R} — R, is a continuous function.
@v) If
WO s a() + b(t)jF [5,2,, P55 sPy» P (S V)] G, 2.9)
for all t € R,, where (fy)(1) = f(t, (t)), then

) = a(t) + b(t) JF[s,p,,pz,--.,p"-‘,p,.(fa)] x

x e_xp(J’F [, Dy, Pys s P, 1 D, (k) b] dFE) ds, (2.10)
for all t € R,, where (ka)(t) = k(t, a(?)).

(v) Let G, G, a, B be as in (ii). If

W) s a@® + bOG™ !Fls,P.,Pz,---,P,.-,,P,,(f(G(y)))]dS], 211

for all t € R,, where (f(G(»)) () = f(t,G(y(?))), then

W) s a@) + b G ‘[F'fs,P.,Pz,~~,P,.-1,P,,(f (aG(aa™))] *

X exp (fF [v. P\, Py, s Pyt P(K(aG(aa™))) (BG(6B™))] dr) dS], (2.12)

for all t € R,, where (f(aG(aa™))) () =f(t,a() G(a(t)a'(1))),

(k(@Glaa™))(6) =k(t,a(n)Gla(®a™ (1)), (BGBB™) () =BE) G(bMHB™ ().

20



ON SOME INEQUALITIES

(vi) Let W, Q, Q" be as in (iii). If
N s a(f) + b(t):[F [s.p,,P,5 . B, P,(S (W) ds,  (2.13)
for t € R,, where (f(W())) (1) = f(t, W(y(1))), then for 0 <t s t,,
y(©) s a® + bOKQ[QA(c(®)
+ IF [s.p,,p,, ... Py, P(K(W (@) W(D)] ds], (2.14)
where (k(W(a))) (1) = k(t, W(a())), W(b) (1) = W(b(1)),
c@®) = :{F [s,p,Pys s P, s ,(S(W ()] ds, 2.15)
and t, € R, is chosen so that
Qc()) + :[F [s.P), Pys s Py s PLE(W (a))) W(b)] ds € Dom (Q7'),
Jor all t € R, lying in the interval 0 st < t,.
The discrete analogues of Theorems 1 and 2 are given in the following
theorems.
THEOREM 3. Let y(m), a(m), b(m), p(m), i = 1,2, ...,n be real-valued
nonnegative functions defined for m € N,
(vii) If
Nm) = a(m) + b(m)")'__.;l Hl[s,p,,p,, -, P,.>P,)), (2.16)
for all m € N,, then S

¥m) s a(m) + b(ﬁi)z- Hl[s,p,,p,,...,P,,,P,a] *

=0

21
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m-1

< Y 1 +H[x,p,, PP,y 2011 (2.17)

Tmyvl
forallm € N,

(viii) Let G, G be as in (ii) and o(m), B(m) be positive functions defined

Jor m € N, and a(m) + B(m) = 1. If

m-1

Hm) = am) + ()G (3 HI5, PPy s Preto PLGDD, - 2118)
foralln € N,, then |
Hm) s a(m) + bm)G ! 't:H[.s,p.,pz, s Ppt» P0G (@™ )] x
x 2[1 + H[x,p,,py, P, 2,BG (5B, (2.19)

Jor all m € N,

(ix) Let W, Q, Q! be as in (iii). If
m‘—l

Wm) < a(m) + b(m) ¥ H[s,p,,py,...0,,.P,W (W), (2.20)

s=0

Jor all m € N, then for 0 s m < m,, m, m, € N,

m-1
Wm) s a(m) + b(m) Q! [R2(d(m) + E Hls,p,.p,,....p,...p,W(b)]], (2.21)
s=0
where
m-1
d(m) = E H{s,p,,p,,...p,,.p,W(a)], (2.22)
s=0

Jor m € Nyand m, € N, is chosen so that

m-1

Q(d(m)) + Y, HIs,p,,p,, . p,.,p,W(b)] € Dom (Q7),

s=0

for m ENyand 0 s m s m,.
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THEOREM 4. Let y(m), a(m), b(m), p(m), i =1,2,...,n be real-

valued nonnegative functions defined for m € N,. Let h - N, x R, = R, be a

Sfunction which satisfies the condition

B) 0 < h(m,u)-h(m,u) s qgim,u,)(u, - u,),

for m € N, and u, = u, = 0, where q(m,r) is a real-valued function defined for

mE N, reR,.
) If
m-1

Wm) = a(m) + b(m)Y Hls,p,,p,,..P,,.P,(h))],

s=0

Jor m € N, where (hy)(m) = h(m,y(m)), then

m-1

Wm) s a(m) + b(m)Y_ H[s,p,,p,, ...P,.,,P,(ha)] x

=0
m-1 s

x Y [1 + Hx,p,,p,, ... 0, 0,(qa)b]],

T3+l

for m € N,, where (qa) (m) = q(m, a(m)).
(xi) Let G, G, o, B be as in (viii). If

Y His,p.p,,...p,,, P, (KGO

5=0

Hm) < a(m) + b(m)G ™!

Jor m € N, where (h(G(y))) (m) = h(m,G(y(m))), then

m) < a(m) + b(m)G ™

s=0

(2.23)

(2.24)

(2.25)

Y H. 2.1y, o112 (B Gaa™ )] =
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g H [1 + HI%,py, Py s Py P(9(@Glaa™)) x BGOBBMN],  (2.26)
fo;:n € N,, where (h(aG(aa™))) (m) = h(m, o(m)G(a(m)a™ (m))),
(g(@G(ao™))) (m) =

= g(m , a(m)G(a(m)o'(m))), B(G(EB™)))(m) = B(m)G(b(m)B™ (m)).

(xii) Let W, Q, Q™ be as in (iii). If
Wm) s a(m) + b(m):fé HIS, Py, Py0 o By BAROFON], (227)
for m € N,, where (h(W())) (:n) = h(m, W(y(m))), then for 0 < m < m,,
Hm) < a(m) + b(m)Q [Q(d(m))
. 2: H IS,y Py s Py PAW (@) WOD]], (2.28)
where (q(W (@) (m) = q(m, W(a(m))), (W(b)) (s = W(b(m)),

d(m) = zo HIS, Py, Pys s Py P (B(W (@),

and m, € N, be chosen so that
m-1

QAd(m)) + Y HIS, Py Pys s Py s P(4F (@) (W(B))] € Dom (Q7),

Jorm € Nyand 0 s m < m,.

3. Proofs of Theorems 1 and 2

(i) Define a function u(f) by

t
u(t) = ‘[F[s,pl,pz,...,pn_l,p"y] ds. 3.1
24



ON SOME INEQUALITIES

From (3.1) and using () < a(f) + b(t) u(t) and the fact that u(r) is monotone
nondecreasing for ¢ € R,, we observe that

-u'() < F[t,p,sPys-5P,.5P,8] *+ Flt,D,,P;, ... Ppy, P,01u(). (3.2)

From (3.2) we obtain

4
ult) s ‘!'F[s,pl,pz,..., 1> P,a] %

x exp(:[F[r,pl,p,,..., . p,bldv)ds. (3.3)
Using (3.3) in (1) = a(¢) + b(t)u({) we get the required inequality in (2.2).
(ii) Rewrite (2.3) as
N s a(t)a(t) o’'(5) + B() b B7(1) *

1
x G ‘[F[s,pl,p,,..., »p,G)]ds|. (3.4)

Since G is convex, submultiplicative and strictly increasing, from (3.4) we have
G(0) s a()Ga@)a (1) + BOGBMB (1)
x [F (521 P2y s Pous s PG . (3.5)
The estimate given in (2.4) follows by first applying the inequality proved in (i)
with a(r) = a()Gla@®a™(®), b() = BOGG@B™()) and W(1) = G(N(1)) and
then applying G™ to both sides of the resulting inequality.

(iii) Define a function u(¢) by
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!

u(t) = !F[s,pl,pz, s Py PW(Y)]ds. (3.6)

Using »(t) < a(t) + b(¢) u(t) on the right side of (3.6) we observe that

]
u(t) = JF[s,p,,pz,...,pn_l,p"W(a + bu)] ds

'
< c() + F [5,P,,P,s > P, 1P, W (b) W(1)] ds. (3.7
For an arbitrary 7 € R,, it follows from (3.7) that
u(t) s c(T) + :{F[.é,pl,pz,...,pn_l,an(b)W(u)] ds,0 <t sT. (3.8)
Define a fupctibn v(t) by
v(if) =e + ¢(T) + :[F[s,pl,pz,..., LD WB)W(Wlds, 0 st s T, (3.9)
where e > 0 is an arbitrary small constant. From (3.9) and using the facts that
u(t) s v(t) and v(¢) is monotone nondecreasing for 0 < ¢t < 7, we observe that
v/(t) s Flt,p, Py s D, s P,V I W), 0 st s T (3.10)

From (2.8) and (3.10) we have

d .
LQOW) = FILp.pynlsn b, WO 0502 T (311)

Now integrating both sides of (3.11) from 0 to T we have

T
Qv(I) < (e +c(T) + [F[s,pl,pz,..., 1D WD) ds.  (3.12)
Since T is arbitrary, the inequality (3.12) holds for ¢ = T, for all r € R, and

hence from (3.12) we have
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v()) s Q1[Q(e +c(r) + jF[s,p,,pz,..., P, W(b)]ds]. (3.13)
Using (3.13) in u(f) < v(f) and the fact that () < a(t) + b(f) u(f) and letting
e — 0 we get the desired inequality in (2.6). The subdomain of R, for ¢ is
obvious. This completes the proof of Theorem 1.
(iv) Define a function u(f) by
'
u(t) = !F[s,pl;pz, e Pys P ()] . (3.14)
From (3.14) and using the condition (A) and the facts that)(f) < a(f) + b(¢f) u(t)
and u(f) is monotone nondecreasing for ¢ G R., we observe that
u'(t) s F[t,p), Py, ., Py P, (f(@ + DU))]
= F[t,p,, P, . P, P{(Sf(a + bu)) - (fa) + (fa)}]
s F[t,p, Py s Py P(S0)]
+ Flt,p,,p,,...,P,.,,p,(ka)b] u(r). (3.15)
From (3.15) we obtain

u(t) = IFls,P,,Pz.---,p,.-,,p,,(fa)] x

]
x exp(fF[t,p,,pz,..., .. D, (ka)b] dv) ds. (3.16)
Using (3.16) in (f) < a(t) + b(f) u(t) we get the desired inequality in (2.10).

The proofs of (v) and (vj) can be completed by following the same
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arguments as in the proofs of (ii), (iii) and (iv) given above with suitable

modifications. Here we omit the details.

4. Proofs of Theorems 3 and 4. Since the proofs resemble one another,
we give the details for (vii) only, the proofs of (viii)-(xii) can be completed by
follovbing the proofs of similar resulis given in [7, 0 11] and closely looking at
the proofs of (i)-(iv) and (vii).

(vii) Define a function z(m) by
m-1

2m) = 3 HIs.PsPys s Prcts PI) @1

s=0

From (4.1) and using y(m) < a(m) + b(m)z(m, and the fact that z(m) is
monotone nondecreasing for m € N,, we observe that
z(m+1) - z(m) = Hm,p,,p,, ..,P,,,P,})

s H[m,p,,p,, ...p,,,P,a] + H[m,p,,p,,....p,,,p,blz(m). (4.2)

The inequality (4.2) implies the estimate (see [7])
m-1

Z(m) = E H[saplypzy "-ap,,_]ap,,a] x

=0
m-1 s

x IT 11 + Hlx,p,,py5 -5 P,45P,01) (4.3)

Tes+l

The required inequality in (2.17) now follows by using (4.3) in y(m) < a(m) +

b(m)z(m).
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5. Some applic;ﬁons. In this section we present some applications of our
results to obtain bounds on the solutions of certain higher order differential and
difference equations for which the inequalities available in the existing literature
do not apply directly.

