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REZUMAT. - Incgalitd{i matriciale pentru matrici care comutd. O scric de incgalitati

clasice pentru numere pozitive sunt extinsc la cazul matricilor care comuta.

1. Introduction, It is well-known that for Hermitian positive definite commuting
matrices 4 and B, the inequality between arithmetic and geometric is given by (see for

example [1])

JAB < A*8 )
2
where C 2 D means C — D is positive semi-definite. (Similarly, C > D means C — D is
positive definite.)
Of course, this inequality is a direct analogue of the corresponding inequality for
positive numbers. In this paper, we show that similar analogues can also be given for many

other classical inequalities.

1. Preliminaries. Let 4, € C"*" be pairwise commutative Hermitian matrices with
eigenvalues A\, ..., A,,. Then there exists a unitary matrix U/ such that for all
A, = U'h, ...\ U ()

where [A, A ,, ..., A ] are diagonal matrices whose diagonal elements are the eigenvalues
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of 4,, each appearing as often as its multiplicity (see, for example, [2]). Further, by Theorem
4.14 from [3], for a real-valued function £, we have

J(4) = UTTS Q) f(Ny), . S ) U €)

We denote by S(J) the set of all Hermitian matrices with eigenvalues in an interval J.

3. Inequalities for convex functions.

THEOREM 1. Let f: J = R be a continuous convex function. Then fis also a matrix-
convex function on the set of commutable matrices from S(J).

Proof. We have for a € [0,1] and permutable matrices A, B € S(J) with eigenvalues .
A, ... A, and p,, ..., §, respectively

Sf@A+(1-a)B) =U*[f(a\ +(1-a)y,), ....f(a\, +(1-a)p,)]1U

sUtlgf(\) +(1-a) f(w,), ...af () + (1-a) f (W)U
e =af(4)+(1-a)f(B)
f@4 +(1-a)B) s af(4) +(1-a)f(B) @
which is the definition of a matrix-convex function.

We can now, by mathematical induction, obtain Jensen’s inequality for convex
functions. Moreover, we can prove directly a more general result with matrix weights instead
of real weights as in (4).

THEOREM 2. (Jensen’s inequality). Let C,, w,, j = 1, ..., n be commuting matrices
such that C,€ §(J), j= 1, ..,nand w, € §(0,®) j=1, .., n. Iff:.J — R is a continuous

convex function, then

J

_‘_ijcj) s T:,_ijf(Cj) )

n Wn =1 n /!
where W, =Y w,.

i=]
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Proof. Let A, ..., A, and wy, .., w, (j = 1, .., n) be eigenvalues of A4, and w,

respectively. Then by (2) and (3),

f(u],”w,A, = Ut/ Y U

[, . ]

Yw ) Yw, )

< Ue ivl " s iel _ U

Y v, Yow,
j=1

1 ”
e gw,f(A,),

where we used the classical Jensen inequality for a convex function of real variables.

We can prove many other inequalities in a similar manner. We, therefore, give
references to corresponding discrete inequalities but only a few actual proofs. (In fact, many
of the results stated here can also be proveci from Theorem 2.)

THEOREM 3. Let C,, w;, j = 1, ..., n be commuting matrices such that C, € S(J), j
=1n C= LY wC € SU)

n i=1
w>0,w<0,i=2,..,n W>0. ©)
Iff:J — R is a convex function, then the reverse inequality in (S) holds.

Now let us consider an index set function

FUJ) = W, f(4,(C;w)) - 3w f(C) ™

1€J
where

W, = Yw, A4(C;w) = _ﬁl,..zw,(),.

i€J J €S

THEOREM 4. Let f be a convex function on J, T and K are two finite nonempty
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subsets of N such that TNK= B, w=W)erox and C = (C)er,x are commuting
matrices such that C, € §(J), w, € S(R)(i € TUK), W, > 0, 4(C;w) € §(J)
(¢t =T,K, TUK). A

IfW.> 0 and Wy > 0, then

| F(TUK) = F(T) + F(K). @
2/ W.W, <0, we have the reverse inequality in (8).

THEOREM 5. lf_w, >0,i=1,.,n I,={1, ., k}, then

Fl)sF(_)s..s F(I))s 0, ¢

but if (6) is valid and A ,.(C ;W) € S(J) then the reverse inequalities in (9) hold.

Theorems 3-5 in the real case are obtained in [4], [5], [6].

THEOREM 6. [7). Let the conditions of Theorem 2 be satisfied. Then

f[-plvzn:wlq] =fon S ShanSha,s-sh,

n iwl

- (10)
= w f(C),
W” ; 'f( ')
where
wC +..+wC
fini® __1__ E (w’. - "wt,)f 4k gl
n-1 W 1$i,<..<isn W,' +... +w,.
k-1) " n
THEOREM 7. [8] Let the conditions of Theorem 2 be fulfilled. Then
1,0 7 r 7 1 ¢
f[W Ew,(,l] s.sf,sh,s.sf, "= WEW,](C,), (1)
nisl n i1
where
- 1 wC +.+wC,
Jin= Z (W’.+"' *Wl,)f L G
n+k-1 w 1sis..sisn W, ttw,
k-1 "

THEOREM 8. [9]. Let the conditions of Theorem 2 be fulfilled. Then
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Tlo S wC | s furnsfins o sL10= - T wA(C) (12)
W W
where 1 s k < n—1, and

1 - 1,
L= -7 ;’:-l w, ...w,.f(.k. (C,+ .. +C,')).
THEOREM 9. [10,11]). Le? the conditions of Theorem 2 be fulfilled and let q,, i=),.. .k,

with Q, == Z q,, be also strictly positive matrices commutable with {C}} and {w}, then

i=1
1 w i 2 1 «
— C — C
f W" 2. wils W" E w,. W,.f ij-z‘qj 3

'y e iyl (13)
l n
< 7 ; w f(C).
THEOREM 10. [12,13). Let the conditions of Theorem 2 be fulfilled and let
E-%gw,c,, t,€[0,1],i=1,.,k-1. Then
1 ¢ 7 y
f[W EW’C’] sf 5.5/,
n i®1
1 n k-2
$— Y w.w fICA-1)+Y C (-1,)1..1, (14)
W, .= o

n

u‘, Y w,f(C),

+Ct .. 0,) s

where

fam = 3w, W, SC0-1)

k-1 _
e -t Gl

oV

THEOREM 11. [14}. Let q,, A, € S(R), i = 1,...,.n be commuting matrices, and let the

function g be defined by

gx) =Y —l-f [q,-xA, +(r -x)hZ; Ak]

=1

where g,> 0, i =1,.n, with ¥, (1/g,)=1, r € R, qxA,+(r-x)Y A, ES(T), i=1,.n,
k=) k=)

7
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Jor all x from an interval J from R If f: T — R is a convex function and

|x| s |y|(xy >0,y €J), then

8(x) s g(y). (1

,—#X,,,r-l,wng

The function g is also convex.

q,4

Remark. Using the substitutions: 1/g, — w, [E w, = 1},

i=]
that (15) is also valid if

.g(x)=EWf

i=]

Remark. For some further generalizations of some of the previous results, see [15]

xX + (1 -x)Ew X,

the references given there.
THEOREM 12. Let the conditions of Theorem 2 be satisfied with J = [m,M). Then

-WZ;WI(A)SMI ”Tf()+J ””f(M) (

where A = E

,, i=

Proof. We use a converse of Jensen ] mequallty ([16))

iw,,f(%) < ’f(m) * f(M) G=1,..,v)

i=1
E wlj iy

where Xj = ._"__.(j =1,..,v),

E wlj

i=l

and an appropriate representationn of commutative Hermitian matrices (see (2)).
THEOREM 13. [17]. Let the conditions of Theorem 12 be satisfied and f also

positive strictly convex and twice differentiable. Then
;4'/ Zw,f(A,) s )»f[

n =l

Ew A] (n)i
,, i=)
where, with ¢ = ()", n = JM) f(m), v = M/0m) - mf(M) A is the

unique
M-m M-m




MATRIX INEQUALITIES FOR COMMUTING MATRICES

solution of the equation

Jo @A) = (RN $(u/A) + (VIN). (18)
THEOREM 14. [17). Under the same conditions as Theorem 13,
‘" gwif(A,) < AJ +f(.WL"§;w,A,] (19)
where
A= pd(p) +v -Sod(n) (20)

4. Inequalities for power means. There are, of course, many generalizations of (1).
We shall give analogous results for power means.

LetA=(A,, ..., A,), w = (w,, ..., w,) be two n-tuples of positive definite matrices such
that 4,, w, are pairwise commutative,

The power mean of A with weight w of order r is given by

1/r
MM (A;w) = (—,,'7'):%4'] ,r=0
n =1

21
= exp (’ul/'z w, logA,,), r=0

n ivl
where W, = t w,. We write M (4, w) = G (A, w).
Note ;hlat (2) and (3) give
M A w) = UTTM ()5 (0, ), MG, ) v DIV 22)
where, again, A, , (j = 1, ..., v) are eigenvalues of 4, , and'w,.J ¢ =1, .., v) are eigenvalues
of w,
Now using (22) and various results for means (see, for example, [4]) we can obtain

many matrix inequalities for means (21). Here we give only some key results (again with

appropnate reference to the real case).
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THEOREM 15. ([4), p.159). If r s s, then
M (4;w) s M) (4, w) @)
THEOREM 16. ([18]). Let 4, i = 1, ..., n be positive commuting matrices such tha
OsmlsAsMI@i=1,.,n (29
Letrisw,, i =1, .., nbereal numbers such thatr <s, rs =0, w,>0,i=1, . n
Then
rIMIN A, wy - aM!(4;wy - bI] 2 0 (25)é
where
a=M"-m"Y(M*-m*), b=(Mm"~-M"m*)I(M*~-m*). (26)

THEOREM 17. (18] Let the conditions of Theorem 16 be satisfied (with possibly s

Then
M (A, w) - M) (4,w) s AL @
where
A=[OM + (1 -0)m*)" -[0M"+ (1 -0)m"}".
0 is defined as follows. Let
h(t) =tV - (a1 + b)'"
and ab are defined by (26), if r » 0,
h(t) = 1" = m(MIm): VM =m') jfp =0
and
h(t) = =tV + m(M/m)t-m VM -m) - ifg =0,

Let J denote the open interval joining m* to M* if s = 0, and let J = (M'm") if s = 0.

Let J be the closure of J. Then there is a unigue 1* € J where h(1) attains its maximum inl

10
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(Observe that if rs » O, then at + b > 0 at the end points of J and, therefore, throughout.i)
Thus 1° lies in J. We set

B=@"-m* (M -m*)ifs=0,

0=0"-M"Y/(M" -m") ifs=0.
Ifs 21, then 1" is the unique solution of h'(t) = 0 in J.
THEOREM 18. Let the conditions of Theorem 16 be satisfied (with possibly rs = 0).
Then if we set y = M/m,
M (4 w) s AM (4 W) (28)

where
Yir

A=1_r0-y) J sS4 -v) ifrsw0
G-nNy-1n) [C-9¢-1)

1/s
- Y:/(‘f'l) - .0
elogy'"V yr
-Vr
. oD fs =0
prrevced AR

S. Holder, Minkowski and related inequalities.

THEOREM 19. (Holder’s inequality) Let A4,, ..., A, and B,, ..., B, be commuting

matrices from S(0,), p,q € R, pq = 0, p+q™' = 1. Then

@fp>1

1/p Vg
EAiBl s (i Aip) [E qu) (29)
i=l

i=l i=}

(b) If either p < 0 or q <0, then inequality (29) is reversed.

Remark. It is worth noting that if w,, i = 1, ., n are also commutable with 4, and B,
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and w, € 5(0,%), then (29) becomes

1p 1/g
iW,A;B: s [iw,A,”] [E wlqu] (2”
i=1

i=l i=}]

We need only put 4, — w,'?4, and B, = w,“B, in (29) to obtain (29').

Another interesting form of (29) is the case when for 0 < s < 1, (29') is equivaly

to

-3

> w5

s

n n
(D)
Y wA'B' s (Y w4
i=l (L3}
If s> 1 or s <0, we have the reverse inequality.

A further interesting form of the Holder inequality (29) is

Vp Vr :
[gw,A,’] [§W,B,'] ‘[IZ-;W,C,’) 21 (29"

where ABC, = I and p" + g +r' =0, and all but one of p, g, r are positive. If all buta

/g

negative, (29" ) is reversed.
For the corresponding real cases, see [4, pp. 136-139].
THEOREM 20. Let w,, A, € 8(0, ®), i = 1, ..., n be commuting matrices, 0 <<

<r:t s r€R Then

r-t res bl
lz w A"l s|{Y w4 Y w A’ @
in} i=l fm}
Proof. Substituting p = :" ,q = L;; A= A', B — A in (29) leads
— —

(30).
Remark. Theorem 20 gives a matrix version of the well-known Liapunov inequali

Let us consider the expression

G(p) =Y w,A’

1=]

i2
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Setting in (29"), 4, — 4%, B, = A, gives

G(su + (1 =-5)v) s G(uy Gv)'~, 31)
Thus, G(p) is an operator log-convex function, i.e., the function G : R, — §(0,) satisfies
@Bn.

Another interesting function is fH(s) =

}2_: w, A,”‘) for s > 0. Setting in Liapunov’s
iet
inequality (30), » —=x ", 1=y, r(s-1)/[s(r-1)] =\, sothat 1-A=¢(r-s)/[s(r-¢)] and
s = {Ax + (1 -A)y]"}, gives
AQhx + (1-M)y) s A0MAG)™ (32)
for0<x<y O0<A<I.
THEOREM 21. ({4, p.143) Let w , A, € 8(0,), i = 1,..., n be commuting matrices,

O<r<sifw,zli=1, .., nthn

L/s t/r
lz w‘,A,'l < [Z w,A,’} . (33)
i=1 il
THEOREM 22. ([19, 20]) Letw,, A, € S0,) (i =1, .., n, j= 1, ..., m) be commuting
matrices and let N, (i = 1, ..., m) be positive numbers.

@ IfA +.+ 0, =1, then

;‘I kn
mn z Py m m
ZI:WJA,,’ A s (2? w]A”) [X;WIA"’] (34)
J= J= J=
®)Ifw, =21 j=1, . ,mand A\ + ...+ \, = 1, then (34) also holds.
Remark. Further extensions of Theorems 21 and 22 can be obtained analogous to the

corresponding real cases [19], [20] and [21].

Let us now consider the function ([4, p.154])

144,
g(x) =] (E w A" T A;,“] 35)
o d=b =1 k=1

where ¢, > 0 (i = 1, ..., n) with Eq,‘" =Lr€ER xER A € 80,0),i=1, ., mt=
k=1

1, ., m If |x]| < |y| (xy > 0), then
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8(x) = g(y) (6)
As a special case, we have the following matrix analogue of the well-known Callebaut
inequalities:

2
[2 w, A, B,.] s Y wABT Y w AT B
i=1

(A 2] i)

s Y wA' B 2 w A B! < E w Al E w, B}

i=1 i=1 i=] i=l

provided either l sa<sf<20r0<sfi<sasl.

Moreover another improvement of the Cauchy inequality can be given as follows ([4,
p.155)):

If 1 sx =<1, then

2

ZAiBi +xz ,AIB_I =

i=l i.-_/-l
iwj
Y AT +2xY A4 Y B +2xY BB,|. (39)
=1 ig= i=l ij=1
i< i<j

THEOREM 23. (Minkowski’s Inequality (22, pp. 25-27]). let A4,, ..., A, B,, ..., B,€

8(0,%) be commuting matrices and let p € R. [f p > 1, then

\/p 1 /p 1/p

< +

(9)

Y (4,+ By
=1

=1

LY
i=1

If p <\, p =0, then incquality (39) is reversed.

Another Minkowski incquality is given by the following:

THEOREM 24 {22, p.26). l.et A,, ..., A, By, ..., B, w,, ... w, € 5(0,%) be commuting
matrices. Then

14
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G(A+B,w)zG(4,w) + G (B, w)
THEOREM 24’ ({4, p.170)). Let A, €50,®),i=1,...,m j=1, ., nandlet u=(u,
s M), V = (W, ., V) be sequences of strictly positive definite matrices. Set AV = (A,, ...,
A 1sjsnand A,= (A, ... A,) 1 sism [f-0 <rss<ow, then
MM (A u)v) s MM (A v)n) (a1)
THEOREM 25 ([23, p.57), [20)). Let A and B be two n-tuples of permutable operators

Jrom S(R) such that

Bl-B~-.-B!>0 or A} -4;-.-4}>0. 42)
Then
(AP - A - =A(B-B] - .-B})s (A B -A,B,-.-A48). (43)
THEOREM 26 ([20)]. Let A and B be two n-tuples of commuting matrices from $(0,%)
such that

AP - AL - . ~Al>0-and B'-B)-..-B!>0 (44)
then, ifp>1,p'+q'=1,
(A4°- A0~ A" (B-B-..-B!) s A B -A,B,-.-A48,. (45)
hease p< 1 (pwmO,p'+q'=1), incquality (45) is reversed.
THEOREM 27 ([20)). let A and B be two n-tuples of permutable operators from
8(0,%) such that
AP -AS - Al >0 and B"-BS- . -B] > 0. (40)

Then for p > 1
(A=A - =AY« (B -8B~ -B)Y"r)
s (A +BY-(A+BYy-..-(A+B Y.
nequality (47) is reversed if p < 0 (p = 0).

47

15
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mi = [A,(A,+ B)" 1" s MI, mI < [B,(A,+B,)" 1" s Ml (53)

joreveryk=1,. . n Ifp>1, then
r

) () < d{Eaenr] o
kel k=1 k=1

where K is given by (S1). If p < 1, we have the reverse inequality in (54).

tp

Following an idea of W.J. Everitt (see [4, pp. 151-152]), if JC N, J = @, let us define

the following set functins

w-[5T [g] -5

ieJ i€J
and

i€J €J i€J

h) = [2 Al ] [)_‘: B] -X 4, By
where 4;, B, € £(0,%), i € J.
THEOREM 32. (a) If p.q> 0, p' +q'=1,JKCN,JNK=03,J= B, K= B, A,B,
€ §5{0,), i€ JU K Then
x(J) + x(K) = x(JUK) (55)
G)Ifp>1or p‘ <0, then with J and K as in (a),
p(J) + n(K) = p(JUK) (56)
The following resuit is a generalization of the Dresher inequality (for this and related
results see [24)):
THEOREM 33. ietw,, v, , w,, A,, B, € S0,®),i=1,.,mj=1.,mbe

commuting matrices and let p,r,op € R be such that op - fr = 1.

@Ifpz1,0<r<1,a0>0,p>0, then
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W(I
r h1d r hii}
m n m
r
Z;", Zv,.AU. n EIIJAV
Jje =] j'l
- 18 s Zvl N 16 (57)
_ " iw) P
] n Zw B’
it}
ij Ev,b‘u - |
ad! 1=

GOYIfOsps1,r<0,a>0,0>0,the reverse inequality in (57) holds.
COROLLARY 1. ([24]) let u,, v,, w,, A, , B, be defined as in Theorem 33. Ifpe
1>r>0,pr€Rthen

1
p-r

J=l

r P ”m

” n v r

2 w vB 2w, B,
J iy 4=t

=t 1

P |
m n p-r m
2 ”j (E vl Aij] n E u/ Al‘jp
i=1 =1 X

(58)

If V2 p>0>r, then the reverse inequality in (58) holds.

