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O n So m e  M om ents o f  C o m pu ter  Sc ien c e  E v o lu tio n  in  R o m a n ia

by

Emi! Muntean

In the fifties, a group of researchers from the Institute for Atomics Physics, Bucharest 
built up the first lomanian electronic computer machine, due to an initiative of Acad Or. 
Moisi! This computer, named "Computer of the Institute for Atomics Physics" (CIFA-1), was 
designed and implemented under the co-ordination of Eng Victor Toma, in 1954 On that 
occasion, at the same institute m Bucharest, a new research group aimed to work in the field 
of computer software programming, is foimed

After a short time, in 1957, at Cluj, is founded the first Romanian institute, having 
Acad Tiberiu Popoviciu as supervisor Founded on the 1“ of April, 1957 and called the 
Computer Institute of the Romanian Academy, his activity was based on that of the Numeric 
Analysis Department of the Cluj branch of the Romanian Academy This institute has been 
onented to fields much more related to those consideied today as part of Computer Science

This institute, founded by Acad T Popoviciu in Cluj, represented at that time an 
exceptional organizatoric achievement There were very few such institutes in the whole 
world, and in Eastern Europe the research in Cybernetics and Computer Science was neither 
encouraged nor recognised In Romania, since the foundation of the Institute in Cluj, ten years 
were necessary for the totalitary goverment to oncially promote the interests m the field of 
Computer Science and to found, in 1968, in Buchaiest, the Research Institute for Electronic 
Computers (known later as the Computet Technique Institute, I T C )

The first romanian transistorized computer, DACICC-1 (Automatic Computing Device 
of the Computer Technique Institute, Cluj), was built at the Computer Institute from Cluj, in 
1961 The research groups from the Department foi Computer Machines of the same Institute, 
start the design of some complex applications, both tehnical and economical As a 
consequence, different industrial companies in Cluj introduced computer technique the shoe 
factory Clujana, the Railway Company, the Company for freezing equipment The research 
is oriented towards optimization problems, linear programming, transport problems Thcie 
weie formed some research groups specialized on diffeient fields hardware design, software 
design, tehnical and scientifical applications, economical applications These structures, 
founded between 1960 and 1965 at the Computer Technique Institute in Cluj, have Upical 
Computer Technique and Computer Science interests During the same penod, due to the 
influence geneiated by the Computer Technique Institute, the Department foi Computer 
Machines is founded at the Faculty of Mathematics This department will have prepared many 
generations of computer scientists Ten years will pass from the foundation of this department, 
until it will have a computer for the students activity and for the teachers research m 
Computer Science

Less than ten years after the foundation of the Computer Institute in Cluj, the design 
of a complex project at that time has begun After a lot of complicated efforts to find the 
nongoverment financial support, in 1967, the design of the DACC1C-2 computer started The 
DACC1C-2 design project had contained a lot of new elements, introduced at that time as
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inovations by the big computer companies, especcialy by 113M through 360 sene
The DACCIC-2 computer had
- word length on 32 bytes,
- memory adress on octets,
- interrupts handling,
- some parallel treatment (statements preparing and 

execution),
- the speed of the central unit was 200,000 operations/sec
- a kernel o'f the operating system which achieves the peripherals management, the 

interrupts handling, the programs management in multiprogramming, compiler, assembler, 
library and loader for FORTRAN programming language,

- a tehnologicei approach for a senal production
The design this project on an industrial scale hasn’t been achieved Under the pressure 

of the world development and the imatiatives from the neighboum countries, the political 
leading decided to buy a license, to organise a computer production and to concentrate all the 
research forces in a national institute of a ministerial rank (nonacademical), with branches in 
Cluj and Timişoara, where a lot of valuable research in Computer Science had been 
developed This had taken part between 1968 and 1970

After a lew years, the results seemed good, a lot of equipment had beai introduced 
in the centralized economy, applications were developed, especially for management, after the 
principles of the state economy

The licence copyright and the attempt to develope it improved die scientific research, 
solving some of the major problems in Computer Science

At Cluj, the î T C branch had concentrated the research in the domains as 
programming languages, databases in peripherals design, personal computers and so on 
Interesting implementations were designed for the Romanian computers arhitectura, 
developing the licence, for almost every standardized programming language: FORTRAN, 
FORTRAN-77, COBOL, PASCAL, C, ADA and CHILL Prototypes were obtained for 
peripherals, which, later, had known a large serial production displays, plotters, digitizers and 
personal computers During this penod, new research groups were formed, vyhich worked, 
from a organizatoncal point of view, on the same principles as the teams from the computers 
companies

The concept of "Regional Computer Centre " apeared in Romania, in the seventies, 
as the principal user of the computers This regional Center co-ordinated the computer science 
activity in a region, and all of these centres were co-ordinated by the Central Institute for 
Computer Science ( IC I) , which, for many years, directed even the necessary of computer 
equipments of all the companies and enterprises m Romania

After 13 or 15 years, one may clearly realised that Romania could not face the 
development rate in computers, that the tehnology obtained by licence had grew older very 
fast and that a new one hadn’t appeared The research developed m the eighties, in the 
domain of computer arhitectura in the whole world and, especcialy, in high tehnology, had 
the effect that the Romanian products as minicomputers, personal computers and peripherals 
became unfeasible and uncompetitive

The world tendence in Computer Science was a descentralized one, was in a process

4
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of "democracy". In Romania, the industrial companies could hardly develope their particular 
applications since the Regional Computer Centre and the Central Institute for Computer 
generated a tendence of hypercentralization.

That explains die fact that, after 1989, almost everythin fa Sscxjuter Soience had to 
be taken ftom the beginning, especially concerning the equipment availability, applications 
design and the training of the operative personnel. Some good experience has been gained 
during the period of assimilation and development o f the licences. But these was an old one. 
Also, a lot o f people gained experience in using the medium computers and minicomputers 
for management applications, but even this one had the dezavantage o f beeing related to a 
hypercentralized economy, based on laws completly different than those necessary for a 
market economy.

In a completly new situation, different ftom that before 1989, the Romanian computer 
scientists had adjust veiy quickly, understanding that Romania represents a large computer 
market. As a consequence, a lot of comerefaD e i^ a n ies, with state and private'fundings, had 
invested in computer equipment, ftom private Aims. A lot o f computer companies had been 
founded, increasing the quality in software design and computer service.

We hope that in the forthcoming future will bring an explosive increase o f computers 
users, comparative with that in computer equipment. Of course, this fact is seriously affected 
by the economical restructure and development

5
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AN IMPLEMENTATION SCHEME 
FOR THE PARBEGIN-PAREND CONSTRUCTION

Florian Mircea BOJAN *nd Alexandru VANCEA*

Dedicated to Professor Emii Muntean on h U 60* enmveivary

Received February 25, 1994

AMS subject classification 6SQ45, 68Q1Ö

REZUMAT. - О schere il de Implementare pentru construcţia PARBEGIN-PAREND.
Lucrarea prezintă o schemă de translatare orientată spre sintaxă pentru construcţia PARBEGIN-
PAREND, schemă pe baza căreia se poate construi uşor un translator care generează cod în
limbajul C sub sistemul de operare UNIX.

The construction PARBEGIN P, | P2 | , | P„ PAREND [3] describes the

simultaneous execution of the processes Pl5 P2) ,Pn and their parallel evolution until all of 

them terminate The n processes begin their execution at the same time and they function 

synchronously

This control structure contains a single entry (PARBEGIN) and a single exit 

(PAREND) and it is a static contiol structure, this meaning that all processing decisions are 

taken at compile time

The fork-join instructions are frequently used in UNIX, these being implemented by 

means of a. fork-wait mechanism These instructions piovide a direct mechanism for dynamic 

piocess a  cation and the possibility of multiple activations of the same process

The execution of a child process is made by calling the fork function which creates

■ "Uabc.yllolyai" University, b  acuity o f  Mathematics and Computer Science, 3400 Cluj-Napoca, Romania
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the child process by duplicating the father’s image Fork returns in the father process the 

child’s РШ and zero in the child.

The UNIX fork-wait mechanism [2] allows the synchronization of a father process 

with its sons The wait function blocks the calling process until one o f its childs terminates 

If at the moment of the call one of its childs it's already terminated the returning is 

immediate The value returned by wait is an integer representing the terminated child’s РШ

p = wait (& status)

where status is an integer providing information about the process status.

The synchronization with a certain child (let’s say with the one having MENpidl) can ,

be done in the following way

while (wait(&status) != pull).

These functionalities suggest the possibility of expressing a PARBEG1N-PAREND 

construction by means of the fork-wait mechanism

Let’s considei the independent processes P,, ,Pn as the subjects erf a PARBEGIN- 

PAREND instruction, with the syntax

PARBEGIN P, PAR PAR P„ PAREND

(we introduced the word PAR instead of |, because the latter may be confused with the C

bitwise OR operation)

In these conditions the PARBEGIN entry point has its equivalent in the sequence

if (forkO) — 0) { P,; exit(O), }, 
else if (forkO) ■==()){ P2, exit(O), };
else

else if (forkO) ■== 0) { Pn> exit(0), }, 
else for ( i- l, i<=n, i++) wait(&status),

8
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Having these, we can express the PARBEGIN-PAREND construction through the 

following syntax-directed translation scheme {!]