Let p(f), 0 < i = n be positive continuous functions defined for 1 € R,.
We define the differential operators L,, 0 < i < n by

Let) = 29D 1xty= L 91 xn,1sisn

X0 p() dar” "
Consider the nonlinear differential equation of the form

Lx(®) =g, Lx(®),Lx({®),..,L, _x®,L,x(), (5.1)
with the initial conditions
L,x©0)=0,i=1,2,..,n, (5.2)
where g : R, X R* — R s a continuous function. For the study of (5.1)-(5.2), see
[9] and the references cited therein.
We first convert the problem (5.1)-(5.2) into an equivalent integral

equation. Let y(f) = L x(), then we have

L, x(t) = ‘[p,,(sn)y(s,,)ds,,, (5.3)
L_x() = ! p :l(s"_,) ! p,(s,)¥(s,) ds,ds, (5.4)
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3

[ % 5 nes
Lx(f) = ‘[pz(sz) \[p,cs,) [ms.n-- 1 Py, )

x ‘[p"(sn)y(s”) ds,ds, ,..ds,ds,ds,, (5.5)
t 5 5 Sz
Lyx(t) = ‘[p.(s.) !p;s,) Jp,(ss)... [ Pt (5,)
x ‘[ p,(s,)¥(s,)ds, ds, , .. ds,ds,ds,. (5.6)
Consequently the prbblem (5.1)-(5.2) is equivalent to the following integral
equation
t S 5 Sz
() = g|t, !pl(s,) !pz(s,) IP’(S’)'" ! Pyi(5,1)

x ‘{p"(sn)y(sn) ds,ds, , ..ds,ds,ds, ,

jp,(sz) jm(sg) ]p4(s4) sfpn_, ($,,) *

sn-l

X !pn(sn)y(s”) ds,ds,_, ..ds,ds,ds,,
¢ Seit
J‘p"‘l (sn‘]) [p"(sn)y(sn) dsn dsn—l ’

1 p.(s,) ¥(s,) ds,]. (5.7)
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Suppose that the function g in (5.1) satisfies
lgt,wy,w,,....,w,,,w )|
sa() + b [Iwel + Iw,| + ..+ [w,| + |w, 1], (5.8)
where a(f) and b(¢) are real-valued nonnegative continuous functions defined for
t € R,. From (5.7) and (5.8) we observe that
ly® s a@) + b(r)]F[s,p.,p,,...,p,,-l,pn v11ds. (59)
Now an application of inequality proved in (i) Theorem 1 yields
ly®0| = 0O, (5.10)
where
'
Q) = a(t) + b(®) ‘[F[s,pl,p,,...,pn-l,pnal x
'
X exp (IF[t,p,,pz, wsP, > P,bldv)ds.
Now using (5.10) in (5.3;-(5.6) we get the bounds on |L, x(?)|, |L,,x(*)|,
s |Lx(®)], |Lyx(?)| in terms of the known quantities. Thus by using the
definition of L x(#), we get the bound on the solution x(¢) of (5.1)-(5.2) in terms
of known quantities.
Further, it is be noted that the inequality given in (vii) can be used to
obtain upper bound on the solution of the nonlinear difference equation of the

form
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E x(m) = g(m,E x(m), E\x(m), ..., E, _,x(m), E, _ x(m)), (5.11)
with the initial conditions
E_x@©0)=0,i=1,2,.,n, (5.12)
where g is a real-valued function defined on N, x R”, the operators
E, 0 < j < n are defined by
Ejx(m) = x(m) , E x(m) = 1

Po(m) p,(m)
p(m), 0 < j <.n are positive functions defined for m € N, By letting

AEj_l. am), j=1,2 .. n.

z(m) = E x(m) and'convelting the problem (5.11)-(5.12) into an equive ent form
of sum-difference equation and following the same arguments as explained
above for the problem (5.1)-(5.2) we get the bound on the solution x(m) of
(5.11)-(5.12).

We also note that the inequalities established in (iv) and (x) can be used
to obtain bounds on the solutions of the following more general nonlinear higher
order differential and difference equations of the forms:

Lx(®) = g(t.f(t, Lx(®),f (€, Lx(0), .. f(t L px0). (¢, L x®)),  (5.13)
L,x(0)=0,i=1,2,.,n, (5.149)
and

E, x(m)=g(m ,h(m ,E x(m)),h(m,E x(m)),
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o sh(m,E _,x(m)),h(m E,_x(m))), (5.15)

E_x(©0)=0,i=1,2,..,n, (5.16)

respectively, under some suitable conditions on the functions involved in (5.13)

and (5.15). Since the details of these results are very close to that of given
above with suitable modifications, and hence we do not discuss it here.

In concluding this paper we note that there are many possiﬁle applications
of the inequalities established in this paper to certain classes of higher order
differential and difference equations, bui those presented here are sufficient to
convey the importance of our results to the literature. Various other applications

of these inequalities will appear elsewhere.
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SECOND-ORDER DIFFERENTIAL SUBORDINATIONS
IN THE HALF-PLANE

Dorina RADUCANU"

Received: December 10, 1994
AMS subject classification: 30C80

REZUMAT. - Subordoniri diferentiale de ordinul al doilea in semiplan.
fn lucrare, folosind subordondrile diferentiale, se obtin proprietii ale functiilor
olomorfe in semiplanul complex care satisfac conditia de normalizare f{z)-z—0
pentru z—>,

Let A denote the upper half - plane
A = {z€ C/Imz > 0}
and let A(A) denote the class of functions f which are holomorphic in A and

have the normalization

Alim (/@) -2] =0
In this paper, using differential subordinations in the half - plane [2], we
obtain some properties concerning functions of the class A(A). -
DEFINITION 1 [2]. Let fg : A — C be holomorphic functions in A. The

function f is subordinate to the function g in A(f < g) if there is an

holomorphic function @: A — A such that lim [p(z) -z] = 0 and

Adz—+

* "Transilvania” University, Department of Mathem:ctics, 2200 Brasov, Romania
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(@ = g(e(2)), for all z € A.

THEOREM 1. Let f € A(A), g € A(A) and g is univalent in A. Then the
Junction f is subordinate to the function g in A if and only if f(A) C g(A).

Proof. If f < g then using Definition 1 and Schwarz’s Lemma for the
upper half-plane [3], [4], it results f(A) C g(A).

If f(A) C g(A) then, using the univalence . . the function g, we obfain
that g ': g(A) .— A is an holomorphic function in A and we can define the
function @: A — A, ¢(2) = g "(f(2), z € A. We have

lo@) - z| = |g7(f@) -zl s [g7(f@) -f@| + |f(2) ~z|,z€ A
and since Alim [f(2)-2z] = Alim [g(2) - 2] = 0 it fe.iows that Alim [p(z) -z] =0.

DEFINITION 2 [2]. We denote by QO(A) the set of functions g € A(A)
which are holomorphic and injective on A - E(q), where E(q) = {T € 0A/
ligz q(z) = ®}, and also q’(§) = 0 for T € JA\E(q).

DEFINITION 3 [2]. Let Q2 be a set in C and let ¢ € O(A). We define the

class of admissible functions ,[Q, g] to be those functions ¢:C*xA —C

that satisfy the following admissibility condition:

Y(r,s,1,2) & Q, when r = ¢(T), s = mq’(Y)

mlemm?d © mdzen forceonsig,mer D
s q'(®)
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We shall need the following theorem to prove our results:

THEOREM 2[2]. Let ¢ € ¢,[R, q] and p: A — C be an holomorphic
Junction in A such that there exists a = 0 with p(A)) C q(A), where
A ={z€Clmz>a}. If

W(p@),p'(2),p" (2);2) EQ, forall zE A @
then p < q.

Remark 1. IfAlim [p@2) -2] = Alim [g(2) - z] = 0 then we obtain that
there exists a = 0 such that p(A,) C g(A ). Thus, the condition "p: A — Cbe an
holomorphic function in A such that there exists a = 0 with p(A,) C g(A)" from
Theorem 2 can be replaced by p € A(A).

Let Q be a set in A and let g(z) = z, z € A. We will obtain some

applications of the Theorem 2 corresponding to this particular €2 and q.

THEOREM 3. Let p € A(A) and let y ER, y s 0. If

Im >0,z€A 3)

p@) + -2
70

then Im p(z) > 0.
Proof. If we let W(r,s,t,z) = r + y-t/s then the conclusion will follow

from Theorem 2 we show that ¢ € ,[Q, ], where Q = A and ¢(z) = z. This
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follows from Definition 3 since
Imy(r,s,t;z2) =Im@+yt/s) =ImT +yImt/s <0 for r =T € A,
Imt/s = 0 and y < 0. Hence ¢ € ¢,[Q,4], p < ¢ and Im p(z) > 0.

THEOREM 4. Let p € A(A) and let o ER. If

Im

>0,z€ A

'(z
an) +p L2
then Im p(z) > 0.

Proof. If we lgt Y(r,s,t;z) = ar + B-s/r then we have Imy(r,s,t;z) =
=almT +PmIm1/C =0 for r=CEIA, s=mER and o, € R Hence
Y € 9,[Q,9], p < ¢ and Im p(z) > 0.

COROLLARY. Let f: A — C be an holomorphic function in A such that - ._fj_l.
satisfies the conditions of Theorem 4 and o E R. If

Im[(l-a)f/(z) cal’@|50 zen (5)

f2) @

then Imf’(z) <0,z€A.
(@

Remark 2. A function f € A(A), f(z) = 0, z € A is starlike in the half -

plane A if and only if

ms@ <o -ea.
f(2)

Using the Corollary, we obtain that a function which satisfies the condition 5 is
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a starlike function in A.

THEOREM 5. Let p € A(A) and o.,B,y ER, y < 0. If

.82 @, P'@
ap(z) Bp(z) Y o7 >0,z€A 6)

then Im p(z) > 0.

Proof. If we let Y(r,s,t;z) = ar + B-s/r + y-t/s then we have
Imy(r,s,t;2)=almg + BmIm 1/ +yImt/s<0 forr=LEIA, s=mER,,
Imt/s 20, a,B,y ER v = 0. Hence ¢ € ¢,[Q, q], p < g and Im p(z) > 0.

Remark 3.

i) If y = 0 then Theorem 5 reduces to Theorem 4. -

ii) If a = 1 and B = 0 then Theorem 5 reduces to Theorem 3.
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REZUMAT. - Lema lui Jack-Miller-Mocanu pentru aplicatii olomorfe pe
domenii cu frontiersl de clas C. In acest articol vom prezenta varianta n-
dimensional# a lemei Jack-Miller-Mocanu pentru aplicatii olomorfe definite pe
domenii din C' ce au frontierd de clasi C®. De asemenea vom prezenta §i
interpretiiri geometrice ale rezultatului. -

1. Introduction. In several papers [4,5] S.S. Miller and P.T. Mocanu gave
the following generalization of the one dimensional Jack’s lemma [2] and used
it as a basic tool in developing the theory of admissible functions.

LEMMA (Jack-Miller-Mocanu). Let f: D — C be a holomorphic function
with f0)=0andf»0.If| f(z,)| = max |f(2)|, 2z, €D = {z € C] |z| < 1}

2| = |z,

then there exists a real number m = 1 such that:

6 /' @) _ o and
/) '
(ii) RCM +1z2m.
f(z,)

* "Babeg-Bolyai"” University, Faculty of Mathematics and Computer Science, 3400 Cluj-
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In a previous paper we extend this result to the case of holomorphic
mappings defined on the unit ball of C". Since in several complex variables the
Riemann mapping theorem fails to be true the purpose of this paper is to study
an analogous problem to that studied in [2] for holomorphfc mappings defined
on arbitrary domains. Also we shall give geometric interprétations of result.