This is the case a = [} of Theorem 33,

6. Generalizations of power means. Let JC R and suppose M . J— R is continuous

and strictly monotone. Let 4 = (4,, ..., 4,) be an n-tuple with elements from S(J), w = (w,

n
..» W,) an n-tuple with elements from $(0,%) such that ¥ = E w, > 0, and let all matrices

iwt

A, , w, be commutable. Then the quasi-arithmetic M-mean of 4 with weight w is

M (A, w) = M"( 2”: w M(A, )] (59

ey
THEOREM 34. ([4], p.226]) Let 1< and G be two strictly monotone functions defined
on J,( increasing (decreasing). Then for all n-tuples of commuting matrices A, w such that
AESS), wESO®),i=1, . ,n
F(A,w)s G (A,w) (60)
if G if convex (concave) with respect to I° (e, if G o I'' is convex). If G is decreasing

18
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(increasing) and (i is convex (concave) with respect to I, inequality (60) is reversed,

Further,let K . Ji, = R L : L, = R M: J,—= R [:.J xJ, = J, be continuous
functions, M increasing. Consider special cases of the inequality

SCK(Aw), LABw)) = MS(A, B),w) (01)

where (A4, B) = (f(A,, B,),...f(A, B ))andwhere A = (A, .. A ), B = (B, . B)
w=(w,..,w), #ntuples with elements 4, € S(J)), B € S(/,), w, € $(0,®), i=1, ., n
are commutable operators.

THEOREM 35. ([4, p251]) If f(x.») = x +y, so that

(s, 1) = MK '(s) + 1.7(1))

and if 2= K'/K", 1= L'1L", G = M'IM" and all of K', L' M' K", 1" M" are
positive, then

K(A.w) + L(B;w) s M(A+B,w)

Glx +y) =2 I(x) + I{p).
THEOREM 36 ([4, p.252]). If f(x.y) = xy, so that
(s, 1y = M(K () 1.7\(1))
and if A(x) = K'()(K'(x) +xK" (x)), B(x) = L'(x)/(1./(x) + x.” (x)),
Cix) = M/ (XYM’ (x) + xM" (x)), and K' L' M', A, B and C are positive, then
K(A,w)L(B,w) s M(AB,w),
(here AB means (A\B,, ..., A B))) if
Clx,p) 2 A(x) + B(y)
THEOREM 37. ([16]). Let I and (i be two strictly monotone continuous functions
defined on J = [m,M), (5 increasing (decreasing) and (i convex (concave) with respect (o 1,

19



let A=(A,..,A)and w = (w, ..,w) be two n-tuples of matrices such that 4, € §
w, € 8(0,%) with all matrices commutable. Then

(HM) - FKm)G (4, w) = (G(M) - G(m)) FF (A w) s F(MYG(m) = GIM)F(m))E
If G is decreasing (increasing) and G is convex {concave) with respect to F, inequality (
is reversed.

Another generalization of power means can be given by

wl/a

n
atp
EwlAi
=l

M, (4w), =] 7, a=0
Yow A
i) J
]
Y w4703 4, i
=exp |2 [, a=0
YowA4r

where 4 = (4,, ..., 4,), w = (w,, ..., w,) are n-tuples of strictly positive matrices, and
matnces are commutable.

THEOREM 38 [25]). Let a,hp.q € R be such that

[la] - |6l +a+2p < b +2gq. (63)
Then
M, (A, w),, < M,.,h(A; w)v. (64)
THEOREM 39. |26] Let ab,, .., bupq,, ... g €E R k = 2. Further, let

Q‘)=a>—l)’ Ql=bl.+(ll'i= l,_._'/(
Q().za'*'l)v Ql.=hl—(llii= l,u..ko
where a*= (la| + a)2 and a = (|a| - a)2 and for i = 0,1, ..., k, let
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[
k k
Yo when T1Q, = 0

H =) 2 ’,:::
0, when H Q =0
=0
Jai
Then the inequality
M, (A, . 4. w),s M, (4:w) .M, (4,w), (65)

holds for all n-tuples A, ..., A, w of strictly positive commutable matrices
{ - A)=(A, . Ay, o A A I
Q, 20, and H = (Q'(i =0,..,k) (66)
THEOREM 40. [27]. Let ab,, ... bp.q. ..., ¢ € R, k = 2. Then the inequality
M,,,a(A;+-~-+Ak;W),, < M,.,b,(Au;W)q,*"-*M,.,b,(Ak; w)% CY)
rolds for all n-tuples A,, ..., A,w of striztly positive commutable matrices (A, + ... + A, =(4y
Tt Aty T AL I
max {p+a‘’,1} s g, + b/ (68)
and
max{p -a,0} s min{q, -5, 1} (69)
hold for ever, i =1, ..., k. The reverse inequality holds in (67) if
min{p+a’, 1} =z max{q,+ 5,0} (70)
and
mn{p-a’,0} zq -b (¥A))
hold for i =1, ..., k.
THEOREM 41. [28]. let 0 <m <M < o and let a,b,p,q be fixed numbers such that
(31) holds. Further let y = M/m and t, be the unique positive root of the equation
M, G DG = N WG DG 1)

21



B. MOND, J.E. PECARIC

where, for t > 0.

ta-l
t? , a=0
M, =1" "a g
t?logt, a=0,
and
SN/ ), a=0
Fop (V) {exr)((v”logv)/(v“ 1), a=0.
Then
Mn’b (A;w)q s C(m,M)M",a( 1;w)p (M)
where
C(m,M) =T, (4, v)/T, (4.0 M)

The quasi-arithmetic mean (59) can be generalized as follows:
Let ¢ : J — R, be a strictly positive function, /' : J — R a strictly monotone function
A € S(J)y, w € §(0,»). Then define, for commutable 4,w, ,

Y v, 0(4)F(4)
F(4;¢) = F| = (™)

Y w6(4)

i=1

THEOREM 42 [19]. Let K,L,M be three differentiable strictly monotone functions from

the closed interval J to R; let $p,x be three functions from J to R,, and letA,B € S(J).
Then

K.(4;¢) + L(B;$) = M (4 + B;x), (75)

holds if for all uv,s,t € J the following inequality holds.
M(u +v) - M(t +s) x(@+v) _ Ku)-K(@) ¢(u) | L(v) -L(s) x(v)

. (76

M (t +5) x(1 +5) K'(1) $(1) L'(s) x(s) w
THEOREM 43 .([29]) With the notation of Theorem 42

M, (4;x) s K. (4;¢) ()
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ifjor all ut € J,

M(u) = M(1)\ x(u) _ (K(u) = K(1)\ $(n)
M'(1) x (0 K'(0) )¢(¢)

7. Symmetric means. Let 4 = (4,,...,4,) be an n-tuple of positive commutable

matrices. The normalized 4-th elementary symmetric of 4 can be given by

p (&) =1 and p(A) = (',j) )y HA (79)

1si,<.isn j=1

Then we have a matrix version of the well-known Newton inequality
(P ) = pl Ay pi (1) (80)
where 7 is an integer, 1 < r < n-1,
We also have the matrix version of MacLaurin’s inequalities
P = (p) 2 (PP ) = = ()" 81)
Further let ¢!} (4) = ('rl) pl"M(4). Then the following operator version of the
generalized Marcus-Lopes inequality ([4, pp. 306-309]) is valid:
Let A and B be n-tuples of strictly positive matrices, r and s integers, l sr<ss<n.

Then Vr r Vr
eXl(4+B) el1(4) ell(B)
> -+

(82)
e, " (4+8) ¢, (4) e, (B)

The case r = s of (82) is
{elra+ By} s {e ) s {el )" (83)
Similarly, we also have the following: [3, p.106] (for possible generalizations see [4,
pp- 301-303]):
Let A =(A, .., A) and let 4 = (A,, ..., A,, A4,,,) where A,, ..., 4,,, are positive
tommutable matrices. If 1 <~ < & < n, then
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(pr @) _ (o)™
(P ) (P )

Of course, we can also consider the » th complete symmetric function of an n-ty

A= (4, ..., A,) of positive commutable matrices:

gl (4) = (" *C”])- z [HA]

where the sum is over all (n +: -1 ) n-tuples of nonnegative integers such thatE i
. e
in addition C!°'(A4) is defined as /.
If r is a positive integer, then we have ([4, p.315]}:

(4! () s g () g )

and ([4, p. 314)),if l <r s,
1r /s
(g ))"= (g ()"

.Moreover we can consider the following generalizations of elementary and compl

symetric functions of an n-tuple 4 = (4,, ..., 4,) of positive commutable matrices:

w,f""'(A)=(';‘s)-E f[x,Aj'f (s>0)

J=1

-1 n
= (-1} 7S o
() T [ <0
j=1
where s is a non-zero real number, £ is a natural number,

x=(:) if >0

= (-1) (:) if s <0,
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n
and the summation is over all non-negative n-tuples (7,, ...,i,) such that E i =k

i=t

We have ([4, pp. 317-323))

() If s > 0, k an integer and 1 < k < 5 when s is not an integer or 1 < k < ns if s is an

integer, the

(w1 () = w1 Ay wl o (4), 37)

(i) If s < 0, inequality (87) is reversed.

(iii) If = > 0, & and ¢ integers, 1 s k < ¢ s s+1, when s.is not an integer or 1 s k < 8 s ns

when s is an integer, then

(witt () (wi ()" (38)

(iv) If s < 0 inequality (88) is reversed.

—
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SUPERADDITIVITY AND HERMITE-HADAMARD’S INEQUALITIES
th. TOADER®

Received: June 10, 1994
AMS subject classification: 26D15, 26451

REZUMAT. - Superaditivitate i incgalitifile lui Uermite-Iladamard. imbuniiim in
anumitc scnsuri incgalitifilc lui Hcrmitc-Hadamard, valabilc pentru functii convexe pe ja,b|
AA@.b)) s A(fab) s Afa), b))
unde A(f a,b) reprezintd media aritmeticl intcgrald a functici / pc [a.b), iar A(a.h) mcdia aritmetici a
numerclor a si . Dc exemplu A(fa,b) s¢ inlocuicste cu o funclionald liniard izotond, simetrich intr-un
anume sens, Dc ascmienca, incgalitijile sc demonstreazi pentru clase mai largi de functii, carc ¢ includ
pe ccle convexc.
1. An inequality for superaddiiive functions. Let us consider the sets of continuous,
convex, starahaped respectively superadditive functions on [a,b], given by:
Cla,b] = {f: [a.b) — R fcontinuous}
Kla,b) = {f € Cla.b]; fiux + (1-0)y) s fix) + (1-0AY),
VY xy€l[ab], VE{01]}
Stla,b] = {f € Cla.b], (Ax) - Aa))/(x-a) <
(Ay) - Ra)l(y-a), a < x < y s b}
respectively
Sla.b] = {/ € Cla.b}; Ax) + fy) < Ax1 y-a) + fla),
VY x, p xiy-a€ [ab]}.

Fora = 0 we denote by ((b), K(b), St(b) respectively §(h) the corresponding sets of functions,

submitted also to the condition £0) = 0.

" Technical University, Department of Mathematics, 3400 Cluj-Napoca, Romania
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A M. Bruckner and E. Ostrow have proved in [1] the strict inclusions:
K(b) C SHb) C S(b).
Simple proofs and generalizations of the results of [1] may be found in [5].

Starting from some properties of superadditive sequences (see [6]) at the 3
international Symposium on Functional Equations (August 22-28, 1993, Debrecen, Hung
we have proposed the following problem: find some positive functions p of C[0,b), diffe
from the identity function, with the property that the inequality:

}MﬂQﬁ—lﬁ}thVxEWj]
hold for every f € S(b).

Of course, for f€ St(b) the inequality (1) 1s vali for all positive p, On the others
for the identity function, p(x) = x, (1) is valid for all £ € $(b). Indeed we have:

LEMMA 1. Jor every f € S(b) holds the inequality:

If(l)dt <

X

) v xe 8
Proof. We have:
L) + flx-) s fx), V 1 € [0x].
Integrating on {0,x] we get (2).
Remark 1. We can wnite (2) as:

1 f(x) + £(0)
- ‘{/(l)dl s A2

which is one of Hermite-Hadamard’s inequalities, as we sece at once.

2. Hermite-Hadamard’s inequalities. Let us denote by A(fa,b) and A(a.b)
integral arithmetic mean of fon [a,bh] respectively the arithmetic mean of a and b given

b
A(fa,b) = ,-.'_, [rexyae

28
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and

Aa,b) = 3+t

-

The inequalities of Hermite-Hadamard, valid for every function f from K[a,b] are:
f(A@, B) = A(f;a,b) s A(f(@),/(B)). )
In (3) we see that the second inequality of (4) holds for all fin S(b). In fact it is valid
for all superadditive functions, even of a weak kind.
DEFINITION 1. The function fis called weakly superadditive on [a,] if it verifies:
Sfla+n +f(b-1=f(a)+f(b), VIEO,(b-a)2]. )
Let us denote by wS[a,b] the set of all these functions.
THEOREM 1. The inequality
A(f;a.b) s A(f(a). /(b)) (6)
is valid for every f of wS[a,b].
Proof. Integrating (5) on [0,h-a], where it is valid in fact, we get (6).
Similarly we can extend the set of functions for which the first inequality of (4) is
valid.

DEFINITION 2. The function fis weakly Jensen convex on [a,b] if:
fla+ +f(b-1) zf(a+b) VIG[O b—a] )
2 ) T2

2
We denote by wJ[a,b] the set of all such functions.

THEOREM 2. If f € wJ[a,b] then:
A(f;a,b) = f(Aa, b)). ®)
Proof. In fact (7) is valid for ¢ € [0,h-a] and integrating on this interval, we get (8).
We can characterize the functions from wS[a,b] and those from w.J/[a,b]. For this we
begin with the following:

29



Gh. TOADER

LEMMA 2. I'or every function f € Cla,b] we can determine two functions f,, f, :

[0, (h-a)2] — R such that:

a+b

S (x-a) L Jor x € |a,
S = i _ o 0
/ (hf’a)%(b a) -filb-x)., for x € (a’)/)'h]

B

- -

Proof. Of course:
L) =fl@a+n for 1 €[0,(h-a)2]
and
L) =fW(b-a)2) + ¢ - f(b-1) for t € [0,(b-a)2]
where ¢ 1s an arbitrary real number.
Using it we can obtain the destred charactenizations, which permit also the construction
of such functions.
THEOREM 3. The function f belongs to:
a) wSla,b] if and only if
S = [0) = [(1) - f0);
b) wJla,b) if and only if
HO = J((b-a)2) =z f(1) - f((b-a)).
Remark 2. 1f we take in (9) f, = f, arbitrary, we get a function f with the property;
S0y +f(b-0) = f(a) +f(b) = 2f((a+b)2), ¥V 1 €[0,(h-a)2]

thus it 1s contained tn wSla,b] N wJja,b], as are also all the convex functions.

3. Symmetric linear functionals. The incqualities (4) were generalized in [3)
replacing the integral arithmetic mean A(f a.b) by an arbitrary 1sotonic linear functional but
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tlso with the modification of the first and of the last terms. In what follows we want to do
thie same change of A(f a.b) but with the preservation of the inequalitics (4). And this will
be done, as in the previous paragraph, not only for convex functions.

Let L(*, a,b). C[a,h] — R be an isotonic lincar functional, that is, for 1y € R, fg €
(la,b]:

L(fab)=0if fz0
L{f + sg; ab) = d(f ab) + sl(g ab).

Analysing the proofs of Theorem 1 (or Lemma 2) and Theorem 2 we see that for our
ienlion we can use a special type of functionals. If &€ (*[a,h] we denote by f_the function
defined by:

J.(x) = fa! b-x) for x € [a,b).
DEFINITION 3. The functional /.(*; a,b) is symmetric if:
1 ab)=L{ ab), V¥V fE€ ([ab]

THEOREM 4. If L(:; a,b) is a symmetric isotonic linear functional, with 1(1;, a,b) =
1, then:

L(f: ab) s A(fa), h), ¥ f€ wSla,b]
and
L(f: a by =z fA(ah)), VY f€ whab)]

Proof. Indeed (5) is equivalent with;

Ax) + [ (x) < fa) + fb) for x € [a,h]
and (9) with:

Ax) + [ (x) 2 2[A(a.b)) for x € |a,b]
and we have only to apply the functional /(< «.b).

3
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Remark 3. If g € Cla,b] is symmetric with respect to A(a,b), the functional definef
by:
b b
L(f;a,) = £ s)ele | [se)de
satisfies all the hypothesis of Theorem 4. So we get a generalization of Hermite-Hadamards
inequalities which include the result of L. Fejér from [2] (established also only for conves

functions).

REFERENCES

1. Bruckner, AM., Ostrow, E., Some function classes related to the class of convex functions, Pacific I
Math. 12(1962), 1203-1215.
Fejer, L., On Fourier like sequences (Hungarian). Matem. Term, Ertesité 24(1906), 369-390,

3. Lupas, A., A generalization of Hamadard inequalities for convex functions, Univ, Beograd. Elcktrotchy
Fak. §44-576(1976), 115-121.

4. Mitrinovi¢, D.S., Lackovi¢, 1.B., IHermite and convexity, Acquationes Math, 28(1985), 229-232,

5. Toadcr, Gh., A hierarchy of convexity of higher order of functions, Mathematica 35(58)(1993), 1, 93-%,

6. Toadcr, Gh., Supermuliplicative sequences in semigroups, Anal. Numér. Théor. Approx. 23(1994),2
(lo appcar).



STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXIX, 2, 1994

INEQUALITIES RELATED TO A CERTAIN INTEGRAL INEQUALITY
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REZUMAT. - Incgalitiigi in legiiturii cu o integrald din leo:tia ecuaiilor difcrentiale, in

lucrare sunt pusc in cvidentd un numiir de incgalitiiti intcgrale si discrete care pot fi folosite

in studivl unor clase de ecuatii difcrentiale sau cu difcrenge.

Abstract. In this paper we establish a number of integral and discrete inequalities
related to a certain nonlinear integral inequality used in the theory of differential equations.

The inequalities that we propose here can be used as tools in the study of certain new classes

of differential and finite difference equations.

1. Iniroduction. In a recent paper [5, p.257), H. Engler proved the following
inequality.

LEMMA. Let ¢ > 0, a € L'(0, T, R*) and assume that the function w : {0,1] —
[1,2) satisfies

w(t) < c[l + ‘[a(s) w(s) Log w(s)ds|,0stsT M

Then
cxp[c!u(s)ds]
w(f)sc , 0=t T )
A shight vanant of this inequality is established by A. Haraux in his lecture notes [7,

p-139] published in 1981. An important feature of this inequality is that it contains an extra

* Marathwada University, Depariment of Mathematics, Aurangabad 431004 (Alaharashira), India



B G PACHPATIE

loganthmic factor in the integrand on the nght side i (1) and 101s usetful in the situations fo
which the other available inequalities in the Wterature do not apply directly. Due to the
successful utilization of the above inequality and its vanants in applications given 5,7}
it is natural 1o expect that some new generalizations and extensions of the inequality give
in the above Lemma would be equally important in certain new applications.

Our main objective here 18 to establish a number of new integral and discrete
inequalitics related to the inequality given in the above Lemma, which can be used as tools
in the study of certain new classes of differential and finite difference cquations in one anf
two independent vanables. Altough, a greai many papers have been written on various type
of integral and discrete incqualities [ 1-4, 6, 8-15], we believe that the inequalities established
in this paper are new to the literature and will prove their importance to achieve a diversity

of desired goals in various applications.

2 integral inequalities. Let /- [0, 1], 1> 0 is finite but can be arbitranly large. Lo

R denote the set of real numbers and R, |0, «), R = (0, o) and K, = [1, »). We wrilel'
i

p € LI, R) whenever p is measurable from / — R and j| P dt < o Letl, = [0, a
L= 10,4 1 L < Ryfora, BE R «a -0, 8 - 0and £, . ((x)) 0=xsx,0sysy)
C L. We define the differential operators 1)y and D, by Dir(x,y) = %r(x.y) and
Dyrix.y) = T;.’; r(x,y), where r(x, y) is some l’uncum?‘ (:cl'lncd for (x, y) € I. We wnte r €
L (I R) whcn‘cvcr ris measurable from £ - R and J ‘[lr(x.)')lc(v dx < oo,

A faicly general version of Lemma 1s given in ;Ilc following theorem.