(1) <PARBEGIN_constr> PARBEGJN process <tail>,
if (forkO— 0) {process; cxk(0);} <tail>

(2) <tall> =■ PAR process <tail>,
else if (fork0“ 0) {process; eslt(i));} <tail>

(3) <tail> ' = PARENÖ,
for (i“ l; i<=n; 1++) wait{& status);

where we put the nonterminals between brackets

The process terminai designates one of the P,, P7, ,Pn processes 

One of the issues that arise relatively to this scheme is how to handle nested 

PARBEGIN-PAREND constructs The answer is simple once the deeper construct has been 

identified and translated, it becomes a process

Production (1) will generate process P, The rest of the processes are generated by 

production (2), which also increments the numbei of processes by one Production (3) uses 

the number of processes for generating the PAREND waiting point correctly It’s easy to 

write a translator for this mechanism

Let’s see a generation example with two processes 

( <PARBEGIN_constr>,
^PARBLGIN^consti^ ) = >

( PARBEG1N process <Та|1>,
if (forkO^O) {process; exit(0);} < t a i l >  )  = >

( PARBEGIN process PAR process <tail>,
if (fork()=0) {process; exit(0);} else if (Ibrk0=e0)
{process; cxit(0);} <tail> ) = >

9
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( PARPEGIN process PAR process PAREND , 
jf (fork()=Q) {process; px|t(Q);} else if (for(t()=0) 
{process; exit(O);} else for (H{; f<=»5 i++) wait(Ästatus);)

R E F E R E N C E S

1 Aho A V, UUman J D - The Theory of Parsing, Translation and Compiling, Prentice Hall, 1973
2 Rochkind M J  - Advanced Unix Programming, Prentice Hall, 1985
3 Tanenbaum A S - Modem Operating Systems, Prentice Hall, 1992
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SERIAL AND PARALLEL ALGORITHMS 
FOR SOLVING A PROBLEM OF CONVECTION IN POROUS MEDIUM

Ioana CHIOREAN’

Dedicated to professor Emil Muntean on bis 60* anniversary

Received August 5, J99J4AIS subject classification 65Y05, 63Q22

REZUMAT. - Algoritmi seriali şi paraleli pentru rezolvarea unei probleme de conveiltate 
In mediu poros. Scopul acestei lucrări este să se facă o comparaţie între algoritmii seriali şi 
paraleli, pentru a rezolva o problemă dată în mediu poros Sunt studiate în hierare 
performanţele algoritmilor paraleli care au ca scop creşterea vitezei de calcul şi a eficienţei lor

Abstract. The mam purpose of this paper is to make a comparison between a serial 

and a parallel algorithm for solving a given ptoblem of convection in porous medium The 

perfoimances of the parallel algorithm, established by means of speed-up and efficiency, are 

studied

No m e n c l a t u r e

8
V
P
r
к
k
S
Pa
L
t

gravitational acceleration 
velocity of the fluid 
piessure of fluid 
temperature of fluid
permeability of the saturated porous medium
thermal conductivity of porous medium
rate of internal heat generation of porous medium
internal Rayleigh number
characteristic length of the porous medium
time

"Babe ̂ Bolyai" University, Faculty o f  Mathematics and Computer Science, 3400 Cluj-Napoca, Romania



I CHIORHAN

u,v velocity components
x,y coordinates

Greek symbols

p density of fluid
ji viscosity of fluid
(pc)/ beat capacity of fluid
(pc)p heat capacity of porous medium
ß thermal expansion coefficient
ijj dimensionless stream flmction
ф angular coordinate

Superscripts

dimensional variables

Subscripts

0 value at reference temperature and density

1. Introduction. The problem under consideraüon is that of 2D steady laminar 

convection in a porous layer bounded by an inclined squre box with four ngid walls of

constant temperature (fîg 1 ) Heat is 

generated by a uniformily distributed 

energy souices within the cavity The 

porous layer is isotropic, homogeneous 

and saturated with an mcompressibile 

fluid The heat genei ati on creates a

temperature gradient across the layer, and

thereby provides a driving mechanism for natural convection within the cavity

In the present study, the saturated porous medium is treated as a continuum, with the

12
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solid and fluid phases in local thermodynamic equilibrium Also, the saturated fluid and the 

porous matrix are supposed incompressible and all physical properties of the medium, except 

the fluid density are taken to be constant

2. Converning equations. The fluid motion obeys the equations Darcy-Qberbeck- 

Boussineq For the case of volumetric heating considered here, the governing equations can 

be written as

Ы

V - V' = 0 ,

v  -  £ ( p ' g - v p ' ) ,
ц

(pc)  —  + ( p c U V ' - V y r '  -  ÄrV2T' + S ‘ 
p b t '  1

p' -  pU / - 0 U ' - f o ' ) ]

The four equations may be written
Л w *

0 ,du ' bv '

, ки = _

, К
V ®  __

(
by '

-р ^зш ф _ àp'

-p 'g C O S l j)

b x ‘

î e L
b y ' )

, , ä i 1'  . ,
(i>c),’T F + (pc)/

,dP , dT'] li 'b2T' b2V+
 ̂ bx '  b y ' ! kbxn b y ' 2)

+ s '

p' = P o t Z - P Í ^  -  ?o )]

0 )

(2)

(3)

(4)

0 ’)

( T )

(2")

(3’)

(4 ’)

Derivating (2’) after y  and (2") after x' and taking into account that the temperature function

has the form T(x 'y ') ,  it is obtained

bu '

w

Кft £81Пфр0Р Ы b2p '
by ' bx '  by ' t

(5)
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dv'  К
dx'  H 

Subtracting (6) from (5) we get

du'  _ dv'  _ К  
~dÿT И х7 T  

Using the dimensionless variables

, / о д T' d2p ' g cos ф p0 ß ——  -■ f
dx dx dy

SPoß
/ , , \; i d T , dT'  simp--------  созф-----

dy' dx'

(6)

(7)

kt'

i p c U 2
■;w

(p c)jLu' 1 (p c \L v '
-, V

* - •  '*  * T ’y  * T ’ 7, p lS 'L
(7) becomes

ŐH dv рйё$(?сХ (  , d T
dy dx цк2

втф —  -  cosè 
dy

dT
T x

( T )

KL* S* 2Ü /Taking Ra  =■-------- JÜ -, where v = |i/p0 and a  = (pc)Jk  as the Rayleigh number, (7’)
a \ k  J

becomes

du dv „ ( , 8T  , 07м—  - —  » Ra  sind) -  cosd>__
dy dx у dy dx

Analogously, using the dimensionless vanables, (Г ) and (3‘) become

du dv „—  + ___ = 0 , 
dx dy

d 7 \  dT  dT  ,
dl dx dy

Equation (4") is verified by the streamfunction ф where

и dip н di()

(7")

( Г )

(4")

(8)dy dx
So, imtroducing (8) in (4") and (7") we get the finally system of two equations with two 

unknowns (the temperature function T and the stream function ф)

Ü  + Í 1 Í I  -  V2T  + }
dl dy dx dx dy

У72 , » l  I dT , 3TV 'i|j » Ra smф ----  -  cosq>___
 ̂ dy dx

(9)

We solve this system beeig situated in an enclosure with unit square section (L = l), eith the

14
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initial conditions

(1 0 )

and the boundary conditions

Г = т |)= 0  for ж = 0 and 1 , ^  = 0 and 1 (П )

Numerical results.

3.1. The Steady Problem In the steady case, our system of equations is

dip dT _ jhjji d7  = 
dy dx dx dy

02)

In order to obtain the solution for the system (12) with the conditions (10) and (11), we used 

the Multigrid method [4] with a Gauss-Seidel smoother The space derivatives were 

approximated in the following manner the fust order derivatives with the Euler forward 

foimula and the second order derivatives with the centered differences, accordind to [6] The 

discretized solution foi the temperature and stieam functions was obtained working on an 

equidistant grid Q, (where / indicates the level of grid), defined In the following manner

Denoting j = T( iht j h t ) , = ф ( /A,,yA, ) for every 0 з  /, j  л Nh I being one grid the

system becomes

Чуг-Ф,, % - ? ’</_ К  Тф Г Тч „ 
h, A, A, h,

T -T  T - T*  .  ,+  t *  ,  4 *  , * l  J 1  ,  i

(13)

Ra sin<j>._'i!i__^ - с о э ф __ '£
h, h,

15
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The solution of system (13) was obtained in two ways first, as the output of an serial 

algorithm and second, as the output of a parallel algorithm.

3 .U , The serial algorithm The algorithm which solves (13) by means of up to seven 

grids (/ = 7) contains the following steps

1 Solve the firet equation of system (13) using (10) and (I I); results T  new;

2 Solve the second equation of system (13) using T new just determined, tj>0 and -ip at 

the boundary; results ip new;

3 Solve the firet equation using ip new and (l 1); results T new;

4 Repeats Steps 3 and 4 until "CONDITION" {When it is accomplish, the steady 

solution is obtained)

Note In our case,' "CONDITION" means that the difference between two succesive 

approximation is less that 10-6 In other words, if we denoted, e g. F*1 anf F “* two succesive 

approximauons (where F  represents T or гр), "CONDITION" will be .

II p™* _ ss JO'4

where ||il denotes the Euclidean norm [4], Fig 2a and b indicate the decreasing o f error 

during ten repetitions of Steps 3 and 4 (Fig 2b detailes more the error at temperature 

ftinction) '

Concerning the results, our observations are the followings: the steady temperature has 

form like m Fig 3 and is not influenced by Ra number or ф angle Also, the general shape 

of the function (and this note is valable for the stream function, too) does not change with 

the numbers of grid points

16
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The stream function modifies according with the Rayleigh number and has the shape as in 

Fig 4

The stream function modifies also according with the angle of enclosure (see Fig 5a-c)

3.1.2. The parallel algorithm. The parallel algorithm was implemented on the INMOS 

Transputer System from University of Heidelberg, under PARIX operating system The main

17
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f u n c t io n  T ——

Fig 3 Temperature in steady casc with Ra=>500 and ф“0
function esi ac {U«0.01, p^i-o —-

2e -9 6  1 З9 - О 6 U-06 39-07 0- 5e -07  - l e -0 6  -i Зз-Об •29-06 -2 $9-06

0 ~~-- ^ —0.5
0 3*  '--■— 

Fig-4 Stream function m steady case with Ra=0 01 and ф-О 

tdeea in so lv ing our problem  is that o f  {3}, but w ith chages due to  the convective te rm s (first

equation) and the right-hand-side (second equation) from (12) We use a rectangular grid with

(Nt - 1 ) * (Nj - 1 ) unknowns, then each processor is assigned to a subset of unknowns (data

partitioning) In an one-dimensional arrangement of n processors caled a ring configuration

of length rt, processor p,p E  {0, , «-1} is assigned to the grid points {(i j) ( max (\,pNj\/i)

£ i £ (p+l)N^n, 1 s  j  á Ni) If the sidelength of the grid is not divisible by the number of

18
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Fig 5a Stream function, with Ra=0 01 and ÿsa&O

Fig 5b Stream tunccion uich Ra=Q 01 and o=>H5

Fig 5>- Stream Itinccton \wrli Ra=0 0l and e> = 270

19



I CHIOREAN

processors, then some of them will be assigned more unknowns than others, generating an 

unequal load balance, which is one source for loss of efficiency Taking into account the way 

of disposing the grid points on processors and denoting by xMn{p) and xmJ p )  the leftmost, 

respectively the rightmost grid point column stored by processor p, each processor will 

executes simultaneously the following steps

1 Computes the convective terms for the first equation of (12),

2 hi case of an overlapping, sends values to the leftside processor (if it exists) and 

receives values flom the nghside processor (if it exists),

3 For every j  from 1 to n, do

3 1 Receives values from the leftside processor (if it exists),

3 2 For every i from xmln(p) to x^Jp )  do 

Computes Gauss-Seidel iterations,

3 3 Sends values to the rightside processor (if it exists)

After processing the previous steps, with step 3 repetead till the steady solution for 

temperatuie is obtained (we have noticed that it happened after 10 iterations), we proceed 

analogously to solve the second ecuation of (12).

