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ON SOME MOMENTS OF COMPUTER SCIENCE EVOLUTION IN ROMANIA
by

Emi! Muntean

In the fifties, a group of researchers from the Institute for Atomics Physics, Bucharest
built up the first 1omanian electronic computer machine, due to an imtiative of Acad Gr.
Moisil This computer, named "Computer of the Institute for Atomics Physics" (CIFA-1), was
designed and smplemented under the co-ordination of Eng Victor Toma, 1n 1954 On that
occastion, at the same 1nstitute 1n Bucharest, a8 new research group aimed to work tn the field
of computer software programming, is formed

After a short tune, in 1957, at Cluj, is founded the first Romanian institute, having
Acad Tibertu Popoviciu as supervisor Founded on the 1* of Apnl, 1957 and called the
Computer Institute of the Romantan Academy, his activity was based on that of the Numeric
Analysts Department of the Cluj branch of the Romaman Academy This institute has been
onented to fields much more related to those constdeted today as part of Computer Science

This 1nstitute, founded by Acad T Popoviciu 1in Cluj, represented at that time an
exceptional organizatoric achievement There were very few such institutes in the whole
world, and 1 Eastern Europe the research in Cybernetics and Computer Science was neither
encouraged nor recognised In Romania, since the foundation of the Institute in Cluj, ten years
were necessary for the totalitary goverment to oficially promote the interests in the fleld of
Computer Science and to found, in 1968, in Buchaest, the Research Institute for Electronic
Computers (known later as the Computer Technique Institute, IT C)

The first romanian transistonzed computer, DACICC-1 (Automanc Computing Device
of the Computer Technique Institute, Cluy), was buslt at the Computer Institute from Cluy, in
1961 The research groups from the Department for Computer Machines of the same Institute,
start the design of some complex applicatrons, both tehnical and economical As a
consequence, different industrial companies 1 Cluy introduced computer technique the shoe
factory Clujana, the Railway Company, the Company for freczing equipment The research
1s ortented towards optimization problems, linear programming, transport problems There
were formed some research groups spectalized on different fields hardware design, software
design, tehnical and sciennfical applications, economical applications These structures,
founded between 1960 and 1965 at the Computer Technique Institute 1in Cluy, have tpical
Computer Techmque and Computer Science nterests During the same pentod, due to the
influence genelated by the Computer Techmque Institute, the Department for Computer
Machines 1s founded at the Faculty of Mathematics This department will have prepared many
generations of computer scientists Ten years will pass from the foundation of this department,
until it will have a computer for the students activity and for the teachers research in
Computer Science

Less than ten years after the foundation of the Computer Institute 1n Cluy, the design
of a complex project at that time has begun After a lot of complicated efforts to find the
nongoverment financtal support, in 1967, the design of the DACCIC-2 computer started The
DACCIC-2 design project had contained a lot of new elements, mtroduced at that time as
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mnovations by the big computer companies, especcialy by 113M through 360 sente

The DACCIC-2 computer had

- word length on 32 bytes,

- memory adress on octets,

- mterrupts handling,

- some paralle! treatment (statements preparing and

execution),

- the speed of the central umt was 200,000 operations/sec

- a kernel of the operating system which achieves the peripherals management, the
interrupts handling, the programs management in multiprogrammung, compiler, assembler,
hibrary and loader for FORTRAN programming language,

- & tehnological approach for a senal production

The design this project on an industrial scale hasn’t been achieved Under the pressure
of the world development and the imatiatives from the neighbourn countries, the politcal
leading dectded to buy a license, to organise a computer production and to concentrate all the
research forces in a national institute of a ministerial rank {(nonacademical), with branches 1n
Clyj and Timugoars, where a lot of valuable research in Computer Scienco had been
developed This had taken part between 1968 and 1970

Afier a few years, the results seemed good. a lot of equipment had been introduced
i the centralized economy, apphcations were developed, especlally for management, afier the
pnuciples of the state economy

The licence copyright and the attempt to develope it improved the scientific research,
solving some of the magor problems in Computer Science

At Cluj, the ITC branch had concentrated the research in the domains as
programming languages, databases 1n penipherals design, personal computers and so on
Interesung 1mplementations were designed for the Romanian computers arhitecturs,
developing the licence, for almost every standardized programming language: FORTRAN,
FORTRAN-77, COBOL, PASCAL, C, ADA and CHILL Prototypes were obtained for
penpherals, which, later, had known a large serial production displays, plotters, digitizers and
personal computers During this peiiod, new research groups were formed, which worked,
from a organizatorical point of view, on the same principles as the teams from the computers
companies

The concept of "Regional Computer Centre " apeared 1n Romansa, in the seventies,
as the principal user of the computers This regional Center co-ordinated the computer science
activity tn a region, and all of these centres were co-ordinated by the Central Institute for
Computer Science (1 C1), which, for many years, directed even the necessary of computer
equipments of all the companies and enterpnises 1n Romania

After 13 or 15 years, one may clearly realised that Romania could not face the
developinent rate in computers, that the tehnology obtained by hcence had grew older very
fast and that a new one hadn’t appeared The research developed in the eighties, 1n the
domarn of computer arhitecture in the whole world and, especcialy, 1n high tehnology, had
the effect that the Romaman products as minicomputers, personal computers and peripherals
became unfeasible and uncompetitive

The world tendence 1n Computer Science was a descentralized one, was 1n a process
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of "democracy”. In Romania, the industrial companies could hardly develope their particular
applications since the Regional Computer Centre and the Central Institute for Computer
generated a tendence of hypercentralization.

That explains the fact that, after 1989, almost everythit io Ocazuter Science had to
be taken from the beginning, especially conceming the oquipment availability, applications
design and the training of the operative personne). Some good e g:s:eace has been gained
duning the period of assimilation and development of the licences. Hut theso was an old one.
Also, a lot of people gained experience in using the medium computera and minicomputers
for management applications, but even this one had the dezavantage of beeing rolated to 8
hypercentralized oeconomy, based on laws completly different than those necessary for a
market economy.

In a completly new situation, different from that before 1989, the Romanian computer
scientists had adjust very quickly, undemstanding that Romanis represents a large computer
market. As a consequence, a lo$ of comere’=) cz=anies, with state and private fundings, had
invested in computer equipment, from private fins. A lot of computer compsaies had been
founded, increasing the quality in software design and computer service.

We hope that in the forthconung fsture will bring an explosive increase of computers
users, comparative with that in computer equipment. Of course, this fact is seriously affected
by the economical restructure and development



LA R
L

ba

:ﬂaa oy

%53



STUDIA UNIV BABES-BOLYAI, MATHEMATICA, XXXVII, 3, 1993

AN IMPLEMENTATION SCHEME
FOR THE PARBEGIN-PAREND CONSTRUCTION

Florian Mircea BOIAN snd Alexandru VANCEA®
Dedioated to Proftssor Emil Muntean on hls 60 aaniversary

Received Fobruary 25, 1994
AMS subject classification 68045, 68010

REZUMAT, - O schemd de lmplemen'lare pentru construcila PARBEGIN-PAREND,

Lucmtea prezintl o schems de translatare onentatd spre sintaxi pentru construciis PARBEGIN-

PAREND, schemi pe baza ciireia se poate constnn ugor un translator care genereazil cod in

iimbajul C sub sistemul de operare UNIX.

The constructton PARBEGIN P, | P, |. | P, PAREND ({3] describes the
simultaneous execution of the processes P, P,, P, and their parallel evolytion until all of
them terminate The n processes begin their execution at the same time and they function’
synchronously

This control structure contains a single entry (PARBEGIN) and a single exit
(PAREND) and 1t 15 a static control structure, this meaning that all processing decisions are
taken at compile ttme

The fork-join instructions are frequently used 1n UNIX, these being implemented by
means of a fork-wait mechanmism These instructions provide a direct meéhm;ﬁm for dynamic

process creation and the possibility of multiple activations of the same process

The execution of a child process 1s made by calling the fork function which creates

" "Babes-Bolyat” Umversity, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romenia
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the child process by duplicating the father’s image Fork retums in the father process the
child’s PID and zero in the child.

The UNIX fork-wait mechanism [2] allows the synchronization of a father process
with Its sons The wait function blocks the calling process until one of its childs terminates
If at the moment of the call one of its childs it's already terminated the retuming is
immediate The value returned by wait is an integer representing the terminated child's PID

p = wait (&status}
where status is an integer providing informaticn about the process status.

The synchronization with a cenztain child (let’s say with the one having PID=pid1) can .

be done in the following way
whitle (wait(&status) = pid1),

These functionalities suggest the possibility of expressing a PARBEGIN-PAREND
construction by means of the fork-wait mechanism ‘

Let’s consider the independent processes P,, P, as the subjects of a PARBEGIN-
PAREND 1nstruction, with the syntax

PARBEGIN P,PAR PARP, PAREND
(we introduced the word PAR 1nstead of |, because the latter may be confused with the C
bitwise OR operation)

In these conditions the PARBEGIN entry point has its equtvalent in the sequence

if (fork()) == 0) { P,; exit(0), },

:;zz if (fork()) == 0) { P,, exat(0), };

else 1f (fork()) == 0) { P,, exit(0), },
else  for (1=1, 1<=n, 1++) wart(&status),
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Having these, we can express the PARBEGIN-PAREND construction through the
following syntax-directed translation scheme {1}

(1) <PARBEGIN_constr> .= PARBEGIN process <tail>,
if {(fork()==0) {process; exh(Q);} <tail>

(2) <tail> = PAR process <tail>,
elsz if (fork{)==0) {proccss; exit{D);} <all>

(3) <tail> - = PAREND,
for (i=1; i<=n i) walt{&siatus);

where we put the nontermuinalg between brackets

The process terminal designates one of the P,, P,, P, processes

One of the issues that anse retatively to this scheme is how to handle nested
PARBEGIN-PAREND censtructs The answer is simple once the deeper construct has been
1dentified and translated, it becomes a process

Production (1) will generate process P, Tho rest of the processes are generated by
production (2), which also increments the numbei of processes by one Production (3) uses
the number of processes for generating the PAREND waiting point_correctly It's easy to
write a translator for this mechanism |

Let’s see a generation example with two processes

( <PARBEGIN_constr>,
<PARBEGIN_constr> ) ==

( PARBEGIN process <tail>, ’
if (fork()==0) {process; exit(0);} <tail>) ==

( PARBEGIN process PAR process <tail>,
if (fork()==0) {process; exit(0);} else if (fork()==0)
{process; exit(0);} <tail>) ==
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( PARBEGIN pracess PAR pracess PAREND |
if (fork()==0) {process; ex{t(0);} else if (fork()==0)
{process; exit(0);} else for (i=1j i<=ny i++) walt(&status);)

REFERENCES
I Aho AV, Ullman JD - Ths Theory of Parsing, Translation and Comptling, Prentice Hall, 1973

2 Rochkind M - Advanced Unlx Programming, Prentice Hall, 1985
3 Tancnbaum A 8 - Modem Operating Systems, Prentice Hall, 1992
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SERIAL AND PARALLEL ALGORITHMS
FOR SOLVING A PROBLEM OF CONVECTION IN POROUS MEDIUM

Ioana CRIOREAN’

Dedicated to Prof Emil Muntean on his 60* anntversary

Rsceived August 5, 1993
4MS subject classification 63Y05, 68022

REZUMAT, - Algoritmi seriahi gl paraleli pentru rezolvares unel prableme de eonvesitate
in mediu paros. Scopul acostel lucrir este sl se facd o comparafte Intre algontmii seriali i
paralell, pentrs a ezelva o problemd dati in medw poros Sunt studiate in hicrare
performaniele algoritmilor pamaleli care au ca scop cregterea vitezei de caloul gi a efictentei lor

Abstract. The main purpose of this paper 12 10 make a comparisan between a serial
and a parallel algorithm for solving a given problem of convection in porous medium The
performances of the parallel algorithm, established by means of speed-up and efficiency, are

studied

NOMENCLATURE

gravitational acceleration

velocity of the flud

ptessure of fluid

temperature of fluid

permeabtlity of the saturated porous medium
thermal conductivity of porous medium

rate of internal heat generation of porous medium
Ru internal Rayleigh number

characteristic length of the porous medium

time

by oy T 0T

=~ o~
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uyv velocity components
Xy coordinates

Greek symbols

P density of flud

n viscosity of fluid

(pc), heat capacity of fhud

(po), heat capacity of porous medium
thermal expansion ceefficient

1 dimensjonless stream function

) angular coordinate

Superscripts

dimensional vanables
Subscripts

0 value at reference temperature and density

L Introduction. The problem under consideration s that of 2D steady laminar
convection 1n a porous layer bounded by an inchined squre box with four ngid walls of
constant temperature (figl) Heat 18
generated by a uniformily distributed
energy souices within the cavity The
porous layer iz 1sotropic, homogeneous

and saturated with an incompressibile

flud The heat geneiation creates a

Fig 1 Schemaue diagram of the enclosure

temperature gradient across the layer, and
thereby provides a driving mechanism for natural convection within the cavity

In the present study, the saturated porous medium is treated as a conttnuum, with the

12
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solid and fluid phases tn local thermodynamic equilibnum Also, the saturated flind and the
porous matnx are supposed incompressible and all physical properties of the medium, except

the fluid density are taken to be constant

2. Converning equations. The fluid motion obeys the equations Darcy-Oberbeck-
Boussineq For the case of volumeiric heating considered here, the goveming equations can

be written as

V-V =0, )

v’ =£:-(p’g-Vp’). @

(pe), ' ey (VT = kT 8 @)
o = poll- BT -1 @

The four equations may be written

ou’

d
=0, 1’
ax’ 7 )
/
u' = %(-p’gsmcp —%i)_’.] )
v = I; -p'gcos¢ - Of, ] @M
a1’ a’l’ a1’ ‘ a1 827"
(pe), +(pc) |u’ v/ =k +85', 3
¢ [ a’/ (p )f axl ayl ')xl? ayl'l ( )
o' = [1-B( - 1)) “)

Dertvaung (2°) after y” and (2") after x’ and taking 1nto account that the temperature function

has the form 7°(x’ y’), it i1s obtained

o' K or _ ap’
gsmn¢ f‘-———- T — | 5
Ay’ u[ Po ay’ ax’ay’] ©)

13
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v/ K 1o dT7 a*p’
—_— = | gCOS —_— 6
T 8cos¢ po f 5 a5y (6)
Subtracting (6) from (5) we get
du’ _av' _ K _ ol . 9T 8T
—— =g sind . ~cosd_—l @)
3y’ ax’  p Poﬁ[ ay’ ¢ ox' }
Using the dimensionless variables
' ! ), Ly’ ‘ / R(F -1,
(oM ;u=(Pc)fLu,yrn({)c)fv,x=;’f__,y=.¥_,7’= ( o)
{po),L* k k L L S'L?
(7) becomes
KL*8' o,
..a_ﬁ - _O_v_ = Pogﬁ(PC)f smnjz_a.z - costb.e}: )
dy ox pk? dy dx
LX)
Taking Ra = M , where v = pu/pj and a = {pc),/k as the Rayleigh number, (7°)
oy
becomes
on  ov aT ar
e = = Ra{sing - ~cosd —— 7"
dy Ox ( ¢ ay ¢ ax) 7
Analogously, using the dimensionless vanables, {17) and (3') become
o oy g )
ox  dy
AT w31, 8T Ly @)
i at ax dy
Equation (4") 18 ver}ﬁed by the streamfunction vy where
w=3¥ o -0% ®)

0 )7 ’ ox
So, imtroducing (8) 1n (4") and (7") we get the finally syatem of two equations with two

unknowns (the temperature function 7" and the stream function )

T, 0% 0T 93T oy,
] o1 dy dx ox dy

©)

We solve this system beetg sifuated in an enclosure with unit square section (I, = 1), eith the

14
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initial conditions
fy=19,=0 (10)
and the boundary conditions

T=9=0 forx=0 and 1, y=0 andl iy

Numerical results.
3.1. The Stendy Problem In the steady case, our system of equations is

b 3T _ oy o7

s Sl =Vif+1,
] dy ox  dx dy

(12)

ax

Vi = Ra(sm(p%z —cosd)ﬂ)
y

In order to obtain the solution for the system (12) with the conditions (10) and (11), we used
the Multigrid method [4] with 8 Gauss-Seidel smoother The space derivatives were
approximated in the following manner the first order derivatives with the Euler forward
formula and the second order derivatives with the centered differences, accordind to [6] The
discretized solution for the temperature and stieam functions was obtained working on an
equidistant gnid £, (where / indicates the level of gnd), defined in the following manner
Q, = {(1h,,jh)|0 51,15 N,k = UN,N, = 2}
Denoting 7, = T'(ih,,jh), y,, = Y (ih,h) for every 0 <4, y s N, I being one grid the

system becomes

1";_,.1_“’,‘, 1,0[‘]_1["_’4’“[‘/_1",!‘] T:,/ol_Tq = 111~IJ+II-1J+TI\/¢1+1'IJ-1_47!J

+1,
A, , ) ) B

13
‘P,.,I,*‘I’,-1J+‘l’,d.1+‘P1_,_1"'41p,., = R[I S|n¢ ]‘,Jvl-z‘] “COS¢ 7;'|‘/—7;J
h} A hl