THEOREM 21 Letab € 1, R,), and assume that the function w1 —» R, sanisfies

t

u(t) s u, + ‘[u(.s')u(s) Log u(s) + |h(v) Log u(x) du|dy, 21

M4
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fri € I, where uy = 1 is a constant. Then

[I *Iu(s)cxp(!lu(t)’b(t)l‘h) «b}
u(t) s u,

, 22
pri€l
Proof Define a function v(s) by the right side of (2.1), then we have
v/ (1) = a()u(t)|Log u(1) + jb(t) Log u(t)dt]. (2.3)

Using the fact that u(¢) < v(¢) in (2.3) we obtain

V() (v(r) + (b(v) Log
O] < a(l) [l.og, v(!) Jb(t) Log v(v) dt]. (2.4)

Integrating both sides of (2.4) from 0 to 7 we get

!

Log v(¢) < Log u, + [a(s) Log v(s) + {b(x) Log v(t)dt] ds. (25)

Now an application of Theorem 1 given in [8, p.758] we have

]

Log v(t) < |1 + Ia(x) exp( la(x) + b(T)]dt] ds [Logu,

(2.0)
| ‘u(s)cxp( 'Iu(t)*b(x) |d!)dx]
= Loguu[ I I .
From (2.6) we observe that , )
[I + I«(.t)exp(flu(n~b(1)|dr)d\']
v(1) s u, . cn

Inserting this into (2.1) implies (2.2) and the proof of the theorem is complete.

Remark 1. It is easy to observe that, by setting (1) = 0 and a(f) = u, a’(1) in Theorem
21 we arrive at the inequality given in Lemma with ¢«

A slight vaniant of Theorem 2.1 is embodied in the following theorem.

THEOREM 2.2 let a, b, u, u, be as defined in Theorem 2.1 and

[

u(t) s n,+ !u(s) 1(s) Log u(s) (l,()g u(s) + |b(x) Log ll(’l)th) dy, (2 8)
]
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t

Jor t € L If Log u, !a(t) exp ( b (k) dk

de < for allt € 1, then
oxp J‘.l(.\‘)(’(.\)d\'
u(t) s w, - R @

1€ I, where '
Jor where (Log u, ) exp [ 1{ b(x) dt)

Q) = Cl

{

1 -(Logu, )'[a(r) exp ( b(k)dk] dr
Proof. Defining a function v(¢) by the righ side of (2.8), we obtain as the proof

Fheorem 2.1
t

Log w(r) s Logu, + ‘!'a(s) Log v(s) jLog v(s) + ‘ b(t) Log v(t) e |ds.
Now by applying Theorem 1 given in [12, p.21] and followi;lg the last arguments as the pr
of Theorem 2.1 given above, we get the desired inequality in (2.9).
Another interesting generalization of Lemma is established in the following theoren
THEOREM 2.3. let a, u, u, be as defined in Theorem 2.1. Let f be a continuon

nondecreasing function defined on R, and f> 0 on R, and f0) = 0. If

{

u(f) s u, + ‘!‘a(s) u(s) f( Log u(s)) ds, VAl

Jort €1 then for0 sttt t, €1

]
u(f) s exp [I"" I'(Logu,) + (!'u(s)ds , 2.1
where '
1(r) = f_"‘_ rz0,r>0, @.0)
] Sf(®)

1Y is the inverse of IF and 1, is chosen so that
¢

F(Logum,) + Ja(s) ds € Dom (1),
)

Jor all t lying in the subinterval 0 s ( s (, of .
Proof By setting v(1) is equal to the right side of (2.11) and following the arguments
as in the proof of Theorem 2.1 upto the inequality (2.5) we obtain
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!

Log W(f) = Logu, + ‘[a(s) f(Log W(s)) ds. (2.14)
Now by applying Bihan’s inequality given in [4, p.3] we have

L
LogwW(f) s I | IF(Logm,) + Ia(s)ds . (2.15)

From (2.15) we observe that L

{

v(f) s exp |l | I (Logu,) + ‘[a(s)ds . (2.16)

The desired inequality in (2.12) now follows by substituting (2.16) in (2.11). The subinterval
for 1 is obvious.
Remark 2. We note that in Theorem 2.3, if we take fr) = r, then (2.12) reduces to (2)
with ¢ = u, and if we take fir) = r*, 0 < a < 1, then (2.12) reduces to
‘ 1(1-a)
u(t) < exp||(Logu) "+ (1 -a)la(s)ds . (2.17)
We next establish the following inequality which can be used in certain situations.
THEOREM 2.4, Le¢t a, u, u,, f be as defined in Theorem 23, [f
u() s u, + ‘(a(s)u(.\) (Lo;, u(s) + [a(t) S ( Log () dr|ds, (2.18)

Jort€l thenfor Os¢si, 1,1, E

u(r) s u, exp [ ‘[a(s)Q" Q (Logu,) + Ia(‘t)dt ds |, 2 19)
where
Qr) = J‘ s 20,1 >0, (2.30)
J s "'f(\ * 00 :

Q' is the inverse of Q and 1, is chosen so that
‘
Q(Logu,) + y[a(t)dt € Dom(Q"),
Jor all t lying in the subinterval 0 s 1 < 1, of I,
The proof of this theorem follows by the same arguments as in the proof of Theorem

2.1 and applying Theorem 2 given in [11, p.9] with suitable modifications. We omit the
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details.
|
Our next result deals with the two independent variable generalization of the inequaliy \‘
|

given in Lemma.
THEOREM 2.5. Let p € L'(E, R,) and assume that the function z : E — R, satisfis

2(x,y) sz, + ‘[ Jp(s,t) z(s, 1) Log z(s, 1) dt ds, @2)

Jor (x,y) € E, where z, 2 1 is a constant. Then

.,,,[H,(,.,W.]’

2(x,y) < 2, @
Jor (x,y) E E.
Proof. Define a function w(x,y) by the right side of (2.21). Then

D,D,v(x,y) = p(x,y)z(x,y) Log 2(x, y). 22) |
Using the fact that z(x,y) s v(x,y) in (2.23) we obtain

D, D,v(x,y) < p(x,y)v(x,y) Log v(x,y). QY
From (2.24) we observe that (see {14, p.492])

A %{l s p(x,y) Logv(x,y). (2.25)

Now keeping x fixed in (2.25) and setting y = ¢ and integrating both sides from 0 to y and

using the fact that D,v(x,0) = 0, we get
Dy(x.y) _

v(x,y)
Keeping y fixed in (2.26) and setting x = s and integrating both sides of (2.26) from 0 tox

y

J p(x, 1) Logv(x, t)dt. (2.26)
and using the fact that v(0,y) = z,, we obtain
xy
Log v(x,y) = Log z, + JJp(s,l) Log v(s, t)dtds. (227

Now an application of the inequality given in {14, p.492] we have
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xy
Log v(x,y) = ‘exp “'Jp(s,t)dlds Log z,
(2.28)
exp[l ,p(l,l)dlds']
= Log z, “ .
From (2.28) we observe that .
exp[{!p(:,t)dlds
v(x,y) s z, . (2.29)

Now using (2.29) in (2.21) we get the desired inequality in (2.22) and the proof of the
theorem is complete.

In the following theorem we establish the two independent variable generalizations of
the results established above in Theorem 2.1, 2.3 and 2.4 which can be used in some
applications.

THEOREM 2.6. Let p, q € L'(F, R,) and assume that the function z : E — R, satisfies

z(x,y) s z, + ‘[‘{p(s,t)z(s,t)(l;ogz(s,l)

.t (2.30)
+ uq(E,n)LogZ(E,n)dEdn)dtds,
Jor (x,y) € E, where z, 2 1 is a constant. Then
1+ . ,p(:.') exp[' ' [p(§, m) 'q(§-n)l‘§¢|]dldv]
z(x,)’) = "-'o[ II II ’ (23])

Jor (xy) EE.
THEOREM 2.7. Let p, z, z, be as defined in Theorem 2.5. Let g be a continuously

differentiable function defined on R, and g > 0 on R and g(0)=0, g’ =0 on R.. If

xy

z2(x,y) s z) + J!p(s,t)z(s,l)g( Logz(s,t))dtds, (2.32)
Jor (x.) € E, then for (x,y) € E, C I,

xy
z(x,y) s exp ‘G" [G(Logzo) + J“(p(s,l)dld\‘ , (2.33)
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where

r

ds
G(r) = ;[g(s)’ rz0,r,>0,

G is the inverse of G and (x,y) € E, QC E js chosen so that

xy
G(Logz,) + “p(s,z)dtds € Dom (G ™),
Jor x ) EE CE

THEOREM 2.8. Let p, z, z,, g be as defined in Theorem 2.7. If
x ¥y
2(x;,y) <z, + Y”p(s,t)z(s, 1) (Logz(s, )
st .
+ ”p(Em)g(LogZ(E,n))d’%dn]dtds,
Jor (x,y) € E, then for (xy) €E E, CE,

z(x,y) s z, exp

i yp(s,t)B"[B(Logzo)+
1

dtds

* :[:[P(E,n)d%dn

where

r

ds
0 f S8

B is the inverse of B and (x,y) € E, C E is chosen so that

,rz0,r,>0,

B(Log z,) + 1’ Ip(E,n)dEdn € Dom (B™),
Jor xy) € E,CE.

e

k)

(236

@3

The proofs of Theorems 2.6, 2.7 and 2.8 follows by the same arguments as in the

proof of Theorem 2.5 and using Theorem 3 in [14, p.496}, Theorem 1 in [3, p.162] and

Theorem 2 in [3, p.164] respectively with suitable modifications. The details are omitted.
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3. Discrete inequalities. In this we establish some discrete inequalities which can be
used in the study of certain finite difference equations. In what follows we let N, = {0, 1, 2,

..}. For any function u(?), ¢ € N,, we define the operator A by Au(f) = u(++1) - 1(s). For ¢, >

L

1 ‘1
b, 1), &, € N,, we use the usual conventions Y u(s) = 0 and ] u(s) = 1. We write u €

st s=

M(N,, R) whenever u : N, — Rand Y |u(s)| < ». For any function z(x,y), x.y € N, we

s=0
define the operators Az(x,y) = z(x+1,y) - z(x,y), A2(x,y) = 2(x,y+1) - 2(x,y) and AAz(x,y) =
AAz(x,))]. We write z € M'(N, x N,, R) whenever z : N, x N, = R and
LY lzs, 0 < .
10 (=0

An interesting and useful discrete analogue of Lemma is embodied in the following

theorem.

THEOREM 3.1. Let a € M'(N,, R,) and assume that the function u : N, -+ R, satisfies

-1
u(t) < uy + Y a(s) u(s) Log u(s), &R}
s=0
for t € N, where uy = 1 is a constant. Then
iill'aﬁﬂ
u() < ug”® , (32)

Jor tE N,
Proof. Define a function v(¢) by the nght side of (3.1), then

vt +1) - v(®) = a(®)u() Log u(y). 3.3)
Using the fact that u(f) < v({¥) in (3.3) we get

v(e+1) s 1 +a(@Logv()]v(). 3.4)
Multiplying both sides of (3.4) by f[ [1 +a(s)Logv(s)]" and summing up both sides of
the resulting inequality from 0 to t-‘l-(;t follows that (see [9, p.149])

v() ﬁ [1+a(s)Logv)]" s u,,

5=0

which implies
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-1

v() s u, [T (! +a(s)Logv(s)]s

s=0

G
-1 |
< u, exp [E a(s) Log v(s)) .
3=0
From (3.5) we observe that
-1
Logv(f) = Logu, + 2 a(s) Log v(s). (9

s=0

Now by applying the inequality given in Lemma 1 in {10, p.348] we get

-1

Log v(1) < [H [1+a(s) ]] Logu, =

o
i+ ae) :
= Log u,”
From (3.7) we have
TIt1+a@)
v(t) < uy” . (k1))

Now using (3.8) in (3.1) we get the required inquality in (3.2). The proof of the theorem s
complete.
In the following two theorems we establish the discrete analogues of the ihequalitia

established in our Theorems 2.1 and 2.2.

THEOREM 3.2, let a b € M\(N,, R,) and assume that the function u : N, = R’

satisfies

-1 -1

u(t) s uy+ Y a(s)u(s) {Log u(s) + ¥ b(x) Log u(v) |, 69

s=0 T=0
Jor t € N, where uy = 1 is a constant. Then

- -1

[1 + 3 a1 v aey ¢ b(:)]]
-0

’

u() s u; - (3.10)

Jor t € N,
Proof. By setting v(f) is equal to the right side of (3.9) and following the arguments

as in the proot of Theorem 3.1 upto the inequality (3.6) with suitable modifications we obtain
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¢-1 s-1

Log v(¥) s Log u, + Y a(s) [Log v(s) + Y, b(t) Log v(t)). G.11)
s=0 <=0

Now by applying Theorem 1 given in [10, p.149] and following the last arguments as in the

proof of Theorem 3.1 given above, we get the required inequality in (3.10).

THEOREM 3.3. Let a, b, u, u, be as defined in Theorem 3.2 and

u() s u, + ’z-l: a(s)u(s) Log u(s) (Log u(s) + i b(x) Log u(t)], 3.12)

s=0 =0

t-1 %

Jor t€ N, If (Log u)) Y a@]] [1 + 58] < 1 for t E N, then

=0 k=0
11+ a0
u(t) = u” , (3.13)
for t € N, where
-1 :
(Log uo)]_[ {1 +b(®)]
Q,(n = . . (3.14)
1-(Logu) Y a@ [T 11 + b(k)]

=0 k=0

The proof of this theorem follows by an argument as in the proof of Theorem 3.2 and
applying Theorem 3 given in [13, p.318] with suitable modifications and hence we omit it
here.

We next establish the following discrete analogue of our results given in Theorems
23 and 2.4.

THEOREM 3 4. Let a, u, u, be as defined in Theorem 3.1 and f be a function as
defined in Theorem 2.3. If

-1

u(t) < uy + Y a(s)u(s) f(Log u(s)), 3.15)

s=0

Jor t€ N,, then for 0 st s 1, 1, t, € N,
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I(Log ny) + 'E a(s)H, .14

s=0

u(f) < exp [1"‘

where F, ' are as defined in Theorem 2.3 and 1, € N, is chosen so that
-1

Sf(Log u)) + Y a(s) € Dom (1),

s=0

Jor all t € N, lying in the subset 0 < { < t, of N,

Proof. Defining a function w({) by the right side of (3.15) and following the s »

arguments as in the proof of Theorem 3.1 upto the inequality (3.6) we get
-t

Log v(f) s Log u, + Y a(s) f(Log v(s)). (€AY

s=0
Define a function m(f) by the right side of (3.17), then we obtain

Am() = a(t) f( Log v(1)). G

Using the fact that Log w(r) < m(¢) in (3.18) we have
A m(1) <
S(m()
Now from (2.13) and (3.19) we observe that

mit+1)

Fm(e+1) - Fm(@)) = j‘_:‘:) < f’(’”’:’((l’))) < a(y). G
n(t) '

Setting ¢ = s in (3.20) and substituting s = 0, 1, 2, .., +-1 and using the fact that m(0)=L

a(r). Gl

u,, we obtain

F(m(t)) s F(Logu,) + ,2:‘ a(s). (3.21)
Now using the bound on m(¢) from (3.21) in (3.17) we‘l:xve
Log v(f) s F™' |- (Log u,) + i a(.s‘)]. G
From (3.22) we observe that ” |
v{f) s exp [1"" {l"( Log u,) + lzi a(.s')”. 323
s=0

Now using (3.23) in (3.15) we get the required inequality in (3.16). The subdomain 0 < /4
t, of N, is obvious.
THEOREM 3.5. Let a, u, u,, f be as defined in Theorem 3.4, If
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u() s u, + 'i: a(s)u(s) (Log u(s) + ’Z.S a(t)f(Log u(t))) , (3.24)

s=0 =0
for tEN,, then for 0 s t s 1, 1, 1, € N,
t-1

u(t) s uyexp |y, a(s) Q!

s=0
where Q,Q" are as defined in Theorem 2.4 and t, € N, is chosen so that

s-1
Q(Log u,) + Ea(t)”, (3.25)

Tl

t-1
Q(Log u,) + Y a(r) € Dom(Q™),

T=0
Jor all t € N, lying in the subset 0 < t < 1, of N,
The proof of this theorem follows by the same arguments as in the proof of Theorem
3.4 given above in view of the proof of Theorem 1 given in [10, p.349] with suitable

modifications. We omit it here.

Our next results are the discrete extensions of Theorems 3.1 and 3.2 given above to
two independent variables.

THEOREM 3.6. Let p € M'(N, x N,, R,) and assume that the function z : Ny x N, —

R, satisfies
x-1 y-1

z, ) sz, + Y, Y, ps.0) z(s,0) Log z(s, ), (3.26)

s=0 (=0
Jor x,y € N, where z, = 1 is a constant. Then
n [l + X pls, r)]

-0

Ax,)) s z" " ; (327
Jor x,y € N,

Proof. Define a function v(x,y) by
x-1 py-1

vie,y) =z, + Y, Y pls, 0)z(s, 1) Log z(s, 1). (3.28)

s=0 (=0
From (3.28) and using the fact that z(x,y) < v(x,)) we observe that

Av(x,y+1) - Av(x,y) s px,p) v(x, y) Log v(x, ). (3.29)
From the definition of v(x,y) we observe that v(x,)) s v(x,y+1), for x,y € N,. Using this and
the fact that A;v(x,y) = 0 in (3.29) we observe that
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Av(x, y+1) Ayv(x,y)
v(x,y+1) v(x,y)
Now keeping x fixed in (3.30), set y = ¢ and sum over £ =0, 1, 2, ..., J~1 to obtain tht

s px,y) Log v(x, ). (X))

estimate
Av(x,y) *
— = p(x, 1) Log v(x, ). kX))
v(x,y) 'Z_; )

Here we have used the fact that A,w(x,0) = 0. From (3.31) we observe that

y-1
v(x?+l,y) < v(x,)) [1 + E plx, 1) Log v(x, t)l. (33

(=0
Now keeping y fixed in (3.32) set x -~ s and substituting s = 0, 1, 2, ..., x-1 successively w

obtain the estimate

x-

v(x,y) < z, | [l + yz_i p(s, 1) Log v(s,t)]

5= t=0

63
x-1 y-1
s zyexp|Y. Y p(s, 1) Log v(s, 1) |
so0 (=0
From (3.33) we observe that
x-1 y-1
Log v(x,y) s Logz, + Y ¥ p(s, 1) Log v(s, ). (3.34)
s=0 (=0

From (3.34) and by following exactly the same arguments as above upto the inequality (3.33)

we get

x-1 y-1
Log v(x,)) = [H 1+ Ep(s,l)

Log z,
=0 =0 (335
Ii [l + yzi Hs l)]
= Log z,”'t ™
From (3.35) we observe that
Il [l 'gm.l)}
v(x,y) sz, : (3.36)

Using (3.36) in (3.26) we get the required mequality in (3.27) and the proof of the theorem
is complete.
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THEOREM 3.7. Let p.g € M'(N, x N,, R,) and assume that the function z : N, x N,

- R, satisfies

x=1 y-1

z2(x,)) sz, + E Ep(s,l)Z(s,l)[Log 2(s, 1)
s-1 :-lo " (337)
+ Y Y g(m,n)Log z(m,n)],

m=0 n=0

Jorx,y € N, where z, = 1 is a constant. Then

[x % p(:.v)g'u.:)] A
Z(x,y) =2 e > (338)
Jor x,y € N,, where
x-1 y-1
.,y =TI P +X lp@m,n+ q(m,n)]}, (3.39)
m=90 n=0

frxy €N,

The proof of this theorem follows by closely looking at the proof of Theorem 3.6
given above and the proof of Theorem 1 given in [10, p.349] and hence we omit it here.