~ We let € denote the space of n-complex va. ibles z = (z,,...,z,), with
the euclidian inner product <z,w> = i zjﬁ ,and thenorm |z| = (<z,z >)12,
J=1

Vector and matrices marked with the symbol > and 'denote the t: insposed
and the transposed conjugate vector or matrix, respectively.

We denote by £(C") the space of continuou. linear operators from C” into
C, i.e. the n x n complex matrices 4 = (Ajk), with the standard operator norm;

1Al = sup {ll4z]: |zl = 1}, 4 € L(C).

The class of holomorphic mappings f(z) = (f(2),....f(z)) from
D (D C € domain) into €” is denoted by H (D).

We denote by Df(z) and D?A(z) the first and the second Fréchet derivatives
of fat z.

We say that f € H(D) is locally biholomorphic (locally univalent) at -

€ Dif fhas a local holomorphic inverse at z, or equivalently, if the derivative
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Dfes) - [af‘iz)
J

The open set D C Cis said to have differentiable boundary bD of class

] is nonsingular.
1sj,ksn

C?, at the point Z € bD if there are an open neighborhood U of Z and a real

valued function ¢ € C%(D) with the following properties:

UND={z€ U: ¢9(2) <0} 4))
0P .\ _ |99 o :
E(z) T’)z_,(z)’ s . (z)] w0 forz € U )

bD is of class C* if it is of class C* at every z € bD.
Notice that (1) and (2) imply
UNbD={z€EU: 9@z) =0} and U - D = {z € U: 9(z) > 0}. (3)
Any function ¢ € C*U) which satisfies (1) and (2) is called a (local)
defining function for bD at 7.

For a real valued function ¢ € C(U) (U € C") we define:

62 ‘ 2
992 = o) ()
9z? 9z, 0z, ke
and
9 >
?_ () = | 0@ )
9z 0z azj 9z, <) kan
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2. Main result.

THEOREM. Let D be a bounded domain in C' with 0 € D. Suppose
fE C(D) N H(D U {z}), f0)=0, /40 and Df (?) is nonsingular where 3 € bD
is defined by:.

1/ = max 1@,

zED

If D has differentiable boundary bD of class * at the point z € bD with

the locally defining function @ then there exists a real positive number m such

that:
o) (DFE))Y (% (z')) - mf(3) ©)
and ) ,
w99y iRe [w ""z_“;w - (ﬂ(z')) (D*f(2)) D*f(3)(w ,w)]
(ii) 020z 9z 0z am (7)

IDfG)w P
Jor all w € C\{0} which satisfy Re < w, %r(.p.(z') > =0,
‘ z

Proof. For z = (z,,...,z,) € C, each coordinate z, can be written as

z,=a +ia,, witha,a €R

The mapping z — (a,, ...,q,,4,,,, ...,a,) € R establishes an R linear

n? “n+l?

isomorphism between C' and R, i.e. we obtain the natural identification

between C” and R”".
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By using the weak maximum modulus theorem [1] we obtain that Z € bD
and €D is a point of local conditional maximgm of the function| f(2)|
under the condition z € bD.

Since D f(Z) is nonsingular and D has a differentiable boundary at Zz €
bD it follows that there exists an open neighborhood U of Z and ¢ a real
function such that (1), (2) and (3) hold and also f'is injective on U.

Next, we shall use method of Lagrange’s multipliers.

Let F: (G, - e,d, + €)x...x (4, - €,d,, + &) = R

F(a,,..,a,) = f; |f(a,,...a,)|* - Ao(a,,...,a,,) ®
where A € R and e > 0 is sufficiently small so that
(4, -e,a, +e)x..x(dy,-e,d,+e)C U
Since (d,, ...,dz,,) is a point of local maximum for the function

1f(a,, .., a,)I* under the condition ¢(a,,...,a,,) = 0 we obtain:

oF , . . ,
_az(al,...,az") =0,i€{1,..,2n} ¢}
and
d’F(dl,...,dh)(t,t) < 0 for all + € R"\{0} (10)

.9
which satisfy Y 1,22 (a

,a, ) =0.
i=1 a, 2")

TEREE

A simple calculation yieids:
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da( P a
forj € {1, ..., n} and
oF _ f: d(p P :
(s, = 2(—( )/ (2) 16 7¢ )] Mg @70 ()

Jon
forje {1, .., n}.

oF (—(z)f(z)+f(z) f'()] g“’(z“)=o, (11)

Since
oF | . . . oF .
—(a,,...,a,) - i a,.., =0 orj€E {l
aaj( 1 2”) aajﬂ'( 1 2”) ’I { }
we easily obtain:
E_f(z)f(z) = 7» (z) for all j € {1,..,n}. (13)

i=] j
From the relations (13) we get.

(DFEE) = % ; (14)

By using the fact that Df(Z) is nonsingular we obtain:

= mf(2) (15)

° .\ - T o
(DfE)Y (—“’ @)
0z
where by m we denote the real number % (Indeed, if A = 0 we obtain/f(Z) = 0

which contradicts the assumption / # 0).

In order to prove (i) of the Theorem it remains to show that m is positive.
We now let y: f(U) — R defined by

Yw) = (S U)' (W)
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If ¢+ is a small enough real positive number we have that

(1 +0)f(@) € f(U) and (1 + 0)f () & f(D). Hence y((1 +)f(Z)) > 0.

A simple calculations yields:

-0 t
>0

0 < lim Y1 + ) f(2)) - WS (@) _ E a_‘P (fENSE) =

- Y46 POk (12 299 - X”)f;(é)%m - Lisor

i,k=1 Zk

Hence A > 0 and in consequence m > 0 too.
The second differential of F at the point Z is negative semidefinite.
Straightforward calculations given us:

n 62 3
Fe ) = Y D i) 6, -

iJ,k=1 (74 azk

j
" §,(2)
+ E : f(z)(t —Ij+n)(t k+n) *
i,/,k=1 az "'k )
n f f
+ o o= (t #n)(t +n) +
,Jz,,:.l az oz, ' *
" 3f, of, |
2, ity —it,) -
iJ.k=1 62,‘ aj
2n
-1 9y,
m ij=1 0a da,

2n
for € R*\{0} with ¥ z,?(ﬁ) - 0.

i=1 1

If we note w,o=1+ itjm,j €{l,..,n},w=(w,...,w), and use (4)
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and (5) then the above inequality becomes:

2Re (f@)'D*f(E) (w,w)) + 21DfG)wl -

2 2
2599 b 2Rew' ¥, <0, (16)
m 9z 9z m 9z2

From (15) we get that (f(3))" = % (%i"l (z"))/ (Df())" and substituting
Z

into 16) we obtain:
\

1 Re ((ﬂ (z'))'(Df(z"»-'D () (w, W) J + IDFG) wi? -
m 0z ‘
- lw‘ﬁw - iRew’_az';p ws=<0
m 9z 0z m 9z2

which is equivalent with (7).
The condition for + € R*\{0} gives the following condition for w €
C"\{0} (obtained by the natural identification between R* and C' mentioned
2n

Yy tj? (2) = 0 and this completes the proof.

above) Re< w,ﬂ @)> ==
0z e a,

3. Geometric interpretation of the main result. In the following remarks
we shall give some geometric consequences of Theorem.

First we note that if Df(Z) is nonsingular there exists a neighborhood (/
of Z so that fis injective on U and since f'is holomorphic we obtain that f'is a

biholomorphic mapping between U and AU). So, if we notc by M the
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intersection between U and bD we obtain that f{M) is a real hypersurface.
Since ((Df(2)))™ ( s (z)] is an outer normal vector to f{M) at the point
A2) the part (i) of the Theorem has the following geometric interpretation.
Remark 1. If fis a function which satisfies the requirements of the
Theorem and M is the set defined above then the outher normal vector to M)
at the point f{Z) and the position vector fZ) are in the same direction.

Let v = (v,,..,v,) be areal tangent vector to M) at f(Z).
N N
It follows that Re < ((Df(2))") = @)|,v>=0.
Z

We define on F(M) an orientation such as the second fundamental form

of the real hypersurface M) at f(Z) is

_w FUE)E
bu.u) 51‘, ab, db,

at fIM) in the point f2).

u, u, where u ER*\{0} is a real tangent vector

It is easy to check that the second fundamental form of the real

hypersurface f{M) at fZ) can be written as:

S PVIE) | L peys FVIE)

ow ow ow 2

b(v,v) = a7

OFE))" "’"’(zz) )
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We can compute as follows:

PY(f@) - 09 FUUE) |
awj ow, ; 9z, @ aw ow,

Fo@) 0/, (@) a(f)(/E)

ik 0Z,0Z, - 0w, awj (18)
MW(f(2) _ Po (U),(f@) 3D, (FE) ‘

- = - (19)
awj ow, 7 azj 9z, 6wj ow,

Next, by using the following connection between the second
derivative of a biholbmorphic function fand the second derivative of tl: - inverse
function /™
D*f(f(2))(a,b) = -(Df @) D*f@(Df(2))"a.(Df(2))"b), a,bEC and

substituting (18) and (19) into (17), we obtain:

6q>(z) u+Re
3z oz

u 9 ‘P(z)u—("’“’@)) (DF ()" D¥(2)(u, u)J

b(v,v)= (20)

@ [2)
0z
where u is defined by u = Df'(f(2))(v) = (Df(Z)) ().
Since v is a real tangent vector to f{M) at A Z) we have:
0 = Re< v, (DG ?(2) > = Re<(DfE)N'v, _?’:_“7 () > =
4 (004

= Re < u,%ﬁi(é) >
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and by using (ii) of Theorem we obtain:
b(v,v) - m|Df(Z)ul? -
v Ivl’l ©@fEN)" (% (z'))I nvn2| (DFE))" (%2 <z°))i

m |v|?

According to part (i) of the Theorem we get
b(v,v) > 1
L . VA€
Since a principal curvature of a real hypersurface M) at f(Z) can be
b(v,v)
vi?
we get the following geometric interpretation of the (ii) of Theorem.

writen as where v is a principal direction (so v is a real tangent vector)

Remark 2. If fis a function which satisfies the requirements of the
Theorem and M is the set defined above then all the principal curvature.
k, (J € {1,...,2n-1}) of fiM) at the point fZ) satisfy

1 .
k=2—_,j€({1,..,2n-1}
S V6]
Also the mean curvature of M) at f{Z) and the Gaussian curvature of

AIM) at f(2) satisfy the same inequality.
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BERNSTEIN POLYNOMIALS OVER SIMPLICES
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REZUMAT. - Polinoame Bernstein pe simplexuri. in aceasta lucrare autorii
se ocupd de studiul unor proprietéti ale polinoamelor Bernstein definite pe un
simplex arbitrar din R’. Se pun in evidenji anumite relatii care au loc intre
functiile convexe in T §i sirurile polinoamelor Bernstein corespunzitoare.

Abstract. In this paper the authors are concemed with a study of the
multivariate Bernstein polynomials over an arbitrary simplex in R*. Some
relations between convex functions in 7' and the sequences of the corresponding

Bemstein polynomials are shown.”

Let 7,,T,,..., T, be (s + 1) affinely independent points of R®, s = 1. The
s-dimensional simplex T is defined by
T = span{T,,.., T}

Each point P € T can be uniquely expressed by

* Masaryk University, Department of Applied Mathematics, Jana&kovo ndm. 2a, 662 95
Brno, Czech Republic

* This work was accomplished under the financial support of the Grant Agency of the
Czech Republic, reg. no. 201/93/2408.
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such that w 2 0,/ =0, . v, E u = tothe (s ¢ Dtple o= (u, . 1) as

1=

called the barycentric coordinates of £ with respect to the simplex /)

Let us define the basic functions

!
HOEE- P ()
) !
« @
a = (a),..,a) € Z", |a| = E ol =ot o, ol =, 0 =t
1=0

s

Y BAP) = 1.
i=0
The points x_ = o , o € 22" are called nodes of the simplex 7, :t means
n
. - . (10 (x'v
that their barycentric coordinates are |—, ..., —Z|.
n n

For any function f(P) continuous on 7 the multivariate Bemstein

polynomials defined by

B(fiP) = ¥ BJ(P)./‘(%) @)

laj=n

aeZ
converge to f(#) uniformly on 7" as n — o. Properties of the multivariate
Bemstein polynomials have been also studied in [2], [3], [4], [10], [11], [12],
[13], [14].