In order to compare the results obtained with the serial and the parallel code, we used, 

like m [1] and [3], the speed-up, defined as

S{n) -  (14)
*ШЫ (и)

where TMano is the time needed for obtaining the solution the with the serial code and is

the time took by the paiallel code, using n processors, and the efficiency which is defined

S(n)
m (15)

20
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Table I presents the execution times (in sec ) for the serial and the parallel code, when a 

different number of processors was used So, we can notice that the increasing of time for the 

serial code is deeply connected with the numbers of grid points (on a coarse grid, the 

execution takes a few seconds, the execution takes a few seconds, on a fine grid it takes more 

that an hourl) and the execution time decreases according with the number of processors used, 

with the observation that for the coarse grid 32 x 32 the situation is like in Fig 7

Table l Execution time

Nr proc/Nr pc 32*32 64*64 128*128 256*256 321*321

1 166029 67 9188 276 725 1116 65 1677 73
7 7 86234 19 2012 53 5307 167 708 240 032
11 7 472 17 1044 43 5171 126 039 173 89
15 7 59328 16.6198 396177 107 014 141814
»9 7 40141 16 0309 36 4428 95.6118 128 211
23 7 49709 15 6065 35 5842 89002 116 689

Fig 6 visualises the information from Tabel 1, meanwhile Fig 7 indicates only an 

unconcludent situation when more that one processors are used

Table 2 Speed-up

Nr proc/Nr pc 32*32 64*64 128*128 256*256 312*312

7 2 11 3 S3 5 16 6 65 6 98
II 221 3 97 6 35 8 85 95
15 2 18 4 08 6 95 10 43 11 8
19 2 24 4 23 7 59 1167 13 08
23 2 21 4 35 7 76 12 54 14 3

The speed-up for all operations earned out on a fixed grid depends heavily on the 

numbei of unknowns per processor, because a larger proportion of computing time is spent 

on communication and the effects of unequal load distnbution are more pronounced if the 

numbei of gnd points per processor is small This means that a high speed-up can be
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Fig 7 E\ecution time working with so e ra l  processors on a coarse g-al

achieved on the fine grids (assuming a large number of grid points per processor on the fine 

grids) like m Fig.9 whereas the speed-up deteriorates on the coarser grids (see Fig 10) Table 

2 contains the values which sustained these observations and on which Fig 8 and 9 are based 

Woiking with several processors on a coarse grid, the improving of speed-up is not
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concludent, as we can see from Fig 10 Next, accordind with (15), Table 3 contains the values

which indicate how efficiency depends on the number of processors and on the number of 

grids points

23
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Fig 10 Speed-up on a coarse grid, with several processors

Table 3 Efficiency evolution

Nrproc/Nrpc 64*64 128*128 256*256 312*312

7 0 50 0 73 095 099
11 0 36 0 57 080 086
15 0 27 0 46 069 0 78
19 0 22 0 34 061 068
21 0 18 0 33 0 54 062

Based on Table 3 , Fig 11 shows the increasing of efficiency when finer grids are

used

3.2.The Unsteady Problem Solving the unsteady problem means to solve the system
(I

in the original form (9) In order to do this, we use the same finite difference formulas to 

discretize the space derivatives, as in 3 1 The time denbatlve will be discretized with the 

backward Euler formula ([6)] We denote by dt the timestep, which is considered fix, by //"  

the Laplace operator and by GA and G} the gradient operators ([2]) Let 7* be the temperature 

flmction at the moment of time lk -  kell Then the first equation of system (9) can be written
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Fig 11 Efficiency

in the following manner
' f ' k + l  _  Ţ k

Ji G i Tk"  -  G q l " G  7’*’1 -  L Mr k' 1 + J
y  i X ж * V

(16)

For a fixed time interval denoting with 1 the Identity operator and based on

( 10), to solve the parabolic equation of system (9) means to solve the following bidiagonal

blok-sliuotuied system

As = b

wheie

~L/ + f/' i|>(7 ■ +G iL>(/ • - L rH- 
dl > “ y

Л --
- 1 /  J-/+ G  ti>G ■ *G ■ -I-*"
dl dl уГ '  >

0

0 - 1 /  -L l+ G yG  -+GyG • -L ‘n ■
dl dt '  * y
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Tk" ■ 1 + -LlTk 
dt
Tand b =

rj ’k+m
1

We observe that at every moment of time the relation which gives the temperature 

flmction is ftilly implicit and we have to solve, as the first equation of system (9), the 

following
rt,k+\ . . Л + 1 rr k*\ .fr+i . fc+1 /Tit+! /ri*+i
I и
dt h,

ri i Z  + r t Z + C ,  * C ,  -  4 r:

h?
1 +

f t
‘ tj

~dt
(17)

Equation (17) together with the second equation of system (13) will form the problem 

we have to solve m this case As in the paragraph 3 1 , the Multignd method was used and 

the general scheme of solving is the following'

Step 1 Solve equation (17) at the moment of time (k+l based on 7* (where 7°, the initial 

tempeiature is given), results У*’1

Step 2 Solve the second equation of system 9130 at the moment of time /*fl based on 7*’1 

just determined results iji*’1 

Step 3 Repeat Steps 1 and 2 until ’’CONDITION 1"

Note "CONDITION Г  indicates the number of time steps we have to execute until 

the steady solution'is obtained, normally, thi depends on the value of dt For instance, if dt 

= 0 1, the steady solution is attain in mostly 10 steps, but for dt = 0 001 we need almost 180 

time iterations to get it Fig 12a-2 show the evolution in time of the temperature function, 

for Ra -  500 , ф = 0 and dt = 0 001 Aftei 180 time steps, the temperature is stationary (in
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order to compare, see Fig 3)

T ’ er 26 tines Steps __

case

In the same conditions (but for Ra = 125), Fig I3a-c present the evolution m time of 

the Mi earn function
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Fig 12c The Temperature after 51 time steps

Fig 12d The Temperature after 131 time steps

i 1

Fig l i e  The  Tem peratur  • air.:i b O u m e a t e p s
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О 0 ) О 02 
О 01

О-О 01 
-О 02 
-О QJ -О Oi

О

I

Fig ПЬ H ic  SirtMin func tion  ’Чсг 2ö um-* steps

Fig lJc  The  Stream  Fun мои utter öl t ime steps
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After 180 time steps, the stream function becomes steady (pig '1), as we can see from 

the following graphics

Fig 13d The Stream Function after 131 time steps

P8 I  a f t e r  140 t i n e  s t o p s  1

Fig 1 Je The  S u e a m  Function after 1 SO time steps

4.Condusions. The main goal of this research was to show that transputer system can 

efficiently solve laige computational problems with good performance We made study on a
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problem of interest in the computational fluid dynamics field, which generated a parabolic 

pioblem expressed by a PDE system In order to verify the results, we solve first, in serial 

and in parallel, the steady problem The outputs of this two different codes were almost the 

sama Based on the steady solution, we solved then the original problem, indicating by means 

of many graphics the evolution in time, up to the steady state, of the solution functions
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REZUMAT. - Generarea structurilor dc contrai. Lucrarea prezintă o modalitate de a defini
specificaţiile formale cu ajutorul unei gramatici necontextualc

l. Introduction. The aparitton of the ptogramming environments generates an 

accentuated grow of programmers productivity With such a software instrument many actions 

can be performed editing a source file, compiling and linkediting of a progtam, execution, 

debugging even otheis facilities for files viewed as entities In fact, the apantion of 

microcomputers and programming envuonments made a combination of the programming 

work with the operating work in a calculus system The abandon of the "batch" working style 

and working interactively impose a specific training in operating a computer If the first 

programming environment have had restricted functions, the lecent ones, as TURBO PASCAL 

oi BORLAND C (considered in top of the classification), are veiy complex and are few 

specialists who can handle them completely However, the programming languages from these 

envuonments (PASCAL, C, C++) may be considered universal languages (solve a great 

numbei of problems technical, scientifical problems, problems which had to work with many 

informations and so, with files, graphical problems, object-oirented programming) and, that’s

' "Babe$~lSolytu" Umvetsity, Faculty o f  Mathematics anti Computer Science, 3400 Cluj-Napoca, Romania
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why handling all of the language facilities became difficult From another point of view 

languages as PASCAL, C++, COBOL or DBASE IV have thicker instructions, from the 

syntactical aspect, as FORTRAN We though that an instrument foi automatic generation of 

control structures in a fixed language may be added as an important function in a 

programming environment

The problem of automatic generation of programs is not recent, and program generators 

exist in some systems and software products As an example we mention DBASE IV system 

which has a program generatoi based on graphical specification

We propose a model for generating some control structures of a program using context 

free grammars (1) A problem which hasn’t been solved efficently is the specification of the 

structures

2. Control structures. Foi Dijkstra structures (see for example (2))and for other 

structures we will intioduce the following operators

a) C(s,,s2) - operatoi for concatenation structures s, and s2 m this order ,

b) A(b,s,,s2) - operator associated to the complete alternative structure (complete IF) with

the semnification

IF b THEN
, ■ 8,

ELSE 
■ s2 *

ENDIF,

c) t-(b,s) - operator associated to the alternative structuie with one alternative (simple IF) 

with semnification IF b THEN s ENDIF,

14
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d) *(b,s,, .s j  - operator associated to the generalized alternative structure (CASE)

e) U(b,s) - operator associated to pretested loop with the semnification

WHILE b DO
s

ENDWHILE,

I) Q(s,b) - operator associated to posttested loop with the semnification

REPEAT
s

UNTIL b.

