
* 1 9 ^ 3 0 5 "

STUDIA
UNIVERSTTATIS BABEŞ BOLYAI

1993

CLUJ-NA РОСА

REDACTOR ŞEF: Prof. A. MAUGA

REDACTORI ŞEFI ADJUNCŢI: Prof. N. COMAN, prof. A. MAGVARI, prof. I. A
RUS, prof. C. TULAI

COMITETUL DE REDACŢIE AL SERIEI MATEMATICA: Prof. VV. BRECKNER,
prof. G il. COMAN (redactor coordonator), prof. P. ENGIIIŞ, prof. P. MO-
CANll, prof. I. MUNTEAN, prof. A. PAL, prof. I. PURDEA, prof. I. A. RUS,
prof. D. D. STANCU, prof. P. SZILAGYI, prof. V. URECHE, conf. FL. BOIAN
(secretar de redacţie-informatică), conf. M. FRENŢIU, conf. R. PRECUP
(secretar de redacţie — matematică), conf. L. ŢÂMBULEA

Anul XXXVIII 1993

S T U D I A
UNIVERSITATIS BABEŞ-BOLYA1

MAŢHEMATICA

3

R e d a c (i a : 3400 CLUJ-NAPOCA atr. M. Kogălniccanu nr.l ► Telefon. 116101

S U M A R - C O N T E N T S - S O M M A I R E

Ë MUNTEAN, Ou Some Мотели of Computer Science Evolution fat Romania 4 Asupra unor momente ale
dczvoMrii informaticii In România.. 3

FM BOIAN, A VANCEA, An Implementation Scheme for the PARBEÛIN-PAREND Construction 4 О
retenti de implementam pendu construcţia PARBEOIN-PAREND.............. 7

I CHIOREAN, Serial and Parallel Algorithms for Solving a Problem of Convection In Porous Medium 4
Algoritmi seriali ţi paraleli pentru rezolvarea unei probleme de convexitate In mediu poros 11

V CIOBAN, S. MOTOGNA, V. PREJMEREAN, Generating Control Structures 4 Generarea structurilor de
control .. 33

Gh COMAN, I. G An SC A, L. ŢAMBULEA, Surfaces Generated by Blending Interpolation 4 Supmfc|e generate
prin interpolate blending.. 39

M FRENflU, B. PÂRV, Programming Proverbs Revisited A Provetbe ale programării revăzute 49
S GROZE, I. CHIOREAN, Consequences of Theorems Concerning the Convergence of Chord Method 4

Consecinţe ole teoremelor privind convergenta metodei coardei . . 39
S MOTOGNA Portnál Specification for Smalltalk through Lambda-Calculus A Comparative Study 4

Specificarea formali prin tambda-colcu) a limbajului Smalltalk 65
I PARPUCBA, B. PÂRV, Functional end Relational Programming with PSP 4 Programare funcţională şi

relaţionali cu PSP 75
D POP, A Mathematical Model to Solve the Timetable Problem Using Prolog 4 Un model matematic pentru

rezolvarea problemei orarului utilizând limbajul Prolog . . . 91
V PREJMEREAN, S MOTOGNA, V CIOBAN, Generating Fractals of Regular Form by Picture Languages

4 Generarea fmcUdUor de forrni regulat! prin limbaje picturale 103
D TĂTAR, M LUPEA, A Note on Non-monotonie Logics 4 Notă asupra logicilor nemonotone 109
D VÄSARU, On Some Models of Parallel Performance 4 Asupra unor modele de performantă paralelă 117

A n i v e r s ä r i - A n n i v o r s a r i e s - A n n i v e r s a i r e s

Professor Emil Muntean at his 60<l> Anniversary . 131

г ж ;

STUDIA UNIV BABEŞ-BOLYAI, MATHEMATICA, XXXVIII, 3, 1993

O n So m e M om ents o f C o m pu ter Sc ien c e E v o lu tio n in R o m a n ia

by

Emi! Muntean

In the fifties, a group of researchers from the Institute for Atomics Physics, Bucharest
built up the first lomanian electronic computer machine, due to an initiative of Acad Or.
Moisi! This computer, named "Computer of the Institute for Atomics Physics" (CIFA-1), was
designed and implemented under the co-ordination of Eng Victor Toma, in 1954 On that
occasion, at the same institute m Bucharest, a new research group aimed to work in the field
of computer software programming, is foimed

After a short time, in 1957, at Cluj, is founded the first Romanian institute, having
Acad Tiberiu Popoviciu as supervisor Founded on the 1“ of April, 1957 and called the
Computer Institute of the Romanian Academy, his activity was based on that of the Numeric
Analysis Department of the Cluj branch of the Romanian Academy This institute has been
onented to fields much more related to those consideied today as part of Computer Science

This institute, founded by Acad T Popoviciu in Cluj, represented at that time an
exceptional organizatoric achievement There were very few such institutes in the whole
world, and in Eastern Europe the research in Cybernetics and Computer Science was neither
encouraged nor recognised In Romania, since the foundation of the Institute in Cluj, ten years
were necessary for the totalitary goverment to oncially promote the interests m the field of
Computer Science and to found, in 1968, in Buchaiest, the Research Institute for Electronic
Computers (known later as the Computet Technique Institute, I T C)

The first romanian transistorized computer, DACICC-1 (Automatic Computing Device
of the Computer Technique Institute, Cluj), was built at the Computer Institute from Cluj, in
1961 The research groups from the Department foi Computer Machines of the same Institute,
start the design of some complex applications, both tehnical and economical As a
consequence, different industrial companies in Cluj introduced computer technique the shoe
factory Clujana, the Railway Company, the Company for freezing equipment The research
is oriented towards optimization problems, linear programming, transport problems Thcie
weie formed some research groups specialized on diffeient fields hardware design, software
design, tehnical and scientifical applications, economical applications These structures,
founded between 1960 and 1965 at the Computer Technique Institute in Cluj, have Upical
Computer Technique and Computer Science interests During the same penod, due to the
influence geneiated by the Computer Technique Institute, the Department foi Computer
Machines is founded at the Faculty of Mathematics This department will have prepared many
generations of computer scientists Ten years will pass from the foundation of this department,
until it will have a computer for the students activity and for the teachers research m
Computer Science

Less than ten years after the foundation of the Computer Institute in Cluj, the design
of a complex project at that time has begun After a lot of complicated efforts to find the
nongoverment financial support, in 1967, the design of the DACC1C-2 computer started The
DACC1C-2 design project had contained a lot of new elements, introduced at that time as

STUDIA UNIV BABEŞ-BOLYAI, MAŢIIEMATICA, XXXVIII, 3, 1993

inovations by the big computer companies, especcialy by 113M through 360 sene
The DACCIC-2 computer had
- word length on 32 bytes,
- memory adress on octets,
- interrupts handling,
- some parallel treatment (statements preparing and

execution),
- the speed of the central unit was 200,000 operations/sec
- a kernel o'f the operating system which achieves the peripherals management, the

interrupts handling, the programs management in multiprogramming, compiler, assembler,
library and loader for FORTRAN programming language,

- a tehnologicei approach for a senal production
The design this project on an industrial scale hasn’t been achieved Under the pressure

of the world development and the imatiatives from the neighboum countries, the political
leading decided to buy a license, to organise a computer production and to concentrate all the
research forces in a national institute of a ministerial rank (nonacademical), with branches in
Cluj and Timişoara, where a lot of valuable research in Computer Science had been
developed This had taken part between 1968 and 1970

After a lew years, the results seemed good, a lot of equipment had beai introduced
in the centralized economy, applications were developed, especially for management, after the
principles of the state economy

The licence copyright and the attempt to develope it improved die scientific research,
solving some of the major problems in Computer Science

At Cluj, the î T C branch had concentrated the research in the domains as
programming languages, databases in peripherals design, personal computers and so on
Interesting implementations were designed for the Romanian computers arhitectura,
developing the licence, for almost every standardized programming language: FORTRAN,
FORTRAN-77, COBOL, PASCAL, C, ADA and CHILL Prototypes were obtained for
peripherals, which, later, had known a large serial production displays, plotters, digitizers and
personal computers During this penod, new research groups were formed, vyhich worked,
from a organizatoncal point of view, on the same principles as the teams from the computers
companies

The concept of "Regional Computer Centre " apeared in Romania, in the seventies,
as the principal user of the computers This regional Center co-ordinated the computer science
activity in a region, and all of these centres were co-ordinated by the Central Institute for
Computer Science (IC I) , which, for many years, directed even the necessary of computer
equipments of all the companies and enterprises m Romania

After 13 or 15 years, one may clearly realised that Romania could not face the
development rate in computers, that the tehnology obtained by licence had grew older very
fast and that a new one hadn’t appeared The research developed m the eighties, in the
domain of computer arhitectura in the whole world and, especcialy, in high tehnology, had
the effect that the Romanian products as minicomputers, personal computers and peripherals
became unfeasible and uncompetitive

The world tendence in Computer Science was a descentralized one, was in a process

4

STUDIA UNIV. DABEŞ-BOLYAI, MATHEMATICA, XXXVIII, 3, 1993

of "democracy". In Romania, the industrial companies could hardly develope their particular
applications since the Regional Computer Centre and the Central Institute for Computer
generated a tendence of hypercentralization.

That explains die fact that, after 1989, almost everythin fa Sscxjuter Soience had to
be taken ftom the beginning, especially concerning the equipment availability, applications
design and the training of the operative personnel. Some good experience has been gained
during the period of assimilation and development o f the licences. But these was an old one.
Also, a lot o f people gained experience in using the medium computers and minicomputers
for management applications, but even this one had the dezavantage o f beeing related to a
hypercentralized economy, based on laws completly different than those necessary for a
market economy.

In a completly new situation, different ftom that before 1989, the Romanian computer
scientists had adjust veiy quickly, understanding that Romania represents a large computer
market. As a consequence, a lot of comerefaD e i^ a n ies, with state and private'fundings, had
invested in computer equipment, ftom private Aims. A lot o f computer companies had been
founded, increasing the quality in software design and computer service.

We hope that in the forthcoming future will bring an explosive increase o f computers
users, comparative with that in computer equipment. Of course, this fact is seriously affected
by the economical restructure and development

5

ET
îlT

T

У!

ж

STUDIA UNIV BABEŞ-B0LYA1, MATHEMATIC A, XXXVIII, 3, 1993

AN IMPLEMENTATION SCHEME
FOR THE PARBEGIN-PAREND CONSTRUCTION

Florian Mircea BOJAN *nd Alexandru VANCEA*

Dedicated to Professor Emii Muntean on h U 60* enmveivary

Received February 25, 1994

AMS subject classification 6SQ45, 68Q1Ö

REZUMAT. - О schere il de Implementare pentru construcţia PARBEGIN-PAREND.
Lucrarea prezintă o schemă de translatare orientată spre sintaxă pentru construcţia PARBEGIN-
PAREND, schemă pe baza căreia se poate construi uşor un translator care generează cod în
limbajul C sub sistemul de operare UNIX.

The construction PARBEGIN P, | P2 | , | P„ PAREND [3] describes the

simultaneous execution of the processes Pl5 P2) ,Pn and their parallel evolution until all of

them terminate The n processes begin their execution at the same time and they function

synchronously

This control structure contains a single entry (PARBEGIN) and a single exit

(PAREND) and it is a static contiol structure, this meaning that all processing decisions are

taken at compile time

The fork-join instructions are frequently used in UNIX, these being implemented by

means of a. fork-wait mechanism These instructions piovide a direct mechanism for dynamic

piocess a cation and the possibility of multiple activations of the same process

The execution of a child process is made by calling the fork function which creates

■ "Uabc.yllolyai" University, b acuity o f Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

F M BOIAN, A VANCEA

the child process by duplicating the father’s image Fork returns in the father process the

child’s РШ and zero in the child.

The UNIX fork-wait mechanism [2] allows the synchronization of a father process

with its sons The wait function blocks the calling process until one o f its childs terminates

If at the moment of the call one of its childs it's already terminated the returning is

immediate The value returned by wait is an integer representing the terminated child’s РШ

p = wait (& status)

where status is an integer providing information about the process status.

The synchronization with a certain child (let’s say with the one having MENpidl) can ,

be done in the following way

while (wait(&status) != pull).

These functionalities suggest the possibility of expressing a PARBEG1N-PAREND

construction by means of the fork-wait mechanism

Let’s considei the independent processes P,, ,Pn as the subjects erf a PARBEGIN-

PAREND instruction, with the syntax

PARBEGIN P, PAR PAR P„ PAREND

(we introduced the word PAR instead of |, because the latter may be confused with the C

bitwise OR operation)

In these conditions the PARBEGIN entry point has its equivalent in the sequence

if (forkO) — 0) { P,; exit(O), },
else if (forkO) ■==()){ P2, exit(O), };
else

else if (forkO) ■== 0) { Pn> exit(0), },
else for (i- l, i<=n, i++) wait(&status),

8

AN IMPLEMENTATION SCHEME

Having these, we can express the PARBEGIN-PAREND construction through the

following syntax-directed translation scheme {!]

(1) <PARBEGIN_constr> PARBEGJN process <tail>,
if (forkO— 0) {process; cxk(0);} <tail>

(2) <tall> =■ PAR process <tail>,
else if (fork0“ 0) {process; eslt(i));} <tail>

(3) <tail> ' = PARENÖ,
for (i“ l; i<=n; 1++) wait{& status);

where we put the nonterminals between brackets

The process terminai designates one of the P,, P7, ,Pn processes

One of the issues that arise relatively to this scheme is how to handle nested

PARBEGIN-PAREND constructs The answer is simple once the deeper construct has been

identified and translated, it becomes a process

Production (1) will generate process P, The rest of the processes are generated by

production (2), which also increments the numbei of processes by one Production (3) uses

the number of processes for generating the PAREND waiting point correctly It’s easy to

write a translator for this mechanism

Let’s see a generation example with two processes

(<PARBEGIN_constr>,
^PARBLGIN^consti^) = >

(PARBEG1N process <Та|1>,
if (forkO^O) {process; exit(0);} < t a i l >) = >

(PARBEGIN process PAR process <tail>,
if (fork()=0) {process; exit(0);} else if (Ibrk0=e0)
{process; cxit(0);} <tail>) = >

9

F M BOIAN, A VANCEA

(PARPEGIN process PAR process PAREND ,
jf (fork()=Q) {process; px|t(Q);} else if (for(t()=0)
{process; exit(O);} else for (H{; f<=»5 i++) wait(Ästatus);)

R E F E R E N C E S

1 Aho A V, UUman J D - The Theory of Parsing, Translation and Compiling, Prentice Hall, 1973
2 Rochkind M J - Advanced Unix Programming, Prentice Hall, 1985
3 Tanenbaum A S - Modem Operating Systems, Prentice Hall, 1992

10

STUDIA UNIV BABEŞ-BOLYAI, MATHEMATICA, XXXVIU, 3, 1993

SERIAL AND PARALLEL ALGORITHMS
FOR SOLVING A PROBLEM OF CONVECTION IN POROUS MEDIUM

Ioana CHIOREAN’

Dedicated to professor Emil Muntean on bis 60* anniversary

Received August 5, J99J4AIS subject classification 65Y05, 63Q22

REZUMAT. - Algoritmi seriali şi paraleli pentru rezolvarea unei probleme de conveiltate
In mediu poros. Scopul acestei lucrări este să se facă o comparaţie între algoritmii seriali şi
paraleli, pentru a rezolva o problemă dată în mediu poros Sunt studiate în hierare
performanţele algoritmilor paraleli care au ca scop creşterea vitezei de calcul şi a eficienţei lor

Abstract. The mam purpose of this paper is to make a comparison between a serial

and a parallel algorithm for solving a given ptoblem of convection in porous medium The

perfoimances of the parallel algorithm, established by means of speed-up and efficiency, are

studied

No m e n c l a t u r e

8
V
P
r
к
k
S
Pa
L
t

gravitational acceleration
velocity of the fluid
piessure of fluid
temperature of fluid
permeability of the saturated porous medium
thermal conductivity of porous medium
rate of internal heat generation of porous medium
internal Rayleigh number
characteristic length of the porous medium
time

"Babe ̂ Bolyai" University, Faculty o f Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

I CHIORHAN

u,v velocity components
x,y coordinates

Greek symbols

p density of fluid
ji viscosity of fluid
(pc)/ beat capacity of fluid
(pc)p heat capacity of porous medium
ß thermal expansion coefficient
ijj dimensionless stream flmction
ф angular coordinate

Superscripts

dimensional variables

Subscripts

0 value at reference temperature and density

1. Introduction. The problem under consideraüon is that of 2D steady laminar

convection in a porous layer bounded by an inclined squre box with four ngid walls of

constant temperature (fîg 1) Heat is

generated by a uniformily distributed

energy souices within the cavity The

porous layer is isotropic, homogeneous

and saturated with an mcompressibile

fluid The heat genei ati on creates a

temperature gradient across the layer, and

thereby provides a driving mechanism for natural convection within the cavity

In the present study, the saturated porous medium is treated as a continuum, with the

12

SERIAL AND PARALLEL ALGORITHMS

solid and fluid phases in local thermodynamic equilibrium Also, the saturated fluid and the

porous matrix are supposed incompressible and all physical properties of the medium, except

the fluid density are taken to be constant

2. Converning equations. The fluid motion obeys the equations Darcy-Qberbeck-

Boussineq For the case of volumetric heating considered here, the governing equations can

be written as

Ы

V - V' = 0 ,

v - £ (p ' g - v p ') ,
ц

(pc) — + (p c U V ' - V y r ' - ÄrV2T' + S ‘
p b t ' 1

p' - pU / - 0 U ' - f o ')]

The four equations may be written
Л w *

0 ,du ' bv '

, ки = _

, К
V ® __

(
by '

-р ^зш ф _ àp'

-p 'g C O S l j)

b x ‘

î e L
b y ')

, , ä i 1' . ,
(i>c),’T F + (pc)/

,dP , dT'] li 'b2T' b2V+
 ̂ bx ' b y ' ! kbxn b y ' 2)

+ s '

p' = P o t Z - P Í ^ - ?o)]

0)

(2)

(3)

(4)

0 ’)

(T)

(2")

(3’)

(4 ’)

Derivating (2’) after y and (2") after x' and taking into account that the temperature function

has the form T(x 'y ') , it is obtained

bu '

w

Кft £81Пфр0Р Ы b2p '
by ' bx ' by ' t

(5)

13

I CHIOREAN

dv' К
dx' H

Subtracting (6) from (5) we get

du' _ dv' _ К
~dÿT И х7 T

Using the dimensionless variables

, / о д T' d2p ' g cos ф p0 ß —— -■ f
dx dx dy

SPoß
/ , , \; i d T , dT' simp-------- созф-----

dy' dx'

(6)

(7)

kt'

i p c U 2
■;w

(p c)jLu' 1 (p c \L v '
-, V

* - • '* * T ’y * T ’ 7, p lS 'L
(7) becomes

ŐH dv рйё$(?сХ (, d T
dy dx цк2

втф — - cosè
dy

dT
T x

(T)

KL* S* 2Ü /Taking Ra =■-------- JÜ -, where v = |i/p0 and a = (pc)Jk as the Rayleigh number, (7’)
a \ k J

becomes

du dv „ (, 8T , 07м— - — » Ra sind) - cosd>__
dy dx у dy dx

Analogously, using the dimensionless vanables, (Г) and (3‘) become

du dv „— + ___ = 0 ,
dx dy

d 7 \ dT dT ,
dl dx dy

Equation (4") is verified by the streamfunction ф where

и dip н di()

(7")

(Г)

(4")

(8)dy dx
So, imtroducing (8) in (4") and (7") we get the finally system of two equations with two

unknowns (the temperature function T and the stream function ф)

Ü + Í 1 Í I - V2T + }
dl dy dx dx dy

У72 , » l I dT , 3TV 'i|j » Ra smф ---- - cosq>___
 ̂ dy dx

(9)

We solve this system beeig situated in an enclosure with unit square section (L = l), eith the

14

SERIAL AND PARALLEL ALGORITHMS

initial conditions

(1 0)

and the boundary conditions

Г = т |)= 0 for ж = 0 and 1 , ^ = 0 and 1 (П)

Numerical results.

3.1. The Steady Problem In the steady case, our system of equations is

dip dT _ jhjji d7 =
dy dx dx dy

02)

In order to obtain the solution for the system (12) with the conditions (10) and (11), we used

the Multigrid method [4] with a Gauss-Seidel smoother The space derivatives were

approximated in the following manner the fust order derivatives with the Euler forward

foimula and the second order derivatives with the centered differences, accordind to [6] The

discretized solution foi the temperature and stieam functions was obtained working on an

equidistant grid Q, (where / indicates the level of grid), defined In the following manner

Denoting j = T(iht j h t) , = ф (/A,,yA,) for every 0 з /, j л Nh I being one grid the

system becomes

Чуг-Ф,, % - ? ’</_ К Тф Г Тч „
h, A, A, h,

T -T T - T* . ,+ t * , 4 * , * l J 1 , i

(13)

Ra sin<j>._'i!i__^ - с о э ф __ '£
h, h,

15

I CHIOREAN

The solution of system (13) was obtained in two ways first, as the output of an serial

algorithm and second, as the output of a parallel algorithm.