15
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The solution of system (13) was abtained in two ways first, as the outp{xt of an senal

algorithm and second, as the output of a parallel algonthm,

3.1.1, The serial algorithm The algornthm which solves (13) by meana of up te seven
gnds (I = 7) contains the following steps
1 Bolve the fltst equation of system (13) using (10) and (11); results T new;
2 SBolve the second equation of system (13} using T new just determined, v, and ¥ at
* the boundary; results ¢ new;
"3 Solve the first equation using  new and (11); resutts 7 new;
4' Repeats Steps 3 and 4 until "CONDITION" {When‘ it fs aecomplish, the steady
solution is obtained) '
Note In our case, "CONDITION" means that the difference betw;:en two succesive
approximation is less that 10 In other words, 1f we denoted, ¢ g. F"“ anf F*” two succesive
approximations (where F represents 1 or ), "CONDiT!ON" will be . o
| Froow— frodf = 107
where |4| denotes the Euclidean norm [4]. Fig 2a ‘and b ina:llica‘te' the decreasing of ervor
during ten repetitions of Steps 3 and 4 (Fig 2b detailes more tllle efror at temperature
function) h
Concerming the results, our observations are the followings: the steady temperature };@s ‘
form like tn Fig 3 and is not influenced by Ra number or ¢ angle Also, the ge“neral shape
of the function (and this note is valable for the st-ream ﬁmction,‘too) does .not changre with

the numbers of grid points

16
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Fig.2b The ervor (detailed)

The stream function modifies according with the Rayleigh number and has the shape as in

Fig 4

The stream function modifies also according with the angle of enclosure (see Fig 5a-c)
3.1.2. The paralle] algorithm. The paralle! algorithm was implemented on the INMOS

Transputer System from Umiversity of Heidelberg, under PARIX operating system The main

17
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function T ———

cooooo
[~
-
Ty

Vil Wi)yes
.41'!"";‘!‘"""")",

Fig 3 Tempemture in steady case with Ra=300 amh ¢=0

funasilon P51 ac Ras0.04, phivG ——

R

S TR,

2e-06
L 32-0%
la-06
S9-07

9

-3e-07
~la-04
-1 §a-05
-22-0%
- Sa-08

1 0

Fig.4 Stream function tn steady case with Ra=0 01 and ¢=0

ideea tn solving our problem 1s that of {3}, but with chages dus to the convective terms (first
equation) and the right-hand-side (second equation) from (12) We use a rectangular grid with
(N, - 1) % (&, - 1) unknowns, then each processor is assigned to & subset of unknowns (data
partitoning) In an one-dimensional arrengement of 1 processors caled a ring configuration
of length n, processor pp € {0, , -1} is assigned to the grid points {(15)] max (1,pN,w)

si=s(EtDhNw, 1 =<y s N} If the sidelength of the grid is not divisible by the number of

18
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Fig 3¢ Steeam tunction with Ra=001 and 0=270
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processors, then some of them will be assigned more ;mknowns than others, generating an
unequal load balance, which 13 one source for loss of efficiency Taking into account the way
of disposing the grid pou.us on processors and denoting by x,,.(p) and x,_(p) the leftmost,
respectively the rightinost grid point column stored by processor p, each processor will
executes simultaneously the following steps
1 Computes the convective terms for the first equation of (12),
2 In case of an overlapping, sends values to the lefistde processor (if it exists) and
recerves values flom the nghside processor (if 1t exists),
3 For every j from 1 to n, do
3 1 Receives values from the lefiside processor (if it exists),
32 For every 1 from x,,(p) to x,_.(p) do
Computes Gauss-Seidel iterations,
33 Sends values to the rightside processor (if 1t exists)

After processing the previous steps, with step 3 repetead till the steady solution for
temperatute 13 obtained (we have noticed that it happened after 10 iterations), we proceed
analogously to solve the second ecuation of (12).

In order to compare the results obtained with the serial and the parallel code, we used,
like in [1] and [3], the speed-up, defined as

v TMonu

S = T (14)
where 7}, 15 the time needed for obtaiming the solution the with the serlal code and 7, 15
the time took by the paiallel code, using » processors, and the effictency which 1s defined

Ey = @) as)
n

20
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Table 1 presents the executton times (in sec ) for the senal and the parallel code, when a

different number-of processors was used So, we can nottce that the increasing of tume for the

senal code 1s deeply connected with the numbers of gnd points (on a coarse gnd, the

execution takes a few seconds, the execution takes a few seconds, on a fine grid it takes more

that an hour!) and the executton time decreases according with the number of processors used,

with the abservation that for the coarse grid 32 x 32 the situation 1s htke in Fig 7

Table 1 Execution thne

Nr proc/Nr pe 32x32 64x64 128x128 286%286 321x32)
1 16 6029 679188 276 725 1116 65 1671773
7 786234 192012 53 5307 167 708 240 032
1 7472 17 1044 435171 126 039 173 89
15 759328 16.6198 396177 107 014 141 814
19 740141 16 0309 36 4428 95,6118 128 211
23 749709 15 6065 33 5842 89 002 116 689

Fig 6 visuahses the information from Tabel 1, meanwhile Fig 7 indicates only an

unconcludent situation when more that one processors are used

Tuble 2 Speed-up

Nr proc/Nr pe 32x32 64x64 128x128 236x256 312x312
7 211 353 516 665 698
H 221 397 6135 885 95
15 218 408 695 1043 118
19 224 423 759 1167 1308
23 221 435 776 1254 143

The speed-up for all operations carried out on a fixed grid depends heavily on the

number of unknowns per processor, because a larger proportion of computing time 1s spent

on communication and the effects of unequal load distnibution are more pronounced if the

number of piid points per processor 18 sinall This means that a high speed-up can be
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achieved on the fine grids (assuming a large number of gnd points per processor on the fine

)

grids) like 1n Fig.9 whereas the spéed—up deteriorates on the coarser grids tsee Fig 10) Table

2 contains the values which sustained these observations and on which Fig 8 and 9 are based

[

Woiking with several processfom on a coarse gnid, the improving of speed-up 1s not

.
[
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concludent, as we can see from Fig 10 Next, accordind with (15), Table 3 contains the values

13
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which indicate how efficiency depends on the numbér of processors and on the number of

gnds points
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Table 3 Efficiency evolution

]

Nr proc/Nr pe 64%64 128x128 236x256 312x312
7 0350 073 095 099
11 036 057 080 086
15 027 046 069 078
19 022 034 06l 068
23 018 0133 054 062

Based on Table 3, Fig 11 shows the increasing of efficiency when finer gnds aie

used

3.2.The Unsteady Problem Solving the unsteady problem means to solve the system
mn the onginal form (9) In order to do this, we use the same finite difference formulas to
discretize the space denvatives, as in 31 The time denbative will be discretized with the
backward Euler formula ([6)] We denote by dr the timestep, which 1s considered fix, by 1
the Laplace operator and by G, and G, the gradient operators ([2]) Let 7* be the temperature

function at the moment of ttme 1, = kdt Then the first equation of system (9) can be wntien
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33 10 vy 139 %) M2 ERD)
Fig 11 Efficiency

m the following manner
Tl -k
dt
For a fixed time nterval {4,1,,,.], denoting with J the Identity operator and based on

GG T - GG T = L e (16)

(16), to solve the parabolic equation of gystem (9) means to solve the following bidiagonal

blok-stiuctured system

As=0b
where
L GG GG L 0
ot yoe o
—l ] 2l v b v i
. GG GG - L
g dar di e T
0 iy L1 G G GG - LT -
L dt a7r T
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. I,
7 L+ 17t
Jao dt

5= and b= 1
qrhktm
1 1

We observe that at every moment of time the relation which gives the temperature
function is fully implicit’and we have to solve, as the first equation of system (9), the

following , ‘ ' ‘

okl Eed kel guke) kel kel kvl kel Kot
1, +‘P:J.|“‘Pu T, -1, Wy %y La-T1, B

ar T, T T, 7

! !

RN IR AL T AT T
h? dr
Equation (17) together with the second equatton of system (13) will form the problem

an

we have to solve in this case As in the paragraph 3 1, the Muttignd method was used and
the ggneral sche;ne of solving s the following:
Step 1 Solve equation (17) at the moment of time /! based on 7* (where 7°, the imtial
tempetature 18 given), results #*'!
Step 2 Solve the second equation of system 9130 at the moment of time /*'' based on 7*"'
just determined results §*!
Step 3 Repeat Steps 1 and 2 unttl "CONDITION 1"
Note ”CONDITION 1" indicates the number of time steps we ha‘ve to execute unti)
the steady solutror 13 obtained, normally, thi depends on the value of df For instance, if o
=0 1, the steady solution 13 attain ;n mostly 10 steps, bult for dr = 0 001 we need almost 180

tme ierations to get 1t Fig 12a-2 show the evolution in time of the temperature function,

for Ra = 500, ¢ = 0 and d¢ = 0 001 After 180 time steps, the temperature is stationary (in
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’

order to compare, see Fig 3)
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Fig 12b The temperature atter 26 time steps
The following graphics show how the temperature function evoluates up to the steady

case

In the same conditions (but for Ra = 125), Fig 13a-¢ present the evolution in ttme of

the stieam function
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Fig 13¢ The Steean Fun rion ateer 51 tume steps
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After 180 time steps, the stream function becomes steady (Fig 4), 8s we can see from
the following graphics
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Fig 13d The Stream Fuaction after 131 time stepa
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Fig Lse The Stieam Function after 130 time sLeps

4.Conclusions. The main goul of this research was to show that transputer system can

efficiently solve large computational problems with good performance We made study on «
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problem of interest 1n the computational fluid dynamucs field, which generated a parabolic

pioblem expressed by a PDE system In order to venfy the results, we solve first, 1n senal

and 1n parallel, the steady problem The outputs of this two different codes were almaost the

sama Based on the steady solution, we solved then the onginal problem, indicating by means

of many graphics the evolution in time, up to the steady state, of the solution functions
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REZUMAT. - Generarea structurilor de contral. Lucrarea prezinth o modahitate de a defini

specificapitle fonmale cu ajutorn! uner gramatict necontextuale

1. Intreduction. The aparition of the programming environments generates an
accentuated grow of progiammers productivity With such a sofiware instrument many acttons
can be performed editing a source file, comptling and hinkediting of a progiam, execution,
debugging even others facilities for files viewed as entities In fact, the apantion of
microcomputers and programming envitonments made a combination of the programming
work with the operating worl 1n a calculus system The abandon of the "batch" working style
and working interactively 1impose a specific tiaining in operating a computer If the first
programniing environment have had restricted functions, the recent ones, as TURBO PASCAL
or BORLAND C (considered in top of the classification), are very complex and are few
spectalists who can handle them completely However, the programming languages from these
environments (PASCAL, C, C++) may be consideied universal languages (solve a great
number of problems technical, scientifical problems, problems which had to work with many

informations and so, with files, graphical problems, object-otiented programming) and, that’s

* "Babes-Bolyar” University, Fuculty of Mathematies and Computer Science, 3400 Cluj-Napoca, Romania
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why handling all (;f the language facilities became difficult Fron. another point of view
languages as PASCAL, C++, COBOL or DBASE [V have thicker nstructions, from the
syntactical aspect, as FORTRAN We though that an instrument fo automatic generation of
control structures 1n a fixed language may be addéd as an important function mn a
programming environment

The problem of automatic generation of programs 18 not recent, and program generators
exist 1n some systems and software products As an example we mention DBASE 1V system
which has a program generator based on graphical specification

We propose a model for generating some control structures of a program ustng context
free grammars (1) A problem which hasn’t been solved efficently is the specification of the

structures

2. Control structures. For Digkstra structures (see for example (2))and for other
structures we will intioduce the following operators

a) C(s,,s,) - operator for concatenation structures 8, and s, 1n this order ,

, B

b) A(b,s,,s,) - operator associated to the complete alternetive structure (complete IF) with
the semnification

IF b THEN
8y
ELSE
. SZ

ENDIF,

c) k(b,s) - operator associated to the alternative structure with one alternative (suuple 1I9)

!

with semmfication 1F b THEN s ENDIF,

14



d)

f)

18]

4

GENERATING CONTROL STRUCTURES

*(b,s,, .s,) - operator associated to the generalized alternative structure (CASE)
U(b,s) - operator associated to pretested loop with the semmification

WHILE b DO
Q(s,b) - operator assoctated to posttested loop with the semnification

REPEAT

]

UNTIL b,
Are required some explanations
the three Dyjkstra arc D={ C, A, U} and are considered fundamental, with them any
algonthm can be described,
we usociate operators for structures D’={ C, A, &, *, O, R} which are in fact the
structures from the PASCAL language,
any other structure to which a sumilar operator can be asociated may be simulated with

D or D' (for example LOOP-EXIT or LOOP-EXITIF-ENDLOOP stiuctures),

we may intioduce the A symbol for the empty stiucture

3. Proprieties of the asociated operstors

C(s,8,) = C(s,,8,) - concatenation of structures s, and s, 1sn’t comutative
C(3,,C(35,5,)) = C(C(s,,3,),5,) - concatenation 1s asoctative

C(sh) = C(h3) =5 - the symbol of the emply structure 13 playing the role of the neutral

element for concatenation

C(A(bs,,5,).55) = A(D,C(5,,8,),C(5,,8;)) - concatenation 1s nght distributed to alternative

35
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structure

5 C(s,A(b,55,8;)) = A(b,C(5,,8,),C(s,8;)) - concatenation 1s distributed to left to altenative
structure 1f and only if s, structure doesn’t have any effect on b predicat

6 U(b,s) = A(b,C(b,U(b,s)),\) = A(b,C(s,A(b,C(5,0(b,5)),\)),A) = - this propriety shows that
the three D structure can be reduced to only two structures concatenation and the
alternative structure

7 Reducing D’ structures to D structures
8) k(b,5) = A(b,s,))
b) &(b,s) = A(b,s,U(c,s))
¢) *(b,s,, s,) = A(by,8,,A(b2,8,,A( ,A(b,.1,8,080) )

where b 13 formed from b,, b_,

d) Q(s,b) = C(s,U(~b,s)), wheie —b 15 the negation of b

8. Some equivalence proprieties

a) A(b,s,,8,) = C(b="T",C(Obab,,C(b,="F s,)), Oba—b,,C’(b,="F,3,)))

A could be reduced to the operators C by 1ntroducing a new boolean variable b, ( '1”

13 the value TRUE and 'F’ 1s the value FALSE)

b) A(b,s,8,) = C(k(b,s,),b("b,8,)) mentioning that s, doesn’t modify b

4. Generating grammars for control stroctures. With the introduced notation we
try to define a grammar which generates programms containing only control structures whose
assoctated operators have been descnbed One may give more than one grammar but we’ll

reffer only to the structures C, A, b, ¥ and Q
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Having n structures s,, ,s, (which may be considered the simplest ones, namely
attnibuting) and 2k predicates b,, b, and —b;, ,~b, we give a grammar which generates all
programms over the objects considered above

Let G = (N,X,P,S), where

N = {§,B} 13 the neterminals set
2={CARTUQ(,)s sb b b b}
1s the alphabet of the grammar

P S > C(5,8)[0®B,9)|€(5,B)le(B,5)|AB,S,5)ls,| s,
B ~>by| [bib)| [b
13 the set of production rules

S -us the source symbol, SE€ N

We consider the following examples

FExample 1 The word

C(3,,C(8,,C k(b ,85),C(5,, 0(b,,8,0)))
which belongs to L(G) over s,,5,,85,54,b;,b,,7b,, b, may be obtained through "=>" 1n this way
S => C(8,8) => C(5,C(8,8)) => C(5,C(5,C(5,9)) =>
C(8,C(5,C((B,S),C(8,50)) => C(5,,C(5,,C(t(b,8,),C(s5, V(—by,s N
“and 1t 1s equivalent with the following program
51,
8,,
IF b, THEN s,,
S5,
WHILE -b, DO

54
ENDWHILE,
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Example 2 Let’s constder the following word
C(s,, Alb,, (b,,8,). £2(8,,7,)))

€ L(G), which 1s obtamned 1n this way
§=>C(5,8)=>C(8,A(B,S,S)) => C(S,A(B, (B,S),0(S,B))=>
=>C(8,A(b,, (b,,3,).9(s,7b)))

and .t 18 equivalent to the following program

8y,
IF b, THEN

WHILE b, DO

5,
ENDWHILE
ELSE
REPEAT s,

UNTIL —b,
ENDIF

The introduced grammar has the following properttes ,
- 18 a simple precedence grammar

- theie are no conflicts 1n grammar

We may prove that for any progiam (written 1n any language) only with structures C,