Are required some explanations

the three Dijkstra arc D={ C, A, Ö) and are considered fundamental, with them any 

algonthm can be described,

we asociate operators for structures D’={ C, A, b_, *, Ö, Q} which are in fact the 

structuies from the PASCAL language,

any other structure to which a similar operator can be asociated may be simulated with 

D or D‘ (for example LOOP-EXIT or LOOP-EXITJF-ENDLOOP stiuctures), 

we may intioduce the к  symbol for the empty stiucture

3. Proprieties of the asociated operators

1 C(s,,s2) ?■ C(s2,s,) - concatenation of structures s, and s2 isn’t comutative

2 C(s,,C(s2,s3)) = C(C(s,,s2),s3) - concatenation is asociative

3 C(sA) = C(X,s) = s - the symbol of the empty structure is playing the role of the neutral

element for concatenation

A CfAfb.s^SjI.Sj) = A(b,C(shs3),C(s2,s3)) - concatenation is nght distributed to alternative
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structure

5 C(s1,A(b,s2,s3)) = Afb.CXsLBjXCXs^Sj)) - concatenation is distnbuted to left to alternative

structure if and only if s, structure doesn’t have any effect on b predicat

6 U(b,s) = A(b,C(b,U(b,s)),X) = A(b,C(s,A(b,C(s,U(b,s)),X)),X) = - this propriety shows that

the three D structure can be reduced to only two structures concatenation and the 

alternative structure

7 Reducing D’ structures to D structures

a) Mb,s) = A(b,sA)

b) b-(b,s) = A(b,s,U(c,s))

c) *(Ь,8„ s j  = AO^SLAibj^Ai .A O v ^ ^ s J  )

where b is formed from b,, ,bn.,

d) Q(s,b) = C(s,U(_,b,s)), wheie _,b is the negation of b 

8, Some equivalence proprieties

a) A(b,3l)s2) = C(b1=’T,,C(U(bAb1,C(bI=,F,,s1)), О ф л-Ь 1,С’(Ь1= Т ,,з2))))

A could be reduced to the operators C by introducing a new boolean variable b, ( 'T  

is the value TRUE and ’F  is the value FALSE)

b) Aib.SjjSj) = СХЦЬ.зАЦ-Ь.з,)) mentioning that s, doesn’t modify b

4. Generating grammars for control structures. With the introduced notation we 

try to define a grammar which geneiates programma containing only contiol structuies whose 

associated operators have been described One may give more than one grammar but we’ll 

leffer only to the structures С, А, Ь_, Ö and Q

16
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H aving n structures s„ ,s„ (which may be considered the sim plest ones, nam ely 

attributing) and 2k predicates b ,, bk and A >  A  we give a gram m ar w hich generates all 

Program m s over the objects considered above 

Let G = (N,£,P,S), w here

N = {S,B} is the neterminals set 

2  = {С Л b. ü  Q ( ,  ) s, \  b, bk А  A  } 

is the alphabet of the grammar 

P S ~> C(S,S)|U(B,S)|Q(S,B)|b.(B,S)|A(B,S,S)|s1| |sn

в -> b.i |bkhb,| I A

is the set of production rules 

S - as the source symbol, S E N  

We consider the following examples 

Example 1 The word 

C(s„C(s2,C(t,(b1,s3),C(s2,U(-b2,s4)))))

which belongs to L(G) over s,,s2,S3,s4,b1,b2,-’b1,“,b2 may be obtained through "=>" in this way 

S => C(S,S) => C(S,C(S,S» ■=> C(S,C(S,C(S,S))) =>

C(S,C(S,C(tu(B,S),C(S,S)))) => C(s„C(s2,C(t,(b1,sJ),C(s2, D'(-b2,s4))))) 

and it is equivalent with the following program

s„
9„
IF b, THEN s3,
h,
WHILE A  DO 

S4
ENDWHILE,
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Example 2 Let’s consider the following word ■

C(sp A(b,, (b2,s2), ii(s3,-b2)))

e  L(G), which is obtained in this way
S =>C(S,S) =>C(S,A(B,S,S)) ">C(S,A(B, (B,S),Q(S,B)))=>
'=,>C(s1,A(b1> (b2,s2),ü(s3,-,bi)))

and it is equivalent to the following program

si>
IF b, THEN

WHILE b2 DO
s,

ENDWH1LE 
ELSE 

REPEAT S3 
UNTIL -b 2 

ENDIF

The introduced grammar has the following properties ,

- is a simple precedence grammar

- theie aie no conflicts in grammar

We may prove that for any piogiam (written in any language) only with structures C, 

A, k, Ö and Q exists one single woid from L(G), which ieproduces the program through 

operators

Different generators may be construct now having as input a word from L(G) and as 

output a program written in PASCAL, C, C++, COBOL, FORTRAN and so on The problem 

which hasn’t been solved properly is the specification of the word from L(G) at input
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REZUMAT. - Suprafeţe generate pria Interpolare blending. Folosind proprietatea funcţiei 
interpolatoare blending de a coincide cu funcţia pe care o interpelează pe puncte, segmente sau 
arce de curbă situate în domeniul de definipc al funcţiei, sunt generate suprafeţe controlate de 
valon alo funcţiei şl derivate ale acestora de gradul I sau il

The blending interpolation has many practical applications As it is well know, 

blending interpolation is the interpolation at an infinite set of points segments, curves, etc 

Thus, if one gives the contour of an object by such elements (points, segments, curves) using 

a blending inteipolation, we can generate a surface that contains the given contour Hence, 

we can construct a surface (a blending function interpolant) which mach a given function and 

certain of its denvatives on the boundary of a plan domain (rectangle, triangle, etc )

Using such a surface fitting technique it was constructed the roof surfaces for large 

halls (industrial halls, exposition halls, public buildings) [4,5,6,7,8]

Our goal is to construct some new such surfaces using Lagrange’s, Hermite’s and 

Bnkoffs interpolator operators

Let Th => {(xj/) e  № I x&O, paO, x+h-sh) be the standard triangle and /  1\ -*■ R a 

given function

"Babeş-Bolyai" University, Faculty o f  Mathematics and Computer Science, 3400 Cluj-Napoca, Romania
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The operators used are.

1) Lagrange’s operators L * , L f  and L ?  defined bv

= t p L f ( O y ) + * f ( h - yxy)
' ' h -у  h -y

(V/)(*jO = h~*~yj (x, 0) + JL f(x ,h  -x) 
'  h-x  h-x

= — Äx+yfl)+-?-/<P*+y)' 1 x+y x+y

each of them interpolating the function f on two of the sides of Th

2) Hermlte’s operators H?, Н /  and H?' corresponding to the double nodes

Ф~УУ (h-yr
г У 1 ' . : ? : М м - у у )

Ф-yf Ф-У?

(h-x?  (h-x?

+2 ^ ^ Л г Л - г ) +2 ^ 3 ^ / о . 'Х х Л - х )
(h-x? (h-x?

( Ю ) ( ^ )
(*+>T (*+t)

+^ ( ^ y(v^ 0)_ _ ^ (/(u,)_/oll))(v+^ 0)
(*+Т) (x+y?

3) BirkhofTs operators B* and B? defined by

(/V/)̂ ) =* /(O4V) +(x+y-h)?'fi)(h-yy) 
(/i,y)(.v,y) = f(xfi) -(x +y-h]f(0'1 \x,h -x)

4) BirkhofT s opeiatois B? and B? with
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М М  - Л 0

х \2 х -Щ
3(2МЛ) - / ™ м -

_2x\3X-x)
3A(2X-A)' / ‘■“’(AjO

3(2 у-А) ЗА(2у-Л)

for Х,уЕ[0,Л]

1 For the begining we construct a scalar interpolating formula generated by the 

operators I / ,  I ,y and Я /, Я /  and H3y, using two levels of interpolation

First, the function /  is approximated by the boolean sum of the operators L f  and L y

' ' h -у h-x  /i- vh-x

A A(A -y)

In order to obtain a scalar appioximant o f/ ,  we use in the second level the following 

approximations

/О М  « ( н ф у ) ,  Лх,0) » (нз% 0 )  and y(v,A-x) « (#"/)(*,A-x)

Let

(2) f - P M f

w i t h

о )  о,о) + - ^ 3± Э Д а,о)+
A3 A3

+y(2fix+3hy-2x2-2xy-2y2) ^ nh}+x(fi-x)(h-x-y)
A3 A2

+# 7 ) ( A - r - M ,) r 2( A - M l|0, 0) +̂ M ‘VA 0)+
A2 A2 A2

A 2 A 2
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be the obtained interpolation formula

Theorem 1 If there exist and _f°'l>(P), i=l,2,3, where F( are the vertixes of

Th, then P f  interpolates /  and its first partial derivatives at F, /=1,2,3 

Also Pgag  for all g S P j, i e the exactness degree of P is two 

The proof of the theorem is a straightforward computation 

Theorem 2 I f ßEBl2(0,0) [10] then

(^ (^ J ') c j4>30(^^vV)/,3'u,(.v,0)£fe+Í(p2l(A: 1̂.s-)/<2'1)(5,0)ri5+

1
% fx ^ d )f0'3,(Q,í)dí+jJtpn(xy7s,i)/xl-2\s,t)dsdt,

where

0 2 h3 2 h24V

yj\{h-x-y)+x(h-x)\ _ t)
h 2

4>u(xxy,s,t)°(x-s)l(y-()i

The proof follows by Peano’s theorem for a triangular domain [2]

The approximation formula (2) is tested on the function Дх»>')а 1/(дс2+>'2+1) The 

graphs of the function /  and of the approximation P f  are given in Fig 1 and Fig 2.