3 .U , The serial algorithm The algorithm which solves (13) by means of up to seven

grids (/ = 7) contains the following steps

1 Solve the firet equation of system (13) using (10) and (I I); results T new;

2 Solve the second equation of system (13) using T new just determined, tj>0 and -ip at

the boundary; results ip new;

3 Solve the firet equation using ip new and (l 1); results T new;

4 Repeats Steps 3 and 4 until "CONDITION" {When it is accomplish, the steady

solution is obtained)

Note In our case,' "CONDITION" means that the difference between two succesive

approximation is less that 10-6 In other words, if we denoted, e g. F*1 anf F “* two succesive

approximauons (where F represents T or гр), "CONDITION" will be .

II p™* _ ss JO'4

where ||il denotes the Euclidean norm [4], Fig 2a and b indicate the decreasing o f error

during ten repetitions of Steps 3 and 4 (Fig 2b detailes more the error at temperature

ftinction) '

Concerning the results, our observations are the followings: the steady temperature has

form like m Fig 3 and is not influenced by Ra number or ф angle Also, the general shape

of the function (and this note is valable for the stream function, too) does not change with

the numbers of grid points

16

SERIAL AND PARALLEL ALGORITHMS

The stream function modifies according with the Rayleigh number and has the shape as in

Fig 4

The stream function modifies also according with the angle of enclosure (see Fig 5a-c)

3.1.2. The parallel algorithm. The parallel algorithm was implemented on the INMOS

Transputer System from University of Heidelberg, under PARIX operating system The main

17

I CHIOREAN

f u n c t io n T ——

Fig 3 Temperature in steady casc with Ra=>500 and ф“0
function esi ac {U«0.01, p^i-o —-

2e -9 6 1 З9 - О 6 U-06 39-07 0- 5e -07 - l e -0 6 -i Зз-Об •29-06 -2 $9-06

0 ~~-- ^ —0.5
0 3* '--■—

Fig-4 Stream function m steady case with Ra=0 01 and ф-О

tdeea in so lv ing our problem is that o f {3}, but w ith chages due to the convective te rm s (first

equation) and the right-hand-side (second equation) from (12) We use a rectangular grid with

(Nt - 1) * (Nj - 1) unknowns, then each processor is assigned to a subset of unknowns (data

partitioning) In an one-dimensional arrangement of n processors caled a ring configuration

of length rt, processor p,p E {0, , «-1} is assigned to the grid points {(i j) (max (\,pNj\/i)

£ i £ (p+l)N^n, 1 s j á Ni) If the sidelength of the grid is not divisible by the number of

18

SERIAL AND PARALLEL ALGORITHMS

Fig 5a Stream function, with Ra=0 01 and ÿsa&O

Fig 5b Stream tunccion uich Ra=Q 01 and o=>H5

Fig 5>- Stream Itinccton \wrli Ra=0 0l and e> = 270

19

I CHIOREAN

processors, then some of them will be assigned more unknowns than others, generating an

unequal load balance, which is one source for loss of efficiency Taking into account the way

of disposing the grid points on processors and denoting by xMn{p) and xmJ p) the leftmost,

respectively the rightmost grid point column stored by processor p, each processor will

executes simultaneously the following steps

1 Computes the convective terms for the first equation of (12),

2 hi case of an overlapping, sends values to the leftside processor (if it exists) and

receives values flom the nghside processor (if it exists),

3 For every j from 1 to n, do

3 1 Receives values from the leftside processor (if it exists),

3 2 For every i from xmln(p) to x^Jp) do

Computes Gauss-Seidel iterations,

3 3 Sends values to the rightside processor (if it exists)

After processing the previous steps, with step 3 repetead till the steady solution for

temperatuie is obtained (we have noticed that it happened after 10 iterations), we proceed

analogously to solve the second ecuation of (12).

In order to compare the results obtained with the serial and the parallel code, we used,

like m [1] and [3], the speed-up, defined as

S{n) - (14)
*ШЫ (и)

where TMano is the time needed for obtaining the solution the with the serial code and is

the time took by the paiallel code, using n processors, and the efficiency which is defined

S(n)
m (15)

20

SERIAL AND PARALLEL ALGORITHMS

Table I presents the execution times (in sec) for the serial and the parallel code, when a

different number of processors was used So, we can notice that the increasing of time for the

serial code is deeply connected with the numbers of grid points (on a coarse grid, the

execution takes a few seconds, the execution takes a few seconds, on a fine grid it takes more

that an hourl) and the execution time decreases according with the number of processors used,

with the observation that for the coarse grid 32 x 32 the situation is like in Fig 7

Table l Execution time

Nr proc/Nr pc 32*32 64*64 128*128 256*256 321*321

1 166029 67 9188 276 725 1116 65 1677 73
7 7 86234 19 2012 53 5307 167 708 240 032
11 7 472 17 1044 43 5171 126 039 173 89
15 7 59328 16.6198 396177 107 014 141814
»9 7 40141 16 0309 36 4428 95.6118 128 211
23 7 49709 15 6065 35 5842 89002 116 689

Fig 6 visualises the information from Tabel 1, meanwhile Fig 7 indicates only an

unconcludent situation when more that one processors are used

Table 2 Speed-up

Nr proc/Nr pc 32*32 64*64 128*128 256*256 312*312

7 2 11 3 S3 5 16 6 65 6 98
II 221 3 97 6 35 8 85 95
15 2 18 4 08 6 95 10 43 11 8
19 2 24 4 23 7 59 1167 13 08
23 2 21 4 35 7 76 12 54 14 3

The speed-up for all operations earned out on a fixed grid depends heavily on the

numbei of unknowns per processor, because a larger proportion of computing time is spent

on communication and the effects of unequal load distnbution are more pronounced if the

numbei of gnd points per processor is small This means that a high speed-up can be

21

I CHIOREAN

Fig 7 E\ecution time working with so e ra l processors on a coarse g-al

achieved on the fine grids (assuming a large number of grid points per processor on the fine

grids) like m Fig.9 whereas the speed-up deteriorates on the coarser grids (see Fig 10) Table

2 contains the values which sustained these observations and on which Fig 8 and 9 are based

Woiking with several processors on a coarse grid, the improving of speed-up is not

22

SERIAL AND PARALLEL ALGORITHMS

concludent, as we can see from Fig 10 Next, accordind with (15), Table 3 contains the values

which indicate how efficiency depends on the number of processors and on the number of

grids points

23

I CHIOREAN

Fig 10 Speed-up on a coarse grid, with several processors

Table 3 Efficiency evolution

Nrproc/Nrpc 64*64 128*128 256*256 312*312

7 0 50 0 73 095 099
11 0 36 0 57 080 086
15 0 27 0 46 069 0 78
19 0 22 0 34 061 068
21 0 18 0 33 0 54 062

Based on Table 3 , Fig 11 shows the increasing of efficiency when finer grids are

used

3.2.The Unsteady Problem Solving the unsteady problem means to solve the system
(I

in the original form (9) In order to do this, we use the same finite difference formulas to

discretize the space derivatives, as in 3 1 The time denbatlve will be discretized with the

backward Euler formula ([6)] We denote by dt the timestep, which is considered fix, by //"

the Laplace operator and by GA and G} the gradient operators ([2]) Let 7* be the temperature

flmction at the moment of time lk - kell Then the first equation of system (9) can be written

24

SERIAL AND PARALLEL ALGORITHMS

Fig 11 Efficiency

in the following manner
' f ' k + l _ Ţ k

Ji G i Tk" - G q l " G 7’*’1 - L Mr k' 1 + J
y i X ж * V

(16)

For a fixed time interval denoting with 1 the Identity operator and based on

(10), to solve the parabolic equation of system (9) means to solve the following bidiagonal

blok-sliuotuied system

As = b

wheie

~L/ + f/' i|>(7 ■ +G iL>(/ • - L rH-
dl > “ y

Л --
- 1 / J-/+ G ti>G ■ *G ■ -I-*"
dl dl уГ ' >

0

0 - 1 / -L l+ G yG -+GyG • -L ‘n ■
dl dt ' * y

25

! CHIOREAN

Tk" ■ 1 + -LlTk
dt
Tand b =

rj ’k+m
1

We observe that at every moment of time the relation which gives the temperature

flmction is ftilly implicit and we have to solve, as the first equation of system (9), the

following
rt,k+\ . . Л + 1 rr k*\ .fr+i . fc+1 /Tit+! /ri*+i
I и
dt h,

ri i Z + r t Z + C , * C , - 4 r:

h?
1 +

f t
‘ tj

~dt
(17)

Equation (17) together with the second equation of system (13) will form the problem

we have to solve m this case As in the paragraph 3 1 , the Multignd method was used and

the general scheme of solving is the following'

Step 1 Solve equation (17) at the moment of time (k+l based on 7* (where 7°, the initial

tempeiature is given), results У*’1

Step 2 Solve the second equation of system 9130 at the moment of time /*fl based on 7*’1

just determined results iji*’1

Step 3 Repeat Steps 1 and 2 until ’’CONDITION 1"

Note "CONDITION Г indicates the number of time steps we have to execute until

the steady solution'is obtained, normally, thi depends on the value of dt For instance, if dt

= 0 1, the steady solution is attain in mostly 10 steps, but for dt = 0 001 we need almost 180

time iterations to get it Fig 12a-2 show the evolution in time of the temperature function,

for Ra - 500 , ф = 0 and dt = 0 001 Aftei 180 time steps, the temperature is stationary (in

26

SERIAL AND PARALLEL ALGORITHMS

order to compare, see Fig 3)

T ’ er 26 tines Steps __

case

In the same conditions (but for Ra = 125), Fig I3a-c present the evolution m time of

the Mi earn function

27

I CHIOREAN

Fig 12c The Temperature after 51 time steps

Fig 12d The Temperature after 131 time steps

i 1

Fig l i e The Tem peratur • air.:i b O u m e a t e p s

28

SERIAL AND PARALLEL ALGORITHMS

О 0) О 02
О 01

О-О 01
-О 02
-О QJ -О Oi

О

I

Fig ПЬ H ic SirtMin func tion ’Чсг 2ö um-* steps

Fig lJc The Stream Fun мои utter öl t ime steps

I CHIOREAN

After 180 time steps, the stream function becomes steady (pig '1), as we can see from

the following graphics

Fig 13d The Stream Function after 131 time steps

P8 I a f t e r 140 t i n e s t o p s 1

Fig 1 Je The S u e a m Function after 1 SO time steps

4.Condusions. The main goal of this research was to show that transputer system can

efficiently solve laige computational problems with good performance We made study on a

30

SERIAL AND PARALLEL ALGORITHMS

problem of interest in the computational fluid dynamics field, which generated a parabolic

pioblem expressed by a PDE system In order to verify the results, we solve first, in serial

and in parallel, the steady problem The outputs of this two different codes were almost the

sama Based on the steady solution, we solved then the original problem, indicating by means

of many graphics the evolution in time, up to the steady state, of the solution functions

Acknowledgements. The author would like to especially thank to Prof Willi Jäger

foi his constant support Also, expresses her thanks to Peter Bastian and all the coleagues

fioin IWR, University of Heidelberg, for their help in elaborating this paper

R E F E R E N C E S

1 Bilder,G , Gehrke E , On the pet Jormance oj transputer networks fin solving linear s'vs tenet ofequations,
Parallel Computing 17(1991), pp 1397-1407

2 BnMlan,P , Burmelster.J, Horton, G , Implementation o f a parallel mulligrld methodfor parabolic partial
(hjjeiential equations, Proceeding of the Sixth GAMM-Seminar, Kiel, Jan 19-21, 1990, pp 18-27

1 BhHmii.P , Horton,G , Parallelization o f Robust Mulllgrnl Method ILU Factorization and Frequency
Decomposition Method, SIAM i SCI STAT COMP , vol 12, No 6, pp 1457-1470, nov 1991

1 I lackbuscRW , Multi-Gnd Methods and Applications, Sponger Verlag, Berlin, Heidelberg, 1985
5 May,H О , A unmerited study on natural convection in an inclined square enclosure containing internal

heat smuces, lnt J Heal Mass Transfer, Vol 34, No 4, pp 919-928/1991
о Roaclie.J ,P , Computational Fluid Dynamics, Hermosa, Albuquerque, New-Mexico, 1985
7 Vasscui.P, Hung Nguyen,T, Roblllurd.L , Tong Thi.V К , Naim al convection between horizontal

concentric c viliidéi s filled with a jiorous layei with internal heat generation, lut J Heat Mass Transfer,
vol 27, no 3, pp 337-349/1984

31

STUDIA UNIV DABEŞ-BOLYAI, MATIIEMATICA, XXXVIII, 3, 1993

GENERATING CONTROL STRUCTURES

V. CIOBAN, S. MOTOGNA, V. PREJMEREAN'

Dedicated to Professor Emil Muntean on hb 60k anniversary

Received November 18, J992

‘IMS subject classification 68N20, 68Q52

REZUMAT. - Generarea structurilor dc contrai. Lucrarea prezintă o modalitate de a defini
specificaţiile formale cu ajutorul unei gramatici necontextualc

l. Introduction. The aparitton of the ptogramming environments generates an

accentuated grow of programmers productivity With such a software instrument many actions

can be performed editing a source file, compiling and linkediting of a progtam, execution,

debugging even otheis facilities for files viewed as entities In fact, the apantion of

microcomputers and programming envuonments made a combination of the programming

work with the operating work in a calculus system The abandon of the "batch" working style

and working interactively impose a specific training in operating a computer If the first

programming environment have had restricted functions, the lecent ones, as TURBO PASCAL

oi BORLAND C (considered in top of the classification), are veiy complex and are few

specialists who can handle them completely However, the programming languages from these

envuonments (PASCAL, C, C++) may be considered universal languages (solve a great

numbei of problems technical, scientifical problems, problems which had to work with many

informations and so, with files, graphical problems, object-oirented programming) and, that’s

' "Babe$~lSolytu" Umvetsity, Faculty o f Mathematics anti Computer Science, 3400 Cluj-Napoca, Romania

V CIOBAN, S MOrOGNA, V PREJMIÍRtiAN

why handling all of the language facilities became difficult From another point of view

languages as PASCAL, C++, COBOL or DBASE IV have thicker instructions, from the

syntactical aspect, as FORTRAN We though that an instrument foi automatic generation of

control structures in a fixed language may be added as an important function in a

programming environment

The problem of automatic generation of programs is not recent, and program generators

exist in some systems and software products As an example we mention DBASE IV system

which has a program generatoi based on graphical specification

We propose a model for generating some control structures of a program using context

free grammars (1) A problem which hasn’t been solved efficently is the specification of the

structures

2. Control structures. Foi Dijkstra structures (see for example (2))and for other

structures we will intioduce the following operators

a) C(s,,s2) - operatoi for concatenation structures s, and s2 m this order ,

b) A(b,s,,s2) - operator associated to the complete alternative structure (complete IF) with

the semnification

IF b THEN
, ■ 8,

ELSE
■ s2 *

ENDIF,

c) t-(b,s) - operator associated to the alternative structuie with one alternative (simple IF)

with semnification IF b THEN s ENDIF,

14

GENERATING CONTROL STRUCTURES

d) *(b,s,, .s j - operator associated to the generalized alternative structure (CASE)

e) U(b,s) - operator associated to pretested loop with the semnification

WHILE b DO
s

ENDWHILE,

I) Q(s,b) - operator associated to posttested loop with the semnification

REPEAT
s

UNTIL b.

Are required some explanations

the three Dijkstra arc D={ C, A, Ö) and are considered fundamental, with them any

algonthm can be described,

we asociate operators for structures D’={ C, A, b_, *, Ö, Q} which are in fact the

structuies from the PASCAL language,

any other structure to which a similar operator can be asociated may be simulated with

D or D‘ (for example LOOP-EXIT or LOOP-EXITJF-ENDLOOP stiuctures),

we may intioduce the к symbol for the empty stiucture

3. Proprieties of the asociated operators

1 C(s,,s2) ?■ C(s2,s,) - concatenation of structures s, and s2 isn’t comutative

2 C(s,,C(s2,s3)) = C(C(s,,s2),s3) - concatenation is asociative

3 C(sA) = C(X,s) = s - the symbol of the empty structure is playing the role of the neutral

element for concatenation

A CfAfb.s^SjI.Sj) = A(b,C(shs3),C(s2,s3)) - concatenation is nght distributed to alternative

35

V CIOBAN, S MOTOGNA, V PREJMhREAN

structure

5 C(s1,A(b,s2,s3)) = Afb.CXsLBjXCXs^Sj)) - concatenation is distnbuted to left to alternative

structure if and only if s, structure doesn’t have any effect on b predicat

6 U(b,s) = A(b,C(b,U(b,s)),X) = A(b,C(s,A(b,C(s,U(b,s)),X)),X) = - this propriety shows that

the three D structure can be reduced to only two structures concatenation and the

alternative structure

7 Reducing D’ structures to D structures

a) Mb,s) = A(b,sA)

b) b-(b,s) = A(b,s,U(c,s))

c) *(Ь,8„ s j = AO^SLAibj^Ai .A O v ^ ^ s J)

where b is formed from b,, ,bn.,

d) Q(s,b) = C(s,U(_,b,s)), wheie _,b is the negation of b

8, Some equivalence proprieties

a) A(b,3l)s2) = C(b1=’T,,C(U(bAb1,C(bI=,F,,s1)), О ф л-Ь 1,С’(Ь1= Т ,,з2))))

A could be reduced to the operators C by introducing a new boolean variable b, ('T

is the value TRUE and ’F is the value FALSE)

b) Aib.SjjSj) = СХЦЬ.зАЦ-Ь.з,)) mentioning that s, doesn’t modify b

4. Generating grammars for control structures. With the introduced notation we

try to define a grammar which geneiates programma containing only contiol structuies whose

associated operators have been described One may give more than one grammar but we’ll

leffer only to the structures С, А, Ь_, Ö and Q

16

GENERATING CONTROL STRUCTURES

H aving n structures s„ ,s„ (which may be considered the sim plest ones, nam ely

attributing) and 2k predicates b ,, bk and A > A we give a gram m ar w hich generates all

Program m s over the objects considered above

Let G = (N,£,P,S), w here

N = {S,B} is the neterminals set

2 = {С Л b. ü Q (,) s, \ b, bk А A }

is the alphabet of the grammar

P S ~> C(S,S)|U(B,S)|Q(S,B)|b.(B,S)|A(B,S,S)|s1| |sn

в -> b.i |bkhb,| I A

is the set of production rules

S - as the source symbol, S E N

We consider the following examples

Example 1 The word

C(s„C(s2,C(t,(b1,s3),C(s2,U(-b2,s4)))))

which belongs to L(G) over s,,s2,S3,s4,b1,b2,-’b1,“,b2 may be obtained through "=>" in this way

S => C(S,S) => C(S,C(S,S» ■=> C(S,C(S,C(S,S))) =>

C(S,C(S,C(tu(B,S),C(S,S)))) => C(s„C(s2,C(t,(b1,sJ),C(s2, D'(-b2,s4)))))

and it is equivalent with the following program

s„
9„
IF b, THEN s3,
h,
WHILE A DO

S4
ENDWHILE,

37

V CIOBAN, S MOTOGNA, V, PREJMEREAN

Example 2 Let’s consider the following word ■

C(sp A(b,, (b2,s2), ii(s3,-b2)))

e L(G), which is obtained in this way
S =>C(S,S) =>C(S,A(B,S,S)) ">C(S,A(B, (B,S),Q(S,B)))=>
'=,>C(s1,A(b1> (b2,s2),ü(s3,-,bi)))

and it is equivalent to the following program

si>
IF b, THEN

WHILE b2 DO
s,

ENDWH1LE
ELSE

REPEAT S3
UNTIL -b 2

ENDIF

The introduced grammar has the following properties ,

- is a simple precedence grammar

- theie aie no conflicts in grammar

We may prove that for any piogiam (written in any language) only with structures C,

A, k, Ö and Q exists one single woid from L(G), which ieproduces the program through

operators

Different generators may be construct now having as input a word from L(G) and as

output a program written in PASCAL, C, C++, COBOL, FORTRAN and so on The problem

which hasn’t been solved properly is the specification of the word from L(G) at input

R E F E R E N C E S

1 Aho.A V and UllinanJ D - The Theory of Parsing, Translation and Compiling, vol 1 and 2 Englewood
Cliffs, New Jersey, Prentice Hall, 1972

2 Dalü,0 J , Dijkstra E W, Hoare,C A R - Structured programming Academic Press, London, 1972

STUDIA UNIV BABEŞ-BOLYAI, МАЛШМАТ1СА, XXXVIII, 3, 1993

SURFACES GENERATED BY BLENDING INTERPOLATION

Gh. COMAN', L GÂNSCÂ', L. ŢÂMBULEA'

Dedicated to Professor Emil Muntean on his 60* anniversary

Received January, 21 1994
■IMS subject classification 65D05, 6JY25

REZUMAT. - Suprafeţe generate pria Interpolare blending. Folosind proprietatea funcţiei
interpolatoare blending de a coincide cu funcţia pe care o interpelează pe puncte, segmente sau
arce de curbă situate în domeniul de definipc al funcţiei, sunt generate suprafeţe controlate de
valon alo funcţiei şl derivate ale acestora de gradul I sau il

The blending interpolation has many practical applications As it is well know,

blending interpolation is the interpolation at an infinite set of points segments, curves, etc

Thus, if one gives the contour of an object by such elements (points, segments, curves) using

a blending inteipolation, we can generate a surface that contains the given contour Hence,

we can construct a surface (a blending function interpolant) which mach a given function and

certain of its denvatives on the boundary of a plan domain (rectangle, triangle, etc)

Using such a surface fitting technique it was constructed the roof surfaces for large

halls (industrial halls, exposition halls, public buildings) [4,5,6,7,8]

Our goal is to construct some new such surfaces using Lagrange’s, Hermite’s and

Bnkoffs interpolator operators

Let Th => {(xj/) e № I x&O, paO, x+h-sh) be the standard triangle and / 1\ -*■ R a

given function

"Babeş-Bolyai" University, Faculty o f Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

Gh COMAN, I GÂNSCĂ. L TÂMBULEA

The operators used are.