Now some properties of multivariate Bernstein polynomials are stated.

For a given interior point P€ T, P = (u,, ..., u,) and a number 0, u, > b
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>0,i=0, .., s we define
Ty = {0 = Vs sV )|V, 204, -8,i=0,.., s}
This is a closed simplex contained by the simplex 7' and containing P as
its focal point. Each edge of T}, is parallel to the corresponding edge of 7.

LEMMA 1. LetP = (u,,..,u,), PEtT and 0 <O <u, i=0,..,s

9 .

Then

nd?

Y PIP)sY e T 3)

lal=n

a
n Pa

Proof. By the definition of T}, it is clear that & ¢ 1, if there exists k
» n PY

a
€ {0, ..., s} such that —* < u, - 8. Then
n

21: Pj(P) s ‘E P/(P)
la|=n |la|=n
%QTM _(_;.<u,—6

Let us define functions G(x), i = 0, ..., s, as follows

G(x) = Y, BI(P)e™ ™™ xER. @)

lal=n
It is easy to show (using the fact zs: u, = 1) that
i=0
Gx) = (™1 -u) +ue ™y
Let us denote
Q) =e™(1 -u) + ue ™.

And now in the same way as in [9], [6] it can be shown that
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ux*(l -u)

Q) =1 +ux?(1-u)se
under the assumption |x| < 3/2.
From it follows
G,(x) < e™ ™), 5)
Let ¢ be an arbitrary positive real number. Then

G = ¥ BJR)e™ ™™ = ¥ @)™ >

la|=n la| =n
"> ¢1G (x) -

> Y BMP)e'G(x).

la]=n
" > 016G (x)

This gives the following estimate

Y B(P)<e” (6)

laj=n
e > e 'G,x)

Now, using (5) we obtain

Yy B(P)<e™ (7

P """I::I:': mela-u

) ‘

=" r e % then |x| = 3/2 and (7) gives
4(1 -u,) 2(1 —u‘) -

Y B/P)<e T
la|=n

a,

—<u-0
n 1

Let ¢

And this estimate concludes our proof

nd?

Y PIP)sYe T =
la| =n i=0
Ser,
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LEMMA 2. Let P = (uy,..,u,) be an .interior point of T,

0<d< %., i =0,..,s. Then for 2e T, , the following inequality
p :

§ 3Ind 1

BJ(P) = k1l e W (8)
P

holds, where K is an positive constant independent only on s.

Proof. Let us remind Stirling’s formula

‘ 0
nl =\2nnn"e"H , H =e>, 0<06<1

ie.
n . ) n 1
2nn (ﬂ) <n! <y2nn (ﬁ) e 1n
e e
Then s
V2nn ne [
BIP) = L ue > .
ol s .
II/2na, o'e
i=0
‘/ d Iul
f[e™ (2 @_7.?
i=0
Denote

1 a‘

L, - (l‘l‘l u,]a'e'“'(T;‘T'"‘), i=0,..,s.

As it was proved in [5]

(lil\w]a‘elal(%-ul) ze ED (T-r ) (10)

@,

provided that
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* <Li=o0 (1)
—_— - u —, i =0,..,s.
o] 4
(03
It is easy to see that these assumptions are satisfied. From — 2z u, - d it
n
(9]
follows immediately s = & = u, - —. On the other hand the equalities

n

s a 5 a
E_‘ = 1 and E u, =1 give sd 2 — - u,. Together with the assumptions
i=0 N =0 n

al
— -u

u
of lemma we have . > 58 =
4 |ox|

nE

Therefore if inequalities (11) are satisfied th

s s ey lalgyn L
IILa,=J]e ™ =¢ ™ =° (12)
i=0 i=0
Further
s 1 E 1
Hem = e T < g (. (13)
i=0
and
1
V]
a M
Jl | = - (14)
3
Hal o]
i=0
for
Mz 1 ,i=0,..,s
a e+u

where the constants C and M are independent on .

Summarizing (9), (10), (13) and (14) we obtain

3nd
B)P)=K_ ¢ T =W -
)

n
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LEMMA 3. Let Q C T be a simplex with edges parallel to those of the
given simplex T. Let N, be a number of nodes belonging to Q. Then there exists
a positive number ny such that

N, > yn’ (15)
if n =z ny, where y > 0 is a constant.

The proof is simple.

The following theorem can be proved

THEOREM 1. Let f € C(T) be convex on T. Then

B(f;P) = f(P), B(f,P)=B,(f;P)
forallnz1andallPET.

See [3] for the proof.

It is well-known that for univariate Bemstein polynomials so-called
converse theorems hold ([5], [7], [8], [15]):

() B”(f;x) z f(x), x € [0,1], n =2 1 = fis convex in [0,1].

(i) B(f;x) = B,,,(f;x), x € [0,1], n 2 1 = fis convex in [0,1].
But it is impossible to extend directly these converse theorems to the Bemnstein

polynomials over simplices.

As concerns Bernstein pdlynomials over triangles this problem was solved
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in [1]. In [6] there was given a different approach to this problem. Now we are
going to prove the following theorem:

THEOREM 2. Let f€ C(T) and B(f;P) = f(P) for all P € T and all
natural numbers n. Then the function f does not attain its strict local maximum
inside T.

' Proof. Let us suppose that f attains a strict I¢ al maximum at the intetior
point Q = (u,, ..., u,). Without lost of generality it is possible to put £Q) = 0.

Then there exists a §ubsimplex T,

0.0 0<9, <u,i=0,.,s contai ing Q as
|

an interior point such fP) <0 for all P € T,,, and let ¢ = min{u,, ..., u}.
Let us choose 8, in such a way that

5 5 :
0 < 8, < min (._‘___1__) e-y L.
ui

Then T, , O T, ,. Further let Q C 7, , be a subsimplex with edges parallel
to the corresponding edges of TQ"O, and AP) <O for all P € Q. Let (—h) be a
maximum of f over the subsimplex Q and let M = max,_, | f(P)].

Now let us evaluate B, (f; Q). It is

B(f:0)= T f(%)BJ'(Q) > f(%)BJ‘(Q) > f(%)b‘u"(Q)(lb)

a a a
— €Ty, —€T,,-0 ~eq
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Using lemma [ we obtain for the first sum

a a
- € Ta.a. - 2 Tos

nbf

)3 f(%)BJ'(Q) <MY BXQ) sMs+le T (1)

Further as far as the second sum is concerned one can state it is nonpositive.

And now the sum will be estimated: Q@ C T, . and due to this reason it is

Q,3,
i _3116;l
Y B =Ky —e T
%en %en lal’z
Now the use of lemma 3 gives
3nd;
Y BXQ) s -hL e T
%ea n?
Then
_ nd 5 _3n8;
B(f;0) = M(s+1)e T - hI, ”s e ¥
n?
_3n6§= ) nd} *3n6§' s
=e ? \MGs+De 0 T _pin?

|

Under given assumptions from here it follows that B (f; Q) < 0 and this

contradiction concludes our proof.

The following theorem can be proved as the consequence of the theorem

THEOREM 3. If f € C(T) and the inequality

B(f.P) =B, (f.])

ol
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holds for all natural numbers n and all points on T, then the function f does not

attain a strict local maximum inside T.
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MONOTONE TECHNIQUE TO THE INITIAL VALUES
PROBLEM FOR A DELAY INTEGRAL EQUATION
FROM BIOMATHEMATICS

Radu PRECUP’
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AMS subject classification: 47H17, 34K15

REZUMAT. - Metoda iteratiilor monotone pentru problema cu valori
inifiale relativii la o. ecuatie integrald din biomatematica. fn lucrare este
prezentat3 o matod# constructivi de rezolvare a problemei (1) - (2) in ipotezele
(i) - (iv) presupunénd ci functia f{z,x) este monoton in raport cu x. Un aspect
nou continut in acest articol il constituie adaptarea metodei iteratiilor monotone
la cazul operatorilor anti-izotoni, in particular, la cazul ciand f{z,x) este o
functie necrescitoare in x.

1. Introduction. The following delay integral equation

'

xt) = [fGs,x(s)ds__ ()
is a model for the spread of certain'h:fectious diseases with a contact rate that
varies seasonally. In this equation x(¢) is the proportion of infectives in the
population at time ¢, T is the length of time an individual remains infectious andf (¢, x(¢))
is the proportion of new infectives per unit time.

In [1], [2], [4], [5], [6] sufficient conditions were given for the existence

of nontrivial periodic nonnegative and continuous solutions to equation (1) in

* "Babegs-Bolyai” University, Faculty of Mathematics and Computer Science, 3400 Cluj-
Napoca, Romania
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case of a periodic contact rate: f(¢t + w,x) = f(¢,x), f(¢,0) = 0. The tools were
Banach fixed point theorem [5], topological fixed point theorems [1], [2], [4],
[6], fixed point index theory (the additivity property) [2] and monotone
technique [2], [4].
In [3] we dealt with positive and continuous solutions x(#) for equation
(1), on a given interval of time —t < ¢ < 7, when it ; known the proportion ()
-of infectives in. the population for t < <0, i.c.
x(f) = ¢(), for -t st < 0. (2)
Clearly, we had to assume that ¢ satisfies the following condition:
0
b = 9(0) = [ f(s,0(s), ds. 3)
Under this condition problem (1)-(2; is equivalent with the initial values
problem:
x'(0) = ft,x(®) - ft-t,x(t-1)),0 st s T (4)
x(®) =¢(), T=st=sO
The existence of at least one solution to problem (4) was established in
[3] under the following assumptions:
(1) f(,x) is nonnegative and continuous for —t < < 7" and x = 0;

(11) ¢(?) 1s continuous, 0 < a < ¢(7) for —t < ¢ < 0 and satisfies condition
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@)
(iii) there exists an integrable function g(f) such that
f(t,x) zg(t)for t st<sTand x 2 a 5)
and
t
Ig(s)dszaforOstsT; (6)
=%

(iv) there exists a positive function A(x) such that 1/h(x) is locally
integrable on [a, +©),
ft,x) sh(x)for0 st<Tand x =z a )
and
T< ] (1/h(x)) dx. (8)
THEOREM 1 [3]. Suppose that assumptions (i)-(iv) are satisfied. Then
equation (1) has at least one continuous solution x(f), x(t) z a, for t st < T,
which satisfies condition (2).
Moreover, as follows from the proof, each continuous solution x(¢) to (1)-
(2) satisfying x(f) = a for -t < t < T, also satisfies
x() sRfor0 <t =T, 9

where R is so that

R
T = 1[(1/}:(1:))@:. (10)
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The proof of Theorem 1 was given by using the topological transversality
theorem of Granas and can also be done by using Leray-Schauder continuation
theorem. A constructive scheme to solve (1)-(2), namely the successive
approximations method, was described in [3] only for the particular case where
condition (iv) is replased by the more restrictive Lipschitz condition

(iv") there exists L > 0 such that

|f@.x) - f@, )] = Llx-y]
for all t € [—t,7] and x,y € [a, +»).

The aim of this paper is to give a constructive scheme to solve (1)-(2)
under assumptions (i)-(iv) provided that f(z, x) is .nonotone with respect to x.
Uniqueness will be also discussed. In case f(¢,x) is nondecreasing in x, our

results are somewhat similar with those in [2] referring to peniodic solutions of

(D).