A b, Uand Q exsts one single wotd from L(G), which reproduces the program through

operators

Different generators may be construct now having as input a word from L(G) and as

output a program written tn PASCAL, C, C++, COBOL, FORTRAN and so on The problem

which hasn’t been solved properly 1s the specification of the word from L(G) at input
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REZUMAT. - Suprafefc generate prin fnterpalare blending. Folosind proprietatea funcgics

interpolatoare blending de a coinctde cu functia pe care o interpoleazit pe puncte, segmente sau

arce de curbft situate in domeniul de defimpio al funcises, sunt generate suprafete controlate de

valon ale functfer si derivave ale acestora de gradul I sau

The blending interpolation has many practical applications As it 13 well know,
blending interpolation 13 the interpolation at an infinite set of points segments, curves, etc
Thus, 1f one gives the contour of an object by such elements (potnts, segments, curves) using
a blending interpolation, we can generate a surface that contains the gtven contour Hence,
we can construct a surfuce (a blending function interpolant) which mach a given function and
certain of its dertvatives on the boundary of a plan domain (rectangle, triangle, etc )

Using such a surface fitting techmque i1t was constructed the roof surfaces for large
halls (industrial halls, exposition halls, public buildings) [4,5,6,7,8]

Our goal 13 to construct some new such surfaces using Lagrange’s, Hermite's and
Bukoff’s interpolatory operators

Let 7 = {(x)) ER | x20, y=0, x+hsh) be the standard tnangle and f 7, =R a

given function

" "Babes-Bolyai" Unwversity, Faculty of Muthematics and Computer Science, 3400 Cluj-Napoca, Romania
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The operators used are,

1) Lagrange’s operators L,", L and L,” defined by

(L)) = h,;’f;yf(()yﬁ )

( L,’f)(x ) = Iz};:)’j(x,oy h)—} - (k%)

L)oo = ot 0y f004y)
x+y x+y
each of them interpolating the function f on two of the sides of 7,

2) Hermite’s operators H', H and H,” corresponding to the double nodes

( H;f) (cy) = (h-x-pY(h+2x-y) A0.)+ x(h-x-yy 90 3)+

} (h-yy’ (h—y)z)
x*(3h-2x-3y) x2(e+y-h) 0
Ty -y
oy Y Ty »
(Y = LT D002 (&"fx;{)zf“*xx,o>+
YIRS e a2 ) e g
(h-x)? A=) (h-x)? SO )
121 o) = LS g0 ceyye (00 pany(0 cay)s
i oy Gy Koxp
LX) o 0)- XYY an_pon +»,0)
A

3) Birkhoff’s operators B,” and B, defined by

(B7)0eg) = S0P ery-hy*Oh-y)

(B7)6wa) = e 0)-Gey-Hy (e hmx)
4) Birkhoff’s operatois B, and B, with
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. o o XETBAHEIA-3A2) a0
(827 = RO 0 0)

XH23R) oy 1, 28 °GMX)
ECE s To e g

(B ) = fix,0)+2Y 2‘;‘;{;_’2)'3” ) o, 0)+
V3 qomgy 0 27 GV g
oy ey e

for \,y€[0,4]
1 For the begining we construct a scalar interpolating formula generated by the
operators L,", L;” and H,", H and H,”, using two levels of interpolation

First, the function f 15 approximated by the boolean sum of the operators L,” and L;”

(1) (L,‘G)Ll’/)(xy)=h/;x—yj(0y)+ A fe 0y e )~
-y h~x h-x

_h-x-y _yth—x-y)
; £0,0) W/(O,h)

In order to obtain a scalar approximant of f, we use In the second level the following

approxunations
RO = (H)(0p), Ax,0) = (H;)(c,0) and fehx) = (H;"Aochx)
Let
(2) SPlRY,
with

0) (= LTIy 2 10,00+ 0020 ny+
: ,
(2hx +3hy~2x 2-2xy- -x)(h~x-
+.}(2/7.X 3hy 2¢: 2xy 2y2)j(07h)+x(h x)}f/: X y)ﬂl'u)(0’0)+
D) o or 20D raon on X
ST OO 0 S 0y

. x)'(,:l;x)j(l.l))(o’h) - YDAh—x _.:’):\'(h -x)] f(o‘l’(O,h)
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be the obtained interpolation formula

Theorem 1 If there exist f*(V) and fOY(V), 1=1,2,3, where V, are the vertixes of
T,, then Pf nterpolates / and 1ts first partial derivatives at V,i=1,23

Also Pg=g for all gEPg, ie the exactness dogree of P is two

The proof of the theorem 15 a straighthforward computation

' Theorem 2 If 28, ,(0,0) [10] then

h h
(RACey)= I P, (SO O(5,0)dls + ‘[ Py, (X Y8 @ V(5,0)dls +

h
+ ‘[ QoY OO, Byt + ﬂ @, (k5,0 (s, N)dsdl,

where

Py(p58) = (-0, _xGh-20) (s +X 2(}"'2'?) (h-5)

2 h? 2
2
P (x,8)=(x~5), - ihTy(h—s)

00, yQhx+3hy-2¢2-2xp-2y?)
INCDEESS i e
+y[V(h~x";’2+x(}'_x)] (h-9)
2
@ (ep8.0=(c=8), 1),

The proof follows by Peano’s theorem for a tnangular domain [2]

The approximation formula (2) 18 tested on the function flxy)=1/(x*+y2+1) The
graphs of the function f and of the approximation Pf are given in Fig 1 and Fig 2.

Remark Such an interpolation formula can be used to obtain a cubature formula over
a triangle

2 Next, 1t will be used the given interpolatory operators to generate some surfaces on
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the domain Dh={(xy)ER2| be|+] ylsh}
Such a surface 1s constructed first on the triangle T, ofter that 1s extended by
symmetry with respect to the coordinate axes on all D,
Furst examples of such surfaces are obtained from the approximation function Pf (3),
tor o
) OO0 0.0)/(0,0)=
=0, 0)=(0,)=0

and f"90,h)=f"(h,0)=-05 (Fig3)

1espectively ‘
(B)  f0,0)=4,11h,0)=R0,h)=f"(h,0)=/*"(0,h)=0,

J49(0,0)=V(0,0)=-1 and
SEO0,h)=fOD(h,0)=-0 25 (Fig 4)
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Now one supposes that the function f take the value zero on the border of D, i e
=0 This 13 equivalent with the condition fx,4-x)=0 for x€[0,4) Using this condition
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from (1) one obtains

L= 0,39+ T 1,0y -2 r0,0)
h-y h-x h
Taking j(O,}1)=(H1yf)(0,y) and j(x,0)==(H,*j)(x,0), in the same condition f{x,h-x)=0 for

all x€[0,h], one obtains the clags of surfaces

H(xy) =l7_—hx_3~£ (12 +he-2x -2y 970,0) +hx(h -x)f9(0,0)+

+hy(h=y)f OD(0,0) ~hx 2 MO, 0) -y 1100, ),
which depends on the data

(/0,0),/"%(0,0),/(0,0),/"(h,0),/*"(0,h))
For the data (4,-1,-1,-1,-1) one obtains the surface. from the Fig 5
Another class of surfaces 1s given by the boolean sum of the operators G, and (5,
obtained from H," respectively /)" in the conditions fx,i-x)=f"O(x h-x)=fCY(x h~x)=0 for

all x€{0,h],1¢
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(h-x-y)(h+2x-y) 0 LX(h~x )’ 1
P2 o202 poaoy

5 (h-x-y)(h-x+2y) Hh-xY) ron)
Uy = +
(60 O 0)

(G;]j (xy)=

We have

Gy @ Gy =(h-x-ypp| 12 L90y)+
( i )= y)l(” ),f( ,yz (hh )Zf‘ 0)
1-X+2) w2 pon o h*+2hx+2hy+6xy
T O s )T 00)-

) o 0)- 229 0,002 o0

Now, for

£0) (B (05)=A0.0) +(r-Ry*>(0)
5,0 <{BA(x,00=40,0)+ (x4, 0)

and

702003) HLi70)0)= L2 1090.0)+2 5090

1%6,0) L7, 0) =i’,15./*°">(o,0> +f0.0)
1 1

one obtains

Gy =(h-s-y) ey ety eedhe iy sy }f(o 0)+

| -y (hxy h
R 00) %,%‘_ﬁlﬂ‘“’(o 0-2/49(0,0)-
O N
h(;Zx)zy . (}”‘i’x _X_peng, 0)},
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Thus surfaces depend on the data

(A0,0),/%(0,0),/*(0,0),/(0,0),
JEOR0)SVN0R)SO0(0,) SO (1,0))

As an example (Fig 6) 1s given the surface obtained for the data ,(4"1'“1""0’5’0-5)

The last class of surfaces 1s generated usmg‘ the Fejer’s type operators /%" and /)

obtained from H;" and H,” for

SOO(09) =/ h-y p) L (x,0)=f OV x i-x)=0
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Taking 1nto account the general condition that fx,h-x)=0 for x€[0,/], one obtains

x ¥y o[ h+2x-y
Fy @ F =(h-x- 0+
( A(xy) (h-x y){(h y),f( 87

Lh-x+2y (h+2x-y)(h+2y) 0,0
R 0 R )}

In order to control the inflexton points we take

£0) 480N
5,0 4B H(x,0)

One obtains

[ 2=y
Mx.y)=(h-x-y) BYj0y)+
( (h-yy ( j)

h -x+2y _(ht2x-)(h+2p) 0,0
iy B0 )]

that depends on

(£0,0),/%(0,0),/(0,0),/(0,),
JER@B)SEAMN0)S 20, 1),

where A, yE[0,h)

Two example ate taken here, for the data (4,-1,-1,0,0,0,0) with A=y=5 (F1g 7) and (4,-
075,-0 75,0,0,2,2) with A=y=13 (Fig 8)

Finally, we remark that for any of the presented classes of surfaces, for convenable

data, can be obtained a large vaitety of surfaces
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REZUMAT. - Proverbe ale programérm revismte. in lucrare se presintd metode, principi

si regull considerate impontante in activitatea de prograisare Sc sublinia2s imporianja acestora

in once curs de invijare a programint

Computer programming is still 1n a state of crists, at least for two reasons the
hardware changes, and the appearance of new problems which can be solved by computer
The complexity of programs 18 incieasing conhnuously, and 1 generates majoi changes 1n
progiam design techmques The notion of "good program” can be considered from two
different points of view progiammer’s view, and user’s one From the user’s pomnt of view
one ¢an distinguish 10 so-called "external quality factors" [10] correctness, robustness,
extensibility, reusabtlity, compatibibity, efficiency, portability, venficabuity, integnity, and ease
of use krom programmer’s viewpomnt, one can enumetate two major criterta for a good
progiam modulanty, and complete documentation Of course, the external quality factors
must be taken into account as final goals 1n the software development process

All these quality cntenia must find their place 1n the formation of new programmers

There 15 a continuous need to teach programming for obtaiing a better productivity, 1 e to

" "Babey-Bohwt" Umversity, Paculty of Mathemancs and Computer Science, 3400 Clyg-Napoca, Romama
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teach the students the methods that allow us to obtain correct programs from the first
execution As Floyd [4] pointed out 1n his Turing Award Lecture, there "1 possible to
explicitly teach a set of systematic methods for all levels of piogiam design” Methods,
principles, and rules considered important in programming are given below Also the
bibliographical source 1s indicated 1n the brackets

v Define the problem compleiely {7, 9] 'One cannot write a correct program if the
problem to be solved is not known exactly By thiz we mean to write the specifications of the
problem Aﬂ it is known [11], this {s not an easy problem, but a very serious one Often the
beginners start to write the program but they do not know what are the results that must be
obtained

2 Think first, program later [9] This may be interpreted to design the algorithms
correctly Think to them, try to prove their correctness, and write the program later, when you
are sure that everything 1s correct

3 Use Top-Down Design [4, 7, 9] This is a very well known, and 1mportant
programming paradigm [4] It 1s also met as step-wise refinement method [13], or Divide and
conguer principle [7]

4 Use Modularity as much as possible [9] A funcuon, a procedure, a Turbo-Pascal
unit, a Modula module, or an Ada package are considered modules Each module of a
progitam 15 more understandable than the entire program Also, using modules, the logrcal
structure of the program 1s improved Build up hbraries of your modules for reusability

S Use hibrary routines whenever it 1s possible [9] This rule 15 a consequence of rule

4 Certainly, the existing routines are teady to be used, no time needed for writing and testing
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these routines Thus the productivity, and the probability of correctness will increase

6 Design the algornthms by Structured Programming paradigm [2, 4, 9, 13] This rule
asks to design first the algonthms in a Pseudocode language, and only then to tianslate them
in a programming language Also, it requires to think to the structure of the product, at each
level

7 Define a new data type as an Abstract Data Type (ADT) [6] The above rule asks
the designer to think generally, not 1n the context of the solved problem An ADT may be
viewed as a module that defines a data struciure and the operations on this structure This
independence of the context has beneficial eftect for the reusability of modules Also, an ADT
1s an open system, i e one can add new operalions, not affecting the old ones, and not
affecting the programs that already use this ADT

8 Design mput-output rontines for each absh act data type {5, 6] These Input-Output
operations are very useful in general Ofien, when a standardized interface 1s recommended,
for these operations one uses videoformat, such as Turbo Vision from Borland Thits rufe is
one way of achieving rule 21

9 Use object-orwented design [1, 10] This techmque permits to obtain flexible, and
easy modifiable programs The programs obtatned by this techmique are easy to mamtain
since, by using the hierarchy of classes in libraries of components, a masstve reusability of
these components becomes possible Also, adding new compénents does not affect the
programs that already use the old components On the other side, the other feature of object-
oniented programming, the polymorfism, simplifies commumication protocol between objects

A program m OOP sense 1s considered as a structured collection of objects which
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communicate by message passing

10 Strive for continuing wvention, and elaboration of new paradigms to the set of
your own ones [4] This 1dea, due.to Floyd, is very well presented in his Turing Lecture He
recommended to "identify the paradigms you use, as fully as you can, then teach them
explicitly”

11 Prowe the correctess of algorithins during their design [T} The errors must be
eliminated as soon as possible. Trying to prove correctness, some wrong parts may be
discovered " And this can be done much earlier than running it on a computer Also, If we
succeeded to prove it, the confidence in its correctness grows up significantly Gnes [7]
inststs on developing correct programs from the beginning His words are "A program and
its proof should be developed hand-in-hand, with the proof usually leading the way"

12 Concentrate to the important things of {hé momenl, postpone the details later {9,
13] This rule 1s connected to the stepwise refinement method But it has some other aspects
At all levels give attention to the main tlungs, for example do not lose time to pnnt the
results nicely 1f you are not suie these 1esults are correct |

13 Nevertheless the details are mportant {6, 13] Furst, the software products must
respect ngorously the spegtﬁcatxons_ Second, the form of the pnntéd results are more
tmportant for users than the entire work done for developing the product These must please
the users !

14 Choose sum,rb!e and meaningful names for variables [1, 13] The readability 01: a
program may be one of its very important quality It 1s very useful duning maintenance phase,

when many other programmers have to work on the program More, Gries [7] recommends
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to define ngorously the meaning of a vanable by an assertion that remains true during the

execution of the algorithm

15 For every variable of a program make sure that it 1s declared, iinalised, and used
[12] A variable may appeared tn a program eccidentally, other va'nable may not be initralised
since a line of a program was not typed

16 Use symbolic constants [6, 13} This rule is a consequence of a Murphy like rule

The constants must be considered variables |

One recommends to define symbolic constants at the beginning of a program (module)
procedure and to use the names inside Anry modifications means small changes in the
definmtion of the constants, and eliminates further errors

17 Use names for all data types of the program [6] We consider that all properties
of a type are concentrated tn its name Using names, the modifiability of the program 1s
easter Also, the clanty 1s mgher

' 18 Use mtermediate variables only 1f 1 ts necessary |91 |

The uncontiolled uttlization of auxihary vanables, by breaking expressions, ]ugt complicated,
in subexpressions assigned to new vanables, dimimishes the clanty of the program, and makes
more difficult the program. verification

19 Declare all auxiliary variables of a procedine as local variables [6] This rule 1s
connected with the autonomy of the corresponding procedure It offers the following
advantages easier testing of the procedure, procedure independence of the context in wluch/
it 1s used, no secondary effects due to unexpected changing of the values of global vanables

20 Be careful at the parameters of the called procedure {6, 13] Each module must
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be used only through its interface, that 1s, the actual parameters passid to the module, which
must correspend to the formal parameters (dummy varisbles) Respect their meanings, and
be careful to the correct usage of the procedure calling mechanisin

21, Verify the value of a variable immediately 1t was obtaned [6] ~A variable receives
a value by an assignment or by an input operation, In both cases the value must be correct,
it is worthwhile to check it Especlally for input operation, a variable must be protected from
wrong values

22 Think to pretty writing the text of the program {9,13].

Most of the programming languages allow free format, i e. the blank spaces may be used
freely Use them when wnting the text of the program, to improve the clarity of this text It
must leap to the eyes the beginning and the end of each statement Use indeatation for this
purpose Make the structure of your program visible.