1) Lagrange’s operators L * , L f and L ? defined bv

= t p L f (O y) + * f (h - yxy)
' ' h -у h -y

(V/)(*jO = h~*~yj (x, 0) + JL f(x ,h -x)
' h-x h-x

= — Äx+yfl)+-?-/<P*+y)' 1 x+y x+y

each of them interpolating the function f on two of the sides of Th

2) Hermlte’s operators H?, Н / and H?' corresponding to the double nodes

Ф~УУ (h-yr
г У 1 ' . : ? : М м - у у)

Ф-yf Ф-У?

(h-x? (h-x?

+2 ^ ^ Л г Л - г) +2 ^ 3 ^ / о . 'Х х Л - х)
(h-x? (h-x?

(Ю) (^)
(*+>T (*+t)

+^ (^ y(v^ 0)_ _ ^ (/(u,)_/oll))(v+^ 0)
(*+Т) (x+y?

3) BirkhofTs operators B* and B? defined by

(/V/)̂) =* /(O4V) +(x+y-h)?'fi)(h-yy)
(/i,y)(.v,y) = f(xfi) -(x +y-h]f(0'1 \x,h -x)

4) BirkhofT s opeiatois B? and B? with

SURFACES GENERATED BY BLENDING INTERPOLATION

М М - Л 0

х \2 х -Щ
3(2МЛ) - / ™ м -

_2x\3X-x)
3A(2X-A)' / ‘■“’(AjO

3(2 у-А) ЗА(2у-Л)

for Х,уЕ[0,Л]

1 For the begining we construct a scalar interpolating formula generated by the

operators I / , I ,y and Я /, Я / and H3y, using two levels of interpolation

First, the function / is approximated by the boolean sum of the operators L f and L y

' ' h -у h-x /i- vh-x

A A(A -y)

In order to obtain a scalar appioximant o f/ , we use in the second level the following

approximations

/О М « (н ф у) , Лх,0) » (нз% 0) and y(v,A-x) « (#"/)(*,A-x)

Let

(2) f - P M f

w i t h

о) о,о) + - ^ 3± Э Д а,о)+
A3 A3

+y(2fix+3hy-2x2-2xy-2y2) ^ nh}+x(fi-x)(h-x-y)
A3 A2

+# 7) (A - r - M ,) r 2(A - M l|0, 0) +̂ M ‘VA 0)+
A2 A2 A2

A 2 A 2

41

Gh COMAN, l GÂNSCÂ, L ŢÂMBULEA

be the obtained interpolation formula

Theorem 1 If there exist and _f°'l>(P), i=l,2,3, where F(are the vertixes of

Th, then P f interpolates / and its first partial derivatives at F, /=1,2,3

Also Pgag for all g S P j, i e the exactness degree of P is two

The proof of the theorem is a straightforward computation

Theorem 2 I f ßEBl2(0,0) [10] then

(^ (^ J ') c j4>30(^^vV)/,3'u,(.v,0)£fe+Í(p2l(A: 1̂.s-)/<2'1)(5,0)ri5+

1
% fx ^ d)f0'3,(Q,í)dí+jJtpn(xy7s,i)/xl-2\s,t)dsdt,

where

0 2 h3 2 h24V

yj\{h-x-y)+x(h-x)\ _ t)
h 2

4>u(xxy,s,t)°(x-s)l(y-()i

The proof follows by Peano’s theorem for a triangular domain [2]

The approximation formula (2) is tested on the function Дх»>')а 1/(дс2+>'2+1) The

graphs of the function / and of the approximation P f are given in Fig 1 and Fig 2.

Remark Such an interpolation formula can be used to obtain a cubature formula ovei

a triangle

2 Next, it will be used the given interpolator operators to generate some surfaces on

42

SURFACES GENERATED BY BLENDING INTERPOLATION

the domain Z?a={(xtj/)E№| |x| + |_y|s/i}

Such a surface is constructed first on the triangle Th, öfter that is extended by

symmetry with respect to the coordinate axes on all Dh

First examples of such surfaces are obtained from the approximation function P f (3),

for

{) =/<1'0)(Л,0)=/<0'1)(0,А)=О

and / (1,0)(0,Л)“/ (о,1)(Л,0)“ -0 5 (Fig 3)

iespectively

(В) /0 ,0)=4 1ДА)0)^Д0,Л)'=/1'О)(Л,0)“/ О11(0,А)=0(

/ 1U)(0,0)=/°'l'(0,0)= -l and

/"'°X0,h)™fblXh,0)— 0 25 (Fig 4)

Fig 1 Fig 2

Now one supposes that the fonction / take the value zero on the border of D, i e

A «“ 0 Thls 1S equivalent with the condition f tx ji-x)=0 for *e[0,/i] Using this condition

43

Gh COMAN, 1 GÂNSCA, L ŢÂMI3ULCA

l (x j>) + !lZ lL ßxß) -2 l?pL fi0ß)
h -y h-x h

Taking А т 4 р { /) м and /л-0)=(//,7)(х,0), in the same condition J(x,h-x)= 0 for

all Æ [0,/i], one obtains the class of surfaces

ll(x,y)= h ~X~}-\{h2 +hx~2x2 ~2y 2)Д0,0) +А*(А
Л3

+hy(h -yV M (0,0) -hx 2_/<l,U)(/j,0)-hy У(0°(0,Л)],

which depends on the data

(Д 0 ,0)/ 1̂ (0 ,0) /и'13(0)0) / 1’11>(А)0)У<^>(0,Л))

For the data (4,-1,-1,-1 ,-1) one obtains the surface, from the Fig 5

Another class of surfaces is given by the boolean sum of the operators and У

obtained from У respectively Н / in the conditions /(x,/i-r)-=/l'0)(x,/i-x)'=/°'1)(r,/i-x)=0 foi

all x€E[0,A], l e

44

SURFACES GENERATED BY BLENDING INTERPOLATION

(h -y f ih -уУ

(o / J j M
(h-x-yf(h-x+2y) y (h -x -y ff q,„

(A-x)3 (A-x)2

We have

(g / e G3̂ H h ~ x - y f

+ h ~x+2>\
Q i-yf (h - y f

_ h +2hx+2hy+6xy-До.о)-

- x(A+2y)/ l,o)(nn)- X v+2x)/ (»,,)(n n)- ^ / ' . „ m n)
A3 A3 h r

Now, for

X0.V) ^ J j i O y f A o f i) ß y - h f ^ m

f Kxfi)4B *]j(xß)= A 0ßh(x-h)yi0Xhß)

f m (0y>) ^ , 7 <1'0))(0^) = ^ / 1'0)(0,0)+ Z /(1’0)(0>A)

/ (0'°(х.О) “(l 17 <O,1))(^0)= ^ I Í / lí0' l)(0,0)+ Í:/ <u'1)(A,0) ' Л л
one obtains

G(xvp)=(A-x-^); Л +2x-_y A“X +2y _ h 2 +2Ax +2hy +6xy
(h -y f (A-x)3 A4 j

.̂xţ^ - A) ^ , ^ n) + x>;(2v-^)yxo.i)<-n n)- ^ /('.')(»»)
h '(h-y) A3(A-x) A2

У(0,0)н

A-x+2)
- f m (h ß f xy

(h - x f ' ' ‘ ' A(A-t)

- ^ i r ^ W + T T r Lr f ° ,')W(h -y f h (h -x f

45

Gh COMAN, 1 GÂNSCÀ, L fÂMBULEA

Fig 5. w Fig 6

(Д0,0)1/Х1'°)(0,0)1/ <0,1)(0)0) / 11'1>(0,0)|
■ / ‘■и)(Л,0) / 10>(0>А) /0'1>(0,Л)/0’»(А)0))

As an example (Fig 6) is given the surface obtained for the data (4,-1,-1,1,0,5,0,5)

The last class of surfaces is generated using the Fejer’s type operators F-f and/-'/

obtained from H3* and H3 for
I * •« '

=/"'0)(Л - ^) ° / ол,(х,0) ')(JC,A -x)»0

46

SURFACES GENERATED BY BLENDING INTERPOLATION

Taking into account the general condition that j[x,h-x)=0 for х€=[0,Л], one obtains

where Х,уЕ|0,/)]

Two example aie taken here, for the data (4,-l,-l,0,0,0,0) with X°y=5 (Fig 7) and (4,-

0 75,-0 75,0,0,2,2) with X-y-15 (Fig 8)

Finally, we remark that foi any of the presented classes of surfaces, for convenable

data, can be obtained a large vaiiety of surfaces

(l<7 © F $ i x y) = { h - x - y ? \ t ^ A m +
ih -y f

№ : y * h? 4 j m
{h -x f h \h~y)

in order to control the inflexion points we take

A W { в ф у)

Х * ,0) .ф ? з ^ (* ,0)

One obtains

that depends on

(Д0,0) / ‘'°)(0,0)1/<0'1)(0,0) / ' ' ^ 0,Л),
/ ° '1)(0,Л)/2'°>(Х,0)1/ до>(0,у)),

47

Gh COMAN, I GÂNSCÀ, L ŢÂMBULEA

R E F E R E N C E S

1 Barnhill, R E , Birkhalf, G , Gordom, W J , Smooth Interpolation m tnangies J Approx Theory, 8,1973,
114-128

2 Barnhill, RE , Mansfield, L , Error bounds for smooth interpolation in triangles J Approx Theory,
11(1974), 306-318

3 Bohiner, К , Coman, Gh, Smooth interpolation schemes m triangle with error bounds Mathematica,
18(41), 1976, 15-27

4 Coman, Gh., Multivariate approximation schemes and the approximation of linear functionals
Mathematica, 16(39), 1974, 229-249

5 Coman, Gh„ Gânscă, I , An application of blending interpolation. Itinerant seminar of functional
equations, approximation and convexity Cluj-Napoca 1983, Preprint nr.2, 1983, 29-34

/

6 Coman, Gh, Gânscă, I , Some practical applications of blending approximation Proceedings of the
Colloquium on Approximation and Optimization, Cluj-Napoca, October 23-27, 1984,

7 Coman, Gh., Gânscă, 1, Some practical applications of blending approximation II Itinerant seminar of
functional equaUons, approximation and convexity. Cluj-Napoca 1986, Preprint nr 7, 1986, 75-82

8 Coman, Gh, Gânscă, I , Ţâmbulea, L , Some practical applications of blending approximation III
Itinerant seminar of functional equations, approximation and convexity. Cluj-Napoca 1989, Preprint nr 7,
1989, 5-22

9 Coman, Gh, Gânscă, I , Ţâmbulea, L , Some new roof-surfaces generated by blending interpolation
technique Studia Uiuv Babeş-Bolyai, Mathematica, XXXVI, 1, 1991, 119-130

10 Gordon, W J , Distributive lattices and the approximation of multivariate functions In "Approxunation
with special emphasis on spline functions" (ed by IJ Schoenberg). Academic Press, New York and
London, 1969, 223-227

11 Sard, A , Linear approximation AMS 1963
12 Staucu, D D , Generalizarea unor formule de interpolare pentru funcţii de mai multe variabile şi unele

coiisiderapi asupra lonnulci de integrare numerică a lui Gauss Buletin St Acad R P Române, 9, 2,1957,
287-313

13 Stancu, D D , The remainder of ceitam linear approximation formulas m two variables J SIAM,
Numcr Anal, 1, 1964, 137-163

14 Steffenseu, J F , Interpolation Baltimore, 1950

48

STUDIA UNIV BABEŞ-BOLYAI, MATHEMA1 ICA, XXXVIII, 3, 1993

PROGRAMMING PROVERBS REVISITED

M. KREN J IU und B. i*ÂUV'

DvdietiltJ to Proltbsor Emil Munlean on lus 60л anniversary

Received February 17, 1994 M/.S urbjecl ctüMiJication 6SN05

REZUMAT. - Proverbe ale programăm revăzute. în lucrare ье pre/mtă metode, principii
şi reguli considerate importante in activitatea de programare Se subliniază importanta acestora
în once curs de învăţare a piogramăni

Computer programming is still m a state of crisis, at least for two reasons the

haidware changes, and the appearance of new problems winch can be solved by computer

The complexity of programs is incieasing continuously, and it generates ntajoi changes in

piogiam design techniques The notion of "good program" can be considered from two

different points of view piogiammer’s view, and usei’s one Fiom the user’s point of view

one can distinguish 10 so-called "external quality factors" [10J correctness, robustness,

extensibility, reusability, compatibility, efficiency, portability, venficabilily, integrity, and ease

of use from programmer’s viewpoint, one can enumeiate two major criteria for a good

progiam modulanty, and complete documentation Of course, the external quality factois

must be taken into account as final goals in the software development process

All these quality cntena must find their place in the formation of new programmers

There is a continuous need to teach programming foi obtaining a better productivity, i e to

"liabeţ-llolmi" Uinversilv, hut ullv o/Maiheinalit s niiil Computet Science, 3-WO Clttj-Napoca, Romania

M FRENŢIU, В PÁRV

teach the students the methods that allow us to obtain correct programs from the first

execution As Floyd [4] pointed out in his Turing Award Lecture, there "is possible to

explicitly teach a set of systematic methods for all levels of piogiam design" Methods,

principles, and rules considered important in programming are given below Also the

bibliographical source is indicated m the brackets
/

1 Define the problem completely [7, 9] One cannot write a correct program if the

problem to be solved is not known exactly Бу this we mean to write the specifications of the

problem As it is known [11], this is not an easy problem, but a very serious one Often the

beginners start to write the program but they do not know what are the results that must be

obtained

2 Think first, program later [9] This may be interpreted to design the algorithms

correctly Think to them, try to prove their coirectness, and write the program later, when you

are sure that everything is correct

3 Use Top-Down Design [4, 7, 9] This is a veiy well known, and important

programming paradigm [4] It is also met as step-wise refinement method [13], or Divide and

compter principle [7]

4 Use Modulat ity as much as possible [9] A function, a procedure, a Turbo-Pascal

unit, a Modula module, or an Ada package are considered modules Each module of a

progiam is more understandable than the entire program Also, using modules, the logical

structure of the program is improved Build up libraries of your modules for reusability

5 Use hbraiy routines whenever it is possible [9] This rule is a consequence of rule

4 Certainly, the existing routines are leady to be used, no time needed for writing and testing

50

PROGRAMMING PROVERBS REVISITED

these routines Thus the productivity, and the probability of correctness will increase

6 Design the algorithms by Structured Programming paradigm [2, 4, 9, 13] This rule

asks to design first the algorithms in a Pseudocode language, and only then to tianslate them

in a programming language Also, it lequires to think to the structure of the product, at each

level

7 Define a new data type as an Abstract Data Type (ADT) [6] The above rule asks

the designer to think generally, not in the context of the solved problem An ADT may be

viewed as a module that defines a data structure and the operations on this structure This

independence of the context has beneficial effect foi the reusability of modules Also, an ADT

is an open system, i e one can add new operations, not affecting the old ones, and not

affecting the programs that already use this ADT

8 Design input-output routines for each abstiact data type [5, 6] These Input-Output

operations are veiy usefbl in general Often, when a standardized interface is recommended,

for these operations one uses videoformat, such as Turbo Vision from Borland This rule is

one way of achieving rule 21

9 Use object-oriented design [1 , 10] This technique permits to obtain flexible, and

easy modifiable programs The programs obtained by this technique are easy to maintain

since, by using the hierarchy of classes in libraries of components, a massive reusability of

these components becomes possible Also, adding new components does not affect the

programs that already use the old components On the othei side, the other feature of object-

oriented piogramming, the polymorfism, simplifies communication protocol between objects

A program in OOP sense is considered as a structured collection of objects which

51

M FRENŢIU, В PARV

communicate by message passing

10 Strive for continuing invention, and elaboration o f new paradigms to the set o f

your own ones [4] This idea, due to Floyd, is very well presented In his Turing Lecture He

recommended to "identify the paradigms you use, as fUlly as you can, then teach them

explicitly"

1 1 Prove the correctness o f algorithms during their design [7] The errors must be

eliminated аз soon as possible. Trying to prove correctness, some wrong parts may be

discovered And this can be done much earlier than running it on a computer Also, if we

succeeded to prove it, the confidence in its correctness grows up significantly Gnes [7]

insists on developing correct programs from the beginning His words are "A program and

its proof should be developed hand-in-hand, with the proof usually leading the way"

12 Concentrate to the important things o f the moment, postpone the details later [9,

13] This rule is connected to the stepwise refinement method But it has some other aspects

At all levels give attention to the main things, for example do not lose time to print the

results nicely if you are not sine these lesults are correct

13 Nevertheless the details are important [6, 13] First, the software products must

respect rigorously the specifications Second, the form of the printed results are moie

important for users than the entire work done for developing the product These must please

the usera 1

14 Choose suitable and meaningful names for variables [7, 13] The readability of a

program may be one of its very important quality It is very useful during maintenance phase,

when many other programmers have to work on the program More, Gries [7] recommends

52

PROGRAMMING PROVERBS REVISITED

to define rigorously the meaning of a variable by an assertion that remains true during the

execution of the algonthm

15 For every variable o f a program make sure that it is declared, initialised, and used

[12] A variable may appeared in a program accidentally, other variable may not be initialised

since a line of a program was not typed

16 Use symbolic constants [6, 13] This rule is a consequence of a Murphy like rule

The constants must be considered variables I

One recommends to define symbolic constants at the beginning of a program (module)

procedure and to use the names inside Any modifications means small changes in the

definition of the constants, and eliminates fiirther errors

17 Use names for all data types o f the program [6] We consider that all properties

of a type are concentrated m its name Using names, the modifiability of the program is

easier Also, the clarity is higher

18 Use intermediate variables only i f it is necesmiy [9] ,

The unconti oiled utilization of auxiliary variables, by breaking expressions, just complicated,

in subexpressions assigned to new variables, diminishes the clarity of the program, and makes

more difficult the program verification

19 Declare all auxiliary variables o f a procedwe as local vat tables [6] This rule is

connected with the autonomy of the corresponding procedure It offers the following

advantages easier testing of the procedure, procedure independence of the context m winch

it is used, no secondary effects due to unexpected changing of the values of global variables

20 Be carefid at the parameters o f the called procedure [6, 13] Each module must

53

M. FRENŢIU, В. PÂRV

be used only through its interface, that is, the actual parameters passed to the module, which

must correspond to the formal parameters (dummy variables) Respect their meanings, and

be careful to the correct usage of the procedure calling mechanism

21. Verify the value o f a variable immediately it was obtained [6] A variable receives

a value by an assignment or by an input operation. In both cases the value must be correct,

it is worthwhile to check it Especially for input operation, a variable must be protected from

wrong values

22 Think to pretty writing the text o f the program [9,13].

Most of the programming languages allow free format, i e. the blank spaces may be used

freely Use them when writing the text of the program, to improye the darity of this text It

must leap to the eyes the beginning and the end of each statement Use indentation for this

purpose Make the structure of your program visible.

23 Use the FOR statements properly; do not change the value o f the counting

variable, or the limits inside the cycle [9] This rule ask to respect the semantics of the For

statement Do not use For when Repeat or While control structures are most appropiate

Changing the limits, or the value of the counting vanable may cause invisible errors, very

difficult to discover

24 Do not leave a FOR cycle through a Goto statement [9] This rule is specific to

Fortran programmers, but may be met in those languages that possess GOTO statements The

reasons for respecting this rule are the same as for the rule 23

25 Avoid GOTO statements {3} The Goto controversy [3, 8] is well known Using

umestneted Goto statements destroys the good structure of that module These statements

54

PROGRAMMING PROVERBS REVISITED

must be used only if the programming language does not possess the standard computing

structures

26 Avoid tricky programming [9] A program must be maintained, oftenly, by other

persons different from the people who wrote it And tricks are not compatible with good

structure, clarity, and flexibility. Also, for the portability of the program, one must avoid the

implementation dependent features.