To this end we establish the following results which are further extensions of our
Theorems 3.4 and 3.5 given above to two independent variables.

THEOREM 3.8. Let p, z, z, be as defined in Theorem 3.6 and let f be as defined in

Theorem 2.3. If
x-1 y-1

z(e,y) s 20+ Y, Y p(s, 1) z(s,1) f (Log z(s, 1)), (3.40)

s=0 (=0
for x,y € N,, then for (x,y) € E, C N, x N,,

x-1 y-1

z(x,y) s exp|F' [F(Log z)) + Y. Y p(s,0)

s»0 (=0

], (3.41)

where F, F* are as defined in Theorem 2.3 and (x,y) € L, is chosen so that
x=1 y-1

F(Logz,) +Y Y p(s,1) € Dom(F™),

520 (=0

Jorall (x,y) € E, C N, x N,
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THEOREM 3.9. Let p, z, z,, f be as defined in Theorem 3 8. If

2(x,y) s z, + L z:l pls,t)z(s, 1) [ Log z(s, t)

o 04
+Y Y p(m,m) f(Log z(m,n»],

Jor x,y € N, then for (x,y) € E, C Ny x N,

x-1 y-1

z(x,y) s z, exp [E Y pis,nQ [Q(Log z,)
$=0 =0 ] 34

where Q, Q™ are as defined in Theorem 2.4 and (x,y) € E, is chosen so that
x=1 y-1

Q(Logz,) + Y Y p(m,n) € Dom(Q),

m=0 n=d

s-1 ¢~}

+ Y ¥ pm,n)

m=0 n=0

Jor all (x,y) € I, C N, x N,.
The details of the proofs of Theorems 3.8 and 3.9 proceed much as in the proof o

Theorem 3.6 and observing the proofs of other theorems given above and can safely be

omitted.

Remark. We note that the inequalities established in Theorems 2.5-2.8 and Theorems%
3.6-3.9 can be extended very easily to many independent variables. The precise formulation
of these results is very close to that of the results mentioned above with suitable

modifications. We leave it for the reader to fill in where needed.

4. An application. As already mentioned above, it is easy to observe that the
inequalities established in this paper can be used as handy tools in the qualitative analysis of
certain classes of differential and finite difference equations for which the inequalities

available in the literature do not apply directly. For example, consider the following finite
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difference equation

Ax(t) = p()x(1) Log [x(D)|, x(0) = x,, @n

for € N, where x : N, = R, p € M'(N,,R). The equation (4.1) is equivalent to the equation
-1

x(t) =x, + E p(s)x(s) Log |x(s)]|. 42

5%0

From (4.2) we observe that

-1
1+ (D] s 1+ x| + Y | ps)] [x(s)| | Log Jx(s)|]

=t _ 43)
< 1+ |x ] + Y |pe)] (1 + [x)|) Log (1 + |x(@)] ).

s=0

Now an application of Theorem 3.1 with #(f) = 1 + |x(#)| to the inequality (4.3) yields
s+ 1o

()] = [(1 AP (4.4)
The inequality (4.4) obtains the bound on the solution of (4.1) in terms of the known
functions. There are many possible applications of the inequalities established in this paper,
but the one presented here is sufficient to convey the importance of our results to the

literature. Various applications of these inequalities will appear elsewhere.
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G. TEODORU

Fu : ou au ou Pu
x NEFx,yu(,),— (.9, %3 %) e (0 *)y e X)), 97
oxoy( NE g2 0550 ()x()y( )()x()y(“'( »-ix.))

Em
',2

(5, ), B,(x.¥)))

ox dy

u(x,0) = f(x) for 0sxsa

r oy o
(') u(0,y) =g(y) for 0sysb

0*u

0,0) ==

()x()y( ) o

Pu )
——(x,(0,0),8(0,0)) =z, i=T¥
ox dy !

A function u: () — X is said to be classical solution of (#) if

ou ou 0u o
(a,(x, ), B,(x,y)) € CQ, X) and, for every (x,y) € O one has

Tax gy axdy

02 . J ) 92 2 '
U (e € Fey ey, 2, Py, 21 ,y), -2 (0, (6,3), 8,83
oxdy dx dy ox dy dax oy

o

(05,00, By (X, 1))
y

dx ¢

u(x,0) = f(x), u0,y) = g(»).
A classical solution of () is any classical solution of (P) whose second mixy
derivative assumes at (0,0) the prescribed values z,, z,,, i = T,v.
Denote by I(f, g, 1) (respectively T(f,&,2,,2,4. 2,00 -2 2,0, F)) the set oful*
classical solutions of (/) (resp. (#p)). In general, I'(f,g,F) » & does not impl)T
P/ 8.2 210 Zar 0 By 1) = D, [5].

Because of the multi-valuedness of /), the sets I'(f, g, F'),

(. 80242 2y0s 2300 - 500 1) in several cases, contain many elements and so it makes sens

to perform a qualitative study of them, for instance, from a topological point of view.
In this .direction, we prove that, under suitable assumptions, each of the sets
PCLAE ) T 8.250 200 Sa00 - 2000 1) 18 8 retract of an appropiate function space. Undet

“vor
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the same assumptions, we prove also that these sets depend - in a Lipschitzian way - on
[,8:24,2,0» 230 -5 2,4, F. Furthermore, given 4+v  sequences{f},{g,}.{z,}.{z,},
i=T,v, {F }, we state some sufficient conditions under which each u € I'(f,g,F") (resp.
u € T(f, 8,24, 2,01 2305 -1 2,9, 1)) 1s the limit, with respect to an appropiate metric, of a
sequence {u,} such that w, € T'(f,,g,,F,) (resp. I'(f,,&,,2,.2,,» 2,0 - 2,0 I,)) for every
n€EN.

The problem (P) is more general than a similar problem (P) of [5], because I also
depends on v additional arguments u(a(x,y),B(x.»)), i = T,v. Anyway our paper is
essentially based on [5] and, therefore the reasonements and the results are similar to the ones
thereof, with slight modifications.

For the case when F is single-valued, a thorough study of the equation in Problem (P)
is performed by M. Kwapisz and J. Turo [2]. The functions o, and §, occur in the evaluations
imposed on F in stating the sufficient conditions for the existence of solutions. The
differential inclusion may have various particular forms, depending upon the form of the

multifunction F, namely:

u
) €
) iy (x.y) 2
F(mu(y.(xy),a.(x,y»,%(yz(xy),az(xy)),g_;(v,(xy>,6,(xy)), 0‘1 gy((x(xy),ﬁ(xy))).

2,
by 2 € Fee,y, uie, ), 2 e, ), 2 o)),
oxdy ox ay

studied by W. Sosulski [12], [13], and by A.N. Vityuk [26].

2.
0 2 “y € F(x,y, u(x,y)

oxd
was studied by G. Teodoru in a series of papers [16}-[25], by V. Staicu [14], {15], and by 1.

Kubiaczyk {3).
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u

d) The case when /¥ depends on x,y only, the inclusion > € I{(x, y) was studied by
x dy

F.S. de Blasi and J. Myjak [1].

9u
X,
= ay( »)

e) F = Fx,y, u(x,y)),

1. Preliminaries (Notations and definitions) |S]. Let XY be two non-empty sets. A '
multifunction ® from into Y (that is, ®.X — 2") is a function from X into the family of 4l
non-empty subsets of Y. If Q C ¥, we put ®(Q) = {x € X:P(x) N Q » D}. If X ¥ are two
topological spaces we say that @ is lower semicontinuous if, for every open set Q C Y, the

set ®(Q) is open in X. A (single-valued) function ¢: X — Y is said to be a selection of ¢

if g(x) € d(x) for all x € X. If (X,d) is a metric space, for every x € ¥. and every non-emply

sets A,B C X, we put:

d(x, A) = inf 8(z, B), d°(4,B) = sup &(z, B)

2EA 2EA

and consider a Hausdorff-Pompeiu metric [11]
5,(4, B) = max {8°(4, B), 6°(B, 4)}.
Moreover, if {4,},ev is @ sequence of non-empty subsets of X, we put (as in [5])
Li A = {xe T limd(x, 4,) = 0}.

n—so

Let (Xd), (V,p) be two metric spaces. A multifunction ®.X — 2" is said to be

n—e®

Lipschitzian if there exists a real number L > 0 (Lipschitz constant) such that
P (PX), P(2) s Ld(x,2)
for all x,z € X. If L < 1, we say that @ is a multivalued contraction.
Notice that any Lipschitzian multifunction is lower semicontinuous.
Let ) C R’ be a compact rectangle and (X,I-]) be a Banach space. We denote by

C%(.X) the space of all continuous functions from () into X endowed with the norm
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(f,.8) €EG and F: Q x X*— 2% we put
M(fg.F) = {ue HO.X): i), L ()
ay 8 ay

(x Y)EF(xyu(xy), —(xy)

(), BLEN), %(av(xy), B.co)), u(x.0) = f(x), u(0) =g() fordl|
(x,y) € O}
Further, if z, 2, € F(0,0,/(0),/'(0),8'(0),2,, 2, .., 2,, } We put

o2
TS, 8,200 2100 Zpg0 -2 Zugn ) = {uer(fg,F) ou (o 0) =

= 7

We obvxously have, from these deﬁnmons I'(f gz Zyg 32,0, F) C [‘(fg,F)

(R4 IO’ 20’

In the proof of two theorems in paper in the sequel, we will often apply the following Iemq
[5).

LEMMA 2.1. Let X be a paracompact topological space, (Y,Ily) a Banach sa
©:X — 2" a lower semicontinuous multifunction, with closed and convex values, 9L -|
a continuous function; P:X — [0,+o[ a lower semicontinuous function such q
pg(x), D(x)) < B(x) for all x € X, where p is the metric induced by |\,. Then, for en
€ > 0, there exists a continuous selection Y of ® such that fq(x) ~ P, < B(x) +e fore
xeX

LEMMA 2.2. Let (X.,0) be a metric space, (Y ,\'ly) a normed space, and T: L +
a Lipschitzian function with Lipschitz constant L. Then, for every y,v € Y and everym
empty sets ABC L,

Pu(y+T(A),v +T(B)) s ly -vl, + L3, (4, B),
p being the metric induced by {'|,.

QOwr first result is the following:
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CLASSICAL SOLUTIONS OF THE DARBOUX PROBLEM

THEOREM 2.1. Let be LE]0, [, pE€[0, 1[,RE[0, 1] such that 1-p-Hv=0

and F, G € ‘{M»X‘ We put

e M@b+a+b)

o TTERTRE)

c=(ab+a+b+v) min

”e]T-';r-W'

Then, for every (f,8) € G, {22,205 42,0} © F(0,0,/(0),1'(0),.87(0),20,2,0,Z50- 1200 )» thE

following assertions hold:
(i) each of the sets T'(f, 8, F), T(f, 8, 2y, 2,45 Z39» ---» 249> ') is a retract of the space F((),X),
(il) if F is a single valued function, then the set T(f, g, F) is a singleton,
(iii) for every (h1) € G, such that {z,,2,,,2,....%,,} C G(0,0,h(0),h’(0),1'(0),2,2,.....2,,) We
have

D (T (S, 8. 202100 29> > Zugn F ), DB, 1, 2,20, 255 ., 2,4, G ) S

s L+ 1) (1~ hllogurn * 18~ Moo * 17©) =hO1) +
+c¢ sup  dy(FE),GE)
geQrx*

(iv) if pn=0, =0, then for every (hl) € G and every {w, ®, .. ®,} C
G(0,0,h(0), A7 (0),17(0), w,, wy, ,, ..., w4, ), we have

Dy(T(f, 8,20, 2100 239 > Z0es F ), DB, 1, 20,20, 250, 52,4, G ) S

s (CL + 1)("f— h “C‘({O,a],X) + Ilg - 1"(11([0,5],,\') * "f(O) - h(O)" ) +

tellzymwl + Y lzg-w,l + sup  d(FE),G(E)
EEQXX*

il
(v) for every (h) € G
D (T (£,8,F), T (h1G) s L+1)If~Blegomn* 18 n *

629+ 1 /(0) -h(O)l) +¢ sup d,(F(E),G(E))
geQrx
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Proof Fix (f,8) € G, z,,2,, € F(0,0,£(0),1/(0),8'(0), 2, 2,95 Z59» -+ 2,9 )si = TV,

Fix also A € ] 3 , +00 [
1-p-pv
Renorm the space C°%(, X), by the Bielecki norm [5] equivalent with Flewg.ry - For

each ¢ € C%Q, X), put:

loly = max e fo(e, ).
X,y

For each ¢ € (), X), put:

DS, 8.9, F) = {(ECAQ, X): 9lx, ) € Fx, y,n(/, &, ¥)(x,y)) forall (x))E€Q}, |

where
g = [f(x) +8() - f(0) + J ‘[w(s,t) dsdt, f'(x) + ‘[w(x,r)dr,
g+ Jw(s,y)ds Y, Y), Ylo,0e,9), B0, )), .., Yo, (x,y) B,(x.)

the integrals being understood in the sense of Rxemann (as usually, ‘[ P(s,t)dsdt stands for
x fy

J(Jw(.s,t)dt)ds ).
Further, put

=
240200 s Zg

{9 €CAQ,X): ¢(0,0) =0, p(,(0,0), B,(0,0)) =z,,, ... ,9(cx,(0,0), B,(0,0)) =z .}
as well as
q)(f 8,2 0° mr 20» 4 ,Zvo,’lp,p) = q)(.fag! ‘P,F) N C,ﬂ,

forevery y € C, , . . By Theorem 3.2" and Example 1.3" of (6], ©(f. 8, %, F) » D for

3
FRE

all € C%Q, X) and P(f, 8,2z, Z0s Za00 s By W, ) # D [5], forall y € C, . We

0120120
now prove that the multifunctions ®(f,g,°, F) and D(f, 8,25, 210 Zpgs s 200  F) 218
multivaiued contractions with respect to the metric, say o, induced by |l,, with Lipschitz

constant L, = 3\ + p + pv. Since A > it results that L, < 1.

1-p-puv
We prove this only for D(f,g,2,,2,5, 259 2,0 *» "), since the proof for
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CLASSICAL SOLUTIONS OF THE DARBOUX PROBLEM

®(/,8,*,F), is quite similar. Thus, fix y,29 €C_, .. @€ P(f,8,2,2)0.2, -2, ¥, ") and
¢ > 0. Then, for every (x,y) € O, we have

d(9(x,»), F(x,y,n(/, 8, V) x, ) s
s L[ll J ‘[(Y(S, 1) — (s, Ddsdt] + ”(Y(x ) = Y(e,0)dr| + II‘!’(Y(S V) = W(s. V))dfll] +

+ plvee,y) = pe )+ 1Y Iy, x.9), Bx.) - p(ax,p), B ).

i=1
By Example 1.3" of [6], the multifunction ¥: () — 2¥ defined by putting

v F(x,y,m (/.8 9) (x,)) if (x,y) € O\{(0,0)}
@ {29) 2,0 s 2,0} if (¥, ) = (0, 0)

is lower semicontinuous. Hence, by Lemma 2.1, {5], ¥ admits a continuous selection f§ such

that
1BCx,») - @l )l =
sL [II :{I(Y(S.f) = Y(s)dsdi] + | j(v(x,l) =p(x,0dl + | :[(Y(SJ/) = Y(sy)) dsn] +
*+ mly(xy) - Pyl + TIZI: Iv(ex; (xy), B,(xy)) = P(ax,(x ), BN + &
for every (x,) € Q. In particular, remark that B € ®(f, g,2,,2,4, --» 2> ¥ F).

Let us now evaluate |p - ¢l,. For every (x.y) € (J, we have

I ! l{(y(s,r) = (s, O)dsdr] + | !(v(x,l) = (e, H)dr) + | [ (s, ) ~ (s, yNdsl <

xy .
< uv-wuo(!‘( e MGt go by +‘l‘ e Mtrxsn gg o ‘!'ekl,(syn«y)ds) < (2)
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2, M.(st+s+1) Y > M.(xt+x+1) o N.(sy+s+y)
||Y wn e dsdt + [F€1E0T0 4, e )
as ot 7 as

3y -~ wl,
| —
AL
From (1) and (2), we readily obtain

e A(xy+x+y)

IB - @by s GA +p+uv)ly -l + e.
This shows that
O (P(f, 8. 291 2195 Zags -+ 2300 Yo ), PUS, 8,2, 2005 2305 0 200 W, F)) s
s BN+ Jv) Iy -l

Interchanging the roles of y and v, we get

(DS, 8,25, 2105 2300 2 Z0s W I7), P, 8,205 2000 290 -0 2000 Yo ) 8
= M+ ) Iy - vl
Hence, our assertion is proved, since we deduce from the preceding inequalities that
O (P, 8,20, 2155 Zagr 3 2o Yo )y O, 8,20, 219 250 -5 20 ¥, F)) S
< OGN+ W) Iy -yl
Let us now put

P(f,8.F) = {9 €ECYQ.X): 9 ED([,8,9,F)}
as well as i
P(f.8.20. 29,2595 -1 290 F) =
= {(pECzo q)ed)(f 8.20: 210, Zogs 1 500 @, F) )
Then, takmg, into account that all sets®(f,,9,F), ®(f,8.2,,2,5:25s -+» 2,09, F
are convex and closed, by Theorem 1 of [9] the set P(f, g, FF) is a retract of C%(Q,X) anf

the set P(f, 8,2y, 2,1 2395 -2 2,0, 1) is aretract of C, .

Since C, __ is convex and closed, it is a retract of C%Q.X). Hen«}

60



CLASSICAL SOLUTIONS OF THE DARBOUX PROBLEM

P(f. 8,24, 21 > 20, F) 15, in its turn, a retract of C %(Q.,X). Now, consider the operator
T:C%Q,X) = E(Q,X) defined by

Xy
TW)(.y) = J 1¢(s,r)dsdr
for every y € C%Q,X), (x,y) € Q. Let us remark that
U(/.8.F) = q,* T(P(f.8,1) (3

(/. 8,20, 2105 2305 2 2,9, ) = P * T(P(S, 8,20, 2,9, 2095 -2 2,5, F)) 4)

where @, denotes the function (x,y) — f(x) + g(») ~ f ©, x,») € Q.
Let 6, be the zero element of X. Put
Vo= {u € HKQ,X): u(x,0) =u(0,y) =6, for all (x,y) € Q).

The operator T is a linear homeomorfism from C%(,X) onto V. Therefore, each of
the sets T(P(f,8,F)), T(P(f, 8,2y, 2, 229> s 2,9, F)) is a retract of V,. But ¥, being
closed and convex, it is a retract of E(Q,X), and so each of the setsT(P(f, g, F)),
T(P(f, 8,2, 219> 239> -» 2,9, F7)) is a retract of E(Q,X). Now, assertion (i) immediately
follows from (3) and (4).

On the basis of what was seen above, assertion (ii) is an immediate consequence of
the classical contraction mapping principie of Banach - Caccioppoli.