23 Use the FOR statements properly; do not change the value of the comﬁing
variable, or the limits inside the cycle [9] This rule ask to respect the semantics of the For
statement Do not use For when Repeat or While control structures are most appropiate
Changing the limuts, or the value of the counting vanable may cause invisible errors, very
difficult to discover

24 Do not leave a FOR cycle through a Goto statement [91 This rule is specific to
Fortran programmers, but may be met in those languages that possess GOTO stajements The
reasons for respecting this rule are the same as for the rule 23

25 Avold GOTO statements {3} The Goto controversy [5, 8] is well known Using

untestricted Goto statements destroys the good structure of that module These statements
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must be used only if the programming language does not possess the standard computing
structures

26 Avoid tricky programming {91 A program must be maintained, oftenly, by other
persons different from the people who wrote it And tricks are not compatible with good
structure,)clarity, and flexibility. Also, for the portability of the program, one must avoid the
implementation dependent features.

27. Use commenis [9, 13}. The text of a program (module) must be understood easily
and unambiguously by all the other programmers who have to read it For this purpose the
comments can be very useful. We think that each module must contain comments saying at
least what it is doing, i e the specifications of the module, and the meaning of the used
vani;bles

28 Vertfy (test) the correctness of a module soon after it was obtained [T}, The rule
10 ask us to prove formally the correctness of a program (module) But, just if we have done
it, we still have to test this module After all, the proof may be wrong, or the imp!ementa@ron
of a comrect algonthm may be incorrect. Ledgard [9] recommended "to hand-check the
program before running 1t" We find this very useful for the beginners, some studente; better
understand their errois running themselves thetr wrong. programs

29 At each phase verify the programm correciness {6, 13] The verification of
program correctness means the venfication of specifications, the formal proof of algonthm
correctness, the inspection of the text of the program, and the testing of 1t Remove any error

as soon as possible !

30 Use assertions fo document programs and verify their coriectess during
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debugging process [1] If one has proved the partia:l correctness of the algorithms he has used

r
'

assertions in some points of the algorithms These assertions must be invariantly true dunng_

execution They reflect the meaning of the corresponding vanables In the debugging process

i)

venfy their correctness. If they are not true some errars have occured and they must be

ehmmated

r . T '

31. Write good docunentation .s?multanemtsly wiih program budding [13] The users

need a documentation manual and the mamtenance acnvit:es need information about all levcis

of program development Often, there is no documentation at n!l The nbove mentioned rule

.

asks to wiite the documentanon aimultaneously with the developmem of the pmgram The
program itselt must be selfdocumented by comments But lt is uat enough There must be
wnitten documents that show all the decistons at each level of the development process. There

must exist documents for specification, design, implementation, and testing. Also, a user

3 " . LN T .8

LETE !

manual i8 needed

32, Use ‘the existing debugging teéhniques [9] We hope to obtzim eiror—free programs

But errors may arise, and finding and correctmg these errors is an important, and very often,

4 ’

an unpleasant job Every operating system has built in it some debuggmg alds Use them to

v

assist you in finding the errors
33 Ask for computer assisted soﬁﬁaré developnment [7, 13] Computers can help
people to‘can:y out their unpleasant works Particularly, theyf can help in program

development in different \ways Many of them are mentioned in the excelient book of Schach

[13] planning the activities, and many activites done by Software’ Develbpment

Enwronménts, known as CASE (Computer-Aided Software bevelopment) There are many
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activities that have to be performed duning the development of the program, such as

computations {4], or various decisions

34 Thmk to the program portability [9] A program must be portable, i e to be able

to be run directly on a different machine, other than the onginal one Portability is not usually

an 1ssue to worry about But 1t may be an important quality of a program Isolate into

modules those parts of the program that usually change from computer to computer (such as

input/output operations). All other modules can be built portable, using statements

corresponding to the "standard specification” of the implementation language, and avoiding

the particular extensions which are dependent on the compiler implementation

-~3

9

11

12
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REZUMAT. - Consecinge ale teoremelor privind convergenga metodel courdel. Lucrarea
is1 propure de a pune in evideniit citeva consccinie ale unet teoreme de convergentd ale
metode coardei

Xy = X, = AP(x,)

mctod? folosith in rezolvarea ecuatlel P(x) = 6, unde P X — Y, X, Y fiind spajii Fréchet

1. In this paper some consequences of the convergence of Chord method are given
Let be the equation
Px)=9 M
where P X — ¥ 13 a continuous nenlinear mapping, X and ¥ Fréchet spaces [3], 8 € Y the
nulf element of the space
Let be any xox, €D C Xand A =[x, x|, P]" the generahzed divided quouent
[2) of P
Staruing from the imtial approximation x,, x,, and using the algorithm
X, .= x -~ A P(x) )

known as "the Chord method", the sequence (x,) 15 generated, each term of 1t being an

" “Babey-Bolyai” Unliversity, Faculty of Mathematics and Computer Science, 3400 Chy-Napoca, Romanta
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approximate of the solution of (1)

Qbwviously, the Chord method cannot be applied in the following two situations

a) applying the algorithm (2), x, terms of sequence which are not in D are generated,

b) the mapping [xn,xn_l,P]" does not exist

To apply the sterative method (2) at each step, the mapping [x,,x,.,, P]" is needed
To avoid this inconvenient, a "modified” method may be applted
X, = %, [% %, P P(x,) )
which, to generate the (x,) approximations, uses only the mapping

A, = [xo,x_,,P]"

Although 1t gives a "weaker" approximation that (2), it is often use in practice

We mention that both the Chord method (2) and the modified one (2°) applied to the
approximative solving of equation (1) are 1dentical with the succesive approxtmations method

x, = A(x) (n=01, ) D)

applied to the equations equivalent with (1), respectively

x = x-[x® x® P P(x) Gy
and
X =x- [xo,x_l,P]"P(x) 3y
Concerning the convergence of Chord method, in {1} the following theorem is proved
THEOREM A If the following conditions are satisfied for initial approximates x,x.,
ex

1 A= [xo,x_l, P]" exists,

2 NAP(x)(sm, 1=0,-1 and < Vav,;
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3 ) A [u, v, W, PY| (= K, Yuvwe€E 8(x,,5/4m_),
4 hy=Rn, s 14,
then the equanon (1) has at least one solution x° € S, which is the limit of sequence (x,)
generated by (2), the order of convergence being
et x,(1 (s —Lpa™ @k, @
where 0 < g < 1, and s, 1s the general term o} the sequence of partial summas of Fibonacel

sequence, with u, = uy = 1

2. In the following, we modify the hypothesis concerning the existence of mapping

A, = [xo,x P]", using another mapping, connected with 1t

0 1
We probe the following
THEOREM 1 Supposing the extstence of any contiumous linear mapping A € (¥, X)*
which has an iverse and the following conditions fulfilled for initial approximates x,x., €
SCX
1) AP(x)|(Yy,, i=0,-1 and W, s /47,
2° ) A [%, %, P)-I|(sa<1, I beeng the identical mapping,
3%)) A[u,z,w,P]|(sE, YuvweSs (%55 541, ),

o h = X
(1-ay

A s 1/4
then the equanion (1) has a solution x* € S, which 1s the limit of sequence (x,) generated by

(2), the order of convergence being

e, (1 (< g™ (4R, )

where s, and g has the significance given bellow
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Proof We show that, from the hypothesis of theorem 1, the condittons of theorem A

follow
Hypothesis 2° of theorem 1 implies, based on Banach’s ihworem, the existence of
mapping
H=(Alx,x, ,P})" (6)
which for
1
M H|(s
I-a

It follows the existence of
HA = A= [xo,x_,,P]"
so the condition 1° of theorem A 1s venified
To fulfill the condition 2° of ‘the same theorem, we constder
MAPEY (=) HAP(x)| (=

Y H()|APG) | (50, i=0,-1
L-a

i
-a

Changing 1, respectively with , 1 =0,-1, we obtain te condition 1° of

]
theorem A
In order to obtain the condition 3° of theorem A, we have

N A [x®, x® x® P]| (5 )| HA[x®,x® x® P]| (=
- K
=1
- 1-a

so K corresponds to _K_
1-a
According with the expressions for X and 1, we may evaluate i;o , so the condition

4 of theorem A

Then dus to theotem A, it results the existence of solution for equation (1), which 15
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the hmut of sequence generated by (x,), the rapidity of convergence being given by (5)
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REZUMAT. - Specifiesrca formald prin jambda-caleul a Umbajulul Smalitallc Studiy

comparatly, fn aceastd lucrare sunt discitale doud modele de specificaii prin lambda-~caleul

ale mbajulu Smalttalk Prin considerarea unsl ierarhyi in mediut Smatltatk au fost comparate

cele douli modele din punctul de vedere at criterilor pe care o spepﬁlcqtto trebuie 83 lo

respecte

Introduction. Denotationa! semantics besed on lambda-catculus has been & very used
specification method in some models for formalization of the object oriented languages
Cardell [1] stated that the only notion critically associated with object oriented programming
1s inhentance This paper tends to present & comparative study of some denotationat
specificatton models for inheritanece. All the models presented are based on the object oriented
language Smalltalk so the study will be somehow \easily

Inhentance is the possibility to define o new class (named subelass) using the
definition of one or more existing classes (named superclass) A subclass can inherit instance
vanables or methods from the parent class The meaning of thts property can be understand

using a "[ook-up" method Suppose & message, containing the call of a method, is sent to'an

object Then the look-up method search the class containing the method.
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procedure lookup (name, class)
If name = local_name then do local_action
else if (inhented_module= NIL) then undefined_name .
else Jookup (name, inherited_module)

In Smalltalk there are two special variables which can appear in a message These two
vanables are self and super When the message contains the vanable self the search begins
in the 1nstance class

lookup (name, tnstance class)
and 1f the message contains the variable super then the search begins in the superclass of the
instance class (which contains the method)
lookup (name, superclass of the instance class)

The mechamsm of self and super supports the access of the methods which have the

same names either from the superclass and the subclass, although théy have a different action

If a subclass redefines a method which was defined in superclass then this mechanism became

very useful

Kamin’s specification model

In [5], Samuel Kamin proposes a denotational {<flzitien (o7 Caalitatk The major
characteristic of this definition is the simple way in which inheritance is handled and the
paper contains an version of this semantics in Stgndard ML which can be executed

The Smalitalk defined by Kamin has some meodifications.

- only a few priritives are defined,

- the only literals which are permitted in the language ‘are the integers and the arrays,

- the pools vanables are omutted, excepting class variables,
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- contexts are not objects,
- methods are not objects, so it 1sn’t possible to create methods dynamically,
- there 18 a special way in which the array constants are handled any time when an
array constant is evaluated a new array is created;
The definition 1s based on some semantic maps which assign meaning to syntactic
entittes These maps models the hierarchy, the inkeritance and message passing mechanisms
Let’s consider now the following example in Ccnce", The hierarchy H contatns two
classes Point and Pointl, where Pointl 1s a subclass of class Polnt In Point are defined two
methods, the first being redefined in Point! and the second method invokes the first one
class Point
instanceVariablesNames
’ x y’
method DistFrom Orig
sqr(self x* + self y?)
method CloserToOrig(p)=
(self DistFromOrig < p.DistFromOng)
Point superclass Pointl
method DistFromOng
(self x + self )
Let H be the hierarchy containing Point and Pomntl For an easy reading, we will denote
ml = method DistFromOrig
m2 = method CloserToOrig and
R = C[H]}
In this example D[H} = YR = sup{ L, R4, RRL), .}
For a complete understanding of the example we shall recall the notations used in the

spectfication model Kamin has defined some semantic maps to specify the behavior of the

object onented mechanisins Inhentance is modeled by the two semantic maps C and D
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D Hier --> Env
€ Hier --> Env -—> Env

D[H] = Y(C[H])
CiHlp
a A<¢,m>
let Hc)=CSwxF
iy if F(m) = no-def then p<S,m> else M{F(m)]p

where C{H] defines an application from the environment (meaning of the hierarchy H) to
the environment ( noted Env) which executes an "inhentance step” For example, if H ts a
hierarchy containing the class Point! and it’s superclass Point, m2 is an attribute not defined
in Potntl and p(<Pdnt,m>) is defined, then (Point1[H]p)(<Poinil,m>) will be defined
equivalent with p(<Point,m>) So, Point! has "inhented" the definition of m2 fﬂ;m Point
Point1[H] executes only an inheritance step’ if D} is 8 subclass of Pointl, which doesn’t
define the attnbute m2, then (PaintifHlp)(<D,m>) is not defined, but
(Point1[H}(Point1 [H}p))}(<D,m>) is All the inheritances are resolved here
We use L to denote the primitive routines (e g machine arithmetic).
We will construct some of these envirenments to undersiand the inhentance
mechanism
RL = { <Point, m1> -> 1,
<Potnt, m2> > 1,
<Pointl, mi> -> 1,

<Pointl, m2> -> 1,
<Smallinteger, +> > ., }
R(RL) = { <Point, m1> -> euclidian distance,
<Point, m2> -> if the arguments are fiom the class
Point then compare the euclidian
distance, else 1.,
<Paintl, m1> -> distancs,
<Pamntl, m2> -> Ri(<Point,m2>) = 1, .}
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At first, all the methods are undefined After one step (see R1) are defined only those
methods which send no messages (ltke * or +) or invoke primttive methods After two steps
(see R(RL)), 1n addition to RL, are defined the two versions of method DistFromQOrig and
the method CloserToOrig only for the class Point After three steps CloserToOng 1s defined
because 1t can see the definition of the method DistFromOng from class Pointl (at this step
the method can’be apphied only for a1 g'uments from the Point class - the method 13 inhented)
After four steps Pointl has tnhenited the complete definition of CloserToOrig (it can be
applied for arguments from Point or Pontl)

We will transcnbe the denotanonal definition given above in Standard ML

val no_methods Methods = fin m => no_def,

val HO Hierarchy =
fn P => (P, "Object”, [], [, no_methods),

val psi0 = (fn obj => (simple (tntval 0),"Object"),
fn P => null env),

val Point_methods Methods =
fn "m1"=>normal("m1" [],{]literal(intconst 10,10))=>no_def,

fn "m2"=>normal("m?2" [1.{1, call(self,"m1" inconst 15,15))

val Pomt_class ClassDef =
("Pont", "Object”, [], [], Point_methods)

val Pointl_methods Methods =
fn "m1"=>normal("m1" [1,{]Iiteral(intconst 20 20))=>no_def,

val Pointl_class ClassDef =
("Pointl", "Pomnt", [}, [], Pointl_methods),

val H Hierarchy = HO mod ("Point” --> Point_class)
mod ("Pointl” --> Pointl_class),

val prog Prg = (call(new "Point", "m2", []), H),
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pp prog psi0,

val prog . Prg = (call(new "Point1”, "m2", [1), H),

pp prog psi0,

This example illustrates how mhentance works In ML syntax fn x represents a
lambda abstraction If this program is executed and progl is evaluated then 1t returns (10,10)
because m2 representing the method CloserToOrig compare the points(10,10) and (15,15) by
the euclidian distance from ongin The evaluation of prog2 returns (15,15) because 20+20 >

15+15 (the two potnts are compare by the distance defined in Pointl)

Cook’s specification model

Cook’s defimtion [2] 1s baséd on three essential aspects related to the inheritance
mechanism

- the addition of new methods or replacement of the inherited methods,

- the self reference must be redirectionated to access the modified methpds,

- the super reference must be redirectionated to access the original methods

We will describe this defimtion using the same example The modifications are
expressed as a record, Point @ Point! The new methods from class Pointl are combined
with the onginal methods from the parent class Point, such that the method defined m Pomnt1,
in this case DistFromOrig, substitutes the correspond;ng method tn class Point

The vanable self 15 used to refer to the Point1 version of DistFromOrig and super can

be used to refer to the Point version of the same method So, the modifications can be

expressed as a two arguments function, self and super, and returning the record described
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above These functions are called wrappers.
Also the self-reference must be changed tn the inhented methods These methods are
contaned in a function named gepegator The result is a new class defimtion, namely a new

generator This mechanism 18 providcd by popemri cmalve e

The generator associated with Point is .
GenPoint(x,y} = A self
{ DistFromOng ~
sqri(self x* + self y?),
CloserToOng ~
Ap (self DistFromOng < p DistFromOng)}
[he wiapper associated with Pointl is
Point1Wrapper = Ax,y Aself
{ DistFromOng r+
(self x + self y)}
The wrappe:r application will be
Point1Wrapper » GenPoint(x,y) =
Ax,y Aself
{ DistFromOng »
(self x + self y)
CloserToOrig
Ap (self DistFromQrig < p DistFromOrig)}

After presenting these two models of specification we shall make some comments The
greatest advantage of the Kamin’s model is the simple treatment of inheritance The related
papers appeared before seems to have some disadvantages Kamin resolved them using fixed
points to model inheritance He had defined the semantic maps we have talked a little earlier
Indeed, for our example tt is a nice specification way But what happens when we have a

larger hierarchy? The specification will be sometimes not too easy to be followed. On the

other hand we haven’t used yet the definition of the E map, which 1s far more complicated.
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The moder has 1t’s advantage the specification 1s concentrated on inhentance and 1t's
mechamsimn 1s treated very simple and so 1t’s easy to understand Also, Kamin has descnibed
all the mechanisms appeared in an object oriented program the meamng of the hterarchy, the
inheritance process, the message passing, the methods evaluations, the evaluation of the
primitive methods »;fhlch provide access to low-level operations