2. Main results. Let E be the Banach space of all continuous functions
x(f), 0 < t < T with norm

Ixl = max |x(r)].
O0st<T

Consider the closed subset of E:
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X={x€E;x(0)=band x(t) zafor 0 st < T}
and the d.lay integral operator
A E— X, Ax(t) = jf(s,f(s))ds
where %(s) = x(s) for 0 < s < T and f(;) =¢(s) for t < s 0. 4is
completely continuous as an operator from X into X
THEOREM 2. Let (i)-(iv) be satisfied Suppose that f(t,x) is
nondecreasing in x for a < x s R. Denote
U@ =afor0<stsT
U@ =AU, (O for0stsT (n=1,2,.)
Then, U (t) — x(t) uniformly in t € [0,T] as n — o, x.(t) is the minimal
solution to (1)-(2) in X and
asU()s..sU(t)s..sx(t)sRforO0stsT
Proof. By Theorem 1 there exists at least one solution in X to (1)-(2). Let
x,(?) be any solution to (1)-(2). We have
a=U((t)sx(t)sRfor0 st =T
Consequently, since 4 is nondecreasing on interval [a,R] of £
U(t) = AU(t) s Ax(1) = x(1).

On the other hand, by (iii), we have a = Uy(t) s U,(¢). Hence
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Uf(t) s U((t) s x(t) for 0 st < T
Now we inductively find that
asUM)sUM)s..sU()s..sx(t)for0stsT

A being completely continuous on X, the sequence (AU, ) , must contain a

=1
subsequence, say (AUn') r=1 > CONVeErgent to some x. € X. But4AU, (¢) = U, , (1)

and taking into account the monotonicity of | / (1))

nal ?

we obtain that
U(t) — x,(t) uniformly in ¢ € [0,7] as n — o and
U()sx(t)sx()for0st=<T (n=0,1,.).

Letting n — o in AU(t) = U (¢) we get Ax (1) = x (1), i.e. x.(f) is a
solution to (1)-(2). Finally, by x () s x,(¢) where .,(f) was any solution to (1)-
(2), we see that x.(f) is the minimal solution to (1)-(2) in X.

The following result is concerning with the existence and approximation
of the maximal solution in X to (1)-(2).

THEOREM 3. Let (i)-(iv) be satisfied. Suppose that there exists R, = R

such that
fLRY <Rt for tstsld (\\)

(ie. f(t,0(f) s Ry/x for —t st <0 and f(t,R,) s Ry for 0 <t s 1) and

f(t, x) is nondecreasing in x for a s x s R,. Denote Vt) = R, forO st s 1T,
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Vi) =AYV, (@) for0stsT (n=1,2,.).
Then, V () — x°(t) uniformly in t € [0,T] as n — o, x'(¢) is the maximal
solution to (1)-(2) in X and
x*Os.sVO)=s..sVOsV(@®sRfor0stsT
Proof. By (11) we have
Vie)s V() =R, for 0<t =T

Next, the proof is analog to that of Theorem 2.

THEOREM 4. Let the conditions ;)f Theorem 2 be satisfied. Suppose that
there exists o € (0,1) such that

f@t,yx) 2 y°*f(t,x) for all y € (0,1), t € [0,7T], x € [a,R]. (12,

Then, (1)-(2) has a unique solution in X.

Proof. Let x,(t) be any solution in X to (1)-(2). We will show that x,(f) =

x.(f). Let

Yo = min (x,(£)/x,(1)).
0<tsT
Since a = x(t) = x,(t) s R, we have a/R < y, = 1. Now, we show y,=1.In

fact, if y, < 1, then (12) implies

x(t) = Ax(t) = Ay, x)(t) = ff f(s,75%;(s)) ds
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!

245 [ S5, 5N ds = 13450 = Vx50

1=t

Thus y, = Yo, which is impossible for 0 < a < 1. Therefore, y, = 1 and
x,() = x,(1).

THEOREM 5. Let the conditions of Theorem 3 and Theorem 4 be
satisfied. Then, (1)-(2) has a unique solution x.(t) in X and for any x(t) in E
satisfying a < x(t) s R, for all t € [0,T], we have (t) — x (1) um‘forml) in
t € [0,7T] as n —» x, where

x(t) = Ax,_ (1) (n=1,2,.)

Proof. We find from

a=U)(t) s x(t) s V() =R,

that
U)ysx()sva (n=1,2,.)

On the other hand, by Theorem 2 and Theorem 3, we have that

Uy(t) = x(t) and V(1) = x(1)
uniformly in ¢ € [0,T] as n — . Therefore, x (1) — x,(¢) uniformly in ¢ €
[0,7] as n — oo,

The following result refers to functions f(z, x) which are nonincreasiu,
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THEOREM 6. Let (i)-(iv) be satisfied. Denote R, = max (R, |U,l) and
suppose f(t,x) is nonincreasing in x for a s x < R, Also suppose that there
exists a. € (—1,0) such that

S, yx) s yf(t,x) fory € (0,1), t € [0,T], x € [a,R;]. (13)
Then, (1)-(2) has a unique solution x.(t) in X,
a=Uy()s V(1) s.. = U@ sV, (t)s. sx(t) s

s U ()sV,()s..sU@)sV(t) =R, forO0st=sT,
and U (1) = x(t), V(1) —= x (1) umformly int€[0,7] asn — .

Proof. By Theorem 1 there exists as least one solution x,(¢) to (1) - (2)
and a s x(t) = R for 0 st < T. We have

a=Uyt) = x(t) s V(1) = R,
whence
Vi(t) = x(t) s Uye).
But, by (iii), a < V,(¢). Also U(t) = |U,l s R,. Hence
U(t) = V(1) s x(t) s U(t) s V,(1).
It follows
Uy t) s V(1) s U(t) s x,(t) s V() s U(t) s V(1)

Finally
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a=Ut)sV(t)s..sU,(t)sV,, (1) s.
s x()s..sU, (D)sV,()s...sU®) s V(1) =R, (14)

A being completely continuous on X, the sequence (AU, (1)),., contains a

nal

subsequence convergent to some y.(f) in X and similarly, (4V,, ,(?)),,, contains

a subsequence converging to some y'(f) in .X. Now, from (14) we see that

Up(1) = Y00, V) = 20)

Uppi(8) = y7(2), V,,(t) = y°(1) (15)
uniformly ix; tE [0,'T] as n — o and

y.(1) = x(1) = y*(1). (16)
By (15), it follows that
y(t) = Ay (1) and y (1) = Ay*(s).
Now, we prove that under assumption (13), we have indeed y.(r) = y'(¢). To do
this, let
Yo = gn’mT (y.(8)/y™(1)).

Obviously, 0 < a/R; s y, = 1. We will show that y, = 1. In fact, if y, < I, then
(13) implies

t

' Ay, s Aay) = [ 677 ds s

-t
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t
% [f6.57°(5)ds = vody” = 1iy..
[ 1
Therefore, v, = v, or, equivalently, a < —1, a contradiction. Thus, y, = 1 as

claimed. Consequently, y. = y". The proof is complete.
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REZUMAT. - Transformarea lui Legendre si aplicatiile sale. Transformarea
lui Legendre este folositd in mecanici la schimbéri de variabile in sisteme de
ecuatii diferentiale. In lucrare se prezinti unele proprietti ale transformirii in
R §i se indici aplicatii in probleme de mecanic3 generald, mecanic3 cereasci
si electricitate.

1. Introduction. The Legendre transform permits the change of dependent
and independent variables. It is very useful in mechanics and thermodynamics.
For example, let us consider the inner energy E = E(S, V), which depends on the
entropy S and the volume V. Then the total differential of £ will be

dE = TdS + PdV,
with
T = ES,V), P = E/S,V)
the absolute temperature and the pressure.

Now T and V will be the new independent variables, which means that

* "Babegs-Bolyai” University, Astronomical Qbservatory, 3400 Cluj-Napoca, Romama

** Romanian Academy, Mathematical Institute, P.Q.Box 68, 3400 Cluj-Napoca, Romama



A PAL, M.C. ANISIU

from 7' = E (S, V) we have to obtain S = S(7', V).
We can find a new function F = F(T', V') givenby [k - 18 tor which
we have
dr = -SdT + Pdv
and hence
S=-F.WV,T),P=F@W )

So using the function F' we can make the change of variables, of course
imposing some conditions on the derivatives of £ in order t. obtain
S = S(7, V). The Legendre transform of £ will then be the tunction -/

The Legendre transform appears in [6], but 1. seems to have already been
known to Euler. A natural generalization was given later by Fenchel [5]. The
Fenchel transform has the property that it is defined for arbitrary tunctions. It
is very useful not only in mechanics, but also in optimization. So, this old
transform has its place in recent books on mechanics as Amold [2] or Choquard
[4], on differential equations as Amann [I], on convex analysis and optunization
as Willem [8], on in more comprehensive ones as that of Zeidler [9]. We
mention that this transform can be studied in the more general setting of Banach

spaces or dual pairs, as in the books of Barbu and Precupanu {3] or Precupanu:
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[7], but for the applications given in this paper we consider only the R” case.
In what follows we expose the definition and the main properties of the

Fenchel transform for various classes of functions. Then we emphasize its key

role in connecting the Lagrangian and the Hamiltonian setting of some

outstanding problems of mechanics and electricity.

2. The conjugate of a function. This section contains general results on
the conjugate of a function, as treated for example in [8], [3], [7] or [1].

Let the real function F: R" — ]-0,0] be given so that the effective
domain of F,D(F) = {u € R": F(u) < %} is nonvoid.

The conjugate (or the Fenchel transform) of F is the function F': R* —
]-,00] given by

F*(v) = sup {<v,u> - F(u)}, €))

u€D(F)
n

where <v,u> =} v,u, is the inner product on R".
k=1
From the definition we obtain at once the Fenchel (Young) inequality
Fu) + F*(v) 2 <v,u>, YV u,v € R" (2)

It also follows easily that for two given functions F, with D(F,) = &, i

=1, 2 so that F, = F,, we have the reversed inequality F," = F,".

77



A PAL, M.C. ANISIU

The function F~ is always convex, so we shall remind some related
definitions.
A set C C R" is said convex if for every two points x,y € C, the line
segment
[x,y] ={z€ER": z=(1-a)x + ay, a € [0,1]}
lies completely in C.
A function F: R" — ]-00,0] is called:
- convex, if for every x,y € C and ¢t € ]0,1],
F(A-x+ty) s (1 -1)Fx) + tFy)
- strictly convex, if D(F) = & and
F((1 - )x +ty) < (1 - )F(x) + tF(y)
for every x,y € D(F), x = y. t € 10, 1[;
- continuous, if w, — u implies F(u,) — Hu),
- inferior semi-continuous (i.s.c.), if u, — u implies lim /(u,) = I{(u).
The epigraph of the function F: R" — ]-00, 0] 1s the set
epi FF = {(u,1) € R" F(u) s t}.
It is clear that F is convex if and only if epi ' is convex.

If 7 1s a convex function and the graph of F lies above the hypeip!
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u - <v,u>, then -F'(v) represents the minimal distance from the graph of F
to this hyperplane, in the vertical direction. If the hyperplane intersects the graph
of F, then F"(v) represents the maximal distance in the vertical direction between
the graph of F and the hyperplane, considering the points for which the graph
of F lies under the hyperplane.

A function G: R” — R is said to be gffine if it has the form

G(u) = <v,u> + a, where vE R", a € R.

For an i.s.c. convex function, the following geometric description holds.

THEOREM 1. 4 function F: R" — ]-%,0] is i.s.c. and convex if and only
if it is the pointwise supremum of the affine functions dominated by F.

As a consequence of this theorem, F” is i.s.c. and convex.

Let us denote by I'(R") the set of all functions F: R" — ]-o,00] which
are convex, 1.s.c. and such that D(F) = &.

The following theorem holds

THEOREM 2. If F € T(R"), then F* € T(R") and " = F, so the
Fenchel transform is an involution of T(R").