Let us prove (iii). Put

M= sup d,(F(),GE))
BEQxX*"

Naturally, we suppose that M < +o. Let (h, /) € G be such that

{24, 2,05 259> > 29} < G(0,0,h(0),h'(0),1(0),2,,2,,2

2205 2105 Zp95 o2 B0 )-
From the proof of (i), we kqow that each of the multifunctions
O(f, 8,20 219 229> -5 200> *» F), PN, 1,2, 20,25, ..., 2,9, *, G ) is a multivalued contraction
from (C, , . ,o0) into itself, with the Lipschitz constant L, = 3MT+ p+ pv. Then, by
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Lemma 1 of [4], we get

OH(P(f g!zo!zloszzo,'"’z.,o’F)) P(h Iazoyzloazzon' VO’G)) - ! ="
1-GA '+ prpv)
SUP 0.{(¢(fg, (%] |0’ i ,,o:'lp F) q)(h 1) o’ o,"',z\,ov"prG))' (5)

2051040

Fix y €C, . . and @ € ([, g,2,,2y, 2y, - 2,4, F). Then, for every
(x.y) € O, we have
d(e(x,»), Glx,y,m(h, 1, $)(x,))) =
dy(F(x,y,m(f, 8, %)(x, 1), Fx,y,m(h, 1, 9)(x, ) +
+ dy(F(x,y, 0, 1L 9)(x, ), G(x,y,m(h, L, 9)(x, ) =
L{1Lf () +g() = £(0) = h(x) =10} + O + 1S &) =h' )| + Ug’ G) -1’ Q) + M s
< L1 ~Plorgomn * 18 Ulengosn * 170) -hOI) +
Then, applying Lemma 2.1 [5] as in thg proof of (i), for every. e > 0 we gt
u€ ®(hlz,z,,2,,..,2, %, G) such that
1t = Pllcug = LI~ Flcigo.a,n* 18 = Nergo,n* 1/0) ~AO) ) + M +e.
From this, by means of a usual reasoning, it follows that
O (P(f, 8,20, 2105 2395 1 200 V. F), ®h, 1,20, 2,0, 2, .., 2,0, ¥, G)) =
s LS Alorgomn * 181 legapn * 1/©) ~hOI) + M + .
Therefore, by (5), we have
0, (P(f. 8,24, 210s 2395 s 2,00 ), P(B, 1, 20,200, 2,0, ...,2,4,G)) =
: (L~ Mo+ Vg - Heuann* 1AO) ~HO ) +M + e} ©

N (AT p+pv)
Now, remark that, for every ¢ € C%Q, X), one has

I7( @ o= (ab+a+b+v) 19lcog s (@b +a+b+v)e Mabrash) .. U]
Then, applying Lemma 2.2 {5] and taking into account (4) and (7), we obtain

Il(r(f g’zo’ 10> 20""’ v()’r) [‘(f& (L4 I()’Z’ZO""’Z\'()’G))s
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<09, -9, Mgt (@bra+b+v)e MlabrasDo (P(f.8,202 102y WP 2 0,2, 5120 C)).
But
"(pf“_ q)h'"l < uf_ h“cl([o’al’x) + llg - lllcl([o'bl'x) + Ilf(o) - h(o)'l'
Using this inequality and (6) we have

Dy(T(f, 8,24, 2100 220> - 2,0s F ), TB, 1, 20,20, 25, .., 2,5, G)) S

< | + (abra+b+vie Mabrart)
1-(3\ 1+ p+pv)

L (“f_h ncl([o‘a]'x) + "g _I“.C‘([o.b],X) + "./(0) —h(o) ll) +

, (@b +a+b+v)edierad
1- (AT +p+puv)
From this, since A is an arbitrary number greater than

and using the

l-pu-pv
notation for ¢ and M, it result that

Dy(T(f,8,25,2,0: 2295 s 200: F ). T (B, L, 20,205, 2, ..., 2,5, G)) =
<L+ D {f~Hlerony* 18~ evausn * LAO-HON) +¢. sup_d,(F (), G®)
ie. (i) follows.
To prove (iv), we notice that, when p =0 and i = 0, we can define the multifunctions
V> B(f,8,24,2,0: 2200 5200 ¥, F), Y = OB, ], @, 0,9, @, ..,@4,%,G) inthe whole space
C%Q,X). They are again multivalued contractions, with respect to o, with Lipschitz constant

L= 30"+ p + pv. Hence, by Lemma 1 of [4], we have
1 .
1-GA +pu+pv)

SUP OH(Q(fyg’zo:zw’zzos "-’zvoalp)F)’ (p(h,lywoawlo’wzo: ---,(”vo,‘l’,G))‘
VECHQX)

On the other hand, proceeding as in the proof of (iii), it is possible to obtain

Ou(P(f,8,20:2,9: 2505 s 2,0 ), P(h,I,_u)o,mw,wzo,‘..,mvo,G) <

sup O (P(f.8,20,2,0250 22,00 W, F), Ph L0, 0,0,00,,...,0,%,G)) s
VEC'QX)

5 L{If = oo * 18 = oo * MO ~HO) + 1z, - g1 + 3 Nz, - w, | + M.
jml
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Now, the remainder of proof goes on exactly as before.
Finally, the proof of (v) is entirely similar to that of (iii), and hence we omit it
Now, we prove the following approximation result. |

THEOREM 22, fet L € 10, +®[, pE€ [0, 1], G € [0, 1] and F,F,F,,.., i
i

. . . "
sequence in & Assume that, for every continuous function B:Q — X*v and ev

TR o

continuous selection y of the multifunction (x,y) — F(x,y, B(x,y)),

n—o (x,y)€Q

im  sup d(y(x,y), F (x,y,B(x,y) =0 ({
Then, for every sequence (f, 8),(f,,8),(/;.8), .., in G such that

lim max {11, - flcyo.u o 18, = 8levonnin} = 05

n—sm

the following assertion hold:

(ll) r(./;g’/{‘) (—‘_‘ LI F(fn’gn’[rn);

n—

(i) if {24, Zy00 12,0} C ﬂ F (0,0,£.(0),£,(0),8,(0),2,, 2,05 -, 2,5) N
N 1«(0 0,£(0),1/(0),8(0),2,,2,,, .., 2,5)
then (1, 8,2y, 2,0 Zp9r - 2o ) & Li T(f,, 8, 20> 2105 2200 > z,0. F,);

n—»w

(li) l/“ =0, H 0 and {20, 1002200 ;zvo} C[‘1(0,O:f(o)wf/(o):gl(o):zoa‘zloa---,zvo)y

for every sequence {z,,z, .2, , ..,2,} in X'" converging to {z

n* In’ 2n>

1
Zypr s Zg) EX

0’ 10’
n— o such that {z ,z, .2, ..,2,} C F(0,0,£(0),£(0), 81 (0),2,, 2, . 2,4) foral

nE N, one hus

F(f 852, 0> 10’ 20:~~~ V())I)C Li r(f g l”,ZZ",...,zvn,F").

Proof. The proofs of (i,), (i,), (i;) are similar. So, we limit ourselves to present o«:]

that of (i;). Let A > 3. Keeping the same notations from the proof of Theorem 2.1, we kn

that the multifunctions ®(f, £, 2y, 2,55 Zags -3 200 *3 11 P, 8102, 210 s 0 2

s )

(n € N) are closed-valued contractions from (C°%(Q, X), o) into itself, with the samd
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Lipschitz constant 3\, Let ¢ € C%Q, X) be fixed. We claim that

D(f, 8,2y, 249, 2395 -2 2,00 ¥, F) © ,I.Tl DS, 8, 2,21, 23 3 2y W F,). )
Indeed, let @ € (S, 8,2,,2,5: 235 > 2,0 ¥, F). Then, for every (xy) €EQ, n € N,
we have
d@x, ), Fx.y. W/, &, ¥)(x.))) =
s d(@(x)), F,(x,y,0(£g $)x. ) + d,(F,(c.y (.8, 9) &), F (6. y. N/, 8, ) (%.))).
Because F, is Lipschitzian multifunction with p =0 and B = 0 it result
dy(F, (e, y,(/. 8, 9)*, ), F,(x.y,0(/,. 8,, ¥, ) =
= L2011, = fleygo,apn* 18, = 8lewo.sin):
Hence
d(@(x, ), F(x,y,0(/,. &, ¥)(x. ) = d@(x, ), Fx,y,n(/, & ¥)(x.)) +
+ L2V, - Flego.an* 18, = 8leyo.n):
Applying Lemma 2.1 [5] as in the proof of Theorem 2.1, we get a sequence {¢,} inC %(Q,X)
such that, for every (x,)) € O, n € N, we have
9, (x,)) € F,(x,y,n(/,. 8, V)(*.))
9,0,0) =z,¢(x(0,0),8,0,0)) =z,,i=1,v, and
l9,(¢,) - o, NI = dg(x,y), F,(x,y,m(/, 8 $)(x, ) +
¢ L1, Floqoan * 180~ Bleospn) * 12, 2] 2: Iz~ 20l + 2.
Hence @, (x,y) € F,(x,y,n(/,, 8, ¥)(*,)) 1e 9, € P([,8,.2,, 2,23 -5 2, W, ) and,
by (8)
lim llg, = @lloog, 5= 0.

n—+®

This proves (9). Now, we can apply Theorem 3.4 of [7]. By that result, we have

P(f,8,20,2,0: 2305 -1 20, F) © Li P(f,,8,.2,,2,,0 231 -2 2 F,). (10)

n-—ew
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For n € N, we have

.

U (s 80 2 %1 22 0 2o ) = @+ TP, 8,0 2,020 20 0 2 F)) )

From (10) and (4,) (i;) easily follows.

We point out that some sufficient conditions in order that (8) holds are given in [§]
(Proposition 2.1 and 2.2). We also stress that Theorems 2.1 and 2.2 are similar to the
Theorems 2.1 and 2.2 of [S]. '

Finally, we consider the Darboux problem (F) for single-valued function, which
results as a particular case of the Darboux problem (P).

In the proof of (i) in Theorem 2.1, more precisely of the fact tht
D(f,8.2,.2,9s Zy0s > 20 > I*) is @ multivalued contraction, it results a continuous selection
B of the multifunction W:Q — 2%  such that (1) holds. We remark that the proof for the
multifunction P(f, g, +, ") is similar. In this case ¥(x,y) = F(x,y,n(f,g ¥)*.)), (x.) EQ.

We denote by f a continuous selection of W which results by Lemma 2.1 [5]. We have
1ftx,9) - @x, ) =
<1l :[:[w(s, = ¥ls. sl | :[mx, ) = b, )il + | :[(Y(x,y) -w(s s+ ()
+ 1lY5.Y) - W+ B Y (@, (6,3), B,(x.0)) - W(@,(x,5), B, + e, (5,)) €Q.

=l

In particular, remark that f € dD(f, 8.V, F)

We denote by (IT) the Darboux problem obtained from (/) substituting I by the
continuous selection -f- This way we obtain the Darboux problem studied by Kwapisz and
Turo [2].

*u
_ | oxdy
(P)] = fOeytuC, D, G, Dt Dot (a4, (OB D)ot (0, (). B, ()
ux,0)=f(x), Osx=<a
u(0,») =g0), Osyshbh.

(xy)=
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The Darboux problem (}7) is equivalent to the problem of solving the equation

- En n
2(xy) = £(x,,(fE) + gn) -£(0) + J Jz(s,r)dsdt)g, (f'(®) + [z(&0dr),,

H
@' ) + [z(sm)ds)y, EEM)y, z(a,(x), B,(x)), .., 2o (6 ), B(xp)), (1)

where

u(x,y) = f(x) + g¥) - £(0) + ‘{ ‘!'z(s,t)dsdl.

Putting in the equation (11)
S0, @&y, (PEW)y, @&, (EM) g 7l r,) =
= Ry, (RE+8M) A0 +2EM (' €)+PEM) (& V) *GEM) G (EM) )

we get an equation of the form
n §

2x,y) = f(x,y, jj’z(s, t)dsdt] ( Jz(g, nar| , ‘{z(s, nds| ,
(28 M) 20 ), B 1) 22, B, (12)
which is the ando@e of equation (4) in [2], where that problem is studied in full detail; those
results may be readily transferred to our problem (ﬁ) by simply replacing o, 7, f, A, E(= a

Banach space) with f, g, 7. 0, X, respectively.

REFERENCES

1. De Blasi F.S. and Myjak J., On the set of solutions of a differential inclusion, Bull. Inst. Math. Acad.
Sinica, 14(1986), 271-275.

2. Kwapisz M. and Turo J., On the existence and uniqueness of solutions of the Darboux problem for
partial differential-functional equations in a Banach space, Ann. Polon. Math., 34(1974), 89-118.

3. Kubiaczyk 1., Existence theorem for multivalued hyperbolic equation, Ann. Soc. Math. Polon., Scr.l;
Comment. Math,, 27(1987), 115-119.

4. Lim T.C., On fixed point stability for set-valued contractive with applications to generalized differential
equations, J. Math. Appl., 110(1985), 436-441.

5. Marano S., Classical solutions of partial differential inclusions in Banach spaces, Appl. Anal., 42(1991),
no 2, 127-143.

6. Michael E., Continuous selections I, Ann, of Math., 63(1956), 361-382.

7. Naselli Ricceri O., A - fixed points of multivalued contractions, J. Math. Anal. Appl., 135(1988), 406-

67



68

20.

21

22,

23

24,

25.

26.

G. TEODORU

418.

Nasclli Riceeri O., Classical solutions of the problem x' € F(¢,x,x"), x(t,) = x,, x'(8,) = Y
in Banach spaces, Funkcialaj Ekvacioj, 34(1991), 127-141.

Ricceni B, Une propriété topologique de I'ensemble des points fixed d'une contraction multivoque &
valeurs convexes, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 81(1987), 283-286.
Ricceri B., Sur les solutions classiques du probléme de Darboux pour certaines équations aux dérivées
partielles sous forme implicite dans les espaces de Banach, CR.Acad. Sci. Paris, série I, 307(1988),
325-328. N

. Rus L, Principii yi aplicafii ale teoriei punctului fix, Editura Dacia, Cluj-Napoca, 1979.

Sosulski W, fixistence theorem for generalized functional-differcniial equations of hyperbolic type, Ann.
Soc. Math. Polon. Ser. I: Comment, Math., 25(1985), 149-152.

Sosulski W., On neutral partial functional-differential of hyperbolic type, Demonstratio Math., 23(1990),
No 4, 893-909.

Staicu V., Well posedness for differential inclusions, Ph. D. Thesis, 1989/1990, ISAS, Trieste.

Staicu V., On a non-convex hyperbolic differential inclusion, Procedings of the Edinburgh Mathematical
Socicty, 35(1992), 375-382.

. Teodoru G., Le probléme de Darboux pour une é;tasion aux dériées partielles multivoque, Analele st

Univ. "AlLL Cuza” lagi, 31(1985), s.I a, Mat,, .2, 173-17-

. Tcodoru G., Sur la probléme de Darboux pour I'équaiion #°z/dx dy € F{(x, y, z), Analele gt. Univ.

"ALL Cuza" lagi, 32(1986), s.I a, Mat,, [.3, 41-49.

. Teodoru G., A characterization of the solutions of the Dardoux problem for the equation

9’z/oxdy € I(x,y,z), Analcle 5. Univ. "ALL Cuza" lagi, 33(1987), s.I a, Mat,, F.1, 33-38.
Tcodoru G., Approximation of the solution of the Darboux problem for the equation
9’z/oxdy € I{(x,y,z), Analcle st. Univ. "ALL Cuza” fagi, 34(1988), s.I a, Mat,, f.1, 31-36.
Teodoru G., Continuous selections for multivalued functions, Hincrant Seminar on Functional Equations,
Approximation and Convexity, Cluj-Napoca, 1986, 273-278.

Teodoru G., Continuous selections for multifunctions satisfying the Carathéodory type conditions. The
Darboux problem associated 10 a multivatucd cquation, Itinerant Seminar on Functional Equations,
Approximation and Convexity, Cluj-Napoca, 1987, 281-285.

Teodoru G., Continuous selections for multifinctions and the Darboux problem for multivalued
equations, ltincrant Scminar on Functional Equations, Approximation and Convexity, Cluj-Napoca,
1989, 297-304.

Tecodoru G., An application of Fryszkowski selection theorem to the Darboux problem for a multivalued
equation, Studia Univ. "Babes-Bolyai”, Cluj-Napoca, Mathcmatica, 34(1989), £.2, 36-40.

Tcodoru G., An application of the contraction principle of Covitz and Nadler to the Darboux problem

Jor a multivalued equation, Analcle st. Univ. "ALL Cuza” lasi, 36(1990), s.1 a, Mat,, £.2, 99-104,

Teodoru G., The Darboux problem associated with a Lipschitzian hyperbolic multivalued equation, Bul.
Inst. Polit. lagi, 36(50) (1990), Scctia I. Matcmatici, Mccanic} (coretic3, Fizicd, f.1, 35-40.

Vityuk AN., On the existence of solutions of a class of multivalued partial differential equations
(Russian), Boundary valuc problems (Russian), 131-133, 162-163, Pcrm. Politckh. Inst., Perm , 1984,







for x € (, and y € [, respectively, where |+| denotes the Euclidean norm. For a giva

function u: [-r,7] — R" and fixed 1 € [0,7] we denote u,(s) = u(r+s) for s € [-r,0), r2l

TJANIAK, ELUCZAK-KUMOREK '

7" > 0. Finally, let us denote by (Comp R",H) and (Conv R"H) the metric space of al

nonempty compact and nonemply compact convex, respectively, subsets of n-dimensiond

Euclidean space R” with the Hausdorft metric /.

Assume that the multivalued mapping I [0,7] x Cy x Lo — Comp R” and the mappin |

¢: [0,7] * {0,7] x C, x L, — R" satisfy the following conditions:

(a)
(®)

(c)

@
(e)

(0

70

I, 4, v): [0,7) — Comp R" is mecasurable for fixed (w,v) € C; x L,
there exists a M > 0 such that H(J(¢,u,v), {0}) < M for (t,u,v) € [0,T] x(,
% L
I, +, ). Cy x Ly — Comp R”" is Lipschitzean with respect to (x,v), i.e. there |
exists' a Lebesque integrable function & [0,7] — R' such th
HU (G u,v), 1 u,v)) s k() (lu-ufl, + |v-v],) for (uv),
(u,v) € C, x I, and almost every 1 € [0,7],
¢:[0,7] x[0,7] x C, x L, — R is continuous,
o1, s, 1) €, x L, — R" satisfies for fixed (¢,5) € [0,T] x [0, 7] the
Lipschitz condition of the form |¢ (¢, s,u,v) - ¢(,s,u,V)| =
u(t,s)llw-uly+ |v-v|,) where n: [0,7] x [0,7] — R is a Lebesque
integrable function,
there exists a Lebesque integrable function A: [0, 7'] x [0, 7] — R’ suchthat
[@(r,5,u,v)|sM¢,s) for (¢1,$YE[0,77%[0,7] and (v,v)EC xL,,

.

!

nhzt2z0

where fdl P\(I,s)ds s k(4,-10), V1,1
YA



METHOD OF AVERAGING

THEOREM 1. Let &: [0,7] = R be a nonnegative Lebesque integrable function and
oC, be absolutely continuous. Suppose 1°:10,11x C x L ,— CompR" and¢:[0,71] x
x{0,7]x C,x L,—R" satisfies (a)-(f) and furthermore let y: [-r, 7] — R” be an absolutely
continuous mapping such that:

® YO=9@frte [-r,f)],

(h) p(Y(), F(t,y,.y,) + ){¢(l,s,ys,y:)dv) s O() for ae (€ [0, 7]

Then there is a solution x(*) of an initial value problem:

x() = @) Jor t € [-r, 0],
x(1) € F(t,x,x,) + jq)(l,s,x,,xs)d.\' Jor ae. t € [0,7] M
such that
lx() ~AO)] s &) for t € [0 r) @
where E(1) = I&(s)ez‘“"’ =N s and m (1) =‘[ k(r) + !p(r s)ds]dr
Proof. Let y: [-r, T} —R" be a given absolutely continuous function satisfying (g)
and (h). Since (in general) y(¢) &€ I'(¢,y,.y,) + ;[‘p (,s,,,,)ds for a.e. t € [0,1], then by

the measurable selection Theorem there exists a measurable function +* such that

Vi) E Fty, ) + J¢(1,S,)’,,)",)df and Vo) -0l = p(y®, K, y,.5,) +

‘[w $,¥.,9,)ds < 8(f) for ae. 1 € [0,7].