27. Use comments [9, 13]. The text erf a program (module) must be understood easily

and unambiguously by all the other programmers who have to read it For this purpose the

comments can be very useful. We think that each module must contain comments saying at

least what it is doing, i e the specifications of the module, and the meaning of the used
9

variables

28 Verify (test) the correctness o f a module soon after it was obtained [7], The rule

10 ask us to prove formally the correctness of a program (module) But, just if we have done

it, we still have to test this module After all, the proof may be wrong, or the implementation

of a correct algorithm may be incorrect. Ledgard [9] recommended "to hand-check the

program before running it" We find this very useful for the beginners, some students better

understand their errois running themselves their wrong programs

29 At each phase verify the programm correctness [6, 13] The verification of

program correctness means the verification of specifications, the formal proof of algorithm

correctness, the inspection of the text of the program, and the testing of it Remove any error

as soon as possible I

30 Use assertions to document programs and verify their conectness during

55

M FRENŢ1U, В PÂRV

dèbnggmgprocess [7] If one has proved the partial correctness of the algorithms he has used

assertions in воте points of the algorithms These assertions must be invariantly true during
s , } ,

execution They reflect the meaning of the corresponding variables. In the debugging process

verify their correctness. If they are not true some errors have oecured, and they must be

eliminated
r > - ‘ * ? t (

31. Write good documentation simultaneously with program budding [13] The users

need a documentation manual, and the maintenance activities need information about all levels

of program dévelopment Often, there is no documentation at all. The above mentioned rule

asks to write the documentation simultaneously with the development of the program. The

program itself must be selfdocumented by comments But it is not enough There must be

written documents that show all the decisions at each level of the development process. There

must exist documents for specification, design, implementation, and testing. Also, a user

manual is heeded Í“ '

32, Use the existing debugging techniques [9] We hope to obtain error-free programs

But errors may arise, and finding and correcting these errors is an important, and very often,

an unpleasant job Every operating system has built in it some debugging aids Use them to

assist you m finding the errors

33 Ask for computer assisted software development [7, 13] Computers can help

people to carry out their unpleasant works Particularly, they can help in program

development m different ways Many of them are mentioned in the excellent book of Schach
r ' ! ’ . t ‘ *

[13] planning the activities, and many activities done by Software' Development

Environments, known as CASE (Computer-Aided Software Development) There are many

56

PROGRAMMING PROVERBS REVISITED

activities that have to be performed during the development of the program, such as

computations [4], or various decisions

34 Think to the program portability [9] A program must be portable, i e to be able

to be run directly on a different machine, other than the original one Portability is not usually

an issue to worry about But it may be an important quality of a program Isolate into

modules those parts of the program that,usually change from computer to computer (such as

mput/output operations). All other modules can be built portable, using statements

corresponding to the "standard specification" of the implementation language, and avoiding

the particular extensions which are dependent on the compiler implementation

R E F E R E N C E S

1 Coad,P, Yonrdon,E O b je c t-o r ie n te d D es ig n , Prentice-Hall, 1991
2 Dahl,O J , E W Difkstra, CAR Hoarc. Structured/mogramnnng, Academic Press, London, New-York,

1972
3 Di|kstra,h \V GOTO Statement Considered Ihvmfid, Comm AC M, 11(1968),no 3, p 148
4 FlovcLR W The Paradigms o f Programming, Comm ACM, 22(1979), no 8, pp 455-460
5 FrenţiUjM , B Pdrv, V Prcjmerefinu Abstract data types Jor tna easing the pi oiluctivity in p ogrammmg,

Seminar on Computer Science, "Babeş-Bolyai" University, Prepnnt no 5, 1992, pp 8-13
6 Fien(iu,M , and B Pàrv, Me iade şi leírnia in elaborai ea progiamelor, Piomedia, Cluj-Napoca, 1994
7 Gncs,D The Science o f Programming, Spnngci Verlag, Berlin, 1985.
8 Knulli.D Structured Piogiamming with GO TO Statements, ACM CompuUng Surveys, 6(1974),

no 12, pp 2til-301
9 Ledgard.H F , Programming proverbs jo> Fortian programme! s, Hayden Book Company, Inc , New-

Jersey, 1975
10 Meyer,В Object Oriented Sofhvare Construction, Prenuce-Hall, Englewood Cliffs, 1988
11 Myers, A 4 Cotitiolled Experiment in Program 'lasting and Code' Walkthoughs Inspection,

Comm ACM, 21(1978), no 9, pp 760-768.
12 Naur.P lb oo f of algorithms by general snapshots, BIT, 6(1966), pp3l0-316
13 Scluch,S R Sofiwaie Engmeenng, IRWIN, 1990, USA

57

iTjasres®.:

/

STUDIA UNIV BABEŞ-BOLYAI, MATHEMATICA, XXXVIII, 3, 1993

CONSEQUENCES OF THEOREMS
CONCERNING THE CONVERGENCE OF CHORD METHOD

Sever GROZE" and Ioana CHIOREAN’

Indicated to Professor Lmil Muntean on his 60® anniverbary

February 21, 1994

LK1S \ubjeci clasxtjicatioii 65C20

REZUMAT. - Consecinţe ale teoremelor privind convergenţa metodei coardei. Lucrarea
îşi propune de a pune în evidenţă câteva consecinţe ale unei teoreme de convergenţă ale
metode coardei

**1 = A. - ЛЛ*„)

metodă folosită în rezolvarea ecuaţiei P(x) = 0, unde P X -* Y, X, Y fiind spaţii Frédiét

1. In this paper some consequences of tiie convergence of Chord method are given

Let be the equation

Pix) = 0 (1)

where P X Y is a continuous nonlinear mapping, X and Y Frédiét spaces [3], 0 E Y the

null element of the space

Let be any x0,x., E. D С X and Лл = [хя, хя_р P]"1 the generalized divided quotient

[2] of P

Starting from the initial approximation x0, x., and using the algorithm

(2)

known as "the Chord method", the sequence (x„) is generated, each term of it being an

“Itabeş-Bolyai" University, Faculty oj Mathematics anil Computer Science, 3400 Ciuj-Napoca, Romanţa

S GROZE, I CHIOREAN

approximate of the solution of (1)

Obviously, the Chord method cannot be applied in the following two situations

a) applying the algorithm (2), x„ terms of sequence which are not in D are generated,

b) the mapping does not exist

To apply the iterative method (2) at each step, the mapping [х4, хЬ1, P j' 1 is needed

To avoid this inconvenient, a "modified" method may be applied

К *-i Г (2 ’)

which, to generate the (xn) approximations, uses only the mapping

° [*0> *■-! • ■̂3]

Although it gives a "weaker" approximation that (2), it is often use in piactice

We mention that both the Chord method (2) and the modified one (2 ’) applied to the

approximative solving of equation (1) are identical with the succesive approximations method

Л(хя) (n = 0 , 1 ,) (3’)

applied to the equations equivalent with (1), respectively

x = x - [x (1, ,x ffl, f] > (r) (3.)

and

X = X - [x0,x .l ,P] _‘T’(x) (32)

Concerning the convergence of Chord method, in {1] the following theorem is proved

THEOREM A I f the following conditions are satisfied for initial approximates x0jx.,

e x-
1 Aa = [x0, r , , P j "1 exists,

2)| Л0Е (х) |< > r\n i = 0 ,- 1 and Tq0 < 1/4 iq., ;

60

CONSEQUENCES OF THEOREMS

3)]Aü[m>v,w , / j] | (: s £ > V

4 A0 — f s T]_| s 1/4,

then the equation (1) has at least one solution x* £ S, which is the limit o f sequence (x„)

generated by (2), the order o f convergence being

) !* ’ -* ,(1 (s -1-гЯ'~Ч4Ь0Ут\0 (4)
2

where 0 < q < 1, and sn is the genet al term o f the sequence o f partial summas o f Fibonacci

sequence, with «, = u2 = 1

2. In the following, we modify the hypothesis concerning the existence of mapping

Ац = [x0,x_,, P]"1, using another mapping, connected with it

We probe the following

THEOREM 1 Supposing the existence o f any continuous linear mapping A £ (Y,Xf

winch has an inverse and the following conditions fulfilled for initial approximates x0rx., £

SCLX

1°)l A7, (xi))(!>,, / - 0 ,-1 and ij0 й l/4 ïî_ ,,

2°)| A[Xy, X j Pj - / I (£ a < 1 , / beetng the identical mapping,

3°) |A [h, v,w , / >] |(s Ă', V m,v,w £ S (x0, 5/4 т ц) ,
„ - К ti .

4° Л0 - ___ Li. s 1/4
(l - a)2

then the equation (1) has a solution x* £ S, which is the limit o f sequence (x„) generated by

(2), the order o f comergence being

) t x * - x n(| (c J _ ^ (4 A y) ' - i i 0 (5)
2 -

where sn and q has the significance given bellow

61

S GROZE, I CHIOREAN

Proof We show that, from the hypothesis of theorem 1, the conditions of theorem A

follow

Hypothesis 2° of theorem 1 implies, based on Banach’s theorem, the existence of

mapping

Я = (A [x 0,

which for

(6)

) | Я | (*
1

1 - a
It follows the existence of

ЯЛ = Л0= [д^ . х ^ . Р]'1

so the condition 1° of theorem A is verified

To fulfill the condition 2° of the same theorem, we consider

)[A 0P(x/) | (=) | Я Л Р (х ,) | (*

*) | Я | (-) | Л Р (х ,) | (^ , í = 0 ,-1
L -a
T|

Changing ii, respectively with — — , t = 0 , - 1 , we obtain te condition 1° of
1 -a

I
theorem A

In order to obtain the condition 3° of theorem A, we have

) | A0 [x(l), X m, x (3); P] I (й) IH Л [X(1), x (2), x (3), P] | (й

so К corresponds to К
1 ~o

1 - a

According with the expressions for К and тр, we may evaluate h0, so the condition

4 of theorem A

Then due to theoiem A, it results the existence of solution for equation (1), which is

62

CONSEQUENCES OF THEOREMS

the limit of sequence generated by (x„), the rapidity of convergence being given by (5)

R E F E R E N C E S

1 Graze,S , Goldner.G , Jankó,В , Asupra metodei coardei Di rezolvarea ecuaţiilor operaţionale definite
fn spaţii supermeţrice, Studii şi Ceraet Mat, 5, Tome 23, 1971, pp,719-725

2 Graze,S , limkó.B , Asupra dijerenţetor divizate generalizate, Anal Unlv Al I.Cuza, Iaşi, Sect I, XVIII,
1971, fasc 2, pp 375-379

3 Rolewicz,S , Metric Linear Spaces, P W N Warszawa, 1972

63

Г'**
m i

STUDIA UNIV BABEŞ-BOLYAI, MATHEMATICA, XXXVIII, 3, 1993

FORMAL SPECIFICATION FOR SMALLTALK THROUGH
LAMBDA-CALCULUS. A COMPARATIVE STUDY

Simone MOTOGNA'

Dodiuitui to Profeuor trail Muntean on hia 60* anniversary

January 31. 1994H /.S’ \.tbject classification 6SN05, 6KQ55, 68Q60

REZUMAT. - Specificarea formală prin lambda-calcul a limbajului Smalltalk. Studiu
comparativ. In această lucram sunt discutate două modele de specificaţii prin lambda-calcul
ale limbajului Smalltalk Prin considerarea unei ierarhii în mediul Smalltalk au fost comparate
cele două modele din punctul de vedere al criteriilor pe care o specificaţie trebuie să lo
respecte

Introduction. Denotation^ semantics based on lambda-calculus has been it very used

specification method in some models for formalization of the object oriented languages

Cardellt [1] stated that the only notion critically associated with object oriented programming

is inheritance This paper tends to present a comparative study of some denotational

specification models for inheritance. All the models presented are based on the object oriented

language Smalltalk so the study will be somehow easily

Inheritance is the possibility to define a new class (named subclass) using the

definition of one or more existing classes (named superclass) A subclass can inherit instance

variables or methods from the parent class The meaning of this property can be understand

using a "look-up" method Suppose a message, containing the call of a method, is sent to an

object Then the look-up method search the class containing the method,

"Haheţ-Rolyai" University, Faculty o f Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

S MOrOGNA

procedure lookup (паше, class)
If паше = localname then do localaction

else If (inhented_module= NIL) then undefmedjiame
elee lookup (name, inheritedjnodule)

In Smalltalk there are two special variables which can appear in a message These two

variables are se lf and super When the message contains the variable self the search begins

in the instance class

lookup (name, instance class)

and if the message contains the variable super then the search begins in the superclass of the

instance class (which contains the method)

lookup (name, superclass of the instance class)

The mechanism of self and super supports the access of the methods which have the

same names either from the superclass and the subclass, although they have a different action

If a subclass redefines a method which was defined in superclass then this mechanism became

very useful

Knmin’s specification model

In [5], Samuel Kamin proposes a denotational Gnr Cmalltalk The major

characteristic of this definition is the simple way in which inheritance is handled and the

paper contains an version of this semantics in Standard ML which can be executed

The Smalltalk defined by Kamin has some modifications.

- only a few primitives are defined,

- the only literals which are permitted in the language are the integers and the arrays,

- the pools variables are omitted, excepting class variables,

66

FORMAL SPECIFICATION FOR SMALLTALK

- contexts are not objects,

- methods are not objects, so it isn’t possible to create methods dynamically,

- there is a special way in which the array constants are handled any time when an

array constant is evaluated a new array is created;

The definition is based on some semantic maps which assign meaning to syntactic

entities These maps models the hierarchy, the inheritance and message passing mechanisms

Let’s consider now the following example in The hierarchy H contains two

classes Point and Pointl, where Pointl Is a subclass of class Point In Point are defined two

methods, the first being redefined in Pointl and the second method invokes the first one

class Point
instunceVariableiNames

’ x y ’
method DistFrom Orig

sqrt(self X2 + self y3)
method CloserToOrig(py=

(self DistFromOrig < p.DistFromOng)
Point superclass Pointl
method DistFromOrig

(self X + self v)

Let 11 be the hierarchy containing Point and Pointl For an easy reading, we will denote

m l = method DistFromOrig

m2 =■ method CloserToOrig and

R - CIHJ

In this example D(H| = YR = sup{ 1, R±, R(R1), .}

For a complete understanding of the example we shall recall the notations used in the

specification model Kamin has defined some semantic maps to specify the behavior of the

object oriented mechanisms Inheritance is modeled by the two semantic maps C and D

67

S MOIOONA

D Hier —> Env
C Hier --> Env —> Env

D[HJ - Y(C[H])
CtHlp

a Х<С,Ш>
let H(c) = C S w X F
in if F(m) = no-def then p<S,m> else M(F(m)]p

where CJHJ defines an application from the environment (meaning of the hierarchy H) to

the environment (noted Env) which executes an "inheritance step" For example, if H is a

hierarchy containing the class Point 1 and it’s superclass Point, m2 is an attribute not defined

in Pomtl and p(<Pomt,m>) is defined, then (PolntllH]p)(<Pointl,m>) will be defined

equivalent with p(<Point,m>) So, Pointl has "inherited" the definition of m2 from Point

Pointl[H] executes only an inheritance step’ if 0 is a subclass of Pointl, which doesn’t

define the attribute m2, then (Point lCH}p)(<D,m>) is not defined, but

(Pointl[HJ(Pointl[H]p))(<D,m>) is All the inheritances are resolved here

We use ± to denote the primitive routines (e g machine arithmetic).

We will construct some of these environments to understand the inheritance

mechanism

Ri. = { <Point, ml> -> 1,
<Point, m2> -> 1,
<Pointl, ml> -> 1,
<Pointl, m2> -> 1,
<Smallinteger, + > - > . , }

R(R±) = { <Point, m l> -> euclidian distance,
<Point, m2> -> if the arguments are from the class

Point then compare the euclidian
distance, else 1,

<Pointl, ml> -> distance,
<Pointl, m2> -> R±(<Point,m2>) = _L, .}

68

FORMAL SPECIFICATION FOR SMALLTALK

At first, all the methods are undefined After one step (see Ri.) are defined only those

methods which send no messages (like * or +) or invoke primitive methods After two steps

(see R(R±)), in addition to RJ_, are defined the two versions of method DistFromOrig and

the method CloserToOng only for the class Point After three steps CloserToOng is defined

because it can see the definition of the method DistFromOrig from class Pomtl (at this step

the method can be applied only for aiguments from the Point class - the method is inherited)

Alter foui steps Pointl has inherited the complete definition of CloserToOrig (it can be

applied for arguments from Point or Pointl)

We will transcribe the denotational definition given above in Standard ML

val no methods Methods = fri m => no_def,

val HO Hierarchy -
fn P => (P, "Object", [], [J, no_methods),

val psiO = (fn obj ■=> (simple (intval Oj,"Object"), ■
fn P => null env),

val Point_methods Methods =
fn "ml"=>normal("ml",[],[],literal(intconst 10,10))=>no_def,
fn "m2"=>normaI("ni2",[],[], call(self,"ml",inconst 15,15))

val Pointclass ClassDef =
("Point", "Object", [], П, Point_methods)

val Pointl_mefnods Methods --
fn "ml"=>normal("ml",[],[],litera!(intconst 20 20))=>no_def,

val Point l_class ClassDef =
("Pointl", "Point", [], [], Pointl „methods),

val H Hierarchy = HO mod ("Point" ~> Point class)
mod ("Pointl" --> Pointl class),

val prog Prg = (call(new "Point", "m2", []), H),

69

S MOTOGNA

pp prog psiû,

val prog . Prg = (call(new "Pointl", "m2", []), H),

pp prog psiû,

This example illustrates how inheritance works In ML syntax fn x represents a

lambda abstraction If this program is executed and progl is evaluated then it returns (10,10)

because m2 representing the method CloserToOrig compare the points(10,10) and (15,15) by

the euclidian distance from origin The evaluation of prog2 returns (15,15) because 20+20 >

15+15 (the two points are compare by the distance defined in Pointl)

Cook’s specification model

Cook’s definition [2] is based on three essential aspects related to the inheritance

mechanism

- the addition of new methods or replacement of the inherited methods,

- the self reference must be redirectionated to access the modified methods,

- the super reference must be redirectionated to access the original methods

We will describe this definition using the same example The modifications are

expressed as a record, Point ©, Pointl The new methods from class Pointl are combined

with the original methods from the parent class Point, such that the method defined m Pointl,

in this case DistFromOrig, substitutes the corresponding method m class Point

The variable selfis used to refer to the Pointl version o f DistFromOrig and super can

be used to refer to the Point version of the same method So, the modifications can be

expressed as a two arguments function, self and super, and returning the record described

70

FORMAL SPECIFICATION FOR SMALLTALK

above These functions are called wrappers.

Also the self-reference must be changed in the inherited methods These methods are

contained in a function named generator The result is a new class definition, namely a new

generator This mechanism is providbd (by m-,

The generator associated with Point is .

GenPoint(x,y) = X self
{ DistFromOng *-*

sqrt(self X2 + self y2),
CloserToOng *-»

Xp (self DistFromOng < p DistFromOng)}

1 he V.tapper associated with Pointl is

PointlWrapper = Xx,y Xself
{ DistFromOng

(self X + self y)}

The wrappei application will be

PointlWrapper ► GenPoint(x.y) =
Xx,y Xself
I DistFromOng >-►

(self X + self y)
CloserToOng

Xp (self DistFromOrig < p DistFromOng)}

After presenting these two models of specification we shall make some comments The

greatest advantage of the Kamin’s model is the simple treatment of inheritance The related

papers appeared before seems to have some disadvantages Kamin resolved them using fixed

points to model inheritance He had defined the semantic maps we have talked a little earlier

Indeed, for our example it is a nice specification way But what happens when we have a

larger hierarchy? The specificátion will be sometimes not too easy to be followed. On the

other hand we haven’t used yet the definition of the E map, which is far more complicated.