Proof. The function F* being i.s.c. and convex, we have to prove only that

IXF") » & From theorem 1 it follows the existence of (v,.a) € R"'’ so that
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Fu) 2 <v,u>-a,Vu€&R"
soa=<v,u>-Fu), Vu€ R" ThenazF(v)and v € IXI") = @.

It is clear that (v,a) E epi Fif and only if F(u) = <v,u> -a, Vu € R".

So
Fu) = sup {<v,u>-a} = sup {<v,u>-a} =
(v,a) ER™ vED(F*)
(v,)-a=sF azF*v)
= sup {<v,u>-F'(v)} =F>( ),V ueER"
veED(F*)

and the equality F = F”" is proved. OJ
We give now some examples for n = 1.
Example 1. For F(u) = |ul?lp, p € ]1, o[ we have
F*(v) = |v|g,
with g such that 1/p + 1/q = 1 (g is the conjugate of p). The Fenchel inequality
becomes in this case
uv s |ul’lp + |ul|’lq,
which is the well-known Young’s inequality from which some classical
inequaiities of calculus may be derived.
Example 2. For F(u) = |u|, we have
For-{% b2
Example 3. For F(u) = o|ul|?lp, a > 0, p € ]1, | we have
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F*(v) = o™ |v|%g,
with g the conjugate of p.
Example 4. For p € ]1,o[ and ¢,c’ > 0, if
clulp < F(u) < ¢’ |ul,
then
klv|? s F*(v) s k'|v]9,
with g the conjugate of p and k = (¢’'p)7q ", k' = (cp)??q .

For a function F: R" — ]-0,0] such that D(F) = O, the sub-differential

of F at u is the set
0F(u) = {v € R" F(w) 2 F(u) + <v,w-u> Y w € D(F)}.

The function F is said sub-differentiable at u if dF(u) = .

It is clear that if F is sub-differentiable at u», then u € D(F); F is
subdifferentiable at u € D(F) iff there exists an affine function which is equal
to F at » and is less than F on R”; the se! dF(u) is closed and convex in R". The
function F has a global minimum at u iff 0 € aF(u).

THEOREM 3. If F € T(R"), the following assertions are equivalent

(@) v € IF(u),

(®)  Fu) + F7(v) = <v,u>;

81



A PAL, M.C. ANISIU

(©) u € F:(v).
Proof. (a) <> (b) follows from the fact that
v € dF(u) & <v,u> - F(u) 2z <v,w> - F(w), Vw &€IXF)
o <v,u>-Fu) =z sup {<v,w> - F(w)}
wE D(F)
< <v,u> - Fu) = F*(v).
Then, using theorem.2 we have
u € IF*(v) & <v,u>=F*(v) + F™(u) = F*(v) + Fu),
s0 (b) <> (c) and the theorem is proved. [J
The next result shows the relation between sub-differentiability and
convexity.
THEOREM 4. If F: R" — ]-%0,] is convex and continuous at u € D(F),
then F is sub-differentiable at u.
It the function is convex and differentiable, the sub-differential coincides
with the gradient, as the following theorem shows.
THEOREM 5. Let F: R" — ]-o,©] be a convex function. If I is
differentiable at u € int D(F), then
OF(u) = {VIFu)).

Proof. We show at first that VF(u) € dF(u). The funcuon /< bemg convex,
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we have
F((1 -a)u +aw) s (1 -a)F(u) + aF(w)
for each w € R”, a € ]0,1[, or
[F(;J +a(w - u)) - F(w)lu s F(w) - F(u).
Letting @ — 0" one has
<VF®u),w -u> < F(w) - F(u),

bhence VF(u) € dF(u).

We prove now that the unique element in dF(u) is VF(u). Let v € 0F(u).
Then, for each w € R”

Fu) - <v,u> s F(w) - <v,w>,
so the function F - <v,-> has at u a global minimum. From its
differentiability at u, we obtain
0 =VEKu) -v,

hence v = VF(u) and the theorem is proved. O

COROLLARY 6. The gradient of a convex function F: R" — ]-00,00]
which is differentiable at u € int D(F) satisfies

F(w) 2 u) + <VF(¥),u-w>, for eachw € R".

If VF(u) = 0, then F admits a global minimum at u.
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Proof. The inequality follows from the fact that 0F(x) = {VF(u)}. If
VF(u) =0, we have F(w) = F(u) for each w € R”, hence u is a global minimum
of F.O

The next theorem gives conditions on F in order to assure the
differentiability of F’.

'THEOREM 7. If F € T(R") is strictly conv - and satisfies a coercivity
condition

Fw)/|u| — » for |u| — =,
then F* € C'(R", R).
Proof. Let v € R” be fixed; we define G,: I' — R,
Gw) = <v,w> - Fw).

The funqtion -G, is strictly convex and -G (w) — «, as |w| — , so
there is one and only one point # € R” where -G, attains its infimum. Theorem
3 implies oF"(v) = {u}.

The function 3F": R — R", v ~ u where {u} = dF"(v) is continuous. We
have from theorem 2 that F" is i.s.c., hence dF" will have a closed graph. To
prove the continuity of dF" it suffices to show that the image of any bounded

set is bounded. Let » > 0 be given and |v| < r, {u} = dF"(v). Theorem 3 implies

84



ON THE LEGENDRE TRANSFORM

vE dF(u), hence
FO0) =2 F(u) - <v,u>.
Supposing withous loss of generality that F(0) < +o, from
r=|v| = (F(u) - F0))/|ul,
we obtain using the coercivity condition the existence of R > 0 so that |u| s R
for each v with |v| < r.

Let us prove that F" is also differentiable. Let {u} = dF°(v) and {u,} =

OF (v+h), v E R”, h € R\{0}. Then
<h,u> s F*(v+h) - F*(v) = <h,u,>
and

0 < [F*(v+h) - F*(v) - <h,u>])/|h| s <h,u,-u>/|h| s |u,-ul.

The contiiiiﬁty of 9F" implies |u,-u| — 0 for |h| — 0, so F" is
differentiable at v and {VF*(v)} = {u} = 9F*(v). It follows that F* €
cwrRpnao
Let now be given a convex function F € C'(R" R). Using theorems 3 and

5, F" can be defined implicitly by

{F‘(v) = <v,u> - Fu)
v = VF(u).

It the gradient VF is locally invertible, these relations define indeed a
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function of v, considering u = (VF)'(v). The function F* is known as the
Legendre transform of F. If F is strictly convex and F(u)/|u| — oo for |u| —
o, then by theorem 7 the Legendre transform F" is in the class C'(R",R).

It is known that for F € é(R",R), F is convex if and only if D*F(x) is
positive semi-definite for every x € R" (ie. <D*F(x)y,y> = 0 for each y €
R"); if D*F(x) is positive definite for every x € L. (i.e. <D*F(x)y,y> > 0, for
each y € R\{0}), then F is strictly convex. For FF € C*R",R) with D*F
uniformly positive definite (i.e. there exists a > 0 such that <D2F(x,, . y> =
I¥l? for each x,y € R, then for every y € R”, the equation

VE(x) = y
has a unique solution.

We obtain now the following theorem for C? - class functions.

THEOREM 8. Let F € CX(R",R) be given such that D’F is uniformly
positive definite. Then the following statements are true:

(1) The transform given by (1) has the form
F*(v) = <v,u> - Fu),
u being the solution of v = VF(u),

(ii) F* € CYR"R), F' is stricly convex and VF* = (VI)";
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(iii) Fu) + F*(v) 2 <u,v> for each wuv € R" and
Fu) + F*(v) = <u,v> iff VF(u) = v,

(iv) F”" =F.

Proof. 1t remains to prove that F* € C*(R"R). This follows from the

equality VF* = (VF)" and the theorem of implicit functions.(]

3. Euler-Lagrange and Hamiltonian systems. The Legendre transform
is of great importance in Mechanics, as it is specified in [2] or [4]. Indeed, it is
useful in transforming the implicit Euler-Lagrange systems in the explicit
Hamiltonian ones in a very simple way. The following theorem presents thi.
equivalence.

THEOREM 9. Let I C R be an open interval and D C R" a domain.
Consider L € C*(R" x D x I, R) such that for each value of the argument
(9q594-%) € R* <D x 1, L,.(4,,4,,1) € L(R") is uniformly positive define.
Then the Euler-Lagrange equation

d

=L~ L, 3)

is equivalent to the Hamiltonian system
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p=-H,
(4)
qg =H .

p
where the Hamiltonian H € ('*(R* -~ 1) - i, R) is the Legendre transforn of
the Lagrangian L with respect to the variable ¢, i.e.

H(p,q.1) = <p,4> - L(q.9.1), ()
on the right-hand side q being obtained from the equation

p=1L, (6)

where H : = V_H denotes the gradient with respect to the variable q for fixed
t and p.

Proof. We apply theorem 8 considering L as a function of ¢, (and ¢, ¢ as
parameters). Then H = L’ is given by (5), where ¢ = ¢(p,q,?) is obtained from
the unique solution of (6). We have then H € CXR"x D x1I), H,=(L,)" and
L" =1L

Let now g: I — R” be a solution of the Euler-Lagrange equations. From
(6) and (3) we obtain p = L . But using (5) we get immediately L, = -H,, so
the first line in (4) is obtained. Because of H, = (Lq)" we have from (6) ¢ =
H, the second line in (4). It follows that if ¢ is a solution of (3), then (p.g) is

a solution of (4).
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Conversely, let (p,q) be a solution of (4). Because L™ = L, we have
Lg.q,1) = <p,4> - H(p.q,1),

where ¢ = H,, ie. p = p(4,q1) = (H)' = L,. Thenp = %(L(]) = -H,
because of (4). But L, = -H, and g is a soiution of the Euler-Lagrange
equations.(J

The following theorem states some important properties of a Hamiltonian
system.

THEOREM 10. In the conditions of theorem 9 we have

dH _ oH _ _oL.

a) —= -
dt at ot

b)  if the system (4) is autonomous, H(p,q) is a first integral which is
by definition the energy,

c) if %ﬁ = 0, then p, is a first integral (q, is a cyclic variable),

9,
d) ifall the q, are cyclic, the system is integrable by quadratures.
dH _ oH . . oH :
Proofa) — = __ + <H ,p> + <H ,q> = —_, and using the form
/.2) dt ot s a9 at SIne

of H as a Legendre transform, aTIti = —%Iti.

b) If the system (4) is autonomous, _%_ft{ = 0, hence % = 0 and H(p.q)
= const for the solutions p and g.

¢) Using (4), we have p, = ‘0, hence p, = ¢, gives a first integral.
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d) Applying c), we obtain p, =c, i =I,n. From (4) we have
oH

'
0, = o @uovesyt) and 4(0) = ) + f_g_g @, ., 7) du.00
4. Applications. In the problems of mechanics, the Lagrangian function
has usually the form
L@.q,) =T(4.q,t) - UQq,t) = %, -E,,
where
1G.q.0) = 2 <A@.04.4>, ™
A(g,t) being a symmetric uniformly positive matrix with entries of C2-class.
Then theorem 9 applies and the Hamiltonian obta...ed as a Legendre transform
will be
H(p,q,t) = <p,q> - L(4.94,1),
where p = A(q,1)q, hence ¢ = A(q,t)"p.
It this case
H(p.4.0 = <p,47'p> - Z<A4"p,A"p> + Uq.1) =
= 2<P.A"p> + U@.0). ®)
So, if the kinetic energy (7) is given by a uniformly positive definite

matrix A, then the Hamiltonian is the total energy, expressed in terms of the
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space and momentum variables. In the case of autonomous systems, we have by
theorem 10 b) the energy integral
H(p,q) = const.
If A(g.r) = I, i.e. T(g) = -;',zl: g2, it follows ¢, = p and
H(p.q.0) = 2 30 + U@, ©

Special problems of this type are, for example, those of particles ir

Newtonian central field of the harmonic osgillator.