What about Cook’s model? This model seems easier to understand maybe because it
1s provided with an tntuitive explanation of wnheritance as a mechanism for tneremental
programming The whole spectfication 13 based on ths motivation Also, Cook pioved the
correctness of his model demonstrating that it 13 equivalent with an operational semantics of
inhentance based upon a method-lookup algonthm This way of specifying the inheritance
shows that this 1s not only an object onented features but a general mechanism that can be
applied to any form of recursive defimtion Although Kamin's model is closely related, he
described inheritance as a global operation on programs, which blurs scope issues and

inhentance Here 1s the most important difference between the two models

Kamin’s model versus Cook’s model

Every spectfication has to respect some well-known cniteria We will discuss how
these specifications respect them
Formalization  verifies 1f the specification behaves conforming with the implementation

Kamin’s model can be transciibed in an executable version 1n Standard ML so this
catenum 18 easy to venfy We must also notice that the language had suffered some

modifications and omisstons But Kamin's goal was to specify the mechanism of inherttance
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and the missing details are not essentiai related with this concept
Cook proved that his model 13 equivalent with an operational semantics and 1t’s

obvious that 1t respects this cntenum

Costructability A specification must be easy to construct even if the notation used is formal
The omitted details make Kamin’s specification easter to build, but even so 1If the

hserarchy is thick then the construction of the C and D maps seems to be hard to follow

Comprehensibllity The specification must be easy to understand The specification given by
Kamin seems difficult to understand when we have to deal with the maps E and E

Minimality  All the non-essential details had been omitted ( we have already present the
omissions and the modifications of the language, because they are not direct related
with the inhenitance process) ‘

Applicability  From the applicability point of view Cook’s model seems to be more
interesting since his definition of inhentance, afthough 1t was developed fiist for object
oriented languages, shows that, in fact, inheritance 1s a general mechanism that can
be applied to any form of recursive definition
The major problem of object onented languages 1s that they lack a solid formal

fundamentation There have been some attemps in specifying object oriented features in

operational, axtomatic, denotational and algebraic semantics We have focus our attention on
denotational semantics because 1t provides a good mathematical instrument for specification
based on lambda-calculus and, on the other hand, an mnstrument which s not such
complicated and hard to understand as the algebraic theory used 1n algebraic specification

techniques This comparative presentation of these two model tries to be a study for choosing
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the most suitable formal specification
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REZUMAT, - Programare funcfiongldl si relajlonald cu PSP. Asticolul prozinth PSP
(Procesomul Simbolic Poisson), intr-o manieri ce unificd programarea relagionald cu clauze
Hom bazate pe predicale cu programarea functional bazath pe egalitifi Unificarca pleach de
1a o logich munimald, ce poseda att clauze Hom cit §i egalithy, numitdl logica clauzelor Horn
cu egatluaiti fn ipotezele teoremes Church-Roser, semantica operaionald a PSP constituie o
logicd completd Semantica se bazeazl pe unificarea a doufl aborddrl. una construitd pe baza
teonei modelelor, care foloseste relapia de satisfactie intre modele gi instructiuni, i una bazats
pe teoria demonstsiind, care folosegte relajia de partstionare (entallment) intre muljimi st
instructiuni PSP poseda tipuri abstracte de datc ce se pot defini de utilizator gi care pot fi
considerate module generice (parametrizate) Cu ajutorul subsortunfor se pot introduce
operatori polumorfici §i o relajie de mostenire pe tipunle de date Toate aceste caracteristici
concurd la defiturea nguroasi a semanticli cu ajutorul logicit substrat, ilustratd cu clieva
exemple

1. Introduction. A main feature of the processor described in this paper, hereafter
called PSP, is the practical way in which 1t unifies relational programming with functional
one, by unifying the logics that underlie relational and functional programming, namely first
order Horn clause logic and many-sorted equattonal logtc, to get many-sorted first order Hom
clause logic with equality [8]) In addition, generic modules are available with a rigorous
logical foundation, and PSP also has a subsort facility that gieatly increases its expressive
power

PSP s intended to operate with Potsson sertes, which are a well-known too! n
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expressing celestial mechanics problems The motion of celestial bodies 1s described by means
of differential equations, 1n which the night-hand-side terms are 1n fact Poisson sertes Usually,
the solution of these difterential equations cannot be obtained 1n exact form There are two
alternatives numerical integration or analytic construction of an approximate solution (known
as "theory of motion") First was used extensively, being a "classical” solution of motion
problems “The second alternative seems to be more attractive, because one can obtain the
solution tn analytical form, which provide a qualitative study of motion There \a.re many
analytical methods for construcung the approxsmate solutton of differential equations, most
of them known as "perturbation theory" methods {2, 14]

The advantages claimed for PSP includes sumphicity, clanty, understandability,
reusability and mawntanability There 1s another ‘requlremem that we argue also be imposed
on our symbolic processor every program should have an inttial model {10, 12] An miual
model 15 charactenized, uniquely up to 1somorphism, by the property that only what ts
provable 1s true, and everything else 1s false The nitial model provides a foundation for
database manipulations, since you know exactly 1s true

We have found that neither of the approaches, the model-theoretic and the proof-
theoretic one, 1s by itself sufficient to axtomatize o PSP The model-theoretic approach
focuses on the satisfaction relation |

M -y
between a model M and a sentence y, and the proof-theoretic one tries to axiomatize the

+

entariment relation
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between a set of sentences I" and a sentence y ;ieﬁvablc from I' The model-theoretic approach
1s exemplified by Barwise’s axioms for abstract model theory [1] The framework of
tnstitutions, given by Goguen and Burstall [6, 7] also belongs to this approach The proof-
theoretic approach has a long tradition, dating back to wori; of Tarski {15) on "consequence
relations", and of Hertz and Gentzen on the entailment relation ~.

This paécr ;JTDPOSBS a practical approach tt;at integrates the two above-mentioned ones
(model-theoretic and proof—theo}ctic aspects) into a single axiomatization The a:lxiomatization
in question consists of an "entailment systqm", specifying an entailment relatioq +, together
with 8 “satisfactio;t system" (specifically, an insttution in the Goguen-Busstall sense),
specifying a satisfaction relation = [11] The enﬁllment and satisfaction relations are then
linked by a soundness axtom

The éntailment relation + says nothing about the internal structure of a proof To have
a satisfactory account of proof_'s, we use the additional concept of a proof calculus C fora L
The same logic may have, of course, many difierent proof calcult When we wish to include
a specific proof calculus as part of a logic, the 1esulting logic plus proof caleulus 1s called
logical system The axioms for & proof calculus C state that each stgnature 1n the logtc L has
an associated space of proofs, which is an object of an appropriate category, From such a
space we can then extract an actual set of proofs supporting a given entallmen; C'ry

In order to obtain some efficiency with respect to PSP, we use the more general
concept of proof subcalculus, where proofs are restncted to some given class of axioms and
conclusions are also restricted to some gliven class of sentences It is by systematically

exploiting such restrictions that the structure of proofs can be simplified In this way, we can
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obtatn efficient proof theories, which lead to the theoretical concept of varable operational

semantics o

2. The features of PSP Conceptual clarity and ease of understanding are facilitated
by breaking a program into modules This in tumn offers support for debugging and
reusability When there are many modules, 1t 18 helpful to design the s;tmcmm of module
dependencies in an hierarchical manner Whenever one module (client module) uses data
(state) or operations {gervices) declared in a second one (server module), the server mlust be
explicitly tmported to the client and also must be defined earlier in the program text A
program obtained 1n this way has the abstract stiucture of an acyclic graph with modules as
vertices and the module dependencies as edges

A PSP program 1s a sequence of modules (objects) Each module may define one or
more new data sorts, together with associated operations that may create, select, interrogate,
store, or modify data Such an module may use existing modules with their sorts of data and
operations The module concept includes both data types in the programming language sense
(that 18, a domain of values of vartables together with operations that access or modify those
values) and algorithms

PSP has the following syntax for tmport

<importing> <mod_list>,
where importing 1s keyword and <mod_list> 1s a hst o module names By convention, if a

module M imports a module M’, that imports a module M", then M" s also tmported Into

M, that 1s, "umporting” 15 a transitive relation
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Usually, programming systems provide a number of built-in data types, for example
numbers and identifiers PSP has the following built-in modules BOOL, NAT, INT, and
RAT BOOL provides the expected syntax and semantics for Booleans NAT, INT, and RAT
define natural, integer and rational numbers (the last ones from the wntegers)

There 1s much work on providing user-defined abstract data types in programming
languages (e g [3, 4, 9] The essential 1dea is to allow users to introduce models that define
new sorts and their associated functions and give axioms in Horn clﬂuse‘ logic with equality
or rules of computation It can also be very helpful to have available subsorts and their
associdted predicates, as we will see later

Note that PSP keywords are written tn bold, module names are all CAPITALS, while
vartable names begin with a capital letter and that relation, function and constant names are
all lowercase Attnbutes can be given for operators, for example, assoc, comm, and id
indicate that a binary operator 1 associative, commutative, and idempdtent, respectively

PSP mux-fix notation allows any desired ordening of keywords and arguments for
operators, this 15 declared by giving a syntactic form consisting of a string of keywords and
underbar character "_" followed by a " *, followed by the anty as a string of sorts, followed
by "—‘>", followed by the value sort of the function Ssmilar conventions are used for
predicates An expression is considered well-formed in this scheme 1ff 1t has exactly one
parse, the pa;ser can interacttvely help the user to satisfy this condition

PSP operates with Poisson senes, which are of the form

;e Wb ds
‘5 ='Z:C‘, Nz Y gor;(klxl+kzx2+ +k"x“),

=0

where C, are numerical coefficients, y,, y,, .y,, are monomal vanables, x,, x,, ,x, are
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tngonometric variables, j,, 1, J. end k,, k, .k, are exponents, and, respectively,
coefficients, the summation index ¢ covers the set of all possible combinations of the
exponents J and coefficients & ( € Z", k € Z", Z being the set of integers)

In a concise form we wnte (1) as follows

L S=X1,
~Q
in which T, is a term of this senes
T=CFEP,
where the polynomial part P, has the form
] jl L]
Po=yys v,
while the tngonometric part F, 13

- Sin
1’1 = cos(klxl +klxl.’- +/{nr»)

In practice, oné does not operate with Poisson series, but with parfial sums of these

ones, called Poisson expresstons, of the fonn

N
§=Y 1, NeN

~0

The Poisson expression can be defined 1n an hierarchical way The complete
specification of trigonometric and polynomial part of a Poisson term (Ttr, and Pi)ol,
respectively) can be found 1n [‘13] Now we define the Poisson tetm as following

psp TERM is
importing Rat Tir Ppol
sorts Rat Ttr Ppo! Terni
op
_-_* Rat Ttr Ppol -> Term [nssoc comm)
= Term -> Bool
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vars
X Rat
Y T
Z Ppol
XYZXYZ Term
€q
0YZ=0
X0Z=0
XY0=0
INMYZ=YZ
X1Z=X2Z
XY1l=XY
XYZ=X'YZ -X=X,Y=Y,Z2=2
endpsp.

The above keyword impcr(ii=3 indicates that the sorts, subsorts, predicates, functions, and
axioms of the listed models are imported into the module being defined The equation

XYZ=XY'2 -X=X,Y=Y,2=0

1s & Horn clause with equality, where "=" represents equahty predicate defined on types,

respectively
In the same way, we define EXP, that 15 based upon TERM, and specify the Potsson
expresston, viewed as a list of terms, tn which the symbol "." 1s separator

psp EXP is
imparting Term
sorts Term NeExp Exp
subsorts Term < NeExp < Exp
op
_+_ Term Term -> Exp {assoc comm id 0]
_-_ Term Term -> Exp [id 0]
_*_ Term Term -> Exp [assoc comm id 1]
_ _ Exp Exp -> Exp [assoc id ml]
_==_ Exp Exp -> Bool
head  NeExp -> Term
tait_ NeExp -> Exp
empty?_ Exp -> Bool
vars
T Term
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E Exp
sinX;
NM-{ }-Y;, Tem
cosX,
sinX,
PQ-{ }'Y, Tem
cosX,
sinX,
PIQ-{ 1} Y, Tem
cosX,
€q
sinX, smX,
NM-{ }:Y,#PQ-{ }-Y,=
cosX, cosX,
sinX,
=(NM=PQ)-{ }-Y,
cosX,

(NM - cosX, - YY) *(P/Q -smnX, - Yy)=

=((1/2 * N/M * P/Q) * sin(X,+X;) * Y, Y, ,
(1/2 * N/M * PIQ) - sin(Xy-X,) * Y, * Y)

(N/M -sinX, - Y,)) * @/Q - sinX, - Y,) =

=((1/2 * NIM * P/Q) * cos(X,-X,) - Y, * Y,
«1/2 * NM * P/Q) - cos(X,+X,) * Y; Y5)

(NM - cosX; " Y)*(P/Q cosX,Y,)=

=((1/2 * N/M * PIQ) - cos(X+Xy) - Y, ' Y, ,
(12 * N/M * P/Q) - cos(X;-X,) - Y, - Y,)

head(TE)=T

tatl(TE) = E

empty? E = E == nil
endpsp.

In additon, we define two modules for differentiating and integrating of Poisson

expressions
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psp DERIV is
importing Exp
sorts Term Exp NeExp
subsorts Term < NeExp < Exp

op
Tf:.. _ Term Set --> Exp
d
5 - Exp Set —> Exp
vars
E Exp
T Term

cos(N, XN, K+ +NX))
NM - { }oY M- v,M Term
sin(Ny Y, HNy Yo+ ANeX)

€q

d cos(N; X, +N, X+ +N Y, + +N-X)

—— (N/M . { } . YlMl, ,Ylbﬂ(_ Yth) =
oY, stn(Ny X+ N, Xo+ +NY + +NX)

cos(N "X, +N, X+ +N Y, + +NX)
= (N*M,/M - { I O A A
sin(N XN, Xt AN Y+ +N-X)

sin(N; X +N, X+ +N Y, + +N,X)
FN*N/M - ( Joy MLy My My
cos(Ny X +N, X b +NY et +NpX)

0
—(0)=0
7 ©

0
— () =0
-

i, 0 d '
—_—(E)= head E) + tail E
aYk( ) aYk( ead E) aYk(a )

endpsp.

In the specification of INTEG module given below, we use the following abreviations
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IP =] fN/M * Sln(Nl'Xl+N2'x2+ +NL.Yk+ +NI'X|) ¢
M, M, P M. M,
Yyt Y YooY 0, dY,,

and
J, = SNM - cos(Np XN X+ +NY + +NPX)

MI Mk-l p Mkll Mh
Yy YooY Yea o 0Y, dY,,

where p Int, p=-1 (the case p=1 does not preserve the form of Poisson expressions, because
the integration leads to loganthms)
psp INTEG is
importing Exp

sorts Term Exp NeExp
subsorts Term < NeExp < Exp

op
fd_ Term Set —> Exp
Jf d_ Exp Set —> Exp
Vars
E Exp
T Term
P Nat

NM - sin(N XN, X+ +NX)Y M Y™ Term
NM - cos(N, X, Ny Xt +NPX) Y, M VM Term

eq
IO = ("]/Nk*N/M) * COS(Nl.X|+N2'X2+ +NK.YK+ +N|.Xl).
M, M., 0 M, M,
R (PR AR (IR 1

I = (1NN - cos(N, XN, Xt AN+ +NX):

M, M, 1 M, M,
Yy Yo Y Yt 0 Yy,

(VIN,™N) - sin(Np X AN, X+ +NY+ +N0X)-

M, M, 0 M, M,
Yoo Y Y Yt 0 Yy, )

I, = (C(INNM) - cos(N, X, +N, X+ +N Y+ +N,X)-
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M, M., P M. M,
D CRE (WD (R (IR (A

(N/M* SN FND) (N X, +N, X+ +NY( N X))

Ml Mlt-l P‘l Mbl Mh
D R (R AR (LI (A

-(INM*p/N*(p-)/NY) - L,) -p> 1
Jo = (UNSNM) * sinN, XN X+ +NY+ +NPX)-

M M, 0 M, M,
Yot Yo oYY, Y,

1, = (I/N*NM) - sinN, XN X+ +NCY o+ +HNpX):

M M, I M, M,
Yoo Yo Yo Yt oY,

(V(NGNY) < cos(N XN X+ N Y+ +NPX)-

Ml Mi-l 0 M‘lul Mh
Yoo Yo Yo Yoo -Y,)

5, = ((UNFN/M) - sin@N XN, X+ +NCY,+ +NeX)-

M, Mo M, M,
Yy Yoo Yo, Y,

(NM*p/(N*N))cos(Ny X Ny Xyt N Y+ +NpX))

M, Mo p-l My, M,
Yy Yo Yo Yo Y,

-(NIM*p/NAp-1N) “ T,5) - p > 1

dX, =0

S dX, =0

JE dX, = fhead(E) dX, + ftail(E) dX,
endpsp.