71

S M 010GNA

The modei has it’s advantage the specification is concentrated on inheritance and it’s

mechanism is treated very simple and so it’s easy to understand Also, Kamin has described

all the mechanisms appeared in an object oriented program the meaning of the hierarchy, the

inheritance process, the message passing, the methods evaluations, the evaluation of the

primitive methods which provide access to low-level operations

What about Cook’s model? This model seems easier to understand maybe because it

is provided with an intuitive explanation of inheritance as a mechanism fór incremental

programming The whole specification is based on this motivation Also, Cook pioved the

correctness of his model demonstrating that it is equivalent with an operational semantics of

inhentance based upon a method-lookup algorithm This way of specifying the inheritance

shows that this is not only an object oriented features but a general mechanism that can be

applied to any form of recursive definition Although Kamin’s model is closely related, he

described inheritance as a global operation on programs, which blurs scope Issues and

inhentance Here is the most important difference between the two models

Kamin’s model versus Cook’s model

Every specification has to respect some well-known cnteria We will discuss how

these specifications lespect them

Fonmltzation verifies if the specification behaves conforming with the implementation

Kamin’s model can be transcubed in an executable version in Standard ML so this

cntenum is easy to venfy We must also notice that the language' had suffered some

modifications and omissions But Kamin’s goal was to specify the mechanism of inheritance

72

FORMAL SPECIFICATION FOR SMALLTALK

and the missing details are not essential related with this concept

Cook proved that his model is equivalent with an operational semantics and it’s

obvious that it respects this cntenum

Costructability A specification must be easy to construct even if the notation used is formal

The omitted details make Kamin’s specification easier to build, but even so if the

hierarchy is thick then the construction of the C and D maps seems to be hard to follow

Comprehensibility The specification must be easy to understand The specification given by

Kamin seems difficult to understand when we have to deal with the maps E and E

Minimality All the non-essential details had been omitted (we have already present the

omissions and the modifications of the language, because they are not direct related

with the inheritance process)

Applicability From the applicability point of view Cook’s model seems to be more

interesting since his definition of inhentance, although it was developed fust for object

oriented languages, shows that, in fact, inheritance is a general mechanism that can

be applied to any form of recursive definition

The major problem of object onented languages is that they lack a solid formal

fundamentation There have been some attemps in specifying object oriented features in

operational, axiomatic, denotational and algebraic semantics We have focus our attention on

denotational semantics because it provides a good mathematical instrument for specification

based on lambda-calculus and, on the other hand, an instrument which is not such

complicated and hard to understand as the algebraic theory used in algebraic specification

techniques 1 his comparative presentation of these two model tries to be a study for choosing

7.1

S MOTOGNA

the most suitable fonnál specification

R E F E R E N C E S

1 L Cardelli, P Wegner, On Understanding Types, Data Abstraction and Polymorphism, Computing
Surveys, vol 17, no 4, Dec 1985, pg.471-522

2 W Cook, J Palsberg, A Denotutional Semantics of Inheritance and its Correctness, OOPSLA’89
Proceedings, 1989, pg 433-444

3 W Cook, W L.Hill, P S Canning, Inheritance is not Sublyping, Proceedings of POPL’90, ACM Press
1990

4 A Goldberg, D Robson, Smalltalk-80 The Language and Its Implementation, Addison-Welsey, Reading,
MA, 1983

5 S Kamin, Inheritance in Smalltalk-80 A Dcnotational Definition, Proceedings of the 15th Annual ACM
SIGACT - SIGPLAN Symposium on Principles of Programming Languages, San Diego, Jan 1988,
pg 80-87

6 Soo Dong Kim, Formal Specification in Object-Oriented Software Development, Ph D Tliesis, The
University of Iowa, 1991

74

STUDIA UNIV BABEŞ-B0LYA1, MATHEMATICA, XXXVIII, 3, 1993

FUNCTIONAL AND RELATIONAL PROGRAMMING WITH PSP

Ule PARFUCEA“ end Razii PÂRV"

Received February 26, 1994

AA/b subject cUmtflcaUon 68Q0S

REZUMAT. - Programare funcţională ţi relaţională cu PSP. Articolul prezintă PSP
(Procesorul Simbolic Poisson), intr-o manieră ce unifică programarea relaţională cu clauze
Horn bazate pe predicate cu programarea funcţională bazată pe egalităţi Unificarea pleacă de
la o logică minimală, ce posedă atât clauze Horn cât şi egalităţi, numită logica clauzelor Horn
cu egalităţi în ipotezele teoremei Church-Roser, semantica operaţională a PSP constituie o
logică completă Semantica se bazează pe unificarea a două abordări, una construită pe baza
teoriei modelelor, caro folosesc relapa de satisfacţie Intre modele şi instrucţiuni, şi una bazată
pe teoria demonstrării, care foloseşte relaţia de partiponare (cntailmcnt) Intre mulţimi şi
instrucţiuni PSP posedă tipuri abstracte de date ce se pol defini de utilizator şi care pot fi
considerate module generice (parametrizate) Cu ajutorul subsortunlor se pot introduce
operatori polunorfici şi o relaţie de moştenire pe tipurile de date Toate aceste caracteristici
concură la definirea riguroasă a semanticii cu ajutorai logicii substrat, ilustrată cu câteva
exemple

1. Introduction. A main feature of the processor described in this paper, hereafter

called PSP, is the practical way in which it unifies relational programming with functional

one, by unifying the logics that underlie relational and functional programming, namely first

order Horn clause logic and many-sorted equational logic, to get many-sorted first order Horn

clause logic with equality [8] In addition, generic modules are available with a rigorous

logical foundation, and PSP also has a subsort facility that gieatly increases its expressive

power

PSP is intended to operate with Poisson senes, which are a well-known tool in

‘ "Rnbey/jolyai" University, Faculty o f Economic Silences, 3400 Cluj-Napoca, Romania

"RabeyRolyat" University, Faculty o f Mathematics and Computer Science, 3400 Cluj-Nojioca, Romania

I PARPUCbA U PARV

expressing celestial mechanics problems The motion of celestial bodies is described by means

of differential equations, in which the right-hand-side terms are in fact Poisson series Usually,

the solution of these differential equations cannot be obtained in exact form There are two

alternatives numerical integration or analytic construction of an approximate solution (known

as "theory of motion") First was used extensively, being a "classical" solution of motion

problems The second alternative seems to be more attractive, because one can obtain the

solution in analytical form, which piovide a qualitative study of motion There are many

analytical methods for constructing the approximate solution of differential equations, most

of them known as "perturbation theory" methods [2, 14]

The advantages claimed for PSP includes simplicity, clarity, understandability,

reusability and maintanability There is another requirement that we argue also be imposed

on our symbolic processor every program should have an initial model [10, 12] An initial

model is charactenzed, uniquely up to isomorphism, by the pioperty that only what ts

provable is true, and everything else is false The initial model provides a foundation for

database manipulations, since you know exactly is true

We have found that neither of the approaches, the model-theoretic and the pioof-

theoretic one, is by itself sufficient to axiomatize oui PSP The model-theoretic approach

focuses on the satisfaction relation

M у

between a model M and a sentence /, and the pi oof-theoretic one tries to axiomatize the

entailment relation

T h y

76

FUNCTIONAL AND RELATIONAL PROGRAMMING WITH PSP

between a set of sentences Г and a sentence у derivable from Г The model-theoretic approach

is exemplified by Barwise’s axioms for abstract model theory [1] The framework of

institutions, given by Goguen and Burstall [6, 7] also belongs to this approach The proof-

theoretic approach has a long tradition, dating back to work of Tarski [15] on "consequence

relations", and of Hertz and Gentzen on the entailment relation к

This paper proposes a practical approach that integrates the two above-mentioned ones

(model-theoretic and proof-theoretic aspects) into a single axiomatization The axiomatization

in question consists of an "entailment system", specifying an entailment relation i-, together

with a "satisfaction system" (specifically, an institution in the Goguen-Burstali sense),

specifying a satisfaction relation и [Ц] The entailment and satisfaction relations are then

linked by a soundness axiom

The entailment relation ь says nothing about the internal structure of a proof To have

a satisfactory account of proofs, we use the additional concept of a proof calculus C for ,a L

The same logic may have, of course, many different proof calculi When we wish to include

a specific proof calculus as part of a logic, the lesulting logic plus proof calculus is called

logical system The axioms for a pi oof calculus C state that each signature in the logic L has

an associated space of proofs, which is an object of an appropriate category. From such a

space we can then extract an actual set of proofs supporting a given entailment Г н у

In order to obtain some efficiency with respect to PSP, we use the more general

concept of proof subcalculus, where proofs are restricted to some given class of axioms and

conclusions are also restricted to some given class of sentences It is by systematically

exploiting such restrictions that the structure of proofs can be simplified In this way, we can

77

I PARPUCEA, B PARV

obtain efficient proof theories, which lead to the theoretical concept of variable operational

semantics <•

2. The features of PSP Conceptual clarity and ease of understanding are facilitated

by breaking a program into modules This in turn offers support for debugging and

reusability When there are many modules, it is helpflil to design the structure of module

dependencies in an hierarchical manner Whenever one module (client module) uses data

(state) or operations (services) declared in a second one (server module), the server must be

explicitly imported to the client and also must be defined earlier in the program text A

program obtained in this way has the abstract stiucture of an acyclic graph with modules as

vertices and the module dependencies as edges

A PSP program is a sequence of modules (objects) Each module may define one or

more new data sorts, together with associated operations that may create, select, interrogate,

store, or modify data Such an module may use existing modules with their sorts of data and

operations The module concept includes both data types in the programming language sense

(that is, a domain of values of variables together with operations that access or modify those

values) and algorithms

PSP has the following syntax for import

<iniporting> <mod_list>,

where importing is keyword and <mod_hst> is a list о module names By convention, if a

module M imports a module M’, that imports a module M", then M" is also imported into

M, that is, "importing" is a transitive relation

78

FUNCTIONAL AND RELATIONAL PROGRAMMING WITH PSP

Usually, programming systems provide a number of built-in data types, for example

numbers and identifiers PSP has the following built-in modules BOOL, NAT, INT, and

RAT BOOL provides the expected syntax and semantics for Booléens NAT, INT, and RAT

define natural, integer and rational numbers (the last ones from the integers)

There is much work on providing user-defined abstract data types in programming

languages (e g [3, 4, 9]) The essential idea is to allow users to introduce models that define

new sorts and their associated functions and give axioms in Horn clause logic with equality

or rules of computation It can also be very helpful to have available subsorts and their

associated predicates, as we will see later

Note that PSP keywords are written in bold, module names are all CAPITALS, while

variable names begin with a capital letter and that relation, function and constant names are

all lowercase Attributes can be given for operators, for example, assoc, comm, and id

indicate that a binary operator is associative, commutative, and idempotent, respectively

PSP mix-fix notation allows any desired ordering of keywords and arguments for

operators, this is declared by giving a syntactic form consisting of a string of keywords and

underbar character followed by a " followed by the anty as a string of sorts, followed

by followed by the value sort of the function Similar conventions are used for

predicates An expression is considered well-formed m this scheme iff it has exactly one

parse, the parser can interactively help the user to satisfy this condition
t

PSP operates with Poisson senes, which are of the form

J, J, J. siny, cos +* Л + +k X),Л П'*

where C, are numencal coefficients, у,, y2, ,ym are monomial vanables, x„ x2, ,xn are

79

I PARPUCEA. B PÂRV

trigonometric variables, j,, j2> j ra and k,. k2, ,kn are exponents, and, respectively,

coefficients, the summation index t covers the set of all possible combinations of the

exponents j and coefficients к (j €E Zm, к E. Z", Z being the set of integers)

In a concise form we write (1) as follows

S
CO

0

in which T, is a term of this senes

T, = C, F, P, ,

where the polynomial part P, has the form

while the tngonometnc part F, is

f - S i n (k . x , + k j c + + k X)» CO S l 1 2^2 Я п*

In piactice, onő does not operate with Poisson series, but with partial sums of these

ones, called Poisson expressions, of the fonn

N

s “ E 7;. N eNi-O

The Poisson expression can be defined in an hierarchical way The complete

specification of tngonometnc and polynomial pan of a Poisson term (Ttr, and Ppol,

respectively) can be found in [13] Now we define the Poisson teim as following

psp TERM is
importing Rat Ttr Ppol
sorts Rat Ttr Ppol Terni
op

Rat Ttr Ppol -> Term [assoc comm]
= Term -> Bool

80

FUNCTIONAL AND RELATIONAL PROGRAMMING WITH PSP

vars
X Rat
У Ttr
Z Ppol
X Y Z X’-Y’ Z’ Term

eq
0-Y-Z ■= 0
X-O-Z = 0
X-Y-0 = 0
1/1 YZ = YZ
X I Z = XZ
X-Y-l = X Y
X Y Z = X’ Y’ Z’ - X = X’, Y = Y’, Z ■= Z’

endpsp.

The above keyword im p a i r } indicates that the sorts, subsorts, predicates, functions, and

axioms of the listed models are imported into the module being defined The equation

X Y Z = X’ Y’ Z’ - X = X’, Y = Y’, Z = Z’

is a Horn clause with equality, where H=" represents equality predicate defined on types,

respectively

In the same way, we define EXP, that is based upon TERM, and specify the Poisson

expression, viewed as a list of terms, m which the symbol is separator

psp EXP Is
imparting Term
sorts Term NeExp Exp
subsorts Term < NeExp < Exp

op
+ Term Term -> Exp [assoc comm id 0]

Term Term -> Exp [id 0]
Term Term -> Exp [assoc comm id 1]
__ Exp Exp -> Exp [assoc id ml]
j = _ Exp Exp -> Bool

head_ NeExp -> Term
tail_ NeExp -> Exp
empty7 Exp -> Bool

vars
T Term

81

I PARPUCEA, B PÀRV

E Exp

sinX,
N/M • { } * Y, Term

cosX,

smX,
P/Q • { } • Y, Terni

cosX,

sinX2
P/Q • { } • Y2 Term

cosXj
eq

sinX, 8UlX,
N/M • { } • Y, ± P/Q • { } • Y, =

cosX, cosX,

sinX,
= (N/M ± P/Q) • { } • Y,

cosX,

(N/M • cosX, • Y,) * (P/Q • smX2 • Y2) =

=((1/2 * N/M * P/Q) • sin(X,+X2) • Y, ■ Y2 ,
(1/2 * N/M * P/Q) • sin(X2-X,) • Y, • Yj)

(N/M • sinX, • Y,) * (P/Q • sinX2 • Y,) =

=((1/2 * N/M * P/Q) • cos(X,-X2) • Y, • Yj,
-(1/2 * N/M * P/Q) • cos(X,+X2) • Y, -,Y2)

(N/M • cosX, • Y,) * (P/Q cosX2 • Y2) =

=((1/2 * N/M * P/Q) • cos(X,+X2) • Y, • Y2 ,
(1/2 * N/M * P/Q) • cos(X,-X2) • Y, • Y2)

head(T E) = T
tail(T E) = E
empty 9_E = E == nil

endpsp.

In addition, we define two modules for differentiating and integrating of Poisson

expressions

82

FUNCTIONAL AND RELATIONAL PROGRAMMING WITH PSP

psp DERIV is
importing Exp
sorts Term Exp NeExp
subsorts Term < NeExp < Exp
op

— Term Set —> Exp
d -

— Exp Set —> Exp
d -

vars
E Exp
T Term

cos(N,-X,+N2-X2+ +N.-X,)
N/M • { } • Y,M1 • •YhMh' Term

sin(N,-Y,+N2-Y2+ +N.-X,)

eq
d cos(N,-X,+N2-X2+ +Nk,Yt+ +N.-X,)

— (N/M • { } • Y,M1- -Y^”1* •YhMh) =
dYy sin(N1-X,+N2-X2+ +Nk-Yk+ +N,-X,)

cosCN.-X^Nj-XjL +Nk-Yk+ +N|’X|)
= (N*Mk/M • { } • Y,M1- -Y^'1- ■YhMh ,

sm(N,-X,-lN2-X2+ +Nk-Yk+ +Ц-Х,)

sin(N,-X,+N2-X2+ +Nk-Yk+ +N,-X,)
iN*Nk/M • { } • Y,M1- .-Y^0, •YhN,lh)

cos(N,-X1+N2-X2p +Nk-Yk+ +N,-X,)
d (0) - 0

a
3Y,

(nil) m 0

^ (E í - ^ í h e a d E) ._ L (.a , l E)

endpsp.

In the specification of INTEG module given below, we use the following abréviations

83

I PARPUCEA, B PARV

/N /М • sin(N1-X1+N2,X2+ +Nk-Yk+ +N.-X,) •
Mk.| p MkH Mh

Y ,- Yk.j • Yk • • • Yh dYk ,

and
jN /M -cos(N ,-X 1+N2-Xa+ +Nk-Yk+ +N,*X,) •

where p Int, p^-l (the case p=-l does not preserve the form of Poisson expressions, because

the integration leads to logarithms)

psp INTEG is
importing Exp
sorts Term Exp NeExp
subsorts Term < NeExp < Exp
op

E Exp
T Term

P Nat
N/M ■sin(N,-X1+N2-X,+ .+N|-XI)-Y1M1- ■YhMh Term
N/M ■cos(N,-X1+N2->4+ +N,-Xi)'Y,mi- •YbMh Term

I0 = (-l/Nk*N/M) • cos(N1,X,+N2-X2+ +Nk-Yk+ +N,-X,)-

Mt Mk_t 0 Mk+1 Mh

/_d_ Term Set -> Exp
/_d_ Exp Set —> Exp

vars

’ Y, • Yk.j • Yk • Yk+1 • • Y,

= ((-l/Nk*N/M) • cos(N,-X,+N2-X2+ +Nk-Yk+ +N,-X,)-

IVI, ivt l кл M,

(l/(Nk*Nk)) • sin(N,-X1+N2-X2+ +Nk-Yk+ +N,-X,)-

M, MkI 0 M
Y, ■ Yk. , - Y k -Y

M,

= ((-l/N k*N/M) ■cos(N,-X1+ N /X 2+ +Nk-Yk+ +N,-X,)-

84

FUNCTIONAL AND RELATIONAL PROGRAMMING WITH PSP

Mi p Mk(I M„
■ Y, Yk., • Yk • Yk+1 • ‘ Yh ,

(N/M*p/(Nk*Nk))-sin(N1,X1+N2,X3+ +Nk-Yk+ +N.-X,)-

M, Mk., p-1 Mk<1 Mh
• Y, * Yk., • Yk • Yk+I • • Yh ,

-(N/M*p/Nk*(p-1)/Nk) • lp.2) - p > 1

J0 = (l/Nk*N/M) • sin(N,-X1+N2-X2+ +Nk-Yk+ +N.-X,)-

M, Мы 0 МкИ Mh
• Y , - Yk. , - Y k -Yw - ' Yh

J, = ((l/Nk*N/M) • sin(N1-X,+N2-X2+ +Nk-Yk+ +N,-X,)-

M, Mk., 1 М|ц.) Mh
■Y, • YM -Yk -Ykt l - • Yh ,

(l/O V N J) • cos(N,-X,+N2-X2+ +Nk-Yk+ +N,-X|)-

M, M,., 0 M*, Mh
•Y,* Yk., • Yk • Yk„ • • Yh)

■Ip = ((l/Nk*N/M) • sin(N,-X,+N2-X2+ +Nk% + +N.-X,)-

M, Mk_! p Mktl M„
■ Yt • Yv„ • Yk • Yktl • • Yh ,

(N/M*p/(Nk*Nk)),cos(N, •X^Nj-XjT +Nk-Yk+ +N,-X,)-

M, Mk_, p-1 Mkfl M„
• Y, • YM • Yk • Yk+1 • ■ Yh ,

-(N/M*p/Nk*(p-1)/Nk) • Jp.2) - p > 1

JÖ dXk = 0
Дш1) dXk = 0
JE d \ = Jhead(E) dXk + Jtail(E) dXk

endpsp.

The NORMAL module provides a normal form of Poisson expressions

[PARPUCEA, B PARV

psp NORMAL is
importing Exp
sorts Term Exp
subsorts Term < Exp
op

normalised_ Exp -> Bool
normalising_ Exp -> Exp

vars
T Г Term
E E’ Exp

eq
normalised(ml) = True
normali3ed(T) ■- True
normalised(2T E) - T = T’, normalised(T’ E)
normalising(E T T’ E’) = normalising(£ 2T E’) - T=T’
normalising(E) = E - normalised(E)

endpsp

The basic building blocks of parameterized programming are parameterized modules

Parameterized programming is a powerful technique for the reliable leuse of software In this

technique, modules are parameterized over very general interfaces that describe what

properties of an environment are required for the module to work correctly.

Here is an example of a parameterized module, intitulated SUBST, over the theories

SORTI and SORT2 In our example, SUBST module provides the symbolic substitution

operation

psp SUBST [SI SORTI, S2 SORT2] is
importing Exp
sorts Term Exp NeExp
subsorts Term < NeExp < Exp
op

_sub__ Term SI S2 -> Teim
-sub__ Exp Si S2 -> Exp

vars
E Exp
T Term
X SI
Y S2

86

FUNCTIONAL AND RELATIONAL PROGRAMMING WITH PSP

eq
sub(0 X Y) = 0

sub(nil X Y) = nil
sub(T X Y) = sub(T X -> Y)
sub(E X Y) = sub(head E X Y) + sub(tail E X Y)

etulpsp.

where the meaning of expression sub(T X -> Y) is all occurences of the symbol X are

replaced by the symbol Y in term T SORTI and SORT2 are theories defined as follows

Th SORTI is Th SORT2 is
sorts Sori sorts Sor2

endtli. endth.