Let us call x' the absolutely continuous function defined by

x'(0) = ¢(t) for ¢ € [-r,0],

x'(f) = ¢(0) + ‘[v"(s)ds for t € [0, 7)

t

]
We have |x'(1) - y(0)] = |y(0) - ¢(0)] + IIVO(‘S) - y(s)| ds = F(SM for 1 € [0,7].
We shall define now a sequence of absolutely continuous functions (x') in the
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following way

x!'(t) = @(t) for t € [-r,0],

x(1) = ¢(0) + !v"‘(s)ds for ae 1 € [0,7T].

where v*! is a measurable function such that v'™' € I"(t,x,’ tx)” ') + ¢(t s, x7 ¥
and [v7'(1) - x7Y(O| = peH), (U, x %TY + !¢(1,A,x, , %/ 1) ds) forae. (€
Hence and by conditions (c) and (e) for a.e. 1 € [0,7] we obtain
0 =570 = 0 = #10)] s

sHUUM,M5+ﬁUm,, Pyds, F(t,x %)+
ﬁu,,ﬁ;,nMsHUUxﬂ,”)lan, ¥y +
pwn,,,s> ot 5,57 ) ds < k() (1x2-x 7 +
']
+lﬁﬂﬁﬂu+ﬂmﬁxwﬁﬂfmwﬂtﬁﬂnms
I
S h(Ox 2= x g o+ P g )+ Ju(f,S)(IIx"’-x"' lot *

e e s,
']
where [xly,, )= sup lx(t)| and |y, = JM‘)W‘-
stst

By the definition of x* we have

x*(t)y =@(t) fort € [-r0],

x2(1) = @(0) + ‘[v‘(s)a's for ae. ¢t € [0, 7).

Therefore ¥2(1) = v'(1) € F(1,x %') + 14;(:, ,x! x!)ds and
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12(0) = ¥' ()] = p(E'(0), F(1,x, %') + I¢(:,s,xs',xs‘)¢s- <

= H(F(,y,5,) + J¢(z,s,y,.y',)ds, F(1,x! %) + ‘[¢(t,s,x,‘.x: )ds) =

i
s k(WY =% b+ |, %) + ‘{u(l, D, =5y + 1y, = %], ds <

s k(1) (sup | y(x) - x'@] + lly'(r) - %' (¥ |dt) +

Ostst

t t 8

+ !u(r,s) sup | () - x'(x)| ds + Ju(t,S)(IIJ{(r) - %' ()| du)ds s

Ostss

< 2k(1) [o(x) ot + 2‘[“(:,5-)(;!'6(1)(&)4\- <
< 2k(0) [0(v) e + 2‘[6(t)(fp(t,s)d.s')dt <

s2 (!k(t)()(t)dt + ‘(6(1) [Jp(l,s)ds]dt) = 216@)(/:(:) + J-p(l,s)d.s‘)dt
for almost every ¢ € [0,7].

Furthermore for ¢ € [0,7] we have

[ x2@) -x'(0| = [lv’(r) -v(r)| drs 2!( ‘[6(1)(k(r) + ‘!‘p(r,s)ds)dt)dr s

s 2!6(t)(j[k(r) + ‘!'p(r,s)ds]dr)dt = 2!6@)[”.(1) -m(x)]dv

Using the induction we can show that for every / =z 2

SKORERCIENOERLY e I” & G)
for a.e. t € [0,7] and
|x ‘() ~x“'(1)| s (iz—l-ll)' !6(1) [m(t) - m(x)) " dt for t € [0,1]. “)

Assume we have defined our functions x' up to i n. Let us consider x"(*). By
measurability of a multivalues mapping /*(",u,v) and by assumption (d) there exists a
measurable function v such that

Ex
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vo(1) € (1, x, %, )+!¢(:, %) ds and |v(e) - k(1) =

= p(x"(1), F(4, %" %) + ‘[4;(:, " 2" ds) for ae. 1 € [0,7].

Define now x™'! by setting

x™(t) = ¢(¢) for t € [-r,0],

x™ (1) = @(0) + l’v*(s)ds for ae. t € [0,7]. 4
We have
1671 (0) - % (1) = k(1)2" !o(r) [”'(’() ";()")]"' dt for ae. 1 € [0,T).
We obtain

e () =] = |xm (1) =x ()] + [x"(e) =x" (@) |+ .+ [ (1) - ()] s
s j-b(t)cz"'"”"""”dt <E(t) fort € [0, 7]
The inequality (4) imply that (x") is a Cauchy sequence of C([0,7],R") la
= lim x ". Similarly from (3) it follows that (V") converges pointwise almost everywhen

n—o

to a measurable function v. Hence, passing to the limit as # — % in (5) we get

x(t) = ¢t) fort € [-r,0],
x(t) = ¢(0) + |v(s)ds for ae. t € [0,T].

But for almost every 1 € [0, 7], v"(1) € F(t,x,",x") + j(b(t,s,x,",t,")ds and
fvr(t) -x"(1)] = p(x (1), F(1,x.",%") + jc])(t,s,x,",x,")ds).
Therefore for a.e. 1 € [0,7] we have
[v2(0) - 27(D] = p(E"(1). it x ,,x,)+‘[¢(r 8, X, %, ) ds) +
* H(F(1,%,,%) + J¢(l,a,x,,x )ds, F(1,x,", %, )+!¢(:, ,x," %" )ds).

Hence we obtain
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4 t

Jdt I u(t,s) (1 - s)ds s k(t,-t,) where p is a function of (e),

) $,(2,,*): C, x L, —R" satisfies for fixed ¢ € [0,%0) the Lipschitz conditie

of the form
[9o(t, 1, v) - ¢o(t,u, V)| s p(O)(Nu-uly+ |v-v]y)
where p 0 [0,0) — R" is a Lebesque integrable function and moreovng

v Il,tz, t, =z t, = 0 we have

J'tpo(t)dt < (4, -1,) and ft w(Ddt s u(t,-1),
(m) therelexnsts a function A: [0, ) — R" such that ¢ (¢, u,v)| < }»(t)m#

[

1272 72

Y, t 21 20 wehave th,(t)dt s M(L-1).
Furthermore the mapping F satisfies the Lipschitz conditions (c¢) with a number Ir>0,J

We shall consider (6) together with the middling inclusions

y(t) @(t) for t € [—r 01,
yneek(y,y)+ e‘[tl)o(t,y,,ys)ds for ae. t 20, t

The main result of this paper is contained in a following theorem:

THEOREM 2. Let F:[0, ) x C,x L, = ConvR" , ¢: [0, ©)x[0, 0] x C,xL,~N

and ¢,: [0, ®)x C x L, —>R" salisfy the conditions (a)-(f) and (i)-(m). Suppose that given
problems (6) and (7) together with the initial conditions x(f) = }(t) = @(f) = const for 1
[~r,0]. Then, for each > 0 and T > O there exisis a e°(n,1) such that for every e € (0,:1
the following conditions are satisfied:
(1°)  jfor each solution x(*) of (6) there exists a solution y(*) of (7) such that
[5()) - y(0)] < for 1€ L7, 2], 6

(2°)  for each solution () of (T) there exists a solution x(*) of (6) such that (§
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holds.

Proof. In a similar as in ([4]) it can be proved that I,: C, x L, —> ConvR" is a
boundary mapping and satisfies the Lipschitz condition with a number &k > 0.

Let x(*) be a solution of (6). Then

x(f) = const for ¢t € [-r,0],
!

x(1) = @(0) + e!v(t)dt for t€[0, Tle ]

where v(1) € F(t,x,x,) + t[<]>(t,s,x’,xs)ds. To prove this theorem we shall consider the

solution y{*) of the inclusion (7) in such a way that, for t € [-7,0], x(f) = W(¢) = const hence

|x(7) - y(£)] = 0 s . We will prove inequality (8) on the interval [0, 7/e ]. To do this

let us divide the interval [0,7/e] on m-subintervals [¢,7, ], where
iT

t,=—,i=0,1,.,m-1, and write a solution x(*) in the form
em

x(t) = const for t € [-r,0],

x(t) = x(4,) + efv(t)dt for t € [1,,1,,]. ®

i

Let us consider a function x'(*) defined by

x1(t) = const for t € [-r,0],

x'(1) = x'(t) + ej vi@de for t € [1,1,,] (10)

‘l

¢

where v!(*) are measurable functions such thatv’(l)E]«(t x,,x 'Y+ !(b(t,.s,x,,x )ds and
v ey = w(0)] = p(v(1), F (6,3, %) + Jq»(t 5,5 % )ds) =

= min |z(2) - v(D)].

) EF(Lx,40) + J’o(x.a.x‘:.k.: )ds
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t
Mapping ' exists because set-valued function /(/, x,, x )+ I¢(I Ls.x,), X,.' ) ds is measurable

and has compact and convex values ([3]).

By virtue of (9) and (10) for every 1 € {1,711, s s {, we have

le(r) - x'(1)| = |x(1) - x'(1)] + ejlv(r)ldt <

< +e(M+k)(1-1), where o = |x(1) -x'(1)], i =0, .. m-1,

and
|x(1) = x(s)| s e(M+k) (1 - 5),
Ix(r) - x(1)] = ejlv(t)| dvselM+k)(1-t)< (M+k)T/m,
gx"'(/) -x'(1)| s (M+k) Tim.
By the properties of mappings /* and ¢ we have
lv(6) -v'(0)] =

1 {
= H(l"(”x,ax:,) + ‘{¢(la“‘)x‘.ix.,)‘ls' I“(’$x,‘7’\‘:l,‘) + J¢(”s’xl'])x'r‘| )ds) =

t
s H(F(8,x, %), (x50 ) + J| ¢ (1,5,x,%) - ¢(t,5,%', % )| ds =

1

< k[lx, -x' N, + 1% =% ],] + ‘[u(l,b')(ﬂx,,' =x M+ %) - %,1,)ds.
By the definition of x(-) and virtue of (11), (12) it follows that

1 1
b, = x by s e, x ly+ be, - x, =

= sup |x(£+s)-x(t+s)|+ sup |x(t+s)-x'(t+5)]| =

-rss S0 ~rsssQ

1y

s sup e [[v(@)]des sup (Ix(t)-x'(1)] +e [|v'@ -v(D)| o) <

i

|

(1

se(M+k)|t-1]+0 +2e(M+k)|t, -<| s [((M+k)IV/m+8 +2e(M+k)r, (15)

where 1 € [1,1,,], Furthermore

i+

78



METHOD OF AVERAGING

[\

| %, - x"," lo = II,\?(I +8) =x'(1 +5)|ds =
-r

0, for every (1+s), (¢, +s) € [-r,0],

0
] eflv(t +s)|ds < e(M +k)r, for (1, +s)E[-r,0), (1 +5) E[0,7/e],

Now, by virtue of (15) and (16), respectively, we have for /, < s < ¢

b, = x b= Ix = x g+ Ix, - x,l, s
< [(M+k)T1m+d +2e(M+k)r+e(M+k)(t-5),
and |i,"-)é:|0=}l)&'(l,+t)—x(.v+t)|dts
0, for every (£, + ), (s +7) € [-r,0],
=l e(M+k)r, for (1, +1) €[-r,0], (s + V) E [0, 17e ],
2e(M +k,)r, for every (1, +%), (s +T) €[0, T/e ].
Hence, in virtue of (15), (16), (17) and (18) we have
() = v (1)| < k@, + (M +k)TVm + de(M+k)r) +
¥ :{u(!,s)(f), + [(M+k,)'1]/7, r4e(M+k)r+ e(A:H/c,)(t -8))ds s
[6‘+[(M+kl)T]/m+4e(M+kl)r][k+1p(t,s)dv]+e(M+k,)!p(l,s)(t—s)ds'.
Now, profit from (9), (10) and (19) we obtain ’
b= 5(0) =X ()] < (1) -5 (0)] + 2 1960 - v' (0 =
8, + €ty ~1,)([8, + [(M+k)T1/m + de(M+k)r] [k + [u(s,s)ds] +
e e (M) [t ) -5)ds) =

28, + L ([0, +[(M+k)T)m + de(M+k )| [k+k]+e(M+k)k) =
— :

= (1+ [k +k)T)/m) + %(Muc,) [ (k+k2)(% +der)+ek] s (1 +7"’1_1) +_,%

(1]
eflv(l +8) =v(t,+5) | ds < 2e(M +k)r, for e. (1+5),(1,+s)E [0, T/e].

(16)

(17

(18)

19)
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where (k+k,)T =a and b=[(M+k)T/m[(k+k)(T+4emr) + emk,].

Then

s .{)_(c 4 l) = g(m,c)[e”‘"‘"r— l]
Mok
m(k +k,)

Hence, for ¢ € [1,1,,], by virtue of the inequality (13), (14) and (20) we have

1
where g(m,e) = [(k +k,)(T'+4emr) + eka]. @'

e(@) =x (O] s |x(1) - x()] + [x() = x' ()} + |x'(1) -x'(D)] =
< EM + g(m,e)(e®™7-1), @)

Now we shall consider the function

E(t) = const for t € [-r,0],

B(1) = &(1) + e [w(@dt for 1 € [1,4,,),

where ¢ = —, i =0,1,. ,m-1, w() are measurable functions such that

[v!(1) -w(n)]| = min [v!(0) - z(0)l.
2 E N1, %0 )+ (8 X!, K0,)
Measurable mappings w exists because set-valued I"(,(x,",x',.') + l¢0(t,x,",:é,.') has compat
and convex values ([3]).
Let us notice that by virtue of conditions (i) and (j) for each m > O there exists a /()

such that for every /. > I, we have inequalities
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H(__ ![r(r x5y + P(r s,x) %)) ds)dv,
_.J[F(x, V%) + Ty, x) %)) de) s 0.
Therefore
%(f{(][f«‘(r,x.,‘,x.,‘) . j¢(r,s,x,,',x,,‘ yds ],
‘[ [Fy(x %)) + v, x )] de) s m.
In particular, for _e% > L, and for every i € {0, 1, ..., m-1}

iT

0 H( [ [F(e, %), %)) + :[q»(r,s,x.,‘,x,,’ yds ]k,

i

I[l‘(x,, 1) oyl %) ) < o ir
and 1
) CH( ‘f [F(t,x,,',x,") + :P(t,s,x,.',x,,')dv dr

("l)T
J [I'o(x, ,x )+t¢ (z, x, ,x )]dt) < (':l)l

Let us observe that Y ;’,‘n” = ¢, and BL’,; = 1. By virtue of (), () and the Hausdorff

metric condition ([2]) we have

H( f [Fle,x %)+ ‘[w,s,x,,',x.,' yds | dx,
'l

iv1)T
em

'Nl g I
f [Fuel i+ wbotm i) ey s oo £ D0y < Lyomany,
! ! ' ! em em

Hence
H(__f[b(r X %)+ !¢(I,A,x, %, )yds] dv,
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!

#n[ W(x %) + 1T, X %, )]df)s(zmﬂ)’ﬂ for—>1«(ﬂ)~ \

Therefore

em

H(_f[F(-c x50y + ‘[4)(1: s,x) %} )ds]dr,

',d
Fy(x, %) + _‘ET".’. W(t,x, % Ydt) s m, = 2m+1)m,

[

T
mLo(nl/2m+1)'

for L > Lo[ ™ ], then for e < e°(n,, m) =
em T 2m+1

Hence, it follows that
L
.e_[”i!h‘(t) -w@)|dv < m,
and
¥} (1) =B s 160 - B+ e [V () - w(w) do <
4
<.s< me ._Z_nl +m,7, where i =0,1,...,m-1.
em @)
Using the equality (22) and the fact that for 1 € [1, 7, ] , B -E@)| s (M +kl)§ an
10 -xe)] < (M+k)—,
Ix' () -ED| = [x'@ -x'(@)] + |x'() -EE)| + [EC) -ED)| =
< 2(M+k,).;nT_ n,T. @)
Moreover using the definition of the mapping E, similary, as in the proof of the inequaliy
(12) and (13) we obtain
I5(,) - §69)| = [EC) - KO + [E0) - &6)| = (M+k,) [% + (1 -s)] 4
Because the mapping F, satisfies the Lipschitz condition with a number & > 0 then by
assumption (1) it follows that

H(F,E,E) + !¢0(1, E,.E)ds, Fy(x, %) +1¢,(t,x, %)) =
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t
s k(1E - %I, + 1§ - %1,) + Iu(,(t)(ug, ~x o+ 18- %) |, )ds.
Similarly, as in the proof of the inequalities (15), (16), (17), (18) using the definitions of the
norm {-), and ||, and the definition of the mappings E() and x'(-) and making use of

the inequality (22) and (24) we obtain

1 1
I~ x by = 15, - & Iy + 15, - xl, =

t+s T

s sup e [|w()|dv+ sup (|§(t,)—x'(r,)|+ef|w(r)~v'<r)|dt)s
-rs8s0 s L-rsusl, "'

M+ 2 )T »
S T+ e(2M + N, + k))r.
m

and

1§ =%l lo = [IEU+s) - %' +9) | ds =
0 for (I.+s),(t,.+s)€ [-r,0],
0
1 ejlw(l+s)| dsse(M+\)r for (1+s)€[-r,0),(t+s)E[0,T/e],

-r

0
ejlw(t+s) = v'(t,+s)| ds = e(2M+A, +k)r for (1+s5),(¢,+s)E[0,T/e].

-r

Funhern;ore, fort, <s<1,
IE, - x I, s I8, - &, I, I, - x/'l, =
< (M+k,) [é ‘el -s)] s T+ e(M+X, +k)r,
and

0
IE, - %], = flfz(sw) -¥'(f,+7)| dt =

0 for (1, +7), (x+s)E[-r,0],
s{eM+N)r for (1,+v)E[-r, 0], (s+v)E[0,7/e],
e(2M+h, +k)r for (1, +7), (s+v)€[0,1/e].
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Hence

H(F,(5.8) + !%(1, B E)ds, Fy(x) . %)) + td,(1,%), %)) =

M+r)Tr
Shk[————— +nT+2e(CM+N, +k)r] +
m

' M)l
!p“(t) [——— 7 +e(t-)(M+k) + 26(2M + ], + k) r]ds s

M+,
< 2er(k + 1, (1)) @M + A, + k) + kT (—— 2 ) +tp.o(t)T(M+k‘

+1‘|)+

el po(t YM+k ) =b(m,e,m, 1) (ZQ

xol —_

Now, in virtue of inequality (25) and using the definition (<) we have

P (E(l),elﬂ)(‘é,,%,) * 80‘[%(’,5;,%,)618] s

[
sp (g(,), eFy(x',%') + e {cpo(t,x.,‘,x.,' )ds] +

H el'b(xy.l,x.lll ) + e‘!‘(p()(t,xtll’x.l,l )dS, 81"0(51’ Et) + 8‘{4)0(’, g:" E:)ds] <

s e b(m,e,m,1).

On the ground of Filippov’s type theorem (see Theorem 1) there exists the solution )() 5

(7) that for 1 € [0, T/ e ]

!

|&(1) - y(0)] = BJc(mrB’nl)ez"”(”""“”dt
where m({) is the function from Theorem 1 and ¢ (m, e ,m,) is a function which we get with b (m, e 1)

using the assumption (1). In this case

r

m(1) = I("*[uo(r)dv)dr and  c(m,e,m,) =
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M+k,

m

2

M+
=2er(k+p)(2M+\, +k) +kT(
m

" 1
)+ T( )t em(Mk).

Hence

.
ZcI(kOIm(r)dr)dr

&) - y()] s e c(m,e,n.)j» & s

sec(me,n) [e WV < Te(m,e,m,)eW, (26)

In virtue of the inequalities (21), (23) and (26) it follows

() = ()] = [x()) - x ()] + |x'(1)) &) + [E(W) -y(D)] =

AT (M +k j T
< L) e gm ) [0 Te(m,em e ™. )

Therefore, there exists a m, e and ), such that we get the inequality |x(¢) - )(¢)| s q for
1€ [0,7/e] because gm,e) — 0 and c(m,e,m,) >0 if m —> ©and e — 0.
Adopting now the procedure presented above we get condition (2°). It this way the proof is

completed for 1 € [-r,t/e].
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REZUMAT. - Asupra comportirii asimptotice a solutiilor anor ecuatii diferentiale de
ordinul patru. in fucrare sumt datc condifii suficicntc pentru ca toate solutiile ccuatici (1.1)
si fic uniform mirginite §i s3 tinda la zcro cind ¢ — «.