1. A particle in the Newtonian central field. The motion of a punctual
-mass. is_described by system of equations
mi = kxr
mjy =kyr> |
mi = kzr™
where k > 0 is the gravitational constant and » = (x2 + y? + z2)!2_ This system
is of the type (3) with L: R* x (R*\{0}) — R given by
L(4,9) = @ + 45 + d7) - kr,
where g = (x,y,z). The Hamiltonian will be of the form given in (8),
1 ,
H(p,q) = —-(sz + P22 + Psz) + kr!
2m
and the initial system has the Hamiltonian form
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p, = kqr>
, i =1,2,3.
4, = p,/m

2. The harmonic oscillator. The equation for the harmonic oscillator is

mq'” = -kq,
qg € R, the constants mk > 0 (which has the known solutjon

q(H) = Csin (ot +a), with the frequency w = yk/m ). The Lagrange function

L=T-Uis L: R* — R,

L(g,q9) = (mq? - kq?)2.
Hence L, = m >0 and theorem 9 applies. From p = L, we obtain the

momentum p = mq. The Hamiltonian H = pg - L will be H: R* - R

4 1 k
H(q,p) = ﬂp’ + 561’,

and the Hamilton equations (4)

_kq
pim.

A
Won

3. A punctual mass on a torus. The motion of a punctual mass on a
torus is governed by a system of the type (3) with L: R* x (0,2x)> — R given
by
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L(6,$,6,¢) = %("292 + (R +rcos0)?¢’) - mgrsinb,

with m > 0, R > r > 0. Denoting g = (6,4), we have

L. = mr? 0
44 0 m(R +rcosq,)

an d<DlLyy>= m(r’jq’ +(R+rcosq ) y;)zmmin{r?, (R - r?} (v +y7),
hence L, is uniformly positive definite. From
p, = mrig,
p, = m(R + rcosq,q,,
we obtain the Hamiltonian H: R* x (0, 2n)* — R,
2 1 2

1 )
+ /(R + rcosq,)® + mgrsing,.
P 5 P ( q,)" + mgrsing,

The system corresponding to (4) is

H(p,,p,,9,,4,) =

D = —_%pf(R +rcosq,)” rsing, - mgrcosg,
p,=0
9, = — P

: 1
g, = 7n_(R +rcosq, ) p,.

L

In several problems we have to deal with generalized Lagrangian

functions having the form

L(q.q.1) = T(4.q.1) - <f,4> - U, 1), (10)
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with T given by (7) and f a function of q. Applying the Legendre transform we
shall get by theorem 9 the Hamiltonian function
H(p,q,t) = <p,4> - L,(4.4,1),
where p = A(q,t)q - f, hence ¢ = A(q, ) (p + f).
Then
H(p.q.0) = <p.A7(p+/)> - 2 <AAT( ). A (P N)> +
+<f,A7(p+f)>+ Uqy,1),
hence
H(p.q.0) = 2<p,A"p> + <p.A'f> + Z<[,Af> + Ug.0.01)
Therefore the transform of a generalized Lz ;rangian of type (10) is the
Hamiltonian (11), the corresponding systems (3) and (4) being equivalent.
For autonomous systems we have in this case an energy integral
H(p,q) = const
given by theorem 10 b).
If A(g,t) =1 ,ie. T(g) = _;__quf, it follows ¢ = p + fand
i=1

1 n n 1 n
Hl(p,q,t)=5Ep,2+gp,f,+3§ff+U(q,t). (12)

i=1

The next applications contain problems having generalized Lagrangian

functions of type (10).
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4. The photogravitational three-body problem. Let us consider the

three-dimensional photogravitational three-body problem given by the system of

eq{xations
¥-2y=Q
y+2x =5
i=Q

with Q: D = R*\{(1,0,0), (u - 1,0,0)} ~R given by
Qx,y,2) = (x> +y?)I2 + A/lr, + A,lr,,
4, =a(l-p), 4, =au,
SN RN RS LR O R ER VR LR LY
where p € [0, 1/2] and g,,a, € ]-%,1].
The system may be written as

d, -1

dat? T

wl;erc q=0,,9,.9,) = (x,y,z) and L: R x D — R is a generalized
Lagrangian of the form

L@G.9) =T - 2(4,9).

The kinetic energy is given by

T(g) = (@) + d; + 452

and the generalized potential Z by
2(4,9) = 49,9, - 4,4, - QA9).
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The Lagrangian is of the type (10) with A(q,?) = 1,,f(q,!) =(q,,-9,,0) and
Ug,n = -€Aq).

We have ¢ = A(q,)'(p +f), hence

9, =pr"*4q

9, =D, — q,

q, = P;.
It follows .
1
H(p,q) = (p+p; +p)2 +pg, - P4, * —2-(4.2 +q7) - Qg) =

= (P12 +P22 +1732)/2 * P4, ~ P, AT~ A,y
The Hamiltonian system (4) is in this case

b=p,-q9+%
pz =P 4, * qu
<p3=94:

g, =P *q,

|9 =p,- 9
\(]'3‘-'173-

5. A charged particle in a magnetic field B(r) = curl A(r).
The equations are given by
.. e , .
mg = —(q x curl A),
C
where m > 0 is the mass, e the charge of the particle and 4 = (4,,4,,4,), with

A EC(RY,i=1,2,3.
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In this case ¢ = (g,,9,,9,) and L: R® — R,
L(g,9) = 24> + = <A@),4>,
2 c
so we have a generalized Lagrangian of the type (10) with
A=ml,f=-24,Un=0.
c
It follows for p = (p,, p,,p,) that
p=mg+>A,
c

hence

and from (11) we obtain H: R* — R,

3
H(p,g) = -2‘; > (- 24, - % <p-24@).p-2a@)>

i=1

The Hamiltonian system is

D, = i<p - fA,Aq>
mc [ '

. 1 €

q( = "'—(pi —""A.')'
m C

6. A charged particle in an electromagnetic field (E£(q.7), B(q,0)).
In this case, the motion of a particle of mass m and charge e is governed
by the equations

mg = eE + %(q‘ x B),

97



A. PAL, M.C. ANISIU

q = (4,,9,,9,;) being the coordinates of the particle. These equations admit the
Lagrangian L: R’ — R,
L(g,9,1) = 547 - €0(@,1) + = <A(g,1),4>,

the fields E and B being related to the scalar potential ¢ and the vector potential

A by

The Lagrangian is of the type (10) with
A=mlL, f= —%A, U = e¢.
It follows that p is given by
p=mq+ fA,
C

hence

and the corresponding Hamiltonian is

1
H(p.q) = <P - LA@q.0,p - £A@G, 0> + ed (g, D).
m C C

The Hamiitonian system is

e e
p, = —e¢q‘+_<p -,E_A’Aql>

=
i
I
~
=
|
|
PN
<~
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REZUMAT. - Asupra perioadei migcdirii cvasicirculare intr-un cimp
gravitational post-newtonian sferic. Utilizdndu-se: teoria clasicd a
perturbatiilor, se studiazi evolutia perioadei nodale in raport cu perioada
keplerian# corespunzitoare in migcarea cvasicirculard a unei particule de probi
intr-un cdmp gravitational post-newtonian sferic (caracterizat de parametri a,
B, v). Se deduc analitic (cu o precizie de ordinul intdi in excentricitate)
perturbatiile relativiste de ordinele intdi i al doilea ale perioadei nodale.
Considerindu-se cazul campului post-newtonian sferic al lui Einstein (f =y =
1), se discutii evolutia perioadei nodale pentru trei valori ale parametrului a,
atit in cazul general, cit §i in doud cazuri particulare. Se discutd, de asemenea,
influenta aceluiagi cdmp Einstein asupra migcérii circulare, in trei sisteme de
" coordonate diferite.

. Introduction. One of the oldest methods intended to study the motion in
a post-Newtonian (not necessarily relativistic) field used the classic theory of
perturbations. According to this method, the force acting on a test particle in
such a field is written as a sum of two terms: the Newtonian attraction and a
post-Newtom'an perturbing force, while the deviations of the orbit from a

Keplerian orbit are regarded as perttirbations (e.g. [2]).

Such a method was used by different authors (e.g. [3-5]) to determine first

* Astronomical Observatory, 3400 Cluj-Napoca, Romania
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order relativistic changes of some Keplerian orbital parameters over one
anomalistic period. First and second order perturbations in orbital elements over
one nodal period were determined in [1, 9, 10] for different relativistic and
nonrelativistic post-Newtonian fields.

Few authors dealt with the nodal period behaviour in such a field. An
approximate formula for the nodal period as functio. of the orbital elements Was
given in [5], for the Schwarzschild field, but without expressing the variation of
this period. ” The first and second order changes of the nodal perisd were
obtained in [10, 11] for the Miicket-Treder field, in [1, 7] for the Schwarzschild
- de Sitter field, and in [9] for Fock’s field.

In this paper we shall treat perturbatively the quasi-circular motion of a
test particle in a spherical post-Newtonian gravitational field. We shall determine
the first and second order relativistic perturbations of the nodal period.

Notice that the orbits are in fact unperturbed in the considered field, but

we shall hereafter use, by abuse of language, a perturbation theory terminology.

2. Starting equations. Let a central body of mass A be the source which

generates a spherical post-Newtonian gravitational field, and let p = GM be its
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‘g_ravitational parameter (G = gravitational constant). Consider a test particle
orbiting M under the action of this field. The relative motion of the test particle
can be described in coordinates (¢, x) in the form [12]
dvidt = -ux/r’ + a,,,. )
The left-hand side of the above equation is the total acceleration of the test
particle. The first term in the right-hand side is nothing but the Newtoniar
attraction per unit mass (r = radial coordinate), while a,, is the virtual
perturbing post-Newtonian acceleration, which has the expression (e.g. [12]; see
also [13])
a,, = (Wc?) (B +Y - 20)ux/r - (y + o) (V/r¥)x +
+*3a(x-Vyxir’+2(y +1-0)(x-V)VIr?), )
wilere ¢ = speed of light; a = gauge parameter [3]; B, y are the Eddington-
Robertson parameters [14]: B = post-Newtonian parameter describing the amout
of nonlinearity of the gravitational field, y = post-Newtonian parameter
describing the space curvature.
Choose a reference frame originated in the mass centre of the body M,
and feature the motion of the test particle with respect to this frame throung the

Keplerian orbital parameters {y € ¥; u}, all time-dependent, where
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Y={p,q =ecosw, k = esinw, Q, i} 3)
and p = semilatus rectum, e = eccentricity, @ = argument of pericentre, Q =
longitude of ascending note, i = inclination, # = argument of latitude.

For our purposes we shall use the definition relati;)n of the nodai period
T, = ]:(dt/ du)du 4)
and Newton-Euler equations written §viﬂ1 respect to in the form(e.g. [1, 9, 10])
dpldu = 2(Z/w)r’T,
dq/du = (Z/u) (r3kBCWI(pD) + r?T(r(q + A)Ip + A) + r*B. ),
dk/du = (ZIw) (-r*qBCWI(pD) + r*T(r(k + B)/p + B) - r?4S),
dQ/du = (ZIWr*BwWi(L D), (5)
dildu = (ZIwr*Awlp,

dt/du

Zri(up)™®,

whereZ = (1 - r2CQ/(up)'?)™, A = cosu, B = sinu, C = cosi, D = sini,
S, T, W = radial, transverse, and binormal components of the perturbing
acceleration, respectively.

The change of y € 7 between the initial (,) and current () positions,

which will be used below, is

Ay = f(dy/du)du, yEeY, (6)
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with the integrands given by (5). The integrals are estimated by successive

approximations, with Z =~ 1.