The following specification

view SUBS is (Sori as Rat
Sor2 as Set)

define a view called SUBS, mapping fiom the sorts of SORTI and SORT2 to the other sorts

already defined, that preserves the subsort relation, and a mapping from the operations of

SORTI and SORT2 to the operations of Rat and Set, preserving anty, value sort, and

attributes

To actually use a parameterized module, it is necessary to instantiate it with an actual

parametei The Make command applies a parameterized module to an actual one, by use of

a view For example,

Make SUBSTITUTION is SUBST[SUBS] endm,

uses the view SUBS to instantiate the parameterized module SUBST with the actual

parameteis Rat and Set

In the same way, one can construct new PSP modules, which implements new

opeiations on Poisson series, like power expansion (including exponents integer numbers or

87

I PARPUCEA,B PÂRV

îational numbeis of the form 1/M or M/2 with M nonzero integer), inverse of a Poisson

series, binomial expansion and so on (see, for example, [2]) Also, on the basis of PSP we

can realize new specialized modules, like Kepler or Taylor ones In Keplenan module, for

example, the polynomial and trigonometric variables are the well-known elliptic elements For

these elements, there are transfoimation rules, which can be considered, from our point of

view, as rewriting rules The next level of absti action consists of modules for constructing the

approximate solution of differential equations up to an desired order One can construct

different modules for each "perturbation method", each of them using operations defined in

previous modules Using different methods applied to the same problem, one can compare the

obtaining solutions, keeping in mind the fact that many of methods are asstmptottcally

equivalent This can be another facility of theorem proving of PSP

3. Concluding remarks PSP is intended to be a symbolic processor, with features of

theorem proving, dedicated to the study of the motion of celestial bodies From the

implementation point of view, theie are some modules that are not so efficient, this difficulty

remains to be considered later Taking into account the built-in abstract data types, the

denotations! semantics of initial models, the opeiational semantics based on rewriting rules,

PSP, considered as open system, can be helpful in othei fields, too

88

FUNCTIONAL AND RELATIONAL PROGRAMMING WITH PSP

R E F E R E N C E S

1 Banvisc,K.J Axioms for Abstract Model Theoiy AnreMath Logic, 7, pp 221-265, 1974
2 Bramberg.V A Analytic Algorithms of Celestial Mechanics, Nauka, Moskow, 1980 (russ)
3 Futatsugi.K. ,Goguen,J ,Jouannaud,J P ,Meseguer,J Pnnci-ples of OBJ2 In Proc 1985 Syinp on

Principles of Programming Languages, ACM, pp 52-66, 1985
4 Goguen,J Parameterized Programming Tech Rep CSL1-84-9, 1984
5 Gogucn,J et al Introducting OBJ Oxford University Draft of January, 1993
6 GogueiU ,Buretall,R Introducing Institutions ln E Clarke and D Kozcn (eds), Logics of Programs,

Sponger, LNCS vol 164, pp 221-256, 1984
7 GoguenJ ,Burstall,R Institutions Abstract Model Theory for Computer Science Tech Rep CSLI-85-

30, Stanford University, 1985
8 Goguen,J ,Meseguer,J Models and Equality for Logical Programming In Proc '1APSOFT87, Springer,

LNCS vol 250, pp 1-22, 1987
9 Goguen,J ,Tardo,J An Introduction to OBJ A Language for Writing and Testing Software

Specifications In Specifications of Reliable Software, IEEE Press, pp 170-189, 1979
10 Goguen,J .Thatcher J ,Wagncr,E An Initial Algebra Approach to the Specification, Correctness and

Implementation of Abstract Data Types, Tech Rep RC 6487, IBM Watson Research Center, 1976
11 Meseguer.J General Logics H-D Ebbinghaus ct al (eds), Elsevier В V , 1989
12 Meseguer.J ,Goguen,J Imtiality, Induction and Computabi-lity, in Algebraic Methods in Semantics

(M Nival and J C Reynolds eds), Cambridge University Press, 1985
13 Parpucea,I ,Pârv3 Algebraic Specification of PSP, Studia, XXXVII, No 3, pp 99-110, 1992
14 Rand.R .Arnibiuster.D Perturbation Methods, BifuicaUon Theory and Computer Algebra, Springer,

1987
15 Tarski,A One Some Fundamental Concepts ol Metamalhematics In Logic, Semantics,

Metmnathematics, Oxford University Press, pp 30-37, 1956

89

•■м

S « 2

Г

STUDIA UNIV BABEŞ-BOLYAI, MATHEMATICA, XXXVIII, .4, 19‘Л

A MATHEMATICAL MODEL
TO SOLVE THE TIMETABLE PROBLEM USING PROLOG

D r a g o * P O P '
Dedicated to Profenaor Enul Muntean on hls 60* unntversnry

Rcauvtil January 12, 1994

AAiS \ubjticf classification 68Q40

REZUMAT. - Un model matematic pentru rezolvarea problemei orarului ulilizînd
limbajul Prolog. Lucrarea prezintă un model matematic general al problemei orarului precum
şi utilizarea acestuia de către un algontm de rezolvare a problemei Modelul matematic propus
asigură descrierea unor restncpi extrem de diverse ce caracterizează soluţiile fiabile Algoritmul
propus asigură găsirea soluţiei optime din punct de vedere al mai multor criteru, construind
numai soluţiile fiabile susceptibile de a fi soluţii optime

1. Introduction. Timetable problems are by their fundamental nature resource

allocation problems, whose solutions represent activity plans Every activity (also called

’meet’) needs certain available resources (persons, development places, tune, etc) and

different conditions for development, depending on the activity itself or other activities

(avoiding certain times, activities sequences and certain parallel activity pairs)

These problems depend on the educational systems and they can be mutually very

different Some practical lequirements cannot be easily caught in mathematical formulas

Therefore it is very difficult to model and solve these problems For this reason a model

should be universal and very flexible

Timetable problems are known to be NP - complete, only some reduced problems are

"ßabe,\-ßolyai“ University, Faculty o f Afnthemtilics and Computer Science, 3400 Ctuj-Napoca, Romania

D POP

polynomial In our situation, such a special case requires the permanent availability of

lecturers and rooms

In this paper we are concentrating on timetables for university faculty and propose a

PROLOG rule system which can be run on a microcomputer The mathematical model is

extended such that a prion fixed assignements, faculty connections and other miscellaneous

constiaints are supported

2. Problem formulation Let’s assume given the set of faculty teaching staff, the set

of student groups (called classes), the set of available rooms and their sizes and the set of

activities that have to be scheduled in a certain week

Furthermore, a maximal allowed number of time periods (called hours) is assigned to each

day The lunch breaks the day into two daily ammounts of consecutive hours (called daily

quantums) with a given extent An activity should not be interrupted by this break

Every professor and class should have a set of unavailable hours due to a priori scheduled

activities or other reasons

For the feasibility, the timetable have to satisfy certain requirements The set of all the

requirements of the problem is pailitioned into three groups, corresponding to the various

degrees of strictness ([1])

- hard requirements, which must always be satisfied

- medium requirements, which should be satisfied although they can be relaxed in some

cases

- soft requuements, which should be satisfied if the other requirements allow this

92

A MATHEMATICAL MODEL

The hard requirements should lead to physically feasible timetable and they are expressed '

as constraints In our case, conflicts due to activities taking place simultaneously but involving

classes or professors in common, have to be avoided Other constraints arise from the fact that

the activities should not be interrupted and they should not be scheduled in an inadequate

room or at hours which are unavailable for one of its participants Also, all the activities have

to be scheduled during the time span of one week

The soft requirements deal with preferences and they aie modelled as objectives Our

objectives are that the timetables for classes and professors are compact, with no time

windows, with as many as possible morning courses and othei pedagogical recommendations

Every medium requirement can appear either as a constraint oi as an objective, depending

on the nature or the interpretation of the problem As a medium requirement, two courses of

the same topic (called equivalent couises) should not be scheduled in the same day

The objectives are the actual parameters for a given quality function which reflects the

prefeience for one timetable solution over the othei It is often difficult to quantify the

desirability aspect of timetabling However, a weighted sum of the objectives is a satisfactory,

flexible and simple solution and for these reasons we chose it

On these conditions, the problem to solve is to find the feasible optimal solutions foi the

timetable If there results several optimal solutions, then a decision makei will choose the

preferred solution

3. The mathematical model In this section it will be piesented a mathematical model

for the timetable problem based on the situation in oui llmveisitv, but the model is flexible

93

D POP

enough to allow application to many différent situations

We consider the following sets

G - the set of classes

D - the set of teaching staff

P=GUD - the set of participants in teaching activities

S - the set of available rooms

M - the set of teaching activities (comses, seminars, practical training, etc)

H - the set of available hours per week Foi example, if we have 10 available hours per

day, we consider that Monday is represented by the {1 10} hours, Tuesday is

represented by the {11 20} houis and so on This convention can be changed in

order to satisfy certain interests
j ' 1 ' '

and the constants

, hdpsN* - the number of hours per day

mhcN* - the number of hours of the first daily quantum

(morning hours)

To solve in a smart way the problems of the lunch pauses and the end of a day, we add

an hour between the two daily quantums and an hour after each day Then we will mark all

classes and professors as unavailable at these fictitious hours Therefore, we avoid the

interruption of the activity

Now we can define the time window as the free time period between two occupied time

periods, which does not contain fictitious hours

94

A MATHEMATICAL MODEL

For an easy handle, the rooms and the activities are coded with positive integer numbers

Throughout this paper, the activity lists are ordered ascendingly on the codes and the room

lists are ordered ascendingly on the room capacity

The following functions give us information about these sets

u Q -> N* u(g) = the number of students in the group g

V P -> P(H) v(p) = the set of hours when p is available

c M -> P(S) c(s) = the set of suitable rooms for the activity m

p M -> P(P) p(m) = the set of participants in the activity m

r M -> N* r(m) = the extent of the activity m

From this information we can determine the function

a M -> P(H) a(m) = the set of hours when the activity m could begin

This function can be calculated using the following foimuta

a(m) = {yeV | y, , y+r(m)-leV} where

V = П v(x) represents the houis when all the xep(m) participants at the activity

m are free

In these conditions we consider a timetable solution as a function t M -> HxS, t=(t,,t2)

with the following properties

I) {^(m), , t,(m)I-r(m)-l} С a(m) V meM

II) t2(m) e c(m) V meM

III) nu-m and {t,(m), , t,(m)+r(m)-l} П {t,(n), , t,(n)Tr(n)-l} * 0 => р(т)Пр(п)=0

and t2(m)wt2(n) V m,ncM

(The simultaneous activities must have diffeient participants and must be

95

J

D POP

scheduled in different rooms) ' ■

ív) mp!n and p(m)=p(n) => |t,(m)/hdp] A[t,(n)/hdp]

(The equivalent activities should not be scheduled in the'same day)

Due to the relations between the activities, their different lengths and the problems

concerning the rooms which may appear in the general case, the set of activities which could

be scheduled at a certain hour depends on the activities scheduled before Therefore we are

forced to construct every possible solution, hour by hour, in an heuristic way and then to

evaluate its quality Note that there exist papers on the optimal timetable construction in a

deterministic way using Operations Research, but they solve the problem only m particular

cases ([4]) 1 '

We understand now that, in the general case, since the timetable problem is NP-complete

the number of solutions we have to construct is extremely high and it has an exponential

growth in the number of participants ([2])

As an interesting particulai situation, if all the activities have the same lengths and there

are no problems with the rooms, we can consider the graph with the vertex set V = MUH and

with edges among every different hours, among the activities which have common participants

and among the activities and their unsuitable hours In this case, the timetable construction

problem is equivalent to the graph 'colouring problem, with | H | colours

Also, we are very interested in the reduction of the number of constructed solutions There

are two posibihties .

The first is almost obvious If we evaluate the solution quality during the construction of

the solution, we can check at certain moments (at the end of a day, for example) if we die

96

A MAIHFMATICAL MODl-L

able to reach a quality which has alieady been obtained If we don’t, it is useless to continue

the construction of that solution

With the second method we obtain an extremely important reduction of the number of

constiucted solutions, with a very low risk of loosing high quality solutions Let’s suppose

we are constructing the hour h of the timetable and at this hour we can schedule activities

fiom the A set Actually, due to restrictions, we can schedule only subsets of A Let Eh be

the set of all these subsets, EhCP(A) The idea is to construct only the timetable solutions

which have scheduled at the hour h the maximal elements of (E,„Q

For example, let {m,, , mkj be a maximal element of E,, (the activities m,, , ink may

be scheduled to begin together at the hour h) A flill heuristic algorithm will try to construct

solutions with all the following activity sets

0 . {ni,}, , {mk}, {m„m2}, , {m„ , mk}

scheduled to begin at the hour h This means 21, alternatives

But scheduling only a subset of (m,, , mk} implies that some professois and classes will

have empty places m their timetable and this fact will decrease the quality of the solution

Therefore we can try only with the maximal configuiation and the risk to loose this way an

optimal solution, is very low

'fins method also decieases the number of iemairung activities and thus it leduces the

complexity of the following stages

4. Using the PROLOG programming techniques. The structure of the program

We r esti iot the piesentation and explanation of the progiam to those elements which

97

D POP

are indispensable for a global comprehension of its ideas and an insight of its

structure

, The information about faculty teacheis,'activities; rooms and classes are stored in an

internal database >

The first module is an initialisation module which creates the information database using

the consult predicate to read a given text file containing the input data Then it creates a woik

database which contains the constraints deduced from the information database These

constraints concern the activity pairs that could not be scheduled simultaneously due to theirs

common participants, the houis that are inadequate for a certain activity due to' the activity

length and the suitable rooms for every, activity

The target of the main module is the heuristic search of feasible timetable'considering all '

the restrictions, including the one which deals with the size of the rooms and the auxiliary

support The best solutions achieved up to the present are stored in a distinct database and

their quality is compared with the quality of the latest constructed solution If their quality

is equal then the new solution is attached to the database Else, if the quality of the new

solution is bettei, then the solutions stoied in the database are removed and the new solution

is attached to the database Therefore, at the end of the construction process, we have only

the best solutions If the result database contains several solutions, we can apply other

constraints concerning pedagogical requirements such as rational distribution of couises and

effort during the week or other preferences

The last module is a tool which allows an interactive refinement of the solution The usei

can choose the preferred solution, if theie are several optimal solutions from the given cm temi

98

Л MATHEMAI ICAL MODEL

point of view, and then he may introduce the a pnori assignments This module also assists

the user to change some assignments preserving the validity of the solution

At the user’s choice, this module calls the output module which sends the results to the

screen, printer or a given file Among the results there is a new database which represents the

updated input database with the new situation of the participants ocupation This database can

be useful for unexpected situations which may occur dunng the semester, and to connect

faculties This is an important fact because in general, the professors from a certain faculty

assure the majority of courses in the University, which are related to the faculty realm

from all the facts mentioned until now, it results that the algorithm that I propose is

semi-heuristic and that it is based on the backtracking mechanism Since the timetable

construction problem is suitable for the descriptive programming and the backtracking

mechan sm is an internal mechanism of the PROLOG language, it becomes clear that the

piogramming effort was considerably reduced this way ([3])

We will present now the predicate for the timetable hours construction which ensures the

optimization described above and the predicate for the timetable construction, in a

PROLOG-1 ike pseudocode language

constructhour(h,m,A,S,[y|L]) if

3yeA, 3shi:S a suitable room for the activity у which is

fiee between the hours h and h+r(m),

Select ycA, y>m, for which exist suitable rooms where it should be scheduled

to begin at the houi h and

99

D l’OP

let ry be the most suitable from them,

Al = A \l(y),

SI = S \ {ry},

constructhour(h,y, A 1, S1 ,L)

constructhour(_,

where meM

A is the ascendingly ordered list of nonscheduled activities

1 M -> P(M), l(m) represents the set of activities which have common participants

with m,

l(m) = {neM j p(m) П p(n) * 0}

ttconstruct(_, [],_,[],_,[]) if 1

ttconstruct(h,A,R,Eq,Ocr,[L|Tt]) if h á the number of hours per week,

Construct Act - the list of activities from A which might be scheduled to begin at

the hour h,

Construct AvR - the list of moms from R which are available at the hour li,

const! ucthour(h,0, Act, Avi ,L),

Create the Al, Rl, Eql, Ocil lists as the A, R, Eq and Ocr updated lists,

hi = h-H,

ltconstruct(h 1, A 1 ,R1 Eql ,Ocrl ,Tt)

where, in addition to the above descnbed lists

R is the list of available rooms at the hour h

Ocr is the list of occupied rooms at the hour h

100

Л MATHEMATICAL MODEL

(RUOcr is the constant set of all rooms)

Eq is the activity list which should not be scheduled in the present day due to the

constraint concerning the equivalent activities

Tt is the constructed solution

Note that these lines must be understood with the PROLOG conventions, l e if an

assertion fails, the program will automatically try to find other solutions for the previous

assertions m the same clause or if this is impossible, with the following clauses of the

predicate

This predicate respects the above considerations on the maximally At a certain moment,

theie is selected F={m,, , m,}, FeE^ where m, < m2 < < m,

If 3 xeA\F, х>Ш| such that FU{x}cEh, then x will be attached to F and the searching

process continues Otherwise there are two possible situations

1 If 3xeA\F such that FU{x)rEh, then F is a maximal element of (Eh,Q 'and the activities

fiom F will be scheduled at the hour h In this case the first clause of the predicate fails and

it will be used the second clause

2 If 3xeA\F such that FU{x}rEh but x<m„ then F is not a maximal element of E,, and due

to the ascending order selection of the activities, FU{x} was selected in a previous stage The

piedicate fails due to the cut backtracking (!) piedicate call

5. Concluding remarks and possible extensions Now we can notice the tremendous

advantage of considering a relation oriented approach using logical programming techniques

The PROLOG piogiamming language is a very fast and flexible prototyping tool Additional

101

D POR

restrictions and situations can be easily included as new predicates or by extension of the

existing attribute list, * . , r

If this database is too large to fit in the memory, we can use the PROLOG facilities to

work with external databases stored on disk

I mention here that 1 used Borland's Tuibo Prolog 2 0. Certainly a PROLOG compiler

does not generate very fast programs but Turbo Prolog allows interfacing PROLOG programs

with modules written in C or" even assembler language for the speed critical parts of the

program, Also, knowing that menus and user interface could be programmed more efficient

with traditional programming languages, we can use Ç libraries to do this

I also suggest two usefU extensions for this model

- the intioduction of the predecessor-succesor relation between the activities as new

constraints, , •

- the introduction of dynamic topics, when we dispose only of the total amount of hours

for a certain subject matter, sö that we can choose their activity grouping

R E F E R E N C E S

1 Eiselt H A , Laporte О , Combinatorial optimization problems with soft and hard requirements, Journal ■
of Operations Research Society 38, 1987

2 Even S , liai A , Shamir A , On the complexity of timetable and multicommodity flow problems, SIAM
Journal of Computation 5, 1976

3 Hertz A , de Werra D , The Tabu search mcthalteuristic how we used it, Ann. Math Artificial
Intelligence 1, 1990

4 Mlhoc G , Balaş E , The problem ol optimal Umetubles, Revue Roumaine de Mathentatiqiies Pures el
Appliquées 10, 1965

5 Schmidt G , Strohlcin T , Timetable ConstnicUon - An annotated bibliography, Compuler Journal 23,
1980

102

STUDIA UNIV BABEŞ-BOLYAI, MATHEMATICA, XXXVIII, 3, 1993

GENERATING FRACTALS OF REGULAR FORM
BY PICTURE LANGUAGES

VasUe PREJMEREAN', Simona MOTOGNA', Vaslle CIOBAN'

Dedicated to Professor Emil Muntean on his 60* anniversary

RéCéiveJ January 31, 1994

{MS Subject Clarification 6SU05, 68U10, 68Q25. 68T10

Rezumat. Generarea Crucialilor de forrná regulată prin limbaje pleturate ín această lucrare este prezentată
o modalitate de generare a fractalilor de formă regulată, utilizând şiruri de comenzi peiitrn desenarea acestora
Aceste şiruri de comenzi sunt generate pnn funepi care permit dezvoltarea, prelucrarea şi recunoaşterea acestor
variatluni geometrice numite fraciali

The fractal textures are more and more often used in computer graphics since they can

model properly 3D-flgures and natural forms and they have the advantage of representing the

models on a plane surface Fractals can have regulat forms, based on repetition of a motif

(primary detail) or randomizing forms, which are defined probabilistic They can be built

starting from curves, surfaces or figures and they are defined either by a flinction or by a

construction rule [2]

Regular form fractals can be generated using a language of commands for drawings

(images) [1] Given a set of graphical primitives (corresponding to a set of drawing

commands), from which one or more starting pnmiftves (primary detail) are chosen, we will

apply a transformation to this initial set, then to the obtained set of primitives we will apply

again the same tiansformation and so on, as many times as we want Finally, the resulting set

"Babe.y Bolyai" University, Faculty oj Mathematics am! Computet Science, 3-400 Chtj-Napoca, Romanţa