Abstract. The main purpose of this lecture is to give sufficient conditions, which

ensure that all solutions of (1.1) are uniformly beunded and tend to zero as  — ,

‘1. Introduction and statement of the result. This work deals with the asymptotic

“behaviour of the solutions of non-autonomous differential equations of the form
x® v a()p(x, %, %)% + b(2) f(x, %, %) +c(r)g(x) +d(t)h(x) = p(t,x,%,%,%) (1.1)

in which the functions a, b, ¢. d, ¢, £ g h and p are continuous and depend only on the
arguments displayed explicitly. The dots as usual indicate differentiation with respect to £. All
functions and solutions are supposed to be real.

Abou-El-Ela {1] presented sufficient conditions for the umform global asymptotic
stability of the zero solution of the equation

xWa f (X, 8)%+ f(X)+ f(X) +a,x =0

Hara (3] and Abou-El-Ela [2] investigated the asymptotic behaviour of the solutions of the

equations

* University of Yuzunci Yil, Department of AMathematics, 65080, Van, Turkey



x® e a() fEIX+ D)X, %) +c(D)g(xX) +d() h(x) = p(t,x,%, %, x)
and
xPwa() (£, %)%+ b(1) (X, %) + (1) f,(X) +d(1) f,(x) = p(t,x,%,%,x)
respectively,

We shall henceforth assume that the functions a, b, ¢, d are positive and differentiabl
in R'=[0,) and that the derivatives a_(l(p(y, z, u),_(%w(y, z, u),aixf(x,'y, z),(%(x,y,z),g'(y]
and A'(x) exist and continuous for all x, y, z and .

The main objective of this paper is to prove the following:

THEOREM. In addition to the basic assumption ona, b, ¢, d, ¢, f, g, h and p suppos;

that:
G) Aza(t)=a,>0,B2b()2b,>0,Czc(l)zc,>0, D=d(i)=d,>0, for i€
(i) ¢(y,z,u)z0,>0, forally, zand u; 0,> 0, a, > 0.
(i) £0)=0and g'(y) = o, > 0 jfor all y.
@) There is a finite constant &, > 0 such that
a,b,c, o, o, a, ~C*a, g’ (y)-4*Da, o, ¢(y,2,0) 2 8, for all y and z.
> 2Da,d
) 0sg'(y) -8 <5 < D y=o.
Y Ca, ¢t o, o
. 1 y \ 23,
(v1) - [w(y, £,.0)dC - ¢(y,z,0)s0,<— —_ jorallyandz=#0.
< Aaozcoozfoz3
(vii) y_a ¢(y,z,0) = 0 and z_(z_cp(y, z,0) < 0 for all y and z.
ay ay
(vii) fe,3.0) =0, = fx,y,5) =0, ‘[ S (6,9.0) de < O for allx yandza
y x

33
Sfx,y,2) £oCo O3
02277 —q,=

- 2
< BD

Jorall x,y and z = 0, where e, is a positive constant such th
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) [ Da, 8, Cc,a, 20,005,
g, < e =min -3,
a,o, c o, 4a0coala3A0 4Da A, Cao(llcozai
2
Aa, 29, s (12)
44, | Adad Cy o a, ’
with 4, = aybyc o, @, . a,b,c a0,
C ADa,
(ix) h(0) = 0, h(x)sgnx > 0 (x=0), Hx) = h(C)dC — o gs |x| = © and
eq, 02 :
0sa, -h(Ks .___D_forallx
(%) -ai(p(y, Ju) + A, ya_ o(y,z,u) = 0 for all y,z and u, where
oD
A, = +e. (1.3)
® 00(13
(xi) Iyo(t)dt <o, d'(f) = © as t = o, where
Y1) = la’ ()] +b/ (1) + e’ (] + 1d" ()], b’(r) = max {b' (), 0}.
1
(xid) Pt x, 32, 0] 5 0+ pOLHE) +y2 o2+ w7 + Al e 22+, e

AD are constants such that 0 < d < 1, A = 0 and p,(1), p,(7) are non-negative continuous
Junctions satisfying
Jp,(l)dt <o (i=12). (1.4)
If A is sufficiently small, then every solution x(t) of (1.1) is uniformly bounded and satisfies
x($)—~>0,x(t)—=>0,%(t)~>0,x(4/)>0ast —> (1.5
Remark 1. When we take a(f) = b(7) = c(f) = d(r) = 1, and @(x, %, x) = f(x,X) and
Se, %, %) = f,(X), and h(x) = a,x and finally p(¢,x, x, ¥,x) = 0, conditions (i)-(xii) of the
theorem reduced 1o those of Abou-El-Ela [1].
Remark 2. When @(x, ¥,x) = f(¥), and f(x,x,%) = ¢ (x, X), then the conditions (i)-
(xi1) become similar to those of Hara [3].
Remark 3. When @(x,%,x) = f(x,%), and f(x,x,¥) = f(x,x), then the conditions

8y
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(i)-(xii) of the theorem are reduced to those of Abou-El-Ela [2].

2. The Function ¥V, (t,x,5,%#). Consider, instead of (1.1), the equivalent system

*f=y’)}=3a5=” o
nu=-a()p(y, z, wu - bO)f(x,y,z) - c(gly) - dOh(x) + p{t,x,y,z,u) "‘
derived from it by setting y =x, 2 =¥ and v = ¥,

The main tool, in the proof of the theorem, is the functionV, =V (1, x,y,2,1)

defined by

20, =2A.d(1) ‘[ (G +26(t) {20l +2A, b(1) ny,cm+2a(l) [ Ep(/2, 00
+2Aza(1)y;[q)(y'l;,0)d§+[A2(12b(l)—Al(x4d(l)]y 1Az P+ A+ 2d(Dyh(x)

+2A, d(f)zh(x) + 2A, c()zg(y) + 24, yu +2zu + k 2

where

A= e, )

ao (1l

A, being the constant by (1.3) and k is a positive constant to be determined later in the proof
Let me first discuss some important inequalities.

Using (2.3), (1) and (11) we have
A - L forally, zand all tE R'. (24
a()¢(y.z.,0)
Following a similar procedure used in [2], it is also possible to show that
o
ab() - A (g’ () -Aa(e(y,z,0) 2 — % -e A, 29

AyCo ) 1y

for all yzand t € K"

Let ¢, be the function defined by

(l) Iw(y.c,owg, 220,
$¢,(y.2.0) = 9\ ¢

90 ¢(y,0,0), - =0,

4
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Then from (ii) and (vi) we get
¢,(¥.2.0) 2 &, > 0 for all y and =,
$,(¥,2,0) - ¢(y,z,0) < 0, for all yand =

From (2.3), (2.7) and (i) we obtain

A - __]___. =2 ¢ forall yzandall r € R

' oa(n,(y.z,0)
Since ¢,(y,2,0) = @(y,2,0), £ =6z, 0 < 0 s 1, then

5,
a,b(t) - A, (g’ () - Aa(e (y,2,0)2 —— -€A forall yzand all 1 E R

a,C, o, 0

2.7)
(2.8)

(2.9)

(2.10)

"The properties of the function ¥y, = V(t,x,y,z,u) are summarized in Lemma 1 and Lemma 2.

LEMMA 1. Suppose that tne conditions (1)-(1x) of the theorem hold. Then there are

positive constants D, and D, such that

DIHx) +y*+z2+u+k) s Vs D,[H(x)+y*+z +u?+k)

Jor all x,y,z, and u.

Proof. Rewnte the function 2V (f,x,y.z,u) as follows:

d*(H)h*(x)

2, 4WA)
(09,00

2A,d(f) Ih @)t -

+20(0) [0} -c(1)y *$ ,()+24,b(1) !/(xy,z;)dg{A;Afc(r»,(y)}- +2a(1) I Cp(r,5. Ol

a()$,(v.2.0) | ¢,0.2.0)|alr)

-a(r):2¢,(y,z,0)+lAl— : }«H A [ U (20)+b 0 (0 0>Il

o7 <) d(’)h + +Az ’+k
0 [ 7 4 .¢,(y>] :

where the function ¢4(y) is the same as in [2].
Since fx,y,0) = 0 and f(x_yi z a, (z = 0), it is clear that

24, b(t)lf(\' Y0y doz A a, b():z2.

+[y00b0) - B0 d() - B2a()9,(y,2,0)]y?

@.11)
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By using (2.9) we obtain
A, -___]_ ul=eun’
a)¢,(y,=,0)
Hence
2,z Vi + V,+ V,+eu?+k,
where

d¥(Dh*(x)

by 2w ey - LOLE,

y
b, = [Azuzb(r) - Aad() - Aia(t)<l>.(}',:,0)]y2 *+2¢() 1[g(C)th - )y *9,(»),
Vy=[ b0y - 8, - Al 0]+ 2a0) ‘[my,t;,owz; -a()z%,(y.2,0).
The functions F,, V, and ¥, can be estimated as i1n [2]. These estimates show that

V, = 2ed, ‘{h(l;)d'g,

“( 20,D%
szi — -5, |y3
4 | Ca,a, Coas

29
V, =z 4 _2_07_ -9,|z2
4| Aa, Co Ay

Then, combining these resuits, we obtain

2 2

D .22 4
Cajociay

(20, 2,
2V, = 2ed, H(x) +£[L -es,]yl +ﬁ[__"__ —62]_-2 veul+k

2 2
Aazycmo,
In this case it i1s clear that there exists a positive constant /), such that
Voz D[H@) +y2+z2+u’+k)

Under the assumpltions of the theorem that we can say

(2.13)

(2.14)

(2.15)

ab.c.oa ab.c.ac ec)a,
4(y,z,0)< 0,0 2 s(s 28 :), ! lzy‘f(x,y,:)s(u; ! "’): and h Z(x)s’_’u‘H(x).
A Da, - BDq
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Therefore we can see that there exists a positive constant /), which satisfies
Vos DJIH@) +y*+z2+ul+ k]
Now the proof of Lemma 1 is complete.
LEMMA 2. Subject to the hypotheses (1)-(xut) of the theorem, there exist positive
constants D,, D¢ and D¢ such that
Vo s -D(y2+z?+u?)+ \/3_1)6()/2 +z? +uz)-;{ p(D) +pl0)} +
+ ﬁl)sz(l)[H(x) +yiezieutl 2 Dy Y, (2.16)

Proof. A straightforward calculation using the 1dentity

.iVo - av, - ov, - ‘W": . av, . v,
dt o oz dy ax ot
yields

d

7 Vo= =AM a(ue(y,z,u) - Ab(Dy[f(x,y.2) = A,c(Nyg(y) = b(1)=f(x,y,z) +u? +

+8,b(0): I.if(x,y,?;)dt +a(1)z Jc_"-q)(y,t;,owz; + Aja(t)y: I_,"’_w(y,t..,owc .
ay dy dy
+[A,0,b(1) - Ao, d()]yz + Aa(t)z |@(y,L.0)dC + A c(1)z2g" (y) +d(t)y*h' (x) +
+A,d(Dyzh’ (x) - a()[@(y.z,u) - 9(y,2,0)]zu - A,a(D)[@(y,z.u) - 9(y,z,0) ] yu +
ol

+ A b(1)y ﬁ)?f(x,y,mdt.. P (B s A plLx,y.z )+ —

From (vii) and (viii) we have

:" P z P z )
z l[g—q)(y,c,owgso, z ‘[y-.-w(y,m)dz;so and z I,Lf(x,y,C)dC <0,
dy Y ay
Thus it follows that

"
%Vos VAV +V+V,+ Ve V) + (Ay+z+Au)plt,x,z,u) + T

(2.17)

where

V,= Ac(yg(y) - a,d(t)y’,
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Vo= Toyb(1) = Ac(0)g'(9)]27 = Aya(h)z Jo(p,5,0) oL,

Vo= [A a()e(y,z,u) - 102,

]

L= cb()f(x.p.2) —oub(D)z + Ab()yf(x,y.2) ~a,Ab(1)yz,

-~
§

W= o d()y? - d(yh' (x)y?+ Aogd(t)yz - A d(nh'(x)yz,

o
L}

o, = a(D)[g(y.z,u) = ¢(y,z,0)}zu + A,a(1) [4(v,z,u) - @(y,2,0)]yn.

The functions }, and V; can be estimated as in [2]. In fact the estimates there show tha

Vizec oyt Viz ~eAz? (]
Now
Vo= [a,b(1) - Alc(l)g/(y) - Aza(IM)I(y,::,O)]z2
5, ;
2| - eA|z? 2
a()c()(ll ‘xl
by (2.10).

We find from (1), (ii) and (2.3)

"= Jod - 2

Ve =14, a(t)ip(y,-,u) 1]u o
>ea,on’

v, = b(l)[M -, |(z2+A,pz), for z= 0

> ~(1/4)A b(:)[_f_ﬁ’i::‘_’ﬁ - o, |y? < by (viii).

In case we use (1), (vin) and (1.3) for = = 0, then we find

33
(l/4)A§b(/)[M - (xz]s b(r) (D“* . e] BB g

4 | ¢, B 7
. Da, L ) .
since € < by (1.2). Thus it follovs, V, = -(e,c,a,)y* for all y and = = 0, but ;=
¢,

073

when z = 0, hence we have

V,z ~(e,c,a,) ¥ forall y and :z. 2

From (x) for # = 0 we obtain
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Vy=a(t)[ze(y,z,6u) + Ay, (y,z,0u)Ju’2 0, 0s 0 < 1
but ¥, = 0 when # = 0. Hence
V, = 0 for all y,z and u. 2.22)

Combining the estimates for V,, V;, V,, V,, V; and V, with (2.17) we have

. d av
Vs-(e-e)cayi-l— 2 _~-2eA |z2-ea o u+(Ay+z+A )t xy,z,u)+—2
0 ( 0)00 3 { aoco(lla:‘ 0)/ 01 (A3y 1 )I)( ’-y ) a 1
s—~(e-e )c 0,y - .____f)i__ z2-ea,outHAy+z+A u)p(txy,z u)+a_V°
oo 2a,0,0,0, ot E T
since e <—— % by (12)

a,c,o, a A

An easy calculation from (2.2) shows that

W, /
—t= ) A, ‘[/(x,y,z;)d@(Az/Z)uzyz

]CCP(V,C,O)d’; +A3V:[q>(yl;,0)d§]+b ")

y x
+e'(n] Jg(n)dn +Azg0) ] +d ()[4, [h@dg - (A, /2) oy +h(x)y + Ah(x)z].
On the basis of the proof of [2, Lemma 2] it can be shown
oV D
Tto sD[la’®] +b' () + |c'®O] + |d' ) [H(x) +y*+z2+u?] s Dy V,, whee D, = 7)_3.

1
The rest of the proof is similar to the proof of [2; Lemma 2] and hence is omitted.

3. Completion of the Proof.

Proof. Tt follows from the proof of the theorem in [2] that all the solutions (x(?), y(?),
2(f), u(?)) of (2.1) are uniformly bounded and hence is omitted.
Also the remainder of the claim can be proved by using the techniques similar to those used

by Abou-El-Ela [2].
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REZUMAT. - Asupra proprictititor de monotonic ale unui gir de operatori de tip Meyer-

Kbnig i Zeller. intr-o lucrare anterioard { 14] autorul a introdus si studiat o clasa de operatori

linian pozitivi A, , depinzind de un parumetru « ne-negativ. de tip Meyer-Konig si Zeller.

in lucrarca dec faa se deduc reprezentnile (7) si (12). in functic de diferenicle divizate de

ordinul al doilca, pentry diferenja a doi termeni consceutivi ai sinului (A" f). Aceste

reprezentini au permis stabilirca unor proprictiyi de monotonic, in raport cu m, alc accstui sir,

in casul cind sc presupunc ¢ functia festc convexd (respectiv concava) pe intervalul {0.1).

Resultate similare pentru operatorii S, . definifi Ia (3). au fost gasite in lucrarca {10] a

autonului.

Summary. In a previous paper [14], the author has introduced and investigated a class
of a parameter dependent linear positive operators A, (a 2 0), of Meyer-Konig and Zeller
type. In the present paper one deduces the representations (7) and (12), in terms of second-
order divided differences, for the difference of two consecutive terms of the sequence
(M. ). These representations permit to establish some monotonicity properties, with respect
to m, of this sequence, in the case when we assume that the function /s convex (respectively

concave) on the interval [0,1]. Similar results for the operators S, , defined at (3), were

obtained in the paper [10] of the author.

1. In 1970 we have introduced and investugated in the paper [14] a class of a

parameter-dependent linear positive operators M, ", of Meyer-Konig and Zeller type

Y "Babeg-Bolvar” Universuy, Faculty of Mathematies and Computer Science, 3400 Cluy Napoca, Romania
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Denoting by u“#? the factorial power of non-negative order n and increment 4 of u,
that is
u®™ = u(u-hy.. (u=-@-1)h), u® =1,
the operator M,,"", associated to a real-valued function f, defined and bounded on the interval

[0,1], is defined by

k=0 m+k

(Mzf)w) = f:w:‘fi(x)f( d ) )

where a is a non-negative parameter, x € [0,1], while

<a> m+k) x® (] - x)mel@
wm,lr (x) = ( ) 1(,,,.1.1;,-(.) B

@

- (m+k) x(x+a). . (x+k-1Da)(l-x)(1~-x+a)..(1 ~x+ma)
k +a)(+20)...(1+(m+ka) '

One observes that if x = 0 then (M:p f)(O)‘ = f(0), while if x = 1 it is convenient to
take
(M27) 1y = tim (M7 )y = 7).
It is obvious that M, includes as a special case (a = 0) the well known operator of

Meyer-Kénig and Zeller [7)], defined by

(M, ) =f:W,,_k(x)f( k )

m+k

where
W,ax) = ("’[")x*(l -x)",

obtained by these authors using the negative binomial (Pascal) probability distribution.

2. In our paper [14] we gave an integral representation of M., by using a beta

transform of the operator M,, which is valid for « > 0 and 0 < x < 1, namely

o 1 1 X LAY
M o “ (a-n* M dt,
(Mz 7)) B(ﬁ — [ a0 M@
98 a’ a
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and [2] the Bernoulli urn scheme. It permits to give a probabilistic interpretation to M,"
In our paper [14] we have proved that this operator reproduces the linear functions s

that M,,*’e, — e,, uniformly on [0,1] if we assume that o = a(m) — 0 when m — «,

3. In the paper {17] we investigated the remainder in the approximation formula
1@ = MA) ) + (RE7) ). 0
Now we can formulate that result in a new form enunciating the following

THEOREM 1. If we use the notation

(k,-a) y, (m+1, -a)
w (u,v) = mryu v p
m.k ( ) k (u N V)(m*l‘/(, ~a) ()
and if we assume that all the second-order divided differences of the function f are bound
on [0,1), then the remainder of formula (4) can be expressed under the foIIowing Jorm

(R7)) = <10 etk 5 o, 1-x+a)[‘ SN f]
where the brackets represent the symbol for divided differences.
In the special case o = O this formula was established in [19].
It is easily seen that from this theorem there follows
COROLLARY 1. If on the interval [0,1] the function f is convex (concave), then fx
any x € [0,1] and any m € N we have
S = (M) (respectively £(x) = (M1} (e)).