Remark Such an interpolation formula can be used to obtain a cubature formula ovei 

a triangle

2 Next, it will be used the given interpolator operators to generate some surfaces on
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the domain Z?a={(xtj/)E№| |x| + |_y|s/i}

Such a surface is constructed first on the triangle Th, öfter that is extended by 

symmetry with respect to the coordinate axes on all Dh

First examples of such surfaces are obtained from the approximation function P f  (3), 

for

{ )  =/<1'0)(Л,0)=/<0'1)(0,А)=О

and / (1,0)(0,Л)“/ (о,1)(Л,0)“ -0 5 (Fig 3)

iespectively

(В) /0 ,0)=4 1ДА)0)^Д0,Л)'=/1'О)(Л,0)“/ О11(0,А)=0(

/ 1U)(0,0)=/°'l'(0,0)= -l and 

/"'°X0,h)™fblXh,0)— 0 25 (Fig 4)

Fig 1 Fig 2

Now one supposes that the fonction /  take the value zero on the border of D, i e 

A «“ 0 Thls 1S equivalent with the condition f tx ji-x )=0 for *e[0,/i] Using this condition
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l (x j>) + !lZ lL ßxß) -2 l?pL fi0ß)
h -y  h-x h

Taking А т 4 р { / ) м  and /л-0)=(//,7)(х,0), in the same condition J(x,h-x)= 0 for 

all Æ [0,/i], one obtains the class of surfaces

ll(x,y)= h ~X~}-\{h2 +hx~2x2 ~2y 2)Д0,0) +А*(А 
Л3

+hy(h -yV M ( 0,0) -hx 2_/<l,U)(/j,0)-hy  У(0°(0,Л)], 

which depends on the data

(Д 0 ,0 )/ 1̂ (0 ,0 ) /и'13(0)0 ) / 1’11>(А)0)У<^>(0,Л))

For the data (4,-1,-1,-1 ,-1) one obtains the surface, from the Fig 5

Another class of surfaces is given by the boolean sum of the operators and У  

obtained from У  respectively Н /  in the conditions /(x,/i-r)-=/l'0)(x,/i-x)'=/°'1)(r,/i-x)=0 foi 

all x€E[0,A], l e
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(h -y f ih -уУ

( o / J j M
(h-x-yf(h-x+2y) y (h -x -y ff  q,„ 

(A-x)3 (A-x)2

We have

(g /  e  G3̂ H h ~ x - y f  

+ h ~x+2>\
Q i-yf ( h - y f

_ h +2hx+2hy+6xy-До.о)-

-  x(A+2y)/ l,o)(nn)- X v+2x)/ (»,,)(n n )-  ^ / ' . „ m n )  
A3 A3 h r

Now, for

X0.V) ^ J j i O y f A o f i )  ß y - h f ^ m  

f Kxfi)4B *]j(xß)= A 0ßh(x-h)yi0Xhß)

f m (0y>) ^ , 7 <1'0))(0^ ) = ^ / 1'0)(0,0)+ Z /(1’0)(0>A)

/ (0'°(х.О) “( l 17 <O,1))(^0)= ^ I Í / lí0' l)(0,0)+ Í:/ <u'1)(A,0) ' Л  л
one obtains

G(xvp)=(A-x-^); Л +2x-_y A“X +2y _ h 2 +2Ax +2hy +6xy
(h -y f  (A-x)3 A4 j

.̂xţ^ - A ) ^ , ^  n) + x>;(2v-^)yxo.i)<-n n)- ^  /('.')(»») 
h '(h-y)  A3(A-x) A2

У(0,0)н

A-x+2)
- f m ( h ß f xy

( h - x f '  ' ‘ '  A(A-t)

- ^ i r ^ W + T T r Lr f ° ,')W(h -y f h (h -x f
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Fig 5. w Fig 6

(Д0,0)1/Х1'°)(0,0)1/ <0,1)(0)0 ) / 11'1>(0,0)|
■ / ‘■и)(Л,0) / 10>(0>А ) /0'1>(0,Л )/0’»(А)0))

As an example (Fig 6) is given the surface obtained for the data (4,-1,-1,1,0,5,0,5)

The last class of surfaces is generated using the Fejer’s type operators F-f and/-'/ 

obtained from H3* and H3 for
I * •« '

=/"'0)(Л - ^ ) ° / ол,(х,0) ')(JC,A -x)»0
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Taking into account the general condition that j[x,h-x)=0 for х€=[0,Л], one obtains

where Х,уЕ|0,/)]

Two example aie taken here, for the data (4,-l,-l,0,0,0,0) with X°y=5 (Fig 7) and (4,- 

0 75,-0 75,0,0,2,2) with X-y-15 (Fig 8)

Finally, we remark that foi any of the presented classes of surfaces, for convenable 

data, can be obtained a large vaiiety of surfaces

(l<7 © F $ i x y ) = { h - x - y ? \ t ^ A m +
ih -y f

№ : y * h? 4 j m
{h -x f h \h~y)

in order to control the inflexion points we take

A W  { в ф у )

Х * ,0) .ф ? з ^ ( * ,0)

One obtains

that depends on

(Д0,0) / ‘'°)(0,0)1/<0'1)(0,0) / ' ' ^ 0,Л),
/ ° '1)(0,Л )/2'°>(Х,0)1/ до>(0,у)),
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REZUMAT. - Proverbe ale programăm revăzute. în lucrare ье pre/mtă metode, principii 
şi reguli considerate importante in activitatea de programare Se subliniază importanta acestora 
în once curs de învăţare a piogramăni

Computer programming is still m a state of crisis, at least for two reasons the 

haidware changes, and the appearance of new problems winch can be solved by computer 

The complexity of programs is incieasing continuously, and it generates ntajoi changes in 

piogiam design techniques The notion of "good program" can be considered from two 

different points of view piogiammer’s view, and usei’s one Fiom the user’s point of view 

one can distinguish 10 so-called "external quality factors" [10J correctness, robustness, 

extensibility, reusability, compatibility, efficiency, portability, venficabilily, integrity, and ease 

of use from programmer’s viewpoint, one can enumeiate two major criteria for a good 

progiam modulanty, and complete documentation Of course, the external quality factois 

must be taken into account as final goals in the software development process

All these quality cntena must find their place in the formation of new programmers 

There is a continuous need to teach programming foi obtaining a better productivity, i e to

"liabeţ-llolmi" Uinversilv, hut ullv o/Maiheinalit s niiil Computet Science, 3-WO Clttj-Napoca, Romania
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teach the students the methods that allow us to obtain correct programs from the first

execution As Floyd [4] pointed out in his Turing Award Lecture, there "is possible to

explicitly teach a set of systematic methods for all levels of piogiam design" Methods,

principles, and rules considered important in programming are given below Also the

bibliographical source is indicated m the brackets
/

1 Define the problem completely [7, 9] One cannot write a correct program if the 

problem to be solved is not known exactly Бу this we mean to write the specifications of the 

problem As it is known [11], this is not an easy problem, but a very serious one Often the 

beginners start to write the program but they do not know what are the results that must be 

obtained

2 Think first, program later [9] This may be interpreted to design the algorithms 

correctly Think to them, try to prove their coirectness, and write the program later, when you 

are sure that everything is correct

3 Use Top-Down Design [4, 7, 9] This is a veiy well known, and important 

programming paradigm [4] It is also met as step-wise refinement method [13], or Divide and 

compter principle [7]

4 Use Modulat ity as much as possible [9] A function, a procedure, a Turbo-Pascal 

unit, a Modula module, or an Ada package are considered modules Each module of a 

progiam is more understandable than the entire program Also, using modules, the logical 

structure of the program is improved Build up libraries of your modules for reusability

5 Use hbraiy  routines whenever it is possible [9] This rule is a consequence of rule 

4 Certainly, the existing routines are leady to be used, no time needed for writing and testing
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these routines Thus the productivity, and the probability of correctness will increase

6 Design the algorithms by Structured Programming paradigm [2, 4, 9, 13] This rule 

asks to design first the algorithms in a Pseudocode language, and only then to tianslate them 

in a programming language Also, it lequires to think to the structure of the product, at each 

level

7 Define a new data type as an Abstract Data Type (ADT) [6] The above rule asks 

the designer to think generally, not in the context of the solved problem An ADT may be 

viewed as a module that defines a data structure and the operations on this structure This 

independence of the context has beneficial effect foi the reusability of modules Also, an ADT 

is an open system, i e one can add new operations, not affecting the old ones, and not 

affecting the programs that already use this ADT

8 Design input-output routines for each abstiact data type [5, 6] These Input-Output 

operations are veiy usefbl in general Often, when a standardized interface is recommended, 

for these operations one uses videoformat, such as Turbo Vision from Borland This rule is 

one way of achieving rule 21

9 Use object-oriented design [1 , 10] This technique permits to obtain flexible, and 

easy modifiable programs The programs obtained by this technique are easy to maintain 

since, by using the hierarchy of classes in libraries of components, a massive reusability of 

these components becomes possible Also, adding new components does not affect the 

programs that already use the old components On the othei side, the other feature of object- 

oriented piogramming, the polymorfism, simplifies communication protocol between objects 

A program in OOP sense is considered as a structured collection of objects which
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communicate by message passing

10 Strive for continuing invention, and elaboration o f  new paradigms to the set o f  

your own ones [4] This idea, due to Floyd, is very well presented In his Turing Lecture He 

recommended to "identify the paradigms you use, as fUlly as you can, then teach them 

explicitly"

1 1 Prove the correctness o f algorithms during their design [7] The errors must be 

eliminated аз soon as possible. Trying to prove correctness, some wrong parts may be 

discovered And this can be done much earlier than running it on a computer Also, if we 

succeeded to prove it, the confidence in its correctness grows up significantly Gnes [7] 

insists on developing correct programs from the beginning His words are "A program and 

its proof should be developed hand-in-hand, with the proof usually leading the way"

12 Concentrate to the important things o f the moment, postpone the details later [9, 

13] This rule is connected to the stepwise refinement method But it has some other aspects 

At all levels give attention to the main things, for example do not lose time to print the 

results nicely if you are not sine these lesults are correct

13 Nevertheless the details are important [6, 13] First, the software products must 

respect rigorously the specifications Second, the form of the printed results are moie 

important for users than the entire work done for developing the product These must please 

the usera 1

14 Choose suitable and meaningful names for variables [7, 13] The readability of a 

program may be one of its very important quality It is very useful during maintenance phase, 

when many other programmers have to work on the program More, Gries [7] recommends
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to define rigorously the meaning of a variable by an assertion that remains true during the 

execution of the algonthm

15 For every variable o f  a program make sure that it is declared, initialised, and used 

[12] A variable may appeared in a program accidentally, other variable may not be initialised 

since a line of a program was not typed

16 Use symbolic constants [6, 13] This rule is a consequence of a Murphy like rule

The constants must be considered variables I

One recommends to define symbolic constants at the beginning of a program (module) 

procedure and to use the names inside Any modifications means small changes in the 

definition of the constants, and eliminates fiirther errors

17 Use names for all data types o f the program [6] We consider that all properties 

of a type are concentrated m its name Using names, the modifiability of the program is 

easier Also, the clarity is higher

18 Use intermediate variables only i f  it is necesmiy [9] ,

The unconti oiled utilization of auxiliary variables, by breaking expressions, just complicated, 

in subexpressions assigned to new variables, diminishes the clarity of the program, and makes 

more difficult the program verification

19 Declare all auxiliary variables o f  a procedwe as local vat tables [6] This rule is 

connected with the autonomy of the corresponding procedure It offers the following 

advantages easier testing of the procedure, procedure independence of the context m winch 

it is used, no secondary effects due to unexpected changing of the values of global variables