V PREJMEREAN, S M 010G NA V CIOIIAN

of pnmitives represents the desired fractal, respectively if the result is a string of commands

then the fractal will be obtained executing these commands

Let’s consider the set C=(c,,c2, ,cp}, containing the graphical primitives which form

a fractal family These primitives can be drawn by coiresponding graphical commands So,

we can achieve a drawing executing a string of such commands

Let S = { x,x2 xm / m>0, x„x2, ,xm G C } be the set of command strings obtained

by concatenation of the elements from the set C A family of variable fractals of regular

type is a set of fractals which have been obtained starting from a primary detail D G S, which

is developed step by step according to a transformation rule f C->S, rule which is applied to

every graphical primitive (command) This tiansformation gives the development rule for a

primitive and is specific to every fractals family

The development function which allows a fractal to be transformed entirely with an

iteration is

t S -*S, t(x,x2 xm) ’
f(x,), if m=l
f(x,)f(x2) f (x j , if m>l

(where uv represents the concatenation of u and v)

The development of a fractal after n iterations (n "years") is described by the function

t n S —S t n(X)’ t(X), if n=l
t n l(t(X)), if n> 1

We can say that t"(D) returns the commands stnng representing the fractal in the n-th

step of the development This observation makes us think that we can define a fractals family

specifying the pnmitives set C, the pnmary detail D, and the development rule f

F=(C,D,0. n=l,2,

The definition of the transformation rule f will use the following function

104

GENERATING FRACTALS OF REGULAR FORM

Since this function is bijective, we can construct the reverse function, which will simplify the

definition of the function f

Example 1 Let’s consider the following set 0{r,u,l,d} where

(r.uj.d) is (— [3]

and f (x) = X Next(x) x Next"‘(x) x , V x E C

(x concatenated with Next(x), concatenated with x,) and D=r

Then t‘(D) , t2(D) , t3(D) , represent the following family

Either in constructing or in recognizing a fractals family defined in the way we

described, the following property of the development function is very useful

The above property can be proved by complete induction as follows

for n— 1 t‘(XY) = t(XY) = t(x,x2 xmly,y2 ym2) =

= f(x,)f(x2) f(xml) f(y,)f(y2) f(y„p>

= t(x,*2 xm)) t(y,y2 yro2) = t(X)t(Y) ,

Figure 1

f(XY) = f'(X) t"(Y)

assuming that tnl(XY) = tn,(X) f f Y)

105

V PREJMEREAN. S M 010GNA. V CIOBAN

then t"(XY) = r'(t(X Y)) = tnl(t(X)t(Y)) = tnl(t(X))tn '(t(Y))=

= tn(X)t"(Y)

This property allows us to draw a fractal succestvely on sections and also to analyze

a fractal reducing it at its subfractals which compounds it

We consider now another two examples

Example 2 Let C=(r,e,u,f,l,g,d,h} be the set with

Example 3 Let C={u,b,c} be the set with

(a,b,c) = (-’■.y H ,

and f(x),= x Next(x) Nexf’(x) x x , and D=abc

Then t'(D) , t2(D) , t3(D) , generate the family

The set C might contain even compound primitives (2D-figures or 3D-figuies), and

in this situation when we represent the fractals we should achieve a projection of the structure

and f(x) = Next(x) Nexf'(x) x , and D=urdl

Then t‘(D), t2(D) , t3(D) , represent the following family

Figure 2

106

GENERATING FRACTALS OF REGULAR FORM

XX XX
Figure 3

14]

Some fractal transformations can be achieved modifying the commands string t"(D)

through some operations

1) Scaling the figure can be increased к times, applying the following function

sk S -> S , s4x,x2 хт)=х,кх2к xmk .

to the string tn(D)

2) Translation a figure can be translated к times on the direction of a primitive c if we

apply the function

dbk(X) = ckX

to the string X - f(D)

3) Rotation the function pk defined below achieves к lotations of the fractal

pk(x,x2 Xn^Nex^x^Nexf'Cxj) Nextk(x,„), kEZ

The rotation can be performed with an angle multiple of 45, 60 or 90 grades, depending on

the selection of the primitives Since the order of the primitives in the set C is important, we

must icspect the anticlockwise direction We notice that the function p has the following

property pk(t"(X)) = tn(pk(X)) This property simplifies the computation in fractals

geneiation, fiactdls which have a primary detail compound from more than one pnmitive

107

V PREJMEREAN. S MOIOGNA, V CIOBAN

Let’s consider again the second example

t"(urdl) = t"(u)tn(r)tn(d)t"(l) =

= f1(u)f’(Nexf2(u))fl(Next4(u))tn(Next2(u)) =

= f (u ^ P >)) tV (u)) tn(p2(u)) = ■

= tD(u)p-2(tn(u))p4(tn(u))p2(f(u)) .

We notice that we can compute f(u) one time, then the commands are executed, eventually

transformed by the rotations p'2, p4 and p2

If wé have to recognize a fractals family then we will proceed as follows we find the

primitives, construct the corresponding commands string, we decompose the commands string

in substrings of length equal with Дх), then every substring f(x) is substituted with x We

apply the same action to the resulting string until we obtain D [5] The commands string t2(D)

from the second example,

ru rd r uluru rurdr drdld ru rdr , is transformed by f 1 in

rurd r -*■ r , uluru -* u , ru rd r -*■ r , drdld -* d and ru rd r -»■ r, then the resulting string

rurdr, which is f(r), is substituted by r s

R E F E R E N C E S

1 F J Brandcmburg, M P Chytil, On Picture Languages Cycles and Syntax - Directed Transformations,
Technische Benchte der Fakultat fur MathenmUk und Informatik Uiuversitat Passau, MIP-9020, 1990

2 D Dogarn, Metode noi în proiectare, Editura Ştiinţifică şi Enciclopedică, Bucureşti 1988
3 HA Maurer, G Ro/cnberg, E Wclzl, Using Suing Languages to Describe Picture Languages,

Information and’Control, Vol 54, Nr3, 1982
4’ MVaida, APosea, I Nistor şi alţii, Grafică pe calculator limbajele Pascal şl C, Editura Tehnică

Bucureşti, 1992
5 R Vancea, S Holbau, D Ciubolaiiu, Pattern Recognition, Editura Academiei, BucureşU 1989

108

STUDIA UNIV BABEŞ-BOLYAI, MATHEMATICA XXXVIII. 3, 1У93

A NOTE ON NON-MONOTONIC LOGICS

Doina TĂTAR* and Mihalela LUPEA*

Dedicatul to Profeeiior 1 mii Muntean on hia 60* anniveraury

liecensid January 31, 199J

IMS Subject Classification 03B35,68Q40,68T27

Rezumat: Notă atupra logicilor nemonotone. Raţionamentul aproximativ e deosebit de
Interesant pentru că modelează mat exact reprezentarea şi tratarea cunoştinţelor în cazul
informaţiilor incomplete Acea stil lucrare introduce o modalitate de a obţine teoreme pornind
de la astfel de cunoştinţe (knowledge) incomplete, similar cu deducţiile în cazul clasic al logicii
de ordinul întâi Pentru cazul (eonilor normale, se demonstrează că problema e complet
reductibilă la cazul clasic

1. Introduction The classical logics are inadequate to capture the tentative nature of

human reasoning Since people’s knowledge about the world is necessarily incomplete, there

will be times when we could be forced to draw conclusions based on an incomplete

specification of pertinent details of the situations Under such circumstances, assumptions are

made (implicitly or explicitly) about the state of the unknown factors Because these

assumptions are not irrefutable, they may have to be withdrawn at some later time,if new

evidence prove them invalid If this happens, the new evidence will prevent some assumptions

from being made, hence all conclusions which can be arrived at only in conjunction with

those assumptions will no longer be derivable

In common-sense reasoning, assumptions are often based on both supporting evidence and

the absence of contradictory evidence Traditional logics cannot emulate this form of

"liaheylJnhai" University, Faculty o f Mathematics ami Computet Science, 3400 (’luj-Na/юса, Romania

D TÀTAR, M LU PEA

reasoning, because they lack any tools for considering the absence of knowledge

Non-monotonic logic has been developed to deal with reasoning about incomplete

informations There are four major formalizations of non-monotonic reasoning

, • McCarty’s circumscription [1]

• Moore’s autoepistemic logic [4]

• Reiter’s default logic [5]

• McDermott and Doyle non-monotonic logic [2],[3]

Reiţer’s default logic [5] is one of the most proeminent , formalizations of non­

monotonic reasoning One of the reasons for its attractiveness is the simplicity and naturalness
' . . , r , ’ - 1 - '

of its underlying idea This logic represents defaults as certain type of inference mles whose

applicability does not only depend on the denvability, but also on the underivabllity of some

formulas

Classical logic deals with tthe formalization o f absolutely ooiTect forms- of

reasoning The aim of this note is to prove that, ' - , ,’ ? 1 J ‘
in the normal context, the,problem is completely reducible to classical case The deductive

systems of logic allow us,to formalize reasoning of rigurous proof,of theorem and to infer

conclusions from premises It defines a deduction relation between,formulas; denoted by f—

This, relation has the following properties [6] ,

• reflexivity - , - ,

Ui,U2, ,Un,V h - V

* monotomcity , , i ,

■ ifU „U 2, ,U „,hr V th e n U .A , ,U„,Z h - V . .

no

A NOTE ON NpN-MONOIONIC LOGICS

• transitivity

ifU „U 2, ,Un h - V a n d U,,U2> ,Un.V Z

then U„U2, ,Un \ - Z

where U,,U2) ,Un,V,Z are the formulas in first-order logic

2. Default logic The property of monotonicity tell us that a derived result cannot be

invalidated by flirther results Also, the inference rules in deductive systems of classical logic

are permissive They are always of the form U„U2, ,Un |—r V with the significance "If

Ui,U2, ,Uk are theorems, then by rule rk (of anty k) it results that V is a theorem "

A system which should be able to model non-monotonic resoning should also contain

restrictive rules, of the form

" V is a theorem if U„U2, ,Uk are not theorems "

Default logic allows formalizing default reasoning by means of particular inference rules,

called defaults A default has the form a and is interpreted as follows "if one behves
Y

u and if is consistent to belive p, then one can also belivcs y"

A default theory will comprise, besides the default rules, a set of closed formulas of

predicate logic which represent the basic knowledge and are treated as axioms

Definition 1 A default theory T is a pair (D,F) where
«AYR

(1) D is a set of defaults (d) ---------------- 1 , and «,(!,, ,ßni,v aie closed formulas in
Y

first-order logic

(ii) /•' is a set of closed formulas in first-order logic

- u is called the prerequisite of default

111

D TĂTAR, M LUPEA

- у is called the consequent of default

We denote by Pte(d) the prerequisite a of the default d E D,and by Cons(d) the

consequent у of the same d S i n u l a r y . w e introduce Pre= U Pt e(d)
itSD

Definition 2 An extension of default theory T is any set of all formulas that can be infered

by means of the classical inference rules or by means of the defaults We will

denote this set by 'lh(D.F) and we will call them the set of theorems of

T=(D,F)

A default theory can have an empty extension Howevei, it can be proved [5] that a non­

empty extension exists for so called normal default theories, which all defaults have the form

a Afß
P

By analogy with the definition of a deduction for a formula U, and in accordance with

definition 1 and definition 2, we can introduce the

Definition 3 Let T*=(D,F) be a default theory, and U and V two set of formulas in the first-

order logic We denote U i- V (and we call this V is non-monotonic deductible

from Ü) if V is obtained from U either by application of a classical inference

rule (like modus ponens, foi example) or by a default rule In this last case, U

contains a and V contains ß, if the normal default applied is. (d) ,a .^P .
ß

We can specify that the default d is applied by denoting '

U hj V or U I- V by rule d Now, we are ready to define the concept of a proof for

a formula U according to a default theory T-(D,F)

Definition 4 A formula U is a theorem in a default theory T-(D,F) (or, \}&Th(D,F)) if it

exists a finite sequence of set of formulas UU,U„ ,U„, such that

112

A NOTE ON NON-MONOTONIC LOGICS

U0 = F , U , = A J{a), a G Pre , U e Un and

a) U, ь U,„ , 1= 1,2, ,n-1

b) U, is consistent,i=l,2, ,n (therefore Ц does not contain a formula V and his

logical negation -’V)

Observation: The sequence Uy.U,, .,U„ has the property

U0 Q U, Q Q Un

3. The main reiult Example Let T=(D,F) be the normal default theory having the

following set of premises

(l) F={ C -> D , А л В -> E , E v D , D -> G } and

(ii) D={ d„ d2, d3, d4 } as

£ V G M (A A G)
(d t)

Ц)

о

Ц)

Ю

A A G

A MB
В

A A E M C _ _ _ _ _

M\E
n r

According to definition 4,a proof for U=D may be the following

О U0 = F,

2) U, = f U (E v O) ,

3) U, = U, U (А л G } , U, i- U2 by rule d,,

a a g4) Uj - U2 U { A , G } , U2 н U3 by rule
A ,G

5) U4 = U3 U { B } , U3 h U4 by rule d2>

113

D TĂTAR, M LUPEA

6) U5 = U4 U [А а В) , U4 н Lf by rule

7) U6 = Uj U { E } , U5 h U6 by rule

A ,В
~Жв'

A A B ,A A B ^E
E

A , E8) U7 = U6 U { A л E } , U6 и Uv by rule

9) U8 = U7 U { C } , U7 I- U8 by rule d3>

10) U9 = Ug U { D } , Ug h U9 by rule

As D e U9 , и0)и„ ,U9 is a proof for D

The following theorem emphasizes a conechon between the relation t- and the

classical relation |— of deductibility in the first-order logic

Theorem, If T=(D,E) is a normal default theory then UE.n(D,F) iff F,P |—U where P is the

set of formulas defined as

"<x->0 e P iff “__e D"
P

Proof: The direct implication results by induction about the number к of utilised defaults

If k=0, then we have P |— U and thus E,P |— U

Let U E Th(D,F) such that for U are applied k+1 defaults If the last default is

(d) then U(=p) E Un,

U„.! Pj U„, and aEU„., By induction hypotesis, as for a are applied к defaults, F,P |—

a As a->ß E P, we obtain

F.P h - P(=U)

By analogy,the converse implication can be proved

Observation: If a default theory is noimal, then a deduction in this theoiy can be simulated

as usual way in first-order theory

A similar theorem can be proved for the senunormal default theories [5]

114

A NOTE ON NON-MONO'IONIC LOGICS

R E F E R E N C E S

1 McCarty,J , Circumscription - A form of non-monotonic reasomng reasoning, Artificial Intelligence, vol
П (1980),27-3 9

2 McDennotfD, Non-monoloiuc logic 1, Artificial Intelligence Doyle,J vol 13 (1980),41-72
3 McDcrmolfD, Non-monotoruc logic II, J ACM 29(1)(1982),33-57
4 Moore,R C, Semantical considerations on non-monotonic logic, Artificial Intelligence,vol 25 (1985),75-

94
5 Reiter,R, A logic for default reasomng, Artificial Intelligence,vol 13 (1980),81-131
6 Tlmyse.A, From Standard Logic to Logic Programming , Jolui Wiley & Sons,New York (1988)

115

\

* t

&

ЙИРЯ

STUDIA UNIV BABEŞ-BOLYAI, MATHEMAI ICA XXXVIII 1, 1У93

ON SOME MODELS OF PARALLEL PERFORMANCE

Daniela VĂSARU'

Dedicated to frofeaitor fcmtl Muntean on hin 60* anniverbnry

HettíivtíJ November 29, 1992•It Л/ (ЧшьфиШоп 65Y05, 68Q0% 6SKÎ20, 68Q22

REZUMAT Articolul "Asupra unor modele de performantă paralelă" prezintă câteva
dintre cele mai folosite modele de caracterizare a performanţei algontnulor paraleli Acestea
au ca trăsătură comună folosirea fracţiilor seriale şi paralele in studiul performantei Paralel cu
prezentarea lor sunt discutate atât calităţile şi defectele lor cât şi relaţiile existente între ele
in finalul articolului este dat un exemplu de folosire al acestor modele in caracterizarea
performantei paralele

1. Introduction. New requirements in engineering and computational science had

lead to a strong interest in constructing a "teraflop" computer Parallel processing is

constdeied to be the great hope in obtaining such a performance Ideally, on np processors

a program will run np times faster than on a single one Unfortunately this is tarely the case

One reason is the great disproportion existing between the progress in hardware technology

and the methods of programming the paiallel computers In what concerns the software part,

there are a lot of problems waiting to be solved Two of them are the inexistence^ of a

common complexity model for parallelism and the difficulties encountered in analyzing the

performance and corectness of parallel algorithms

This paper presents a number of models of parallel performance, models that have in

common the use of serial and parallel fractions in characterizing the parallel algorithms.

"Habey Bolyai" Univenity, Faculty o f Mathematics and Computer Science, 3-100 Cluj-Najmca. Romania

D VASARU

showing the relations between them and how can we use them in predicting the parallel

performance

S(>i,n) = , b\n,n) ■= —
T(n,n) flp

2. Preliminaries. The most common used measures of parallel performance are

speedup and efficiency [2,3] They aie both functions of problem size n and number of

processors n,, and formally can be described by
V

(!)

T(n,i) is the time spent to solve a problem of size n by i processors Because of the

overhead introduced by parallelization, T(n,i) is considered relative to the best senal

implementation

The influence that the two parameters n and n,, have on the speedup and efficiency is of

great practical importance By varying one or both parameters, different models of parallel

performance are coming out

In older to make more readable the article, we will not mention always the parameters

of a function For example, we will wnte S instead of It should be clear from the

context on which parameters a function depends In geneial, all the functions have two

parameters In the case that one of them is fixed we will not mention it

3. Amdahl’s Law Considei an algorithm solving a problem of given size n that has

one part inUmsically sequential and the other part, 100% parallelizable, can be distubuted

equally among the available processors Now, if s is the fraction of time spent by a

uniprocessor on the serial paît of the algorithm (senal fraction) and p is the fraction of time

118

ON SOME MODELS OF PARALLEL PERFORMANCE

spent on the parallelizable part by the uniprocessor then the time spent by n,. processors on

the same problem will be (s+p/n^TXl) So, the speedup will be given by

s - № П Р m » m
i + (l -*)/« ,

This is a steep function of s near s = 0 For a fixed number of processors the speedup is

increasing unbounded with the decreasing of s This case can be used in selecting the most

efficient parallel algorithm (in the sense of efficient use of processors) among different

algorithms solving the same problem the one with the minimum s is the best

What’s happening if we have a single algorithm for a fixed-problem size and an

increasing number of processors7 Then the speedup is assimptotically bounded by 1/s

S -* 1Л as np -* oo (3)

This is the performance forecast by Amdahl’s Law if a computer has two speeds or

modes of operation during a given calculation, the slow mode will limit overall performance

even if the fast mode is infinitely fast [1,4] It means that if an algorithm has 2% sequential

part, speedup greater than 50 one can not obtain even if it has thousands of processors

This result was used by Amdahl as an argument against building massively parallel

systems

The limitation of speed given by (3), as we will see in the next sections, is valid only for

the case under consideration, i e for fixed-size problems That’s the reason why the model

discussed is also called the fixed-size model
Г

4. Moler’s Law Moler was one of the firsts to show that Amdahl’s limit can be

beated [1] He had proved that parallelism can attain desned speedup for sufficiently large

119

D VASARU

computations

instead of considenng a fixed size problem'and an increasing number of processors, he

had study the case of a fixed number of processors and instances of the same problem but

with different sizes He had shown that the serial fraction s is dependent on the input size

S = s(ll) So, s isn’t constant (the main assumption in the fixed-size model) Even if S is

bounded by 1/s, this limit isn’t fixed He define an effective parallel algorithm as one for

which s(n) —* 0 when n - » » In this case, for a fixed number of processors n,>, one would

obtain

1
ä(h)+(1 -s(n))/nD

n , for n (4)

It follows that for problems large enough, it can be obtained the desned speedup (the

processors are used efficiently) In practice, n cannot grow to infinity but it can be made as

big as the available memory allows

S. Sandhi’s Model The researchers from Sandia Laboratories had studied the variation

of speedup starting from the following observation if one has more computing power, he

usually don’t use it to solve the same pioblem of fixed size but larger instances of the

problem [1,6] The reason is obvious there is no point in using more processors than the

concurrency of a problem because then, some of them will remain idle Also, by increasing

the number of processors the overhead due to communication is incieasing and if the problem

size is fixed, than the computational time will remain fixed, while the communication time

will grow, affecting the overall performance

By scaling the problem size proportionally with the number of processois, the serial

120

ON SOME MODELS OF PARAI LEI PERFORMANCE

fi action s can be made as little as we want The serial component of an algorithm is

deteimined by the startup time, serial bottlenecks and I/O, which are not dependent on the

problem size The parallelizable part of an algorithm vanes with the input size It follows that

s can be made to shrink under these circumstances

Adding more processors bnngs more memory and more speed How do we scale the

pioblem size with memory or with speed“7 Most scientists scale the problem in order to

occupy all the available memory This is called the scaled model and it is the one proposed

by Sandia They assumed as a first approximation that the parallel part grows proportionally

with the number of processors

The model proposed by Sandia as an alternative to the fixed-size model is, in fact, the

inverse of the Amdahl’s paiadigm Instead of asking how fast a given serial program will

run on n,, piocessors, it’s asked how long it will take to run a given paiallel piogram on an

uniprocessor

If s’ is the fraction of time spent by a multiprocessor machine with n,, processors on

senal pails of a parallel progiam and p’ the fraction ot time spent by the same multiprocessor

on the paiallel part, the time to run the program on an uniprocessor will be (s’+p’*n,,)AT(ii1,).