If f is strictly convex (concave) then these inequalities are strict on the interval (0,)),

4. Now we shall investigate a monotonicity property of the sequence (M:‘>f) when
fis a convex function. The key to do this lies in proving

THEOREM 2. If all the second-order divided differences of the function f are bounded

100






D.D. STANCU

Therefore we obtain

1 - x)(md, -a)

(M2 Ay = £ 7 +

](M*l. ~a)

 [m+2+k) x L (] — )l (0 fa]
+E( k+1 ) [(m*22k, ) f(m +2 +k)

X~ (M1 ek) x @b (] - )t k
E k l(m*2*k,-a) f( )

s m+1+k

Now in the expression of (M,,f“'> f)(x) we detach the first term and in the remainy
sum we set k-1 = j; denoting again the index of summation by &, we get

(A = L2022 pgy

l(mﬂ,-a)

k=0 m+1+k

= [m+1+k) x Lo (1 —x)m w0 ke
* E ( k+1 ) ](m*Z%k,-a) f( ) l
If we take into account (9) and (10), the difference from the left member of

equality (7) can be expressed under the following form

, = (m+2+k) x® L0 (1 —x)meld (el
S5 g( k+1 ) (m+2+k)

1(:»‘2’1'. ~ot)

 [m+1+k) x®h (] - gyt k _
- E k ](m*Z*k, -at) f( )

v m+1+k

_2“‘: m+1+k x"‘"-'“’(l-x)""""")f k+1
prrd k+1 - 1(me2ek, o) m+1+k)

Consequently we are able to write

2 x B0 (] - y)(ml - 1+k k
Cm(f;x’a) = u ( X) (m+k ' )f(m + 1 +k) )

k=0 ](méz*k, )

m+2+k k+1 m+1+k k+1
( k+1 )f(m+2+k) +( k+1 )f(m+l+k) '

Since
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m+1+k m+1+k{m+k
k k)

m+1

m+2+k) _ (m+1+k)(m+2+k) (m+k)
k+1 (k+)(m+1) k)

m+1+kY _ m+1+k(m+k
k+l k+l k

and
x(kol,-u) - x(x + a)(k.-u)

(1 =x)m b = (1 =x)(1 -x +a)™ ™,

we obtain at once

D (f:x,0) = -x(l _x)i: (m/:k) (x + )1 = x + ) m 1k

Pers l(m*kéz, “w)

1 ! k _ (m+2+k) f k+1 1 f k+1 .
m+1"\m+1+k (m+1)k+1)" {m+2+k k+17 \m+1+k
Now it is helpful to consider the divided difference (8), for which, by a

straightforward calculation, we obtain the following explicit expression

D(fom jy = (1KY 24k ( k )_

m+1} m+1+k

m+Dk+1) m+2+k k+1

_(m+1+kY(m+2+k)? k+1 ) (m+1+kP(m+2+k) k+1 ) _
m+1+k

{m+1" \m+1+k) (m+D)k+1)"\m+2+k| k+1"{m+1+k
Consequently we have

RV ko me2ek o kel N, 1 o kel )
(m+1+k) ln;+]fm+1+k (m+l)(k+1)f Mk j;+1f m+l+k)
) (m+1+ky(m+2+k) PAsmB

and we finally obtain

x(m+]+k)2(m+2+k)[ 1 f( k )_(m+2+k f( k+1 )+ 1 ( k+1 )}
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S k (x*'(l)(k' —(1)(] ".\'+(l)(m‘—”) S
D (f.x,a) = =x(1-x) (’"" ) D(fm k). W)
/ g k) m+1+k)y(m+2+k) 1 2omo /

If now we insert in (5): w = x + «, v =1 - x + « and replace m by m-1, then weg

-1 +k (x + (X.)(k' ) (1 -X + (l)(m. -a)
k A2t

. m
W xra,l-x+a) = (

Taking this into account and the relation

m+ky _ m+k [m-1+k
k| % ko)

we are led to the representation (7), ehich we desired to establish.

Remark. Since we can write
x(x + )t = x®Ox v ka), (1-x)(1 ~x + @)™ = (1 —x)mto)
formula (11) permits to give also the following representation for D (f;x,a):

D (fix,a) =~
S X, ) kZ(:) (m+1+k)y(m+2+k)y (1 +(m+1 +k)a)

For the classical operators M, of Meyer-Konig and Zeller we have to replace a =

(x+ka)w, (x}

“D*(f,m,k). (1)

and we obtain

o

(A'Imqf)(x) = (Mmf)(x) = -xz wm,k(x)

k=0 (m +1 +k)('" +2 +k)

Remark. A similar representation was given, without proof, in the paper [3], but the

“D*(f,m.k). i

was omitted the factor x in the second member.

Invoking Corollary 1 and the representation (7) or (12), we can state

THEOREM 3. If on the interval [0,1] the function f is convex (concave), then on thi
interval we have

fs M fs M f(respectively f= M f2 M f).

If fis not linear and is strictly convex (concave) on [0,1], then these inequalities an
strict on the interval (0,1).

Referring to these results, we can say that the approximation of continuous conves

(concave) functions f by means of M, “ f occurs monotonically from above (below).
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In the case of the Bernstein polynomials, a representation similar with that given at

(7) was deduced in our paper [9], where we have investigated also the monotonicity of the

sequence of the first order denvatives of these polynomials. Extensions to higher derivatives

were investigated in our paper [18]. As we have mentioned in that paper, in the case when

we use operators which can be expressed by means of factorial powers, of increment # = -,

then if we want to investigate the monotonicity of the predenvatives of the sequences of such

operators, then the differentiation operator should be replaced by the Nérlund difference

operator [_,.

12.

13.
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REZUMAT. - Existenga solutiilor periodice pentru o clasd de ecuatii integrale care
modeleazi propagarca unor epidemii. In lucrarc sc stabilesc doud rczultate de existenta
relativ 1a ecuatia (1), extinziandu-sc uncie rczultatc din |2).

Introduction. The nonlinear integral equation:

x0) = [ S5, x(s))ds (1)
can be interpreted as a model for the spread of certain infectious diseases with periodic
contact rate that varies seasonally. In Eq. (1), x(¢) represents the proportion of the infectives
in the population at time ¢, T is the length of time an individual remains infectious and
J(¢,x(?)) is the proportion of new infectives per unit time which satisfies:
(H,) Atx) is nonnegative and continuous for - < f < o and x = 0;
(H,) A1,0) =0 for -o < ¢ < o and there exists w > 0 such that A7t w, x) = £, x) for all

—oo<t<w and x = 0.

Obviously, x(#) = 0 is the trivial solution of Eq. (1). In [1,5] were given sufficient
conditions for the existence of nontrivial, nonnegative, periodic and continuous solutions of
Eq. (1). The aim of this paper is to prove two new existence theorems. The first theorem
gives us sufficient conditions for the existence of at least one, positive, periodic and

continuous solution of Eq. (1). Our assumptions are different from those in [1.5] and there
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are cases where our result applies while those in [1,5] do not. \

The second theorem, which is related to the first one, gives us sufficient conditionsg
for the existence of at least n+2 (n € N), nontrivial, nonnegative, periodic and continuos
solutions of Eq. (1). This result extends in a simple way Theorem 1 from [2].

The proofs are based or the fixed point index theory.

2, Main results.
THECREM 1. Assume (H,), (H,) hold and that the jfoliowing two conditions a
satisfied:

(H,)  there exisi the real numbers a > 0 and o > 1 such that:

sop LD < 1 0
€jo.w]  a at
and
“l a s inf {x>a| there exists t € [0,w] such that f(t,x) = _x_} 0
[ av

(where, if the set is empty we use convention inf & = +w);
H))  there exist b, with 0 < b < a, and a nonnegative, continuous function g(f) with perid

w, such that:

f@,x)zg(t) for t € [0, w]and x € [b, .(.;Ta[ “

and
L"g(s)ds' > b for all { € [0,w)] 6)
Then Ly. (1) has at least one, positive, w-periodic and continuous solution x (1) suh

that:
b= ‘gll(n)n”' n = "tinlt;a.)fvl xl(0 < u(:l a o

Proof. Let I be the Banach space of all continuous and w-periodic functions x(f) on
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R with norm:
bel = sup Ix(n] = max |x(1)],
lee K ={x € E|x(1)2 b fort €ER} let U = {x € K| Ix] < %a}
Clearly, K is a normal cone of / and U is a nonempty, open, bounded subset of K.
For each A € [0,1] we define the nonlinear integral operator;
Tx() =(i-Na + )\J:;f(s,x(s))ds.

It is easy to show, using the conditions (H,)-(H,) and the Theorem of Ascoli-Arzela,
that the operators 7, are completely continuous from U into K. Now we shall prove that, for
every A € [0,1], the operator 7, has no fixed points on the boundary dU of U with respect
to K.

Suppose contrary, there exist Ay € [0,1] and x, € K such that |x, | = a;j].q and
L.x, = %,. From |x| = .;l_(jTa, we deduce that there exists at least one 7, € R such that

x,(4) = _.__a and by TA‘x0 = x, we obtain:
%a = x,() = T,5,(,) = (1=X)a + L £(5,%,(s))ds. N

If A, = 0, we find from (7) that

al a = a, or equivalently a = 0, which contradicts
a-

(H,). Therefore we have:

A > 0. ®)
Now (H;) and the continuity of fz,x) imply that there exists & > O such that:
f(t,x)sis_l_« o a, fort€ER,x € |a- )
at at o=l a-1
If x((s) > a-d, for all s € [4—, ) then from |[xJ| = _.._l.a we get

a-d < x,(s) s L]a, s € [t 4] and, in this case, using (9), (7) implies:
o

.ﬁ.as(l—k)a+)\_}_.__.aj: ds < (1-X,)a+A,

a-1 at a-1

a—l

and, consequently A, > 1, which contradicts A, € [0,1].
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l
If there exists s, € [f-t, ] such that x,(s,) s a-0, then, observing i

o

x,(8,) < a <x,(1,) = implies that there exists at least oneif

Bet] C [#,-t, 1,] such that x(¢,) = a. Choosing now
f, =sup {1 € [1,- v, 1, }|x (1) = a}
it is easy to show that:
LL-v<1</(,
x(t) =a

. [¢3
and, using x| =

a,
1

a<x/(s)s

g, forall s € 14,41
a-1
By x(1)) = a and T, x, = x, we get:

a=x() = Lx,() = (1 -A)a+ )\OJ;’_'Tf(s,xo(s))ds

From the last equality and (7), using £,—t < ¢, < {, and the nonnegativity of funciin

At.x) we have:

“ a-a-= Ao[ J ® f(s, x(s)ds ~ f " f(s,xo(s))ds] -

a-1
=N [ [ xlsns = [ s, xo(s»ds} = U

Ay f " (s, x(s))ds

By a < x,(s) s a,s €, 0] usiag (9) we find

a-

f(s x,(3)ds = _'

at a-|

Since A, € 10,1} (see (8)), (10) and (11) imply:

a

af ds < )

a-1

a-ac< , a contradiction,

a-1 o=

Nevertheless, the assumption that there exist A, € [0,1] such that 'I',“ has fixed poinis
on the boundary aU/ of U with respect to K, is false. Therefore, the fixed point index

1o
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i{T,,U,K) does not depend on A. In particular we have
i(r,U,K) = i(T,,U.K) =1,
consequently, 7, has at least one fixed point x, € U which, obviously, satisfies (6). So our
theorem is completely proved. B
Here is an elementary example which shows that Theorem 1 applies while the
theorems from [1,5] do not:
Example 1. Let us consider Eq. (1) with t = 1 and

11 (sin 1+2)y/x , for fE R, x € [0, 1]
S, %) =

(sin 1+2) _z_(x-4)“ + _l_ ,forteR, x> 1
15 5
Choosinga =4, a =5, b = % and g() = _;. we can apply our theorem obtaining the
existence of at least one, positive, continuous, 2n-periodic solution x,(¢) such that:
-l_ s min x(/)s max x(/) <5
5 (€10, 2x} 1€10,2x]
On the other hand, one can verify that theorems from [1,5] do not apply in this case.
Let us see the behaviour of a function f1,x) which satisfies (H,)-(H,). For an arbitrary
1, the dependence on x of the function f7,,x) is as follows from Fig. 1 (see at the end of this

paper). Shortly, (H,) is equivalent with the fact that, for every ¢, € R, the graphic of f1,x),

fora < x < La, is under the nght line y = i; (H,) 1s weaker than the fact that, for
oa- at

every f, € R, the graphic of fl1,x), for b < x < &

a, 1s above the nght line y = ﬁ; by
a-1 T

(H,) and (H,) the behaviour of fir,x), for 0 s x < b and x 2 £ _a, is unconditioned.
-

Let n € N be an arbitrary natural number and let us list two more conditions for
convenience:
(H,’) There exist the real numbers a,,qa,,....a 0sa,<a <.<a,s +» such that,

n+l? . n+

Lit
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for every j € U, n+1 there are satisfied:

(1,a
sup ﬁ_Jz < .L where o, > 1 (&J
1E10,w] .a, at
. 3 - fa) . .
(if a,= 0 or a,= © we assume that the limit Tim exists uniformly with respec
X—*a a
o Sa) T
! € [0,w] and we denote this limit by 42,
A
and
a
!_a =< inf)x>a| there exists 1 € [O,w] such that f(z,x) = X
a-1 / ! at

(where, if the set is empty we use the convention inf J = +oo);
(H/) There exist the numbers b,,b,, ..., b,,, and the nonnegative, w-periodic, continy

functions g,(1), g:(t), ..., &,.,(t) such that:
@ a
0s_—" a<b<ac< a<b<a<.<__'_a<b <a.s+w0
0 1 1 1 2 2 n n+l n+l
o, -1 a,~1 a -1

a,

and, for every j € T, 71+1, there are satisfied:

fl,x)y=g(1), for t € [0,w], x € |b, %S a (4
a-1"'
J
and
flgj(s)dx > b, for all 1 € [0,w). @

Now, we are ready to state our second theorem:
THEOREM 2. If (H,), (H,), (H;) and (H,) are satisfied, then Eq. (1) has at least n¥
distinct, nonirivial, nonnegative, w-periodic and continuous solutions x(t), x,(f), x(1), ..

x,.,(0) such that:

a

b < mn x({) =< max x(1)<_—2_a for every jET, n+l {6
T TI elow (1/-1 J
and
- (lml »
max  x,(/) < a.,. (
1€10,%) o, -1

Proof. Let I be the same Banach space as well in Theorem 1, let
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b,>(1-Na, + \b,

which contradicts A € [0,1] and b, <a,

So H(\,)) has no fixed points on the boundary of U, with respect to K uf
consequently:

i(T,U,K) = i(iH;(l, ), U,K) = i(f)-j((O,'), U,K) =L
Hence
i(T,U,K) =1, forall j € T, n.

Now, we shall construct three more nonempty, open and bounded subsets

K: U, U, U,_, such that

n+

i(r,u,,K) =i(l,U

n+l?

K)y=ilu

n+2?

K)=1

«
If a, = 0 then U, = |x € K| x| <

°l a,[. For the calculus of the fixed point inde

(10“

i(T,U,, K) we define the homotopy:
H:[0,1]x U,— K
HOL (1) = M s, x()ds,
which is completely continuous from {0, 1] x L_lo into K.
If we suppose that Hy(\,*) has a fixed point on the boundary of U, with respect tof,

~ a()
then |Xf =

a, and, by a similar proof as in Theorem 1, we obtain a contradiction

(10
Therefore:

i(r,u,, Ky = i(f}(b(l,'),U},K) = i(H,(0, ). UK) = 1.

If a, = 0, then we shall construct {/; as in Theorem 1 from [2]. Shortly, from:

f.0) < _l_, @, > 1

sup

LE(0, w) 0 a,t

where
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uniformly with respect to 1 € [0,w], we deduce that there exists a real

169 . 5 109

x—+0 X

number r such that:
0<r<b,

and

f(t,x) = X <Lforalire [o.w], x € 10,7,
(IO‘C T
which implies, using (H,) and (H,):
0 s f(t,x) < L for all 1 € [0,w), x € [0,r].
T

Let U, = {x€K]||x| <r}. Now, it is easy to prove that T((jo) C U, and

consequently (see [6])
i(1,U,,K) = 1.
To construct U,,, and U,,, we have to distinguish following cases:

If a,,, < » then

a
U, =1*€EK|b, < min x(f) s max x(¢) < ""la

L tE[0, w) tE10, w) o, -

< aml
U, =1x€ K| x| < la

a - n+l
n+l

K) is, now, similar to the calculus of (7, Uj, K), forj € T n,

The calculus of i(T, U

n+i?
and we obtain the same result:

T, U, K)=1.

+13
Moreover, the calculus of (7', U.,,,K) is similar to the calculus of i(T, U, K), for a, = 0

and the result is:

i(T,u

n+2>

K) =1

If a,,, = %, then from:



E. KIRR

M< 1 a . >1,

’ n+i

sup
tE[0, w] 0 a,.,T

J(%) = S0 %)

Q0 x> X

¢>b,,, such that

where

uniformly with respect to 1 € [0,w], we deduce that there exiss

0=<f(t,x)< ¥ forallr€e [Ow], x=t
T
n+l
Hence
0sf(t,x)<_X_ +B, forall1€[0w], x =0, 4
ot
where § = max max f(7,x). Now, choosing R > b,,, such that R . B < £,wef
XE0, 8] 1€]0,w) aml‘t T ’
deduce, from (14) and (4’), that: {
0 s f(t.x) < X for all 1 = [0.w], x € [O,R],
- .
and
. R
£, s flt,x) < < for all t € [O,w], x € [b,.,, R].
Let
u, = {x € K|b, <min x(t) s max x(1) < R}
n 110, w) LE[0, w] ‘
U,., = {x €Kllx] <R} |
Now it is easy to prove that T(l?ml) Cc U, and T(flm) cUyU,, and consequently'z
(see {6]):

iT, U, ,K) =i(l,U,,,K) =1

+2?
Nevertheless, we constructed the family of nonempty, open, and bounded subsets of

K: {U| j € 0,n+2}, with the properties:

(1,U,K) =1, for all j € 0,n+2, (15)
vcu,,, for all j € O n+T, (16)

and
U N0U = forall j, k&0 n+T provided that j = k. (17
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Using the additivity propertie of the fixed point index, by (15)-(17) we deduce:
el _ n+l

i(T, U, \N(UU),K) = i(T,U,,, K) - Si(T,U,K) = <(n+1) = 0,  (18)
J=0

n+2>
=0

sincen €N
Now, (15) and (18) imply that there exist x, € U, for j =T, n+T, and

n+l _

x, €U\ LiUJ such that Ix;=x, , for j = 0,n+T. By definitions of U/, j = U, 7+Z, and
J=

by (17), it 1s obvious that x,, x,, ..., x,.,, are distinct, nontrivial, nonnegative, w-periodic and
continuous of Eq. (1) with the properties (6°) and (7).

So, our theorem is completely proved. B

Remarks. 1° In particular, for n = 0, a, = 0, a, = % condition (3’) become superfluous
and we obtain Theorem 1 from [2]. But, clearly, our second Theorem is an extension of
Theorem 1 from [2] even n = 0. Here is an example where Theorem 2 applies and Theorem

1 from [2] does not:

Example 2. Let us consider Eq. (1) with T = 1 and

AN I 1
—_| =(sint+2)yx,forr€ R, x € {0,
(5)6( )‘/— [ 100[

-

f(tx)=‘203(sint+”)x—] 4forlERx€ ! X
S b W) A TR

)
(sinl+2)[]_"5(x—4)" . %J for t €R, x € [x,, +o0 [

L

where x, € ]% 1 [ such that f(z, x) 1s continuous in x,,

FOf"=0,ao=-,7](-)-,a0=2,a,=4,(x|=5,b

) = _;.and g1 = _;_(sint +2)

we can apply our second theorem, on the other hand:
Tinv JU,x) _ oo - T S, x)
x— +0 p x— 40 X

and, obviously, Theorem 1 from [2] do not apply.
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