The NORMAL module provides a normal form of Poisson expressions
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psp NORMAL is
importing Exp
sorts Term Exp
snbsorts Term < Exp
op
normahised_  Exp -> Bool
normalising_  Exp > Exp

vars
TT Tem
EE Exp
eq

normalised(ml) = True
normalised(T) = True
normalised(2T E) - T = T’, normalised(T" )
normelising(E T T° B’) = normalising(E 2T E’) - T=T"
normalising(E) = E - normalised(E)

endpsp

The basic building blocks of parameterized programming are parametenzed modules
Parametenzed programming is a powerful technique for the reliable 1euse of software In this
technique, modules are parameterized over very general interfaces that describe what
properttes of an environment are required for the module to work correctly.

Here 15 an example of a parametenzed module, intitulated SUBST, over the theories
SORTI1 and SORT2 In our example, SUBST module provides the symbolic substitution
operation

psp SUBST [S1  SORT1,S2 SORTZ] is
importing Exp
sorts Term Exp NeExp
subsorts Term < NeExp < Exp
op
_sub__ Term S1 82 -> Teim
-sub_ _ Exp S1 82 -> Exp
vars
E Exp
T Term
X 81
Y 52
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eq
sub0OXY)=0
sub(nil X Y) = ml
sub(T X Y) = sub(T X > Y)
sub(E X Y) = sub(head E X Y) + sub(tail E X Y)
eadpsp.

where the meaning of expression sub(T X -> Y) is all occurences of the symbol X are

replaced by the symbol Y in term T SORT! and SORT2 are theories defined as follows

Th SORTI is Th SORT2 1s
sorts Sorl sorts Sor2
endth. endth.

The following spectfication

view SUBS is (Sorl as Rat
Sor2 as Set)

define a view called SUBS, mapping fiom the sorts of SORT1 and SORT2 to the other sorts
already defined, that preserves the subsort relatton, and a mapping from the operations of
SORT! and SORT?2 to the operations of Kat and Set, preserving anty, value sort, and
attributes

To actually use a parameterized module, 1t 13 necessary to tnstantiate (t with an actual
parameter The Make command apphes a parameterized module to an actual one, by use of
a view For example,

Make SUBSTITUTION is SUBST[SUBS] endin.

uses the view SUBS to instantiate the parameterized module SUBST with the actual
parameters Rat and Set

In the same way, one can construct new PSP modules, which implements new

opeiations on Poisson senies, like power expanston (including exponents integer numbers or
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1ational numbeis of the form 1/M or M/2 with M nonzero integer), inverse of a Poisson
sertes, binomial expansion and so on (see, for example, [2]) Also, on the basts of PSP we
can realize new specialized modules, Itke Kepler or Taylor ones In Keplenan module, for
example, the polynomial and trigonometnc varnables are the well-known elliptic elements For
these elements, there are transformation rules, which can be considered, from our point of
view, as rewnting rules The next lgvel of abstiaction consists of modules for constructing the
approximate solutton of differential equations up to an desired order One can construct
different modules for each "perturbation method", each of them using operations defined in
previous modules Using different methods applied to the same problem, one can compare the
obtaining solutions, keeping in mund the fE}ct that many of methods are assimptotically
equivalent This can be another facility of theorem proving of PSP

3. Concluding remarks PSP 1s intended to be a symbolic processor, with features of
theorem proving, dedscated to the study of the motion of celesttal bodies From the
unplementation point of view, theie are some modules that are not so efficient, this dim;:ulty
remains to be considered later Taking into account the built-in abstract data types, the
denotational semantics of initial models, the opeiattonal semantics based on rewriting rules,

PSP, considered as open system, can be helpful in other fields, too
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REZUMAT. - Un model matematic pentru rezolvarea problemel orarulul utilizind

limbajul Prolog. Lucrarea prezinti un model matematic general al problemet orarului precum

gi utilizarea acestula de ciitre un algontm de rezolvare a problemei Modelul matematic propus

asigurd descrierea unor restniciu extrem de diverse ce caractenizeazi solujiile fiabile Algortmul

propus asigurd ghsirea solufiel optime din punct de vedere al mai multor critern, construind

numai solutiile fiabile susceptibile de a fi solutit optiine

1. Introduction. Timetable problems are by their fundamental nature resource
allocation problems, whose solutions represent activity plans Every activity (also called
'meet’) needs certain available resources (persons, development places, time, etc) and
different conditions for development, depending on the activity itself or other activities
(avording certain times, activities sequences and certain parallel activity pairs)

These problems depend on the educational systems and they can be mutually very

different Some practical requirements cannot be easily caught in mathematical formulas
Therefore 1t 1s very difficult to model and solve these problems For this reason a model

should be universal and very flexible

Timetable problems are known to be NP - complete, only some reduced problems are

" "Babey-Bolyai” University, Faculty of Mothematics and Computer Science, 3400 C. lyy-Napoca, Romama
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polynomial In our situation, such a spectal case requires the permanent avatlability of
lecturers and rooms

In this paper we are concentrating on timetables for umversnt& faculty and propose a
PROLOG rule system which can be run on a microcomputer The mathematical model 13
extended such that a prion fixed assignements, faculty connections and other miscellaneous

constiaints are supported

2. Problem formulation Let’s assume gtven the set of faculty teaching staff, the set
of student groups (called classes), the set of available rooms and their sizes and the set of
activities that have to be scheduled 1n a certain week

Furthermore, a maximal allowed number of time periods (called hours) is assigned to each
day The lunch breaks the day into two daily ammounts of consecutive hours (called daily
quantums) with a given extent An activity should not be interrupted by this break

Every professor and class should have a set of unavailable hours due to a priont scheduled
activities or other reasons

For the feasibility, the timetable have to satisfy certain requirements The set of all the
requirements of the problem 1s pattitioned into three groups, corresponding to the vanous
degrees of strictness ([1])

- hard requirements, which must always be satisfied .,

- medium requirements, which should be satisfied although they can be relaxed 1n some

cases

- soft requurements, which should be satisfied 1f the other requirements allow this
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The hard requirements should lead to physically feasible timetable and they are expressed
as constraints In our case, conflicts due to activities taking place simultaneously but involving
classes or professors in common, have to be avorded Other constraints anise from the fact that
the activities should not be interrupted and they shouid not be scheduled in an maideqpate
room or at hours which are unavailable for one of its participants Also, all the activities have
10 be scheduled dunng the time span of one week

The soft requirements deal with preferences and they are modellud as objectives Our
objectives are that the umetables for classes and professors are compact, with no time
‘wmd;)ws, with as many as possible morning courses and other pedagogical recommendations

Every medium requirement can appear either as a constraint or as an objective, depending
on the nature or tht". wnterpretation .of the problem As a medium requirement, two courses of
the same topic (called equivalent couises) should not be scheduled 1n the same day

The objectives are the actual parameters for a given quality func-uo.n which reflects the
preference for one timetable solution over the other 1t 1s often difficult to quantfy the

desirability aspect of timetabling However, a weighted sum of the objectives s a satisfactory,

, ot

flexible and simple solution and for these reasons we chose it
On these conditions, the problem to solve 1s to find the feasible optimal solutions for the

\ ; ‘
timetable If there results several optimal solutions, then a decision maker will choose the

.t

preferred solution

3. 'The mathematical model In this section it will be presented a mathematical model

'

for the timetable problem based on the situation 1n our University, but the model 1s flexible
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enough to allow application to many ditferent situations
We consider the followmg' sets
G - the set of cla;;ses
D - the set of teaching staff
P=GUD - the set of participants in téaching activities
S - the set of available rooms
M - the set of teaéhmg activities (counses, sem:ﬁars, practical tr'aming, etc )
H - the set of a\;allable hours p‘er week For example, if we have 10 évéilable hours pér
day, we consider that Mbnday 18 represelmed by the {1 10}»"hour's, Tuesday vis
represented by the {11 20} hous and su on This co‘rlwen;lon can t;e ’changed in
" order to éausfy certain |htére§ts
and the constants
. hdpeN’ - the number of hours per day

mheN’ - the number of hours of the first daly quantum

(momtng hours)

To solve in a smart way the probléms of the lunch pauses and the enEi of a day; v;e add
an hour between the two daily quantums and an hour after each da;l‘Then we will mark z;ll
classes and professors as-unavailable at these fictitious hours Theref(;re, we avold the
interruption of the activity |

Now we can define the time window as the free ime penod between two occupied time

penods, which doees not contain fictitions hours
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For an easy handle, the rooms and the activities are coded with positive integer numbers
Throughout this paper, the activity lists are ordered ascendingly on the codes and the room
lists are ordered ascendingly on the room capacity

The following functions give us information about these sets

u G->N"  u(g) = the number of students in the group g
v P->P(H) v(p) = the set of hours when p 1s available
¢ M ->P(8) c(s) = the set of suitable rooms for the acttvity m
p M ->P(P) p(m) = the set of participants 1n the activity m
r M->N" 1(m) = the extent of the activity m
From this information we can determine the function
a M ->P(H) a(m) = the set of hours when the activity m could begin
This function can be calculated using thé following formula
a(m) = {yeV | y, , y+r(r;1)-leV} where
V= Nvx) represents the howss when all the xep(m) partictpants at the activity
m are free

In these conditions we consider a timetable solution as a function t* M -> HxS, t=(t,,t,)

with the following properties
1) {t(m), ,t,(m)tr(m)-1} € a(m) ¥V meM

1) t(m) e c(m) ¥V meM

w) me=n and {t(m), , t(m)rr(m)-1} O {{;(n), , ()r(n)1} = S => p(m)Np(n)=J
and ty(m)st,(n) VY m,neM

" (The simultaneous activities must have different participants and must be
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scheduied in different rooms) " ‘o
1v) men and p(m)=p(n) => |t,(m)/hdp] # [1,(n)/hdp] -
(The equivalent activities shm/xld not be s';cheduled‘ in the'same day)

Due ;o the relations between the activities, their different lengths and the proi)lems
concerning the rooms which may appear in the general case, the set c.)f activities which could
be schéduled at a certatn hour depends on the activities scheduled before Therefore we are
) forééd to construct every possible sclution, hour by hour, in an héunstn&: way and then to
evaluate its quahty Note that there exist phpers on the optimal timetable construction In a
deterministic way using Operations Research, but they solve the problem only in particular
cases ([4]) | - b

We understand now that, in the general case, since the timetable problem is NP-complete
the number of solutions we have to construct is extremely high and it has an exponential
growth 1n the number of participants ([2])

\ As an interesting particular situation, 1f all the activities have the same lengths and there
are no problems with the rooms, we can consider the graph with the vertex set V=MUH and .
with edges among every different hours, among the activities which have common participants
and among the activities and their unsustable hours In this case, the timetable construction
problem 1s equivalent to the graph ‘;:olounng problem, with | H| colours™ : .

Also, we are very tnterested in the reduction of the number of constructed solutions There
are two posibilities . S 4 S

The first 13 almost obvious If we evaluate the soiutlon quality during the gonstru;:ttbn of

the solution, we can clieck at certain moments (at the end of a "day, for example) if we aie
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able to reach a quality which has alieady been obtained If we don’t, 1t 1s useless to continue
the construction of that solution

With the second method we obtain an extremely important reduction of the number of
constiucted solutions, with a very low risk of loosing high quality solutions Let’s suppose
we are constructing the hour h of the timetable and at this hour we can schedule activities
fiom the A set Actually, due to restrictions, we can schedule only subsets of A Let E, be
l'he set of all these subsets, E,CI(A) The 1dea 13 to construct only the timetable solutions
which have scheduled at the hour h the maximal elements of (E,,C)

For example, let {m,, , m;} be a maximal ¢lement of E, (the activities m;, , m, may
be scheduled to begin together at the hour h) A full heunsuc algorithm will try to construct
solutions with all the following activity sets

@, {m,}, , {m}, (m,m,}, , {m, ,m}
scheduled to begin at the hour h This means 2* altemnatives

But scheduling only a subset of {m,, , m,} umplies that some professois and classes will
have empty places in their ttmetable and this fact will decrease the quahity of the solution
Therefore we can try only with the maximal configuration and the risk to loose this way an
optimal solution, 1s very low

This mf:?lh()d also decieases the number of remaining activities and thus it 1educes the
complexity of the following stages

1. Using the PROLOG programming techniques. The structure of the program

We restiict the presentation and explanation of the progtam o those elements which
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are indispensable for a global comprehension of its 1deas and an msight of 1ts
structure : =
. The information about faculty teacheis, activities, rooms and classes are stored tn an
internal database:

The first module is an imiahisation module which creates the information database using
the consult predicate to read a given text file containing the input data Then it ;Ereates a wotk
database which con’tains the cons&ramts deduced from the information database These
constraintq concern the activity pairs that could not be scheduled sinultaneously due to theirs
common partictpants, the hous that are inadequate for & certatn activity due to' the activity
length and the suitable rooms for every activity

The target of the main module 15 the heunstic search of feasible tlmetable‘gonéidedng all’
the restrictions, including the oﬁe which deals with the size of the rooms and the auxihary
support The best solutions achieved up to the present are stored in a distinct hdatabase‘and
their quality 18 compéred with the quality of the latest constructed solution If thert quality
13 equal then the new solution 1s attached to the database Flse, if the ciuaht); of the new
splutlon 18 better, then the solutions stored in the database are removed and the l;ew solution
1s attached to the database Therefore, at the end of the construction process, we have only
the best solutions If the result database contains several solutions, we can apply other
constraints concerntng pedagogical requirements such as rational distribution of couses and
effort duning the week or other preferences )

The last module 1s & tool which atlows an nteractive refinement of the solution The usel

can choose the preferred solution, 1f theie are several optimal solutions from the given critena
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point of view, and then he may introduce the a prior1 assignments This module also assists
the user to change some asstgnments preserving the vahidity of the solution

At the user's choice, this module calls the output module which sends the results to the
screen, printer or a given file Among the results there 13 a new database which represents the
updated mput database with the new situation of the participants ocupation This database can
be useful for unexpected situations which may occur duning the semester, and to connect
faculties This 1s an important fact because tn general, the professors from a certain faculty
assure the majonity of courses tn the Umverstty, which are related to the faculty realm

From all the facts mentioned until now, it results that the algonthm that I propose 1s
semi-heunistic and that 1t 1s based on the backtracking mechamism Since the timetable
construction problem 1s suttable for the descripive programming and the backtracking
nitechan-sm 18 an internal mechamsm of the PROLOG language, 1t becomes clear that the
programming effort was considerably reduced tlis way ([3])

We will present now the predicate for the timetable hours construction which ensures the
optinization described above and the predicate for the tunetable construction, in a
PROLOG-like pseudocode language

constructhour(h,m A, S, [y|L]) 1f
dyeA, 3s,eS a suitable room for the activity y which 1s

fice between the hours h and h+r(m),

Select yeA, y>m, for which exist surtable rooms where 1t should be scheduled

to begin at the hour h and
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fet r, be the most suitable from them,

Al = A\Iy),

S1=S8\{r},

constructhour(h,y,A1,S1,L)

constructhour(_, , , .ID
where meM |
A 13 the ascendingly ordered hst of nonscheduled activities
1 M ->P(M), I(m) represents the set of activities which have common participants
with m,
I(m) = {neM | p(m) N p(n) = &}
tteonstruct( L[], L[} _ [ if !
ttconstruct(h, AR Eq,Ocr,[L|Tt]) f h = the number of hours per week,
Construct Act - the hist of activities from A which might be scheduled to begin at
the hour h, |
Construct AvR - the hst of 1ooms from R which are available at the hour h,
constructhour(h,0,Act, Avi,L),
Create the AL, R1, Eql, Ocil lists as the A, R, Eq and Ocr updated lists,
hl = h+1,
ttconstruct(hl,A1,R1 Eql,Ocr1 ,il‘t)
where, in addition to the above descnibed lists
R s the list of available rooms at the hour h

Ocr 13 the list of occupted rooms at the hour h
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(RUOcr 1s the constant set of all rooms)
Eq 1s the activity hist which should not be scheduled 1n the present day due to the
constraint concerning the equivalent activities
Tt 18 the lconstructed solutton

Note that these lines must be understood with the PROLOG conventions, 1e 1f an
assertion fails, the program will automatically try to find other solutions for the previous
assertions 1n the same clause or if this 13 impossible, with ~the: following clauses of the
predicate

This predicate respects the above considerations on the maximahity At a certain moment,
there 1s selected F={m,, , m;}, FeE,, where m; <m, < < m;

If AxeA\F, x>m,; such that FU{x}¢E,, then x will be atiached to F and the searcling
process continues Otherwise there are two possible situations

I If AxeA\F such that FU{x}<E,, then F 13 a maximal element of (E,,C) ‘and the activities
fiom F will be scheduled at the hour h In this case the first clause of the predicate fails and
it will be used the second clause

2 If 3xeAYF such that FU{x}¢E, but x<m,, then F i1s not a maximal element of E, and due
to the ascending order selection of the activities, FU{x} was selected 1n a previous stage The
predicate fails due to the cut backtracking (1) predicate call

5. Concluding remarks and possible extensions Now we can notice the tremendous

advaatage of considenng a relation oriented approach using logical programming techniques

The PROLOG progiamming language 15 a very fast and flexible prototyping tool Additional
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restrictions and situations can be easily included as new predicates or by extension of the
existing atinibute list, ‘ . NN C o
If this database is too large to fit in the memory, we can use thc PROLOG facilities to