20 Be carefid at the parameters o f the called procedure [6, 13] Each module must
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be used only through its interface, that is, the actual parameters passed to the module, which 

must correspond to the formal parameters (dummy variables) Respect their meanings, and 

be careful to the correct usage of the procedure calling mechanism

21. Verify the value o f  a variable immediately it was obtained [6] A variable receives 

a value by an assignment or by an input operation. In both cases the value must be correct, 

it is worthwhile to check it Especially for input operation, a variable must be protected from 

wrong values

22 Think to pretty writing the text o f the program [9,13].

Most of the programming languages allow free format, i e. the blank spaces may be used 

freely Use them when writing the text of the program, to improye the darity of this text It 

must leap to the eyes the beginning and the end of each statement Use indentation for this 

purpose Make the structure of your program visible.

23 Use the FOR statements properly; do not change the value o f  the counting 

variable, or the limits inside the cycle [9] This rule ask to respect the semantics of the For 

statement Do not use For when Repeat or While control structures are most appropiate 

Changing the limits, or the value of the counting vanable may cause invisible errors, very 

difficult to discover

24 Do not leave a FOR cycle through a Goto statement [9] This rule is specific to 

Fortran programmers, but may be met in those languages that possess GOTO statements The 

reasons for respecting this rule are the same as for the rule 23

25 Avoid GOTO statements {3} The Goto controversy [3, 8] is well known Using 

umestneted Goto statements destroys the good structure of that module These statements
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must be used only if the programming language does not possess the standard computing 

structures

26 Avoid tricky programming [9] A program must be maintained, oftenly, by other 

persons different from the people who wrote it And tricks are not compatible with good 

structure, clarity, and flexibility. Also, for the portability of the program, one must avoid the 

implementation dependent features.

27. Use comments [9, 13]. The text erf a program (module) must be understood easily 

and unambiguously by all the other programmers who have to read it For this purpose the 

comments can be very useful. We think that each module must contain comments saying at 

least what it is doing, i e the specifications of the module, and the meaning of the used
9

variables

28 Verify (test) the correctness o f a module soon after it was obtained [7], The rule 

10 ask us to prove formally the correctness of a program (module) But, just if we have done 

it, we still have to test this module After all, the proof may be wrong, or the implementation 

of a correct algorithm may be incorrect. Ledgard [9] recommended "to hand-check the 

program before running it" We find this very useful for the beginners, some students better 

understand their errois running themselves their wrong programs

29 At each phase verify the programm correctness [6, 13] The verification of 

program correctness means the verification of specifications, the formal proof of algorithm 

correctness, the inspection of the text of the program, and the testing of it Remove any error 

as soon as possible I

30 Use assertions to document programs and verify their conectness during
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dèbnggmgprocess [7] If one has proved the partial correctness of the algorithms he has used

assertions in воте points of the algorithms These assertions must be invariantly true during
s , } ,

execution They reflect the meaning of the corresponding variables. In the debugging process 

verify their correctness. If they are not true some errors have oecured, and they must be 

eliminated
r > - ‘ * ? t (

31. Write good documentation simultaneously with program budding [ 13] The users

need a documentation manual, and the maintenance activities need information about all levels 

of program dévelopment Often, there is no documentation at all. The above mentioned rule 

asks to write the documentation simultaneously with the development of the program. The 

program itself must be selfdocumented by comments But it is not enough There must be 

written documents that show all the decisions at each level of the development process. There 

must exist documents for specification, design, implementation, and testing. Also, a user 

manual is heeded Í“ '

32, Use the existing debugging techniques [9] We hope to obtain error-free programs 

But errors may arise, and finding and correcting these errors is an important, and very often, 

an unpleasant job Every operating system has built in it some debugging aids Use them to 

assist you m finding the errors

33 Ask for computer assisted software development [7, 13] Computers can help 

people to carry out their unpleasant works Particularly, they can help in program 

development m different ways Many of them are mentioned in the excellent book of Schach
r ' ! ’ . t ‘ *

[13] planning the activities, and many activities done by Software' Development 

Environments, known as CASE (Computer-Aided Software Development) There are many
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activities that have to be performed during the development of the program, such as 

computations [4], or various decisions

34 Think to the program portability [9] A program must be portable, i e to be able 

to be run directly on a different machine, other than the original one Portability is not usually 

an issue to worry about But it may be an important quality of a program Isolate into 

modules those parts of the program that,usually change from computer to computer (such as 

mput/output operations). All other modules can be built portable, using statements 

corresponding to the "standard specification" of the implementation language, and avoiding 

the particular extensions which are dependent on the compiler implementation
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REZUMAT. - Consecinţe ale teoremelor privind convergenţa metodei coardei. Lucrarea 
îşi propune de a pune în evidenţă câteva consecinţe ale unei teoreme de convergenţă ale 
metode coardei

**1 = A. - ЛЛ*„)

metodă folosită în rezolvarea ecuaţiei P(x) = 0, unde P X  -* Y, X, Y fiind spaţii Frédiét

1. In this paper some consequences of tiie convergence of Chord method are given 

Let be the equation

Pix) = 0 (1)

where P X  Y is a continuous nonlinear mapping, X  and Y Frédiét spaces [3], 0 E  Y the 

null element of the space

Let be any x0,x., E. D С X and Лл = [хя, хя_р P ]"1 the generalized divided quotient 

[2] of P

Starting from the initial approximation x0, x., and using the algorithm

(2)

known as "the Chord method", the sequence (x„) is generated, each term of it being an

“Itabeş-Bolyai" University, Faculty oj Mathematics anil Computer Science, 3400 Ciuj-Napoca, Romanţa
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approximate of the solution of ( 1)

Obviously, the Chord method cannot be applied in the following two situations

a) applying the algorithm (2), x„ terms of sequence which are not in D are generated,

b) the mapping does not exist

To apply the iterative method (2) at each step, the mapping [х4, хЬ1, P  j' 1 is needed 

To avoid this inconvenient, a "modified" method may be applied

К  *-i Г  (2 ’)

which, to generate the (xn) approximations, uses only the mapping

° [*0> *■-! • ■̂3]

Although it gives a "weaker" approximation that (2), it is often use in piactice

We mention that both the Chord method (2) and the modified one (2 ’) applied to the 

approximative solving of equation ( 1) are identical with the succesive approximations method

Л(хя) (n = 0 , 1 , ) (3’)

applied to the equations equivalent with ( 1), respectively

x = x -  [x (1, ,x ffl, f ] > ( r ) (3.)

and

X = X -  [x0,x .l ,P ] _‘T’(x) (32)

Concerning the convergence of Chord method, in {1] the following theorem is proved 

THEOREM A I f  the following conditions are satisfied for initial approximates x0jx.,

e x-
1 Aa = [x0, r , ,  P j "1 exists,

2 )| Л0Е (х ) |< >  r\n  i = 0 ,- 1  and Tq0 < 1/4 iq., ;
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3 )]Aü[m>v,w , / j] | ( : s £ > V

4 A0 — f s T]_| s  1/4,

then the equation ( 1) has at least one solution x* £  S, which is the limit o f  sequence (x„)

generated by (2), the order o f  convergence being

) !* ’ -* ,(1  ( s  -1-гЯ'~Ч4Ь0Ут\0 (4)
2

where 0 < q < 1, and sn is the genet al term o f the sequence o f  partial summas o f Fibonacci 

sequence, with «, = u2 = 1

2. In the following, we modify the hypothesis concerning the existence of mapping 

Ац = [x0,x_,, P]"1, using another mapping, connected with it 

We probe the following

THEOREM 1 Supposing the existence o f any continuous linear mapping A £  (Y,Xf  

winch has an inverse and the following conditions fulfilled for initial approximates x0rx., £  

SCLX

1° )l A7, (xi) )(!>,, / - 0 ,-1  and ij0 й l/4 ïî_ ,,

2° )| A[Xy, X j Pj - /  I ( £ a < 1 , /  beetng the identical mapping,

3° ) |A [ h, v,w , / >] |( s Ă', V m,v,w £  S (x0, 5/4 т ц ) ,
„ -  К  ti .