Then , the scaled speedup will have the foim
(л ' * / i)* ' / ' (> I)

S - ____ 1____ « s / + (| - л > „ (5)
(.s'+//)*?'(»)

It is easy to see that the scaled speedup is a function of modei ate slope l-nP of s’ (a line)

and it giows with increasing n,.

Another alternative is to scale the problem size in order to maintain constant execution

time This is called the fixed-time model An example for the use of this model is the

121

D VÀSARU

weather prediction It doesn’t make sense to have an execution time greater than 24 houis

in predicting the time for the next day

To illustrate the difference between these mortels (in fact, the fixed-time model is

intermediary between the fixed-size model and the scaled model), we will present an example

For the multiplication of two matrix (with dimensions nxn), the memory needed is 0 (n 2) but

the number of operations is 0 (n3) For the scaled model (pioblem size scales with memory)

na grows proportionally with nP but for the fixed-time model, n3 grows proportionally with

nP (i e u2 grows as nPM)

6. General Model of Parallel Performance Carmona and Rice proposed a general

model of parallel performance which capture the previous presented models [2]

They use the same criteria of characterizing the parallel algorithms, speedup and

efficiency, but with some slights modifications of (1) Instead of considering running time as

a measure of the complexity of algorithms, time beeing dependent on the architecture, they

use as a measure of work the computational counts or unit counts based on the size of an

indivisible task

If wa is the work accomplished by a parallel program and we the work expended by

the same progiam, the efficiency can be expressed by E = wa/we

The work accomplished is given by the number of operations done by the best serial

implementation and it’s not depending on the number of processors, only on the problem size

In general, wa < we because the parallelization introduces some overhead, redundant

operations, communication requirements not needed in the serial case

122

ON SOME MODELS OF PARALLEL PERFORMANCE

The difference ww = we-wa is called the wasted work It covers the time needed for

the following activities waiting for other tasks to complete work, communication delays

and/or memory contention (dependent on the particular architecture and the implementation

of the algorithm), operation redundancies introduced by the implementation, including task

activation/ termination and synchronization code Ww is a function of both problem size and

number of processors

Under these considerations, the expressions for efficiency and speedup will be

wa(n) wa(ii)E i n j i } _______
' we(n,u^ wa(n)+ww(n,n^)

S M - E * n =

(6)

. , . ___ _________ * ti (7)
p p wà(n)+ww(ti,nf) p

Using these work parameters, Rice and Carmona give also new interpretations for the

senat fraction s and the scaled senal fraction s’ From (2) and (7) it follows

(V 1)
w 1s = ___*___
wa и -1p

(8)

So, s can be interpreted as the distribution acioss the additional processors of the ratio

of work wasted to work accomplished Similarly, from (5) and (7)

• (" >D
ww +
we n -1

P

(9)

Therefore, s’ can be interpreted as a collective wasted effort nP*sl, where si is the

distribution across the additional piocessois of the ratio of work wasted to work expended

From eqs (8) and (9) it follows that s,s’,p,p’ are functions both of problem size and the

number of processors This modifies the previous points of view, î e s was considered

constant for fixed-size problems as the numbei of processors increases, s’ was considered

only for scaled problems, with n=n(n,,) a increasing function of nP These differences appear

from the fact that the new definitions of s and s’ incorporate wasted work

123

D VÄSARU

It is not difficult to see that the fixed size-model is a particular case of these new

definitions if the wasted work has the form ww = (nP- 1) * w(n), where w(n) is a function

only of n, then s will be constant for fixed-size problems Intuitively, ww has this form if

each one of the new nP-l processors contnbutes in equal part to the wasted work (with w(n))

and these contributions don’t depend on the number of processors In a similar way we can

show that the other described models are particular cases of this general one

Using eqs (6),(7),(8) and (9),it results the following law

ţs/s ' , ww>0

(10)

s -)s,s' ■ ww “ 0

£ B [P ' l P , W > 0
l 1 , M'w=0

This law relates s and s’ for different combinations of n and np, while the previous

models showed the trend in speedup when s and s’ are varied for a given number of

processors, or are held fixed and nP is varied The law (10) also gives an interesting relation

between the fixed-size and the scaled model, showing how can one predict the other From

(2),(5) and (10) it’s easy to denve

’ V • 0 0л+(1-л)/н,
S *» — ,----- — ------- (12)

s +(\ - s ,)*np
These relations can be used in two ways for a given speedup, one can determine from

the base scalar fraction the scaled senal fraction (or viceversa), secondly (and more

important), from the serial fraction of a base problem s one can denve the scaled serial

fraction s’ (and, therefore, the scaled speedup) for a larger problem, by simply making s’- s

in (5)

124

ON SOME MODELS OF PARALLEL PERFORMANCE

The general model proposed by Carmona and Rice is described by a group of assertions,

assertions stating how the parameters influence each other on the curves of the form n =

n(n,,) These curves represent all possible relations between the problem size and the number

of processors Given a function f(n,np), the notation ff (respectively f |) denotes that f

increases (decreases) on some fixed curve n ш n(nP) as nP increases Also, f f r (respectively

f j r) denotes that f approaches the limit r on the curve as nP -*■ »

The performance model is given by the following assertions

A1 s 'i =t> s j => Sf (for any curve n = n(nP))

A2 sf => s’t => E l (for any curve n = n(nP))

A3 Assume that n = n(n,,) defines a constant s-curve Then s ’= 0(1) and s ’f 1

Furthermore, Sf l /c and E |0 , where s(n(nP),nF)=c (constant s-curve)

A4 Assume that n = n(nP) defines a constant s’-curve Then s = 0 (l/n P) and s |0
, 4

Furthermore, S = 0(nP), Sţ and E j(l-c), where s’(n(nP),nP) = c (constant s’-curve)

This general model provides a framework in which the various performance parameters

can be compared and contrasted within a single unified view of speedup It is easy to see that

assumption A3 is a generalization of the fixed-size model (Amdahl) and the assumption A4

of the scaled model (Sandia)

Now, one question easily arises why these differences between the general model and

the previous ones with respect to the number of parameters on which s and s’ depend? One

reason it was given above The new definitions incorporate wasted work This is due to the

fact that m all the other models the speedup was interpreted as the gain in time of a parallel

implementation with respect to the serial implementation of the same algorithm, arid not over

125

D VASARI)

the implementation of the best serial algorithm that solve the problem, as it is the case in the

general model (best serial implementation)

7. Example To illustrate the use of these models in predicting the performance of the

parallel algorithms, we will give an example The problem to be solved is the evaluation of

a polynomial expression at a given point x
n

л *)c E crx ‘
/=0

It is well known that the standard serial algorithm takes 3n-l unit counts (n additions

and 2n-l multiplications, considering that an addition and a multiplication take each a unit

count) The best serial algorithm is the Homer scheme and it takes 2n unit counts (n additions

and n multiplications)

A parallel algorithm for solving this problem using p processors, p s n/2, is the following

(see [5,7]) each processoi i evaluates, using the Horner scheme, the following polynomial

«,(*) = E VA' " i =>0, j>-l
y=0

The value of the initial polynomial can be computed from the following expression
/>-1

A*) = E gJL*) * * 1
/’=0

This parallel algorithm takes (2n/p + 2*log p) unit counts (where the base of the logarithm

is 2) For more details on the analysis of the complexity see [5]

In order to study the performance of the algorithm, we have to determine the serial

fractions From above and from the general model of performance, we have

wa = 2n,

we = p(2n/p + 2*log p) = 2(n t p*log p) ,

126

ON SOME MODELS OF PARALLEL PERFORMANCE

WW = 2p*log p

S = (p*log p)/(n*(p-l))

s’ = (p2*log p)/((n + p*log p)*(p-l))

S = n/(n/p + log p)

E = n/(n + p*log p)

We can see that the parallel algorithm is efficient in the sense of Molei for a fixed

number of processors, s(n) -» 0 when n-»°° and S —» p It depends on oui interests and on

the available memory how much we will increase the dimension of the problem

From the restriction psm/2 it comes that we cannot increase to infinity the number of

processors without increasing the dimension of the problem, if we want to make an efficient

use of the processors

For a fixed problem size n, the speedup is an mcieasing function of p, when 1 < p s n/2

(it can be seen by studying the sign of the derivative) It follows that the optimal number of

processors (in order to obtain a maximum speedup) is p = n/2 and the maximum obtainable

speedup for fixed n is n/(l+log n) and the efficiency will be E = 2/(1 + log n) This

efficiency is not very good, especially for big problems

If we want to find the optimal number of processors in order to obtain a maximum

efficiency for a given problem size, we have to study the expression of E It is a decreasing

function of p and so, if we want an optimal efficiency, it will be obtained for p=2 I this case,

Епшх=п/(п+2) and S = 2n/(n+2)

We can see that maximizing the efficiency is not the same thing as maximizing the

speedup Sometimes is better to find a way in between these two extremes

127

D VASARU

If neither the dimension of the problem, nor the number of processors is fixed, we can

predict the performance of the parallel algorithm for various relations between these two

parameters For example, if n ■= c*p (with constant ca2, from the lestnctton on the number

of processors), we obtain

S = n/(c + log (n/c)) and E = c/(c + log(n/c))

It comes that the speedup is increasing with the dimension of the problem and the number

of processors, but the efficiency is deci easing

There are many interesting conclusions that can be find out from the expressions above

We will conclude with one of them

If we are interested in maintaining a fixed efficiency E, how do the parameters n and p

need to be corelated8 9 From the expression of the efficiency it comes out фа!

n = (E*p*log p)/(l-E)

It means that we have to grow the dimension of the problem proportionally with

p*logp (this is the isoefficiency function for the parallel algorithm, as defined in {4}) in order

to maintain an efficient use of the processors

8. Final Remarks In conclusion, we will give a summary of the most important

applications of these models:

- determining the best parallel algorithm for solving a fixed size problem on a given

architecture (the one with the least scalar fraction),

- as the scalar fraction of an algorithm depends on the architecture used, we can determine

the most appropriated architecture on which the parallel algouthm should be implemented or

128

ON SOME MODELS OF PARALLEL PERFORMANCE

viceversa (finding the minimum s),

- for a fixed size problem we can determine the optimal numbei of processors to be used in

order to maximize the speedup or the efficiency,

- we can find out what relation has to exist between the dimension of the problem and the

number of processors in order to maintain a fixed efficiency (called the isoefficiency

function)

There are also other models for predicting the parallel performance, for a general view

see [4] There isn’t a best model, it depends on our interests which one should we use, each

is appropriate for a different situation That is the reason why we had choose to present the

models that have in common the use of serial fractions in this case, the general model of

peiformance of Rice and Carmona is the best, as it is a generalization of all the others

R E F E R E N C E S

1 G F Carey (ed), Parallel SupercompuUng Metliods, Algorithms and Applications, WILEY Series
in Parallel Computing 1989

2 E A Carmona, M D Rice, Modeling the Serial and Parallel Fractions of a Parallel Algontlmi, Journal
of Parallel and Distributed Computing, vol 13, no 3, p 286-298, 1991

3 Gh C o n n u t, DL Johnson, Complexitatea algoritmilor, Universitatea "Oabes-Bolyni", Facultatea de
Matematica si Fizica, curs litografiat, 1987

4 V Kumar, A Gupta, Analyzing Scalability of Parallel Algorithms mid Arclutectuies, AHPCRC Preprint
92-020

5 D Väsaru, Calcul Paralel, Lucrare de Diploma, 1991, ümv "Babos-Bolyai", Fac de Matern , Cluj
6 HM Wacker, The Use of Amdahl's Scaled Law In Determining the Power of Vector Computers, 1989

CERN School of Computing, p 156-171
7 S Wilson, Numerical Recipes for Supercomputers, in Supcrcoinputational Science, R G Evans.S Wilson

(ed), Plenum Press, New-York and London, 1990, pp 81-109

129

sá

STUDIA UNIV BABEŞ-BOLYAI, MATHEMA'ÍICA, XXXVIII, 3, 1‘Ж

ANIVERSĂRI

P r o f e s s o r E m i l M u n t e a n a t h i s 6 0 t h A d v e r s a r y

by

Mihton FRENŢ1U

Professor Emil Muntean was bom on July 31, 1933, in Măgura, Hunedoaia County
After finishing secondary school in 1952, he studied at the University of Cluj-Napoca He
giaduated m Mathematics from Cluj University in 1957 Still being in the fifth year, he was
named at the Computing Institut of Academy Since then, the entire activity of Professor
Munteanu is connected with computers He worked to the construction of MARICA (1959),
a Romanian computer built from relays, and to the construction (m 1961) of DACICC-1, the
first Romanian transistor-based computer Then (1967-1969) lie worked to the complex project
of building DACICC-200. Also, he had contributed to the realisation of some piograms

He obtained his PhD fiom the SaintPetersburg University, S S S R , in 1964
In 1968 he became the Head of the newly institut of Computer Technology (ITC) As

the Head of the ITC in a pionienng period, he has duected with much competence and
inspiration the research activity, to design and implement high level software products He
really was a very good organizer

In 1990 he become flill professor at our Faculty, Department of Computer Science,
but his teaching activity started long time ago He used to teach Ihe students of the
Mathematics various subjects connected with computers In the last four years he gave courses
in Expert Systems, and Computers Networks Hts couises were held at a high scientifical and
pedagogical level

There are 8 computer scientists who own their PhDegrees to their supervisor, professor
Emil Munteanu In the last years he become interested in spreading computer science
knowledge, l e. he is today a known editor of books in this area He was the father of
Mlcroinformatica, and in the last year he invented Promedia

Professor Emil Muntean is a distingushed pedagogue, very appreciated by ins students
Also, it is a pleasure for all of us to have such a generous collègue

Now, on celebrating his 60th birthday we wish him "Many Happy Returns of the
Day", and a long life in health and happiness to him and his family

STUDIA UNIV BABbŞ-BOLYAI, MA 1HEMAT ICA XXXVIII 1, 1У'Л

A B S T R A C T

of the Scientifical Work, of Professor Emil Muntean

1 Monograme de gen zero, Buletinul ştiinţific al Cercurilor ştiinţifice studenţeşti al Univ din
Cluj, 1956

2 Monograme cu puncte aliniate, Buletinul ştiinţific al Cercurilor ştiinţifice studenţeşti al
Univ din Cluj, 1956

3 Programarea calculului corijării roţilor dinţate, Studii şl cercetări de matematică, 1958,
Pg 1-4

4 Un algoritm de rezolvare a unei ecuaţii transcendente, Studii şi cercetări de matematică,
Vol XI, 1960, pg 133-139

5 Pi ogramarea calculului unor indici calitativi at angremjelor cu roţi dinţate corijate. Studii
şi cercetări de matematică, Vol XI, 1960, pg 133-139

6 Calculul şarjelor celor mai economice la cuptoarele de topit fontă, Studii şi cercetări de
matematică, Vol XI, 1960, pg 102-109

7 Programe pentru maşinile de calcul elaboi-ate la Institutul de Calcul dm Cluj, Studii şi
cercetări de matematică, Vol XI, 1960, pg 92-101

8 Cercetarea automată a depăşiră unităţii într-o maşină cu virgulă fixă, Comunicările
Academiei, 1961, nr 12, pg 1455-1457

9 Uber de Unlerschnit und das Übergangs profil der mit Kegeligen Scheibenfrasor
Bearbeiteten Schnecken, Mathematica, Vol 3, 1961, pg 273-296

10 Asupra interjeţei şi a piofilului de record la melcii prelucraţi cu freze conice. Studii şi
cercetări de matematică, Voi XIII, 1962

11 Anahz algontmov, Buletinul Univ A A Jdanov, Leningrad, 1964, pg 102-107

12 Method analiza grqf-schemnih algontmov, Mathematica 5(28), 1963

13 Avtomaiiceskoe postroieme graf-schemnîh, Buletinul Univ A A Jdanov, Leningrad, 1964,
pg 97-106

14 Anahz graj-schemnih algontmov, Buletinul Univ A A Jdanov, Leningrad, 1964

132

STUDIA UNIV BABEŞ-BOLYAI, MATHEMATICA. XXXVIII, 3. 1УЛ

15 Pr eobr azovarne algoritmov, Leningrad, 1964

16 Asupra unor transformări ale algoritmilor schemă-graf Luciănle consfătuirii nationale
de statistică, 1966, pg 153-160

17 Contrôle automatique des programmes pour les machines électroniques a calcul,
Mathematica, Vol 9(31), 1966, pg 103-108

18 Analiza logică a algoritmilor (I), Studii şi cercetări de matematică, Voi XVIII, 1966, nr 8,
p g im -1 1 2 7

19 Analyse logique des algoritmes (II), Mathematica, Vol 9(32), 1967, nr 1, pg 111-128

20 Programarea calculatoaieloi electronice. Gazeta matematică, sena A, 1966

21 Sistemul de operare SERU al calculatorului DACICC-200, Lucrările colectivului
internaţional de aplicaţii ale calculatoarelor, 1967

22 Calculatorul eJectiontc DACICC-200, Lucrănle sesiunii ştiinţifice ICPUEC, 1969, pg 14-
28

23 Limbajul COBOL, manual pentru liceele de informatică, ICI, 1972, 236 pagini

24 Introducere în informatică, manual pentru liceele de informatică, ICI, 1972, 214 pagini

25 Noi consideraţii cu privire la limbajele de programate, Revista de analiză numencă şi
teoria aproximaţiei, Vol VI, 1972

26 Utilizarea calculatoarelor în prelucrarea datelor - Arhitectură şi sisteme de operare, Ed
Dacia, Cluj-Napoca, 1974, 190 pagini

27 Utilizarea calculatoarelor în prelucrarea datelor - bmbajul COBOL, Ed Dacia, Cluj-
Napoca, 1974, 271 pagini

28 L'rogramarea în hmbqjul ASSIRJS, Ed Tehnică, Bucureşti, 1976, 334 pagini

29 Iniţiere în limbajul ADA, Ed Tehnică, Bucureşti 1986, 281 pagini

30 Muluplan-sistem de prelucrare a tabelelor, Lucrănle simpozionului "Informatica şi
aplicaţiile sale", Cluj-Napoca, 1985, pg 1-6

31 Sistemul de operare U (UNIX). Conceptele de bază ale proiectului, Lucrănle
simpozionului CONDINF, Cluj-Napoca, 1985

133

STUDIA UNIV BABEŞ-BOLYAI, MATHEMATICA XXXVIII 1, 1УУЗ

32 A ducea generaţie de calculatoare, Lucrările sesiunii ştiinţifice ITC, 1986, pg 126-141

33 Implementarea portabilă a compilatoarelor, viitorul electronicii şi al informaticii, Ed
Academiei, 1983, pg 121-132

34 Asupra verificăm coteditudimi programelor, Sesiunea PROCOMP, ITC, 1989

o

0
134

In cel de al X X X V III-lea an (1993) Studia U n i v e r s i t a t i s B a b e ş - B o l y a i apare în
u rm ătoarele serii:

m atem atică (trim estrial)
fizică (sem estrial)
chim ie (sem estrial)
geologie (semestrial)
geografie (semestrial)
biologie (sem estrial)
filosofie (sem estrial)
socio] ogie-politologie (semestrial)
psihologie-pedagogie (semestrial)
ştiin ţe economice (semestrial)
ştiin ţe ju rid ice (semestrial)
istorie (semestrial)
filologie (trim estrial)
teologie ortodoxă (sem estrial)
educaţie fizică (sem estrial)

In the X X X V III-th year of its publication (1993) S t u d i a U n i v e r s i t a t i s B a b e ş -

B o l y a i is issued in the following series:'"
m athem atics (quarterly) f
physics (semesterily)
chem istry (semesterily)
geology (semesterily)
geography (semesterily)
biology (semesterily)
philosophy (semesterily)
soeiology-politology (sem esterily)
psychology-pedagogy (semesterily)
economic sciences (semesterily)
juridica] sciences (semesterily)
history (semesterily)
philology (quarterly)
orthodox théologie (semesterily)
physical train ing (semesterily)

Dans sa X X X V III-e année (1993) S t u d i a U n i v e r s i t a t i s B a b e ş - B o l y a i p a ra ît dans
les séries suivantes:

m athém atiques (trim estriellem ent)
physique (sem estriellem ent)
chimie (sem estriellem ent)
geologie (sem estriellem ent)
géographie (sem estriellem ent)
biologie (sem estriellem ent)
philosophie (sem estriellem ent)
sociolcgie-politologie (sem estriellem ent)
psychologie-pédagogie (sem estriellem ent)
sciences économiques (sem estriellem ent)
sciences ju rid iques (sem estriellem ent)
histo ire (sem estriellem ent)
philologie (trim estriellem ent)
théologie orthodoxe (sem estriellem ent)
éducation physique (sem estriellem ent)