.

work with external databases stored on disk . ,

I mention here that l,uéied Borland’s Twibo Prolog 2 0. Certainly a PROLOG compiler
does not geuérate very fast programs but Turbo Prolog allows interfacing PROLOG programs
with modules written in 'C 0{' even ussembler language for the speed criticaj\pans of the
program, Also, knowing that menus and user interface could be programmed more efficient

with traditional programming languagses, we can use C libraries to do this | o

I atso suggest two useful extensions for this model

t

1

the inttoduction of the predecessor-succesor relation between the activities as new

i

constraints, ,

- the introduction of dynamic topics, when we dispose onlyy of the total amount of hours

’ ?
v

for a certain subject matter, so that we can choose their activity grouping
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Rezumat. Generares fractalilor de formd repulatd prin limbaje pleturale fn aceasts lucrare este prezentatdl
o modalitate de generare a fractalilor de fonm# regulatd, utiizéngd girun de comena pentru desenarea acestora
Aceste girunt de comenz sunt generate pnn functi ciwe permit dezvoltarea, prelucrarea gt recunoagterea acestor
vanajiuni geometrice numite fractali

The fractal textures are more and more often used 1n computer graphics since they can
model properly 3D-figures and natural forms and they have the advantage of representing the
models on a plane surface Fractals can have regular forms, based on repetition of a mouf
(pnimary detail) or randomizing forms, which are defined probabilistic They can be built
starting from curves, surfaces or figures and they are defined either by a function or by a
construction rule [2]

Regular form fractals can be generated using a language of commands for drawtngs
(images) {1] Given a set of graphical pnimitives (corresponding to a set of drawing
commands), from which one or more starting pnmifives (primary detail) are chosen, we will

apply a transformation to this intial set, then to the obtaned set of primitives we will apply

again the same transformation and 5o on, as many times as we want Finally, the resulting set
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of pnmitives represents the desired fractal, respectively 1f the result 1s a stnng of commands
then the fractal wxll‘ be obtained executing these commands

Let’s consider the set C={c,,c,, ,c,}, containing the graphicai primitives which form
a fractal family These primittves can be drawn by cotresponding graphical commands So,
we can achieve a drawing executing a string of such commands

Let S = { x;%, x,/m>0, x.x, x,€E C }bethe set of command strings obtained
by concatenation of the elements from the set C A family of variable fractals of regular
type is a set of fractals which have been obtained starting from a primary detail D € S, which
18 developed step by step according to a transformation rule £ C->8, rule which is apphed to
every graphical prumitive (command) This tiansformation gives the development rule for a
primitive and 18 specific to every fractals family

The development function which allows a fractal to be transformed enttrely with an

iteration 1§

LSS, txx, x) = f(x,), 1f m=}
’ m f(x)f(x,) f(x), 1if m>]

(where uv represents the concatenation of u and v)

The development of a fractal after n tterations (n "years") is described by the function

uX), if n=1
(X)), if n>1

We can say that t'(D) returns the commands string representing the fractal in the n-th

t" S-S t“(X)n{

step of the development This observation makes us think that we can define a fractals fanuly
specifying the pnmitives set C, the primary detatl D, and the development rule f
F=(CD.), n=12,

" The defimtion of the transformatton rule f will use the following function
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c, ., if1>p

Next C—C, Next(c) = ¢ if 1=p
’ bl

( C=A{c,c, ,cp} )

Since this function 1s bijective, we can construct the reverse function, which will simphfy the
definttion of the function f

., if 1>l

Next™ C—C, Next(c)= ,, if i=I

Example |  Let’s consider the following set C={r,u,l,d} where
(ruld) s (=1,«4) [3]

and  f(x) = x Next(x) x Next'(x)x, Vx€C

(» concatenated with Next(x), concatenated with x, ) and D=r

Then t'(D) , D), (D), represent the tollowing family

Figure 1

Etther in constructing or 1n recogmzing a fractals fanuly defined 1n the way we
described, the following property of the development function 1s very useful
(XY) = t'(X) t"(Y)
The above property can be proved by complete induction as follows
for n=1 t'(XY) = t(XY) = (X, Xeu¥1¥2 Vi) =
= fx)H) (x0) i )HY2) By )=
UK X)) UY)Ys Yma) = HXKY)

assuming that "Y(XY) = 4(X) (YY)
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then t(XY) = t"'(((XY)) = "' (¢(X)t(Y)) = "' @ CON'(t(Y))=
= "XH"CY)

This property allows us to draw a fractal succesively on sections and also to analyze
a fractal reducing 1t at 1ts subfractals which compounds it

We constder now another two examples
Exampte 2 Let C={r,eufl,gdh} be the set with

(reuflgdh) = (=1, + -},

and f(x) = x Next(x) Next'(x) x , and D=urdl

Then t'(D), (D), (D), represent the following fanuly

2

Figure 2

Example 3 Let C={a,b,c} be the set with
(abe)= (),
and  f(x).= x Next(x) Next'(x) x x, and D=abc
Then t}(D) , (D), t*(D),  generate the family
The set C might contain even compound primitives (2D-figures or 3D-figuwes), and

in this sttuation when we represent the fractals we should achieve a projection of the structure
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Figure 3

14]

Some fractal transformations can be achieved moditying the commands string °(D)
through some operations
1) Scaling the figure can be increased k times, applying the followtng function

st 8 —>8 , s'(x;x )G Xt
to the string t"(D)
2) Translation a figure can be translated k times on the direction of & primitive ¢ 1f we
apply the function

d*X) =X
to the string X = t"(D)
3) Rotation the function p* defined below achieves k 1otations of the fractal
prxx, x,)=Next*(x )Next'(x,) Next‘(x,), kEZ

The rotatton can be performed with an angle multiple of 45, 60 or 90 grades, depending on
the gelection of the pnmitives Since the order of the primitives 1n the set C 1s important, we
musl tespect the anticlockwise direction We notice that the function p has the following
property P (X)) = t(p"(X)) This property stmplifies the computation in fractals

geneiation, fiactals which have a pnmary detail compound from more than one primitive
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Let’s consider again the second example
t"(urdl) = Cup"OeiQ) =
= t"(‘u)t"(Next‘Z(il))f‘(Next‘(u))t“(Ne);tz(t;)i =
= t"(U)‘t"(p'z(u))t“(P‘(l,l))t"(Pz(U)) =
= CU)p " W)P E WP (EW)
We notice that we can compute t"(u) one time, then the commands are executed, eventually
transformed by the rotattons p?, p* and p* ~
If wé have to recognize a fractals famuly thien we will proceed as follows \we‘ find the
primitives, construct the corresponding commands string, we decgmpose the commands string
1in substrings of length equal with f{x), then every substring f():i) is substituted with x We
apply the same action to the resulting string until we obtain D [5] The commands string t%(D)
from the second example,
rurdr uluru rurdr‘(‘irdld rl;rdr , 1s transformed by £ 1n

rurdr — r, uluru — u, rurdr — r, drdld — d and rurdr — r, then the resulting string

rurdr, which 1s f(r), is substttuted by r .

REFERENCES

1 FJ Brandemburg, M P Chytil, On Picture Languages Cycles and Syntax - Directed Trénsfommgloxls,
Techntsche Benichte der Fakultat fur Mathemauk und Informatik Universitat Passan, MIP-9020, 1990
D Dogar, Metode not in proicctare, Editura Stiingificd st Enciclopedic, Bucuresti 1988
H A Maurer, G Rozenberg, E Welzl, Using Stnng Languages to Describe Picture Languages,
Information and ‘Control, Vol 54, Nr 3, 1982 ‘

4" M Vauda, APosea, I Nistor 5 alfti, Graficd pe calculator limbajele Pascal st C, Edsura Tehnich
Bucuregti, 1992 ) i

5 R Vancea, S Holban, D Ciubotanu, Pattern Recogmtion, Edttura Academtei, Bucurest 1969

108



STUDIA UNIV BABES-BOLYAIl, MATHEMATICA XXXVIII, 3, 1993

A NOTE ON NON-MONOTONIC LOGICS
Doina TATAR' and Mihalela LUPEA’

Dedicated to Professor 1 mil Muntean on his 60* anntversury

Revetved January 31, 1994
IS Subjgect Classification  03B35,68Q40,68127

Rezumat: Notd asupra logicllor nemonotone. Raplonamentul aproximauv e deosebit de

interesant pentru cd modelcazd may exact representarea §i tmtarea cunosiinjelor in cazul

mforinagiilor incomplete Aceastd lucrare tntroduce o modalitate de a objine teoreme pormind

de la astfel de cunostin{e (knowledge) incomplete, stnutlar cu deductlife in cazul clasic al logtcii

de ordinul intdl Pentru cazul tconilor normale, se demonstreasit ch problema e complet

reductbild la cazul clasic

1. Introduction The classical logics are inadequate to capture the tentative nature of
human reasoning Since people’s knowledge about the world 1s necessarily incomplete, there
will be tmes when we could be forced to draw conclusions based on an incomplete
specification of pertinent details of the situations Under such circumstances, assumptions are
made (implicitly or exphicitly) about the state of the unknown factors Because these
assumptions are not trrefutable, they may have to be withdrawn at some later time if new
evidence prove them invalid If this happens, the new evidence will prevent some assumptions
from being made, hence all conclusions which can be arrived at only 1n conjuncthion with
those assumptions will no longer be denvable

In common-sense reasoning, assumptions are often based on both supporting evidence and

the absence of contradictory evidence Traditional logics cannot emulate this form of

v
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reasoning, because they lack any tools for considering the absence o knowledge

o - '

Non-monotonic logic‘ lllas be;enl developed to deal with reasoning about incomplete
informations There are four major formahzations of ﬁon~moqotonm reasoning
. * McCarty’s cireumscription 1]
» Moore’s autoeplétemic logic,[4]
* Retter’s default logic [5]
* McDermott and Doyle non-monotontc logic [2],{3]
Reiter’s default logic [5] i3 one of the tost proeminent-formalizations ‘of non-
monotonic r‘easoningJ One of the reasons for its ‘anféétivenesg is the snmphcit'y. and naturalness
of 1ts underlying idea j‘hié l(;glc repr;senis defaults as certain type of in‘fgre-nqe‘ mle; whose
appllcabi!ity does not only depend on the dénvabxhty, but also on the ;xnderival_)ility of some
fonnul‘as ‘ . \ X N |
Classtcal logic deals with the formalization of abso:lute!y correct forms of
reasoning The aim of this note 1s to prove that,
in the normal context, the problem 1s completely ;edqcnble to c!éssncal case The deductive
systems of logic allow us.to formahze reasonmgyo,f rigurous proof of theorem and to infer
conclustons from premises It defines a deduction relation between, formulas; de;loted by |-
This relation has the following properties [6] Co
« reflextvity |
U,Up ULV =V
* monotonicity o, oo Con . .

c1f ULU,, U, Vithen UU,, UZ |-V
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¢ transitivity
if ULU, U, —Vand UU, UV FZ
then uU, U, H—Z

where U,,U,, ,U,V,Z are the formulas tn first-order logic

2. Default logic The property of monotonicity tell us that a derived result cannot be
invalidated by further results Also, the inference rules in deductive systems of classical logic
are permussive They are always of the fom U,,U,, U, }—r. V' with the significance "If
U, U,, ,U, are theorems, then by rule r, (of anty k) 1t results that V 1s a theorem " _

A system which should be able to model non-monotonic resoning should also contain
restrctive rules, of the form

"V 1s a theorem if U,U,, ,U, are not theorems "

Default logic allows formalizing default reasoning by means of particular inference rules,

called defaults A default has the form < :jjﬂ and 18 interpreted as follows "if one belives
« and if s conststent to belive B, then one can also belives y"

A default theory will compnse, besides the default rules, a set of closed formulas of
predlcatfa logtc which represent the basic knowledge and are treated as axioms
Defimton 1 A default theory 7'1s a patr (D, F) where

(1) D s a set of defaults (d) M
Y

, and o,f3,, B,y are closed formulas in
first-order logic

(1) /s a set of closed formulas 1n first-order logic

- w15 called the prerequisite of default
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- y1s called the consc;quent of default
We denote by Pre(d) the prerequisite o of the default d € D,and by Cons(d) the
consequent y of the same d Simutlary,we introduce Pre=}€JDPf e(d)

Definition 2 An extension of default theery 7'1s any set of all formulas that can be infered
by means of the classical inference rules or by means of the defaults We will
denote this set by 7h(D,F) and we will call them the set of theorems of
T=(D,F)

A default theory can have an empty extension However, it can be proved {5] that a non-

empty extension exists for so called normal default theones, which all defaults have the form

o Mp
p

By analogy with the definition of a deduction for a formula U, and 1n accordance with
definition 1 and definition 2, we can tntroduce the

Definition 3 Let 7=(D),F) be a default theory, and U and V two set of formulas in the first-

order logic We denote U + V (and we call this V 1s non-monotonic deductible

from U) if V is obtained from U etther by .application of a classical inference

rule (like modus ponens, foi example) or by a default rule In this last case, U

contains « and V contatns B, if the normal default applied 1s. (d) o Mp

We can specify that the default o 1s applied by denoting -
Ur,Vorl -P— V by rule 4 Now, we are ready to define the concept of a proof for
a formula U according to a default theory 1=(D,F)

Definition 4 A formula U 1s a theorem in a default theory T=(D,F) (or, UETh(D, £)) 1f 1t

exists a fimte sequence of set of formulas U,U,, ,U,, such that
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Up=F, U =FJ{a},a € Pre, UE U, and
a) U +U, ,1=12 0l
b) U, is consistent,i=1,2, n (therefore U, does not contain a formula V and his
logical negation —V)
Observation: The sequence U,U;, .U, has the property

Lau e QU

3. The main result Example Let 7=(D,F) be the normal default theory having the
following set of premises
® F=(C>D,AAB>E,EvD,D->G} and

(ii) D=( d,, d,, d, d, } as
EVG M(AAG)

)

ANG
) 4 BMB
@ ANE M AR MC
Wy —rE

According to definstion 4,a proof for U=D may be the following
DU, =F,
U =FU{EvG}

NU,=U,U{AAG} ,U +U,bynle d,
AANG

»

S5)U,=U,U {B) , Uy - U, by rule d,,

HU,=U,U{A,G) ,U,+ U,by rule
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AB
6)U;=U,U{AAB} ,U4kUﬁbymleW,A ‘
7HU,=UgU{E) ,U,k—UﬁbymleA_l%_ti:)_li,

AE
8)U,=UsU{AAE} ,U6I~U7byrulem,
NUy=U,U{C} , Uy - Ug by rule d;,

C,C—=D

10U, =0, U {D} , Uy + Uy by rule
AsDe Uy, U,U,, ,U,i1s a proof for D
The following theorem emphasizes a conection between the relation + and the
classical relation [— of deductibility 1n the first-order logic
Theorem, If 7=(D,¥) 1s a normal default theory then UETh(D,F) 1ff F,P }—U where P 1s the

set of formulas defined as

14>B € P iff BMﬁ € D"
Proof: The direct implication results by induction about the number k of utilised defaults
If k=0, then we have F |— U and thus /P }— U
Let U € Th(D,F7) such that for U are apphed k+1 defau’lts If the last default 18

a M s

@ . then U=B) € U,,

U, +a U, and «€U, , By induction hypotesss, as for a are applied k defaults, #,P7 |—

ol
a As o->f§ € P, we obtain

£P = B(=U)

By analogy,the converse implication can be proved
Observation: If a default theory 13 noimal, then a deduction 1n this theory can be simulated
as usual way n first-order theory

A similar theorem can be proved for the semunormal default theories [5]
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REZUMAT Arsticolul "Asupra unor medele de performantil paraield” precintd citeva

ditre cele mai folosite modele de caracterizare a pertormanter algontnulor paraleli Acestea

au ca trisitur comun? folosirea fracintor senale § paralele in studiul performanier Paralel cu

prezentarea lor sunt discutate atdt cahithfile g1 defectelo lor cfit si relaule existente intre ele

in finalul anicollus este dat un exemplu de tolosirc al acestor modele in caraclerizarea

performangel pamlele

i. Intreduction. New requirements in engineering and computational science had
lead to a strong interest 1n constructing a "teraflop” computer Parallel processing 1s
constdered to be the great hope in obtaining such a performance Ideally, on n, processors
a program will run n, times faster than on a single one Unfortunately this 15 1arely the case
Oune reason 1s the great disproportion existing between the progress in hardware technology
and the methods of programming the paiallel computers In what concerns the software part,
theie are a lot of problems waiting to be solved Two of them are the inexistence of a
common complexity mode! for parallelism and the difficulties encountered 1n analyzing the
performance and corectness of parallel algorithms

This paper presents a number of models of parallel performance, models that have in

common the use of sernal and parallel fractions tn characterizing the parallel algonthms,
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showing the relations between them and how can we use them in predicting the parallel

performance

2. Preliminaries. The most common used measures of parallel performance are
speedup and efficiency {2,3] They arc both functions of problem size n and number of

processors ny, and formally can be described by

o) puny =5 )
1n ) ’ n,

T(n,i) 13 the time spent to solve a problem of size n by i processors Because of the