4° Л0 - ___ Li. s 1/4
( l - a )2

then the equation ( 1) has a solution x* £  S, which is the limit o f  sequence (x„) generated by 

(2), the order o f  comergence being

) t x * - x n( | ( c  J _ ^ ( 4 A y ) ' - i i 0 (5)
2 -

where sn and q has the significance given bellow
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Proof We show that, from the hypothesis of theorem 1, the conditions of theorem A

follow

Hypothesis 2° of theorem 1 implies, based on Banach’s theorem, the existence of 

mapping

Я  = ( A [ x 0,

which for

(6)

) | Я | ( *
1

1 - a
It follows the existence of

ЯЛ = Л0= [ д^ . х ^ . Р ]'1

so the condition 1° of theorem A is verified

To fulfill the condition 2° of the same theorem, we consider

)[A 0P(x/) | (  = ) | Я Л Р ( х , ) | (  *

* ) | Я | ( - ) | Л Р ( х , ) | ( ^ ,  í = 0 ,-1
L -a
T|

Changing ii, respectively with — — , t = 0 , - 1 ,  we obtain te condition 1° of
1 -a

I
theorem A

In order to obtain the condition 3° of theorem A, we have

) | A0 [x(l), X m, x (3); P  ] I ( й ) IH  Л [ X(1), x (2), x (3), P ] | ( й

so К  corresponds to К  
1 ~o

1 - a

According with the expressions for К  and тр, we may evaluate h0, so the condition 

4 of theorem A

Then due to theoiem A, it results the existence of solution for equation (1), which is
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the limit of sequence generated by (x„), the rapidity of convergence being given by (5)
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REZUMAT. - Specificarea formală prin lambda-calcul a limbajului Smalltalk. Studiu 
comparativ. In această lucram sunt discutate două modele de specificaţii prin lambda-calcul 
ale limbajului Smalltalk Prin considerarea unei ierarhii în mediul Smalltalk au fost comparate 
cele două modele din punctul de vedere al criteriilor pe care o specificaţie trebuie să lo
respecte

Introduction. Denotation^ semantics based on lambda-calculus has been it very used 

specification method in some models for formalization of the object oriented languages 

Cardellt [1] stated that the only notion critically associated with object oriented programming 

is inheritance This paper tends to present a comparative study of some denotational 

specification models for inheritance. All the models presented are based on the object oriented 

language Smalltalk so the study will be somehow easily

Inheritance is the possibility to define a new class (named subclass) using the 

definition of one or more existing classes (named superclass) A subclass can inherit instance 

variables or methods from the parent class The meaning of this property can be understand 

using a "look-up" method Suppose a message, containing the call of a method, is sent to an 

object Then the look-up method search the class containing the method,

"Haheţ-Rolyai" University, Faculty o f  Mathematics and Computer Science, 3400 Cluj-Napoca, Romania
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procedure lookup (паше, class)
If паше = localname then do localaction 

else If (inhented_module= NIL) then undefmedjiame 
elee lookup (name, inheritedjnodule)

In Smalltalk there are two special variables which can appear in a message These two 

variables are se lf and super When the message contains the variable self the search begins 

in the instance class

lookup (name, instance class)

and if the message contains the variable super then the search begins in the superclass of the 

instance class (which contains the method)

lookup (name, superclass of the instance class)

The mechanism of self and super supports the access of the methods which have the 

same names either from the superclass and the subclass, although they have a different action 

If a subclass redefines a method which was defined in superclass then this mechanism became 

very useful

Knmin’s specification model

In [5], Samuel Kamin proposes a denotational Gnr Cmalltalk The major

characteristic of this definition is the simple way in which inheritance is handled and the 

paper contains an version of this semantics in Standard ML which can be executed 

The Smalltalk defined by Kamin has some modifications.

- only a few primitives are defined,

- the only literals which are permitted in the language are the integers and the arrays,

- the pools variables are omitted, excepting class variables,
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- contexts are not objects,

- methods are not objects, so it isn’t possible to create methods dynamically,

- there is a special way in which the array constants are handled any time when an 

array constant is evaluated a new array is created;

The definition is based on some semantic maps which assign meaning to syntactic 

entities These maps models the hierarchy, the inheritance and message passing mechanisms 

Let’s consider now the following example in The hierarchy H contains two

classes Point and Pointl, where Pointl Is a subclass of class Point In Point are defined two 

methods, the first being redefined in Pointl and the second method invokes the first one 

class Point
instunceVariableiNames

’ x y ’
method DistFrom Orig 

sqrt(self X2 + self y3) 
method CloserToOrig(py=

(self DistFromOrig < p.DistFromOng)
Point superclass Pointl 
method DistFromOrig 

(self X + self v)

Let 11 be the hierarchy containing Point and Pointl For an easy reading, we will denote 

m l = method DistFromOrig 

m2 =■ method CloserToOrig and 

R -  CIHJ

In this example D(H| = YR = sup{ 1, R±, R(R1), .}

For a complete understanding of the example we shall recall the notations used in the 

specification model Kamin has defined some semantic maps to specify the behavior of the 

object oriented mechanisms Inheritance is modeled by the two semantic maps C and D
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D Hier —> Env 
C Hier --> Env —> Env

D[HJ -  Y(C[H])
CtHlp

a  Х<С,Ш>
let H(c) = C S w X F
in if F(m) = no-def then p<S,m> else M(F(m)]p 

where CJHJ defines an application from the environment (meaning of the hierarchy H) to 

the environment ( noted Env) which executes an "inheritance step" For example, if H is a 

hierarchy containing the class Point 1 and it’s superclass Point, m2 is an attribute not defined 

in Pomtl and p(<Pomt,m>) is defined, then (PolntllH]p)(<Pointl,m>) will be defined 

equivalent with p(<Point,m>) So, Pointl has "inherited" the definition of m2 from Point 

Pointl[H] executes only an inheritance step’ if 0  is a subclass of Pointl, which doesn’t 

define the attribute m2, then (Point lCH}p)(<D,m>) is not defined, but 

(Pointl[HJ(Pointl[H]p))(<D,m>) is All the inheritances are resolved here

We use ±  to denote the primitive routines (e g machine arithmetic).

We will construct some of these environments to understand the inheritance 

mechanism

Ri. = { <Point, ml> -> 1,
<Point, m2> -> 1,
<Pointl, ml> -> 1,
<Pointl, m2> -> 1,
<Smallinteger, + > - > . ,  }

R(R±) = { <Point, m l> -> euclidian distance,
<Point, m2> -> if the arguments are from the class 

Point then compare the euclidian 
distance, else 1,

<Pointl, ml> -> distance,
<Pointl, m2> -> R±(<Point,m2>) = _L, .}
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At first, all the methods are undefined After one step (see Ri.) are defined only those 

methods which send no messages (like * or +) or invoke primitive methods After two steps 

(see R(R±) ), in addition to RJ_, are defined the two versions of method DistFromOrig and 

the method CloserToOng only for the class Point After three steps CloserToOng is defined 

because it can see the definition of the method DistFromOrig from class Pomtl (at this step 

the method can be applied only for aiguments from the Point class - the method is inherited) 

Alter foui steps Pointl has inherited the complete definition of CloserToOrig (it can be 

applied for arguments from Point or Pointl)

We will transcribe the denotational definition given above in Standard ML 

val no methods Methods = fri m => no_def,

val HO Hierarchy -
fn P => (P, "Object", [], [J, no_methods),

val psiO = (fn obj ■=> (simple (intval Oj,"Object"), ■
fn P => null env),

val Point_methods Methods =
fn "ml"=>normal("ml",[],[],literal(intconst 10,10))=>no_def, 
fn "m2"=>normaI("ni2",[],[], call(self,"ml",inconst 15,15))

val Pointclass ClassDef =
("Point", "Object", [], П, Point_methods)

val Pointl_mefnods Methods -- 
fn "ml"=>normal("ml",[],[],litera!(intconst 20 20))=>no_def,

val Point l_class ClassDef =
("Pointl", "Point", [], [], Pointl „methods),

val H Hierarchy = HO mod ("Point" ~> Point class) 
mod ("Pointl" --> Pointl class),

val prog Prg = (call(new "Point", "m2", []), H),
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pp prog psiû,

val prog . Prg = (call(new "Pointl", "m2", []), H),

pp prog psiû,

This example illustrates how inheritance works In ML syntax fn x represents a 

lambda abstraction If this program is executed and progl is evaluated then it returns (10,10) 

because m2 representing the method CloserToOrig compare the points(10,10) and (15,15) by 

the euclidian distance from origin The evaluation of prog2 returns (15,15) because 20+20 > 

15+15 (the two points are compare by the distance defined in Pointl)

Cook’s specification model

Cook’s definition [2] is based on three essential aspects related to the inheritance 

mechanism

- the addition of new methods or replacement of the inherited methods,

- the self reference must be redirectionated to access the modified methods,

- the super reference must be redirectionated to access the original methods

We will describe this definition using the same example The modifications are 

expressed as a record, Point ©, Pointl The new methods from class Pointl are combined 

with the original methods from the parent class Point, such that the method defined m Pointl, 

in this case DistFromOrig, substitutes the corresponding method m class Point

The variable selfis used to refer to the Pointl version o f DistFromOrig and super can 

be used to refer to the Point version of the same method So, the modifications can be 

expressed as a two arguments function, self and super, and returning the record described
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above These functions are called wrappers.

Also the self-reference must be changed in the inherited methods These methods are 

contained in a function named generator The result is a new class definition, namely a new 

generator This mechanism is providbd (by m-,

The generator associated with Point is .

GenPoint(x,y) = X self 
{ DistFromOng *-* 

sqrt(self X2 + self y2),
CloserToOng *-»

Xp (self DistFromOng < p DistFromOng)}

1 he V.tapper associated with Pointl is

PointlWrapper = Xx,y Xself 
{ DistFromOng 

(self X + self y)}

The wrappei application will be

PointlWrapper ► GenPoint(x.y) =
Xx,y Xself 
I DistFromOng >-►

(self X + self y)
CloserToOng

Xp (self DistFromOrig < p DistFromOng)}

After presenting these two models of specification we shall make some comments The 

greatest advantage of the Kamin’s model is the simple treatment of inheritance The related 

papers appeared before seems to have some disadvantages Kamin resolved them using fixed 

points to model inheritance He had defined the semantic maps we have talked a little earlier 

Indeed, for our example it is a nice specification way But what happens when we have a 

larger hierarchy? The specificátion will be sometimes not too easy to be followed. On the 

other hand we haven’t used yet the definition of the E map, which is far more complicated.
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The modei has it’s advantage the specification is concentrated on inheritance and it’s 

mechanism is treated very simple and so it’s easy to understand Also, Kamin has described 

all the mechanisms appeared in an object oriented program the meaning of the hierarchy, the 

inheritance process, the message passing, the methods evaluations, the evaluation of the 

primitive methods which provide access to low-level operations

What about Cook’s model? This model seems easier to understand maybe because it 

is provided with an intuitive explanation of inheritance as a mechanism fór incremental 

programming The whole specification is based on this motivation Also, Cook pioved the 

correctness of his model demonstrating that it is equivalent with an operational semantics of 

inhentance based upon a method-lookup algorithm This way of specifying the inheritance 

shows that this is not only an object oriented features but a general mechanism that can be 

applied to any form of recursive definition Although Kamin’s model is closely related, he 

described inheritance as a global operation on programs, which blurs scope Issues and 

inhentance Here is the most important difference between the two models

Kamin’s model versus Cook’s model

Every specification has to respect some well-known cnteria We will discuss how 

these specifications lespect them

Fonmltzation verifies if the specification behaves conforming with the implementation 