3. Perturbing acceleration and corresponding equations of motion. The
components of the perturbing acceleration a,y have the following expressions
(12]

S = (n/e*)(ui(a*(1 -e?))) (1 +ecosv)’ (2B +y -30) +
+ (y+2)e? + 2(B-2a)ecosv - (2y +2 - a)e?cos?v), (7)
T =2(c?)(ula*(1 -e?)*))(1 +ecosv)’(y +1 - ) esinv,
W =0,
with a = semimajor axis, v = true anomaly.
Replacing in (7) the well-known formulae
p=al -e?), 8)
u=m+v, 9
the definition expression of g and k, and the orbit equation in polar coordinates
r = pl(1 + ecosv), (10)
then retaining only terms to first order in g and k& (because we deal with quasi-

circular orbits), the components of the perturbing acceleration reduce to
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S =( WHc’pr?)) (L, + L,Aq + L,Bk),
T = (Wlc*r’) L(Bq - Ak), amn
W =0,
where we abbreviated
L =28 +y-3a,
L, =2(B - 20), (12)
L=2(y+1-a).

Focus now our attention to equations (5). It is easy to observ., by the
fourth and the sixth equations (5) and by the expression of Z, that Z = 1
(because W = 0). Substituting (11) in (5), using (1.) in the equivalent form

r = p/(1 + Aq + Bk), (13)
and performing all necessary calculations, the equations of motion become
dp/du = 2(n/c?) L,(Bq - Ak),
dg/du = plc*p))(L,B + (L, + 2L,)ABq + (L,B*-2L,A*)k),
dk/du = -(pl(c*p)) (LA + (L,A* -2L,B*)q + (L, + 2L,) ABk), (14)
d/du = 0,
dildu = 0,

dt/du = p(p/W'*(1 + Aq + Bk)™
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4. Variations of orbital elements. Let us now perform the integrals (6)
with the integrands provided by the first five equations (14). We use the
succes§ive approximations method, limiting the process to the first order
approximation. Accordingly, we consider y = y, = (u,), y € Y, in the right-hand
side of equations (14), and integrate these ones separately. Performing the
integrations, and denoting

x = pic?p,) (15)

and

by=L,=2(+1-a),

b,=1L =28 +y-3a, (16,
b, =(L,+2L,)2 =B +2y+2-4aq,
b,=(L,-2L,)I2 =B -2y-2,
we get the first order (in x) relativistic changes
Ap = 2xp,b,(-Aq, - Bk, + A,q, + Byk,),
Ag = x(-b,A + b,B*q, - (b,AB - bu)k, +
+ bA, - b,Blq, + (b,A B, - b,u))k,),
Ak = x(~b,B - (b,AB + b,u)q, - b,B%, + a7)

+ b,B, + (b,A,B, + b,u,)q, + b,Bik,),
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where, obviously, 4, = A(u,), B, = B(u,).

Observe that, due to the post-Newtonian conservation of the angular
momentum, the motion is restricted to a fixed plane (see the last two
expressions (17)).

Although this is not the goal of our paper, let us examine briefly what
changes ubdergoes the orbit over one nodal period (that is, lettin; u vary

between 0 and 2x). Putting 4, = 0, = 2x in (17), the first three expressions

become
Ap =0,
Agq = 2nxb,k,, (18)
Ak = -2mxb,q,.

Observing that for quasi-circular orbits p == a, using the definitions of ¢ and &,

and taking into account the last notation (16), relations (18) lead easily to

>
*
]

=

Aw = 2nx(f - 2y - 2).
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This means that the only first order relativistic effect in the considered field
consists of a rotation of the orbit in its plane (apsidat motion). If we
particularize the field to the spherical Einstein post-Newtonian gravitational field
(B =y =1), then, takiﬁg into account (15), the last formula (19) reads

Aw = 6zpl(c?p,), 20)

that is, the well-known expression for the relativistic shift of pericentre.

5. Nodal period. Now, let us come back to the main purpose of our
paper. As shown in Section 1, we shall determine the first and second order (in
x) relativistic perturbations of the nodal period. To do that, we shall resort to the
method proposed in [15], extended in [6], and generalized in [8] for some
special situations.

Accofding to this method, to second order in a small parameter
characterizing the perturbing factor, the nodal period is given by

Ty =T, + AT + AT, 2n
where T, (the Keplerian period corresponding to u,) is determined from (see (4)

and the last equation (14))

2
Ty = Po(py/1)"™ !g 2du, (22)
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with the abbreviation g = g(u) = 1 + Aq, + Bk,.

The general expression of A,7 and A,7’ were given and explicited in [6,
7] and will not be repeated here. We shall directly particularize them to our
perturbing factor (taking into account, for the beginning, the fact that # = 0 and
the small parameter is just x).

The first order (in x) perturbation of the noda’ )eriod has (in our case) the

form
AT = py(p,/0)'? (=21, -21,+(3/2) 1 Ip,), (23)
with 6]
2n
1, = ‘[g‘zApdu,
2
I, = ‘[g-‘é‘AAqdu, (24)

2n
I, = IgﬁBAkdu.

The second order (in x) perturbation of the nodal period has (in our case)
the form
AT = 3p,(py/W)'"* (L, + 1, + 21, -

Ly * L)y + 1 I8Py ), ©(25)
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with [6]

2n
I = {g 2(Ap)du,
2n
I, = Ig*‘A’(Aq)’du,
2n
1, = !g “B2(Ak)ydu, (26)
. 2n

- -3
I Jg AApAq du,

2x
I, = Ig BApAkdu,

2n

I, = J’g “4ABAqAkdu.

' d

6. Results. Replacing (17) in (24) and (26), expanding g ™, n = 2,4, to
first order in g, k,, and performing the integrations, formulae (24) and (26)
become respectively
I, = 4nxpyb,(Ayq, + Byk,),
I, = -nxb,(1 +34,q,), z7
I, = -nx(b, - 2b,9, + 3b,B,k,),

and
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I, = mx2b,(b,(3/4 + A7) + (6b, + by(112 -~ 2B7)) A4, +
+ 2(b,A,B, + b(m - uy))Ak,),
1, = nx2by(b,(3/4 + B}) + 2((byA4,B, - b(m - u,))B, -
- 4b,/3)q, + (6b, - b,(3/12 + 2B}))B,k,), (28)
L, = -2nx2p,b,b,(24,9, + B,k,).
L, = =2nxip,b b(A,q, +2 k)
Iy = nx2b,(b,/4 + ((b, - b,/4 + b,2)A, - 2b,/3)q, +
+ (b, - b,/4 - b,12)Bk,).
With these expressions, (23) acquires the form
AT = 2np,(p,/n)?x(2b, - (2b, -3, + b,)A4,)q, +
+ 3(b, + b,)B,k,), (29)
while (25) becomes
AT = 3npy(p,/n)'?x*b,(3b, - (4b, - (6b, + 8b, + b))A, +
+2b(m - uy))B,)g, + ((6b, + 8b, - b,)B, +
+ 2b,(m - uy)A)k,). (30)
Finally, replacing (16) in (29) and (30), denoting
fi=22B+y-3a) +(2(-B +2y +2) +3(2P + 3y + 2 - Sw)4)q, +

+3(2P +3y +2 -50)Bjk,), (31)
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S=G2)2B +y-30)3@2B +y-3a) + (4(-B+2y+2)+
+ (178 + 18y + 10 - 36)4, - 2(B - 2y - 2)(® - uy)B,)q, +
+ (158 +22y + 14 - 36a)B, + 2(B -2y - 2)(xw - u,)A4,)k,),
substituting the resulting expressions in (21), and writing (22) to first order in
90, ko as
T, = 2npy(p,/n)'2, (32)
the nodal period (to second order in x) reads
T, = T,(1 + xf, + x2f,). (33)
This is the basic formula we searched for and which will be used in the next

sections (with f, f, provided by (31), and with x given by (15)).

7. Two particular cases. We shall consider two particular cases: initial
orbital elements corresponding to ascending node, and initially circular orbit. In
the first situation we u,, hence 4, = 1, B, = 0. So, (31) become

fi=22B+y-3a) + (4B + 13y + 10 - 15a)q,,
f,=2)2B +y-3a)B(2B +y -30) + (138 +26y +  (34)
+ 18 - 36a)q, + 2n(B - 2y - 2)k,).

If the initial orbit is circular (of radin< :.; :#n we have g, = 0, k, = 0,
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hence (31) acquire the form
£, =22 +y - 3a),
£, =(92)(2B +y - 3a)% (35)
It is easy to see that in this last particular case the pertufbation of the nodal

period does not depend on the initial position of the test particle.

8. Spherical Einstein post-Newtonian field. Consider that the field in
which the test particle moves is the spherical Einstein post-Newtonian
gravitational field. In this case § = y = 1, and formulae (31) read

fi =3QUA -a) + (2 +(7 -5a)4,)q, + (7 - 50)Bk,),
£=272)A-a)(3(1-a) +(4+3(5-4a)A,+2(n-u,)B,)q,+  (36)
+((17 - 120)B, - 2(n - u,)A4))k,).

The two particular cases (34) and (35) become respectively

£, =3Q0 -0) + (9 - 5a)g,),
5 =Q@272)Q - )(3(1 -a) + (19 - 12a)g, - 2nk,), 37
and
fi =61 -a), f, =(812)(1 - ). (38)

Let us now assign to the gauge parameter o some particular values, which
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mean some systems of coordinates. The case o = 0 means the use of standard
post-Newtonian coordinates (spatially isotropic). Expressions (36) become in this
case
fi =3@R + (2 +74,)q, + 1Byk,),
£, = Q72)(3 +(4 + 154, + 2(7 - uy)By)q, + 39)
+ (17B, - 2(7 - uy) A )k,),
while the particular cases (37) and (38) become respectively
f,=3(2+9q,), f, =(2712)(3 + 19q, - 2=nk,), (40)
and
f, =6, f, =812 41)
If we consider a = 1, namely the spatial standard coordinate system is
used, formuiae (36) read
Ji = 6((1 + 4y)q, + Byk,),
5L=0, (42)
while (37) and (38) acquire respectively the form
£y =12q,, f, =0, (43)
and

5 =0, f,=0 (44)
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Lastly, put a = 2. This value of the gauge parameter leads to
Ji = -3(2 -(2-34,)q, + 3B,k,),
S, = (2712)(3 - (4 - 94, + 2(nw - uy)By)q, + (45)
+ (1B, + 2(m - uy)Ay)k,)
for the expressions (36), and to
5= 32 +.qy), f, =(272)(3 + 5q, + 2nk,), (46)
and
f,=-6, f, =812 (47)

for the particular cases (37) and (38), respectively.

9. Period behaviour for circular orbits. To end, let us compare the
nodal period with the corresponding Keplerian period for circular orbits in the
spherical Einstein post-Newtonian gravitational field. Taking into account (38),
formula (33) can be written in this situation

T, = T,(1 + (32)(1 - a)x(4 +27(1 - a)x)). (48)

Consider the standard post-Newtonian coordinates (a = 0); formula (48)

becomes in this case

T, = T,(1 + (32)x(4 +27x)). (49)
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Since x is a positive quantity, we have 7, > T,. In other words, for o = 0 the
post-Newtonian perturbing force acts to decelerate the motion.
For a = 1, formula (48) leads immediately to T, = T, that is, if we use
the spatial standard coordinate system, the motion keeps its Keplerian period.
Lastly, for a = 2, expression (48) reads
T, = T,(1 - (3/2)x(4 - 27x)). (50)
This means that there exists a critical value of x, x_ say, such that for x = x, =
4/27 the nodal period and the corresponding Keplerian period coincide. Having
in view the expression (15) of x (with p, = orbit radius), and recalling the
expression of the Schwarzschild radius R, = 2u/c?, the above coincidence
criterion can be formulated as
P, = (27118)R,,. (&2))
In other words, for an initial radius smaller than (27/8)R,, the post-Newtonian
perturbing force acts to decelerate the motion, and conversely. We may therefore
conclude that for concrete astronomical situations the case o = 2 entails

generally an acceleration of the circular motion as against the Keplerian motion.
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