Stn) =

overhead introduced by parallelization, T(n,i) 18 considered relative to the best senal
unplementation

The influence that the two parameters n and a,, have on the speedup and effictency 1s of
great practtcal importance By varying one or both parameters, different models of parallel
performance are coming out

In oider to make more readable the article, we will not mention always the parameters
of a function For example, we will write S tustead of S(u,mn,) It should be clear from the
context on which parameters a function depends In geneial, all the functions have two

parameters In the case that one of them 18 fixed we will not mention 1t

3. Amdahl’s Law Considet an algorithm solving a problem of given size n that has
one part mtinsically sequential and the other part, 100% parallelizable, can be distuibuted
equally among the available processors Now, tf' s 1s the fraction of ttme spent by a

uniprocegsor on the senal pait of the algorthin (senial fraction) and p 1s the fraction of time
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spent on the parallelizable part by the umprocessor, then the time spent by n, processors on

the same problem will be (s+p/n,)*T(1) So, the speedup will be given by
s+p)*1(1)  _ I @)
(s+pln )*T(1)  s+(1-s)/n,

This 15 a steep functton of 8 near s = 0 For a fixed number of processors the speedup is

icreasing unbounded with the decreasing of s This case can be used in selecting the most
efficient parallel algorithm (in the sense of efficient use of processors) among different
algonthms solving the same problem the one with the minimum s is the best
What’s happening 1f we have a single aigonithm for a fixed-problem size and an
increastng number of processors? Then the speedup 1s assimptotically bounded by 1/s
§—>1s as n,—» - 3)
Tius is the performance forecast by Amdahl’s Law 1f a computer has two speeds or
modes of operation during a given catculation, the stow mode will himt overall performance
even i the fast mode 15 inflnitely fast [1,4] It means that if an algorithm has 2% sequential
part, speedup greater than 50 one can not obtain even 1f 1t has thousands of processors
This result was used by Amdahl as an argument against building massively parallel
systems
The limitation of speed given by (3), as we will see 1n the next sections, 1s valid only for
the case under consideration, 1 e for fixed-size problems That’s the reason why the model
discussed 15 falso called the fixed-size model
4. Moter’'s Law Moler was one of the firsts to show that Amdahl’s limtt can be

beated [1] He had proved that parallelism can attain desied speedup for sufficiently large
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computations

Instead of considering a fixed size problemn'and an increasing number of processors, he
had study the case of a fixed number of processors and instances uf the same problem but
with different sizes He had shown that the senal fraction s is dependent on the nput size
s = s{n) So, s 1sn’t constant (the main assumption n the fixed-size model) Even 1f S 15
bounded by 1/s, this limit 1sn’t fixed He define an effective parallel algonthm as one for
which s(n) —> 0 when & — o In this case, for a fixed number of processors n,, one would

obtain

Sa___ Y o
s(m)+(1-s(n))/n,
It follows that for problems large enough, 1t can be obtained the desued speedup (the

n,, forn—= @)

processors are used efficiently) In practice, n cannot grow to infinity but it can be made as

big as the available memory allows

5. Sandia’s Model The researchers from Sandia Laboratonies had studied the vanation
of speedup starting from the following observation 1f one has more computing power, he
usuatly don’t use 1t to solve the same problem of fixed size but larger instances of the
problem [1,6] The reason ts obvious there 1s no point 1n using more processors than the
concurrency of a problem because then, some of them will remain 1dle Also, by increasing
the number of processors the overhead due to communication 13 incieasing and if the problcnf
size 15 fixed, than the computational time will remain fixed, while the communication ume
will grow, affecting the overall performance

By scaling the problem size proportionally with the number of processors, the seral
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fiaction s can be made as little as we want The senal component of an algonthm is
determined by the startup time, seral bottlenecks and 1/O, which are not dependent on the
problem size The parallelizable part of an algonthm vanes with the input size It follows that
s can be made to shnnk under these circumstances

Adding more processors brings more memory and more speed How do we scale the
pioblem size with memory or with speed? Most scientists scale the problem in order to
ocoupy all the available memory This 1s called the scaled model and 1t 1s the one proposed
by Sandia They assumed as a first approximation that the parallel part grows proportionatly
with the number of processors

The mode! proposed by Sandia as an alternative to the fixed-size model 15, 1n fact, the
inverse of the Amdahl’s paradigm lnstead of asking how fast a given sertal program wall
run on 0, processors, it's asked how tong 1t will take to run 4 given paiallel program on an
UNIPFOCESSOF

If 8° 15 the fraction of time spent by a multiprocessor machine with 6, processors on
sertal parts of a parallel program and p’ the fraction of time spent by the same multiprocessor
on the paallel part, the time to run the program on an uniprocessor will be (8’+p’*n,.)*T(n,).
Then , the scaled speedup will have the form

- (" +p’wn )*1(n)

S =37+ (I=s)* 5
" G +p"*Tn) g )

It 18 easy to see that the scaled speedup 15 a function of moderate slope 1-n, of s° (a lineg)

and it grows with mcreasing n,
Another alternative 1s to scale the problem size in order to maintain constant execution

time  This 15 called the fixed-time model An example for the use of this model 1s the
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weather prediction It doesn’t make sense to have an execution time greater than 24 hours
in predicting the time for the next day

To illustrate the difference between these models (in fact, the fixed-time model 1s
intermediary between the fixed-size model and the scaled model), we will present an example
For the multiplication of two matrix (with dimensions nxn), the memory needed 1s O(n’) but
the number of operations 13 O(n®) For the scaled model (pioblem size scales with memory)
n’ grows proportionally with n, but for the fixed-time model, n* grows proporttonally with

np (ie n® grows as np,™")

6. General Model of Parallel Performanece Carmona and Rice proposed a general
. model of paralle! performance which capture the previous presented models [2]

They use the same cnteria of charactenzing the parallel algorithms, speedup and
efficiency, but with some shights modifications of (1) Instead of considering running time as
a measure of the complexity of algonthms, time beeing dependent on the architecture, they
use as a measure of work the computational counts or unit counts based on the stze of an
indivistble tgsk

If wa 1s the work accomplished by a parallel program and we the work expended by
the same progtam, the efficiency can be expressed by E = wa/we

The work accomplished ts ‘glven by the number of operations done by the best senal
implementation and it’s not depending on the number of processors, only on the broblem size
In general, wa < we because the parallelization introduces some overhead, redundant

operations, communication requirements not needed in the serial case
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The difference ww = we-wa 18 called the wasted work It covers the time needed for
the following activities watting for other tasks to complete work, communication delays
and/or memory contentton (dependent on the particular architecture and the implementation
of the algorithm), operation redundancies introduced by the implementation, including task
activation/ termination and synchronization code Ww 13 a function of both problem size and
number of processars

Under these considerations, the expressions for effictency and speedup will be

. wan) wa(n)
Een,) we(mn)  waln)+ww(nn) ©)
wa(n)

S(n,np) =K *xp =

—— %N 7
¥ wa(n)+ww(nn) ? ™

Using these work parameters, Rice and Carmona give also new interpretations for the

serial fraction s and the scaled senal fraction s* From (2) and (7) 1t follows

s=a ™l wen ®)
wa nP—] P

So, 8 can be interpreted as the distribution actoss the additional processors of the ratio

of work wasted to work accomplished Simularly, from (5) and (7)

H
s’ = % * _l_;_i’__ R (ul,>l) ©)
»

Therefore, 8’ can be interpreted as a collective wasted effort np*sl, where sl is the
distrlbut;on across the additional processors of the ratio of work wasted to wc;rk expended

From eqs (8) and (9) it follows that s,8’,p,p* are functions both of problem size and the
number of processors This modifies the previous points of view, 1e s was considered
constant for fixed-s1ze problems as the number of processors increases, s’ was considered

only for scaled problems, with n=n(n,) a increasing function of n, These differences appear

from the fact that the new defimitions of s and 8’ incorporate wasted work
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It s not difficult to see that the fixed size-model i1s a particular case of these new
definttions 1f the wasted work has the form ww = (ng- 1) * w(n), where w(n) ts a function
only of n, then s will be constant for fixed-size problems Intuitivety, ww has this form «f
each one of the new np-1 processors contrtbutes in equal part to the wasted work (with w(n))
and these contnbutions don’t depend on the number of processors In a similar way we ecan
show that the other described models are particular cases of this general one

Using eqs (6),(7),(8) and (9),it results the following law

- {s/s’ , ww>0

n, ww =0
g/ w>0 (1)

E-= {Pl d : :ww-O
This law relates s and 8 for different combinations of n and np, while the previous
models showed the trend in speedup when s and 8" are varied for a given number of
processors, or are held fixed and ny 1s vanied The law (10) also gives an interesting relation

between the fixed-size and the scaled model, showing how can one predict the other From

{2),{5) and (10) it’s easy to denve

/ A
sh= it
s+(1—/s)/nP . (n
s= Y . (12)

T l—o7
s'+(1=s")*n,

These relations can be used in two ways for a given speedup, one can determine from
the base scalar fraction the scaled seual fraction (or viceversa), secondly (and more
important), from the senal fraction of a base problem s one can derive the scaled seral
fraction g* (and, therefore, tt;e scaled speedup) for a larger problem, by simply making s’=s

in (5)
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_The general model proposed by Carmona-and Rice 1s described by a group of assertions,
assertions stating how the parameters influence each other on the curves of the form n =
u(n,) These curves represent all passible relations between the problem size and the number
of processors Given a function f(m,n,), the notation ft (res;pect\vely fl) denotes that f
increases (decreases) on some fixed curve n = n(n,) as 0y increases Also, ftr (respectively
f}r) denotes that f approaches the limit r on the curve as n, = ®

The performance model is given by the following assertions

Al 8} = s} = 8¢ (for any curve n = n(ny))
A2 s} = 3't = E| (for any curve n = n(ny))
A3 Assume that n = n(n,) defines a constant s-curve Then s’= @(1) and s’f 1

Furthermore, 8% 1/c and E{0, where s(n(np),n,)=c (constant s-curve)

A4 Assume that n = n(n,) defines a constant s’-curve Then s = 8(1/n,) and s}0

Furthermore, § = ©(n;), $4 and E{(1-c), where s’(n(ny),n,) = c (constant s’-curve)

This general model provides a framework in which the various performance parameters
can be compared and contrasted within a single unified view of speedup It 1s easy to see that
assumption A3 is a generalization of the fixed-size model (Amdahl) and the assumption A4
of the scale;i model (Sandia)

Now, one question easily arises why these differences between the general model and
the previous ones with respect to the number of parameters on which 8 and 8’ depend? One
reason it was given above The new definitions incorporate wasted work This 1s due to the
fact that in all the other models the speedup was interpreted as the gain 1n time of a parallel

implementation with respect to the serial implementation of the same algornthm, and not over
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the implementation of the best senal algorithm that solve the problem, as 1t 1s the case in the

general model (best seral implementation)

7. Example To ilustrate the use of these models 1n predicting the performance of the
parallel algorithms, we will give an example The problem to be solved is the evaluation of

a polynomial expression at a given point x

A
)y =% ex’
i=0
it 1s well known that the standard senal algorithm takes 3n-1 umt counts (n additions
and 2n-1 multiplications, considering that an addition and a multiplication take each a unit
count) The best senal algonthm 1s the Homner scheme and 1t takes 2n unit counts (n additions
and n multtplications)

A parallel algorithm for solving this problem using p processors, p = n/2, is the following

(see [5,7]) each processor 1 evaluates, using the Horner scheme, the following polynomial

{-0)ipi :
gW) = Y ¢, x¥  1=0 p-l
/=0
The value of the 1nitial polynomial can be computed from the following expression
p-1

fo) = Y g
i=0 .
This paraliel algorithm takes (2n/p + 2*log p) unit counts (where the base of the logarithin
1s 2) For more details on the analysis of the complexity see [5]
In order to study the performance of the algonthm, we have to determine the senal
fractions From above and from the general model of performance, we have
wa = 2n,

we = p(2n/p + 2*log p) = 2(n + p*log p),
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ww = 2p*log p

s = (p*log p)(n*(p-1))

s’ = (p™log p)/((n + p*log p)*(p-1)

S =no/(n/p + log p)

E =n/(n + p*log p)

We can see that the parallel algonthm is efficient in the sense of Molet for a fixed
number of processors, s(n) = 0 when n—w and S — p It depends on cut interests and on
the avatlable memory how much we will increase the dimension of-the problem

From the restnction p=n/2 1t comes that we cannot increase to nfinity the number of
processors without increasing the dimension of the problem, if we want to make an efficient
use of the processors

For a fixed problem size n, the speedup 18 an increasing function of p, when 1 < p = n/2
(1t can be seen by studying the sign of the denivative) It follows that the optimal number of
processors (in order to obtatn a maximum speedup) 1s p = n/2 and the maximum cbtainable
speedup for fixed n 1s 8, = n/(1+log n) and the efficiency will be E = 2/(1 + log n) Tius
efficiency 1s not very good, especially for big problems

If we want to find the optimal number of processors in order to obtair a maximum
efficiency for a givon problem size, we have to study the expression of E It is a decreasing
functton of p and so, 1f we want an optimal efficiency, 1t will be obtained for p=2 1 tlus case,
E,.=n/(n+2) and S = 2n/(n+2)

We can see that maximizing the efficiency 13 not the same thing as maximizing the

speedup Sometimes 18 better to find a way 1n between these two extremes
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If neither the dimenston of the problem, nor the number of processors 1s fixed, we can
predict the performance of the parallel algorithm for vanous relations between these two
parameters For example, if n = c*p (with consiant cz2, from the 1estriction on the number
of processors), we obtain

8 = n/(c + log (n/c)) and E = ¢/(c + log(n/c))

It comes that the speedup 18 increasing with the dimension of the problem and the number
of processors, but the efficiency is decieasing

There are many interesting conclusions that can be find out from the expressions above
We will conclude with one of them

If we are interested in maintaining a fixed efficiency E, how do the parameters o and p
need to be corelated? From the expression of the efficiency it comes out that

n = (E*p*log p)/(1-E)

It means that we have to grow the dimension of the problgm propéniona!ly with
p*logp (this 13 the 1soefficiency function for the parallel algorithm, as defined in {4]) in order

to maintain an efficient use of the processors

8. Final Remarks In conclusion, we will give a summary of the most imporiant
applications of these models:
- determining the best parallel algonthm for solving a fixed size problem on a given
architecture (the one with the least scalar fraction),
- as the scalar fraction of an algorithm depends on the architecture used, we can determine

the most appropriated architecture on which the parallel algotithm should be implemented or

©
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viceversa (finding the minimum s),

- for a fixed size prablem we can determine the optimal number of processors to be used in
order to maximize the speedup or the efficiency,

- we can find out what relation has to exist between the dimension of the problem and the
number of processors tn order to maintain a fixed efficiency (called the tsoefficiency
function)

There are also other models {or predicting the parallel performance, for a general view
see [4] There 1sn’t a best model, 1t depends on our interests which one should we use, each
1s appropriate for a different situation That 15 the reason why we had choose to present the
models that have in common the use of serial fractions in this case, the general model of

peiformance of Rice and Carmona is the best, as 1t 1s a generalization of all the others
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PROFESSOR EMIL MUNTEAN AT HIS 60TH ANIVERSARY

by

Militon FRENTIU

Professor Emtl Muntean was born on July 31, 1933, 1n Mégura, Hunedoaira County '
After finishing secondary school in 1952, he studied at the Umversity of Cluj-Napoca He
giaduated 1n Mathematics from Cluyj University in 1957 Stll being in the fifth year, he was
named at the Computing Institut of Academy Since then, the entire activity of Professor
Munteanu 1s connected with computers He worked to the construction of MARICA (1959),
a Romanian computer built from relays, and to the construction (in 1961) of DACICC-1, the
first Romanian transistor-based computer Then (1967-1969) he worked to the complex project
of building DACICC-200. Also, he had contnibuted to the reahsation of some piograms

He obtained hus PhD fiom the SaintPetersburg University, SS SR, in 1964

In 1968 he became the Head of the newly Institut of Computer Technology (ITC) As
the Head of the ITC tn a pioniering period, he has duected with much competence and
inspiration the research activity, 1o design and 1mplement high level software products He
really was a very good organizer

In 1990 he become full professor at our Facuity, Department of Computer Science,
but his teaching activity started long time ago He used to teach the students of the
Mathematics various subjects connected with computers In the last four years he gave courses
in Expert Systems, and Computers Networhs His courses were held at a high scientifical and
pedagogical level '

There are 8 computer scientists who own their PhDegrees to thetr supervisor, professor
Emul Munteanu In the last years he become interested in spreading computer science
knowledge, 1e. he 1s today a known editor of books in this area He was the father of
Microinformatica, and in the last year he invented Promedia

Professor Emil Muntean 1s a distingushed pedagogue, very appreciated by his students
Also, 1t 18 a pleasure for all of us to have such a generous collegue

Now, on celebrating his 60th birthday we wish hum "Many Happy Returns of the
Day”, and a long hife in health and happiness to him and his family
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