Kamin’s model can be transcubed in an executable version in Standard ML so this 

cntenum is easy to venfy We must also notice that the language' had suffered some 

modifications and omissions But Kamin’s goal was to specify the mechanism of inheritance
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and the missing details are not essential related with this concept

Cook proved that his model is equivalent with an operational semantics and it’s 

obvious that it respects this cntenum

Costructability A specification must be easy to construct even if the notation used is formal 

The omitted details make Kamin’s specification easier to build, but even so if the 

hierarchy is thick then the construction of the C and D maps seems to be hard to follow 

Comprehensibility The specification must be easy to understand The specification given by 

Kamin seems difficult to understand when we have to deal with the maps E and E  

Minimality All the non-essential details had been omitted ( we have already present the 

omissions and the modifications of the language, because they are not direct related 

with the inheritance process)

Applicability From the applicability point of view Cook’s model seems to be more 

interesting since his definition of inhentance, although it was developed fust for object 

oriented languages, shows that, in fact, inheritance is a general mechanism that can 

be applied to any form of recursive definition

The major problem of object onented languages is that they lack a solid formal 

fundamentation There have been some attemps in specifying object oriented features in 

operational, axiomatic, denotational and algebraic semantics We have focus our attention on 

denotational semantics because it provides a good mathematical instrument for specification 

based on lambda-calculus and, on the other hand, an instrument which is not such 

complicated and hard to understand as the algebraic theory used in algebraic specification 

techniques 1 his comparative presentation of these two model tries to be a study for choosing
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the most suitable fonnál specification
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REZUMAT. - Programare funcţională ţi relaţională cu PSP. Articolul prezintă PSP 
(Procesorul Simbolic Poisson), intr-o manieră ce unifică programarea relaţională cu clauze 
Horn bazate pe predicate cu programarea funcţională bazată pe egalităţi Unificarea pleacă de 
la o logică minimală, ce posedă atât clauze Horn cât şi egalităţi, numită logica clauzelor Horn 
cu egalităţi în ipotezele teoremei Church-Roser, semantica operaţională a PSP constituie o 
logică completă Semantica se bazează pe unificarea a două abordări, una construită pe baza 
teoriei modelelor, caro folosesc relapa de satisfacţie Intre modele şi instrucţiuni, şi una bazată 
pe teoria demonstrării, care foloseşte relaţia de partiponare (cntailmcnt) Intre mulţimi şi 
instrucţiuni PSP posedă tipuri abstracte de date ce se pol defini de utilizator şi care pot fi 
considerate module generice (parametrizate) Cu ajutorul subsortunlor se pot introduce 
operatori polunorfici şi o relaţie de moştenire pe tipurile de date Toate aceste caracteristici 
concură la definirea riguroasă a semanticii cu ajutorai logicii substrat, ilustrată cu câteva 
exemple

1. Introduction. A main feature of the processor described in this paper, hereafter 

called PSP, is the practical way in which it unifies relational programming with functional 

one, by unifying the logics that underlie relational and functional programming, namely first 

order Horn clause logic and many-sorted equational logic, to get many-sorted first order Horn 

clause logic with equality [8] In addition, generic modules are available with a rigorous 

logical foundation, and PSP also has a subsort facility that gieatly increases its expressive 

power

PSP is intended to operate with Poisson senes, which are a well-known tool in

‘ "Rnbey/jolyai" University, Faculty o f  Economic Silences, 3400 Cluj-Napoca, Romania 
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expressing celestial mechanics problems The motion of celestial bodies is described by means 

of differential equations, in which the right-hand-side terms are in fact Poisson series Usually, 

the solution of these differential equations cannot be obtained in exact form There are two 

alternatives numerical integration or analytic construction of an approximate solution (known 

as "theory of motion") First was used extensively, being a "classical" solution of motion 

problems The second alternative seems to be more attractive, because one can obtain the 

solution in analytical form, which piovide a qualitative study of motion There are many 

analytical methods for constructing the approximate solution of differential equations, most 

of them known as "perturbation theory" methods [2, 14]

The advantages claimed for PSP includes simplicity, clarity, understandability, 

reusability and maintanability There is another requirement that we argue also be imposed 

on our symbolic processor every program should have an initial model [10, 12] An initial 

model is charactenzed, uniquely up to isomorphism, by the pioperty that only what ts 

provable is true, and everything else is false The initial model provides a foundation for 

database manipulations, since you know exactly is true

We have found that neither of the approaches, the model-theoretic and the pioof- 

theoretic one, is by itself sufficient to axiomatize oui PSP The model-theoretic approach 

focuses on the satisfaction relation

M у

between a model M and a sentence /, and the pi oof-theoretic one tries to axiomatize the 

entailment relation

T h y
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between a set of sentences Г and a sentence у derivable from Г The model-theoretic approach 

is exemplified by Barwise’s axioms for abstract model theory [1] The framework of 

institutions, given by Goguen and Burstall [6, 7] also belongs to this approach The proof- 

theoretic approach has a long tradition, dating back to work of Tarski [15] on "consequence 

relations", and of Hertz and Gentzen on the entailment relation к

This paper proposes a practical approach that integrates the two above-mentioned ones 

(model-theoretic and proof-theoretic aspects) into a single axiomatization The axiomatization 

in question consists of an "entailment system", specifying an entailment relation i-, together 

with a "satisfaction system" (specifically, an institution in the Goguen-Burstali sense), 

specifying a satisfaction relation и [Ц] The entailment and satisfaction relations are then 

linked by a soundness axiom

The entailment relation ь says nothing about the internal structure of a proof To have 

a satisfactory account of proofs, we use the additional concept of a proof calculus C for ,a L 

The same logic may have, of course, many different proof calculi When we wish to include 

a specific proof calculus as part of a logic, the lesulting logic plus proof calculus is called 

logical system The axioms for a pi oof calculus C state that each signature in the logic L has 

an associated space of proofs, which is an object of an appropriate category. From such a 

space we can then extract an actual set of proofs supporting a given entailment Г н у

In order to obtain some efficiency with respect to PSP, we use the more general 

concept of proof subcalculus, where proofs are restricted to some given class of axioms and 

conclusions are also restricted to some given class of sentences It is by systematically 

exploiting such restrictions that the structure of proofs can be simplified In this way, we can
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obtain efficient proof theories, which lead to the theoretical concept of variable operational 

semantics <•

2. The features of PSP Conceptual clarity and ease of understanding are facilitated 

by breaking a program into modules This in turn offers support for debugging and 

reusability When there are many modules, it is helpflil to design the structure of module 

dependencies in an hierarchical manner Whenever one module (client module) uses data 

(state) or operations (services) declared in a second one (server module), the server must be 

explicitly imported to the client and also must be defined earlier in the program text A 

program obtained in this way has the abstract stiucture of an acyclic graph with modules as 

vertices and the module dependencies as edges

A PSP program is a sequence of modules (objects) Each module may define one or 

more new data sorts, together with associated operations that may create, select, interrogate, 

store, or modify data Such an module may use existing modules with their sorts of data and 

operations The module concept includes both data types in the programming language sense 

(that is, a domain of values of variables together with operations that access or modify those 

values) and algorithms

PSP has the following syntax for import

<iniporting> <mod_list>,

where importing is keyword and <mod_hst> is a list о module names By convention, if a 

module M imports a module M’, that imports a module M", then M" is also imported into 

M, that is, "importing" is a transitive relation
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Usually, programming systems provide a number of built-in data types, for example 

numbers and identifiers PSP has the following built-in modules BOOL, NAT, INT, and 

RAT BOOL provides the expected syntax and semantics for Booléens NAT, INT, and RAT 

define natural, integer and rational numbers (the last ones from the integers)

There is much work on providing user-defined abstract data types in programming 

languages (e g [3, 4, 9]) The essential idea is to allow users to introduce models that define 

new sorts and their associated functions and give axioms in Horn clause logic with equality 

or rules of computation It can also be very helpful to have available subsorts and their 

associated predicates, as we will see later

Note that PSP keywords are written in bold, module names are all CAPITALS, while 

variable names begin with a capital letter and that relation, function and constant names are 

all lowercase Attributes can be given for operators, for example, assoc, comm, and id 

indicate that a binary operator is associative, commutative, and idempotent, respectively

PSP mix-fix notation allows any desired ordering of keywords and arguments for 

operators, this is declared by giving a syntactic form consisting of a string of keywords and 

underbar character followed by a " followed by the anty as a string of sorts, followed 

by followed by the value sort of the function Similar conventions are used for 

predicates An expression is considered well-formed m this scheme iff it has exactly one 

parse, the parser can interactively help the user to satisfy this condition
t

PSP operates with Poisson senes, which are of the form

J, J, J. siny, cos +* Л + +k X ),Л П'*

where C, are numencal coefficients, у,, y2, ,ym are monomial vanables, x„ x2, ,xn are
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trigonometric variables, j,, j2> j ra and k,. k2, ,kn are exponents, and, respectively, 

coefficients, the summation index t covers the set of all possible combinations of the 

exponents j  and coefficients к (j €E Zm, к E. Z", Z being the set of integers)

In a concise form we write (1) as follows

S
CO

0

in which T, is a term of this senes

T, = C, F, P, ,

where the polynomial part P, has the form

while the tngonometnc part F, is

f  -  S i n ( k . x , + k j c  + + k  X  )» CO S l 1 2^2 Я п*

In piactice, onő does not operate with Poisson series, but with partial sums of these 

ones, called Poisson expressions, of the fonn

N

s  “ E 7;. N eNi-O

The Poisson expression can be defined in an hierarchical way The complete 

specification of tngonometnc and polynomial pan of a Poisson term (Ttr, and Ppol, 

respectively) can be found in [13] Now we define the Poisson teim as following

psp TERM is
importing Rat Ttr Ppol 
sorts Rat Ttr Ppol Terni 
op

Rat Ttr Ppol -> Term [assoc comm]
= Term -> Bool
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vars
X Rat 
У Ttr 
Z Ppol
X Y Z  X’-Y’ Z’ Term 

eq
0-Y-Z ■= 0 
X-O-Z = 0 
X-Y-0 = 0 
1/1 YZ = YZ 
X I Z  = XZ 
X-Y-l = X Y
X Y Z = X’ Y’ Z’ - X = X’, Y = Y’, Z ■= Z’

endpsp.

The above keyword im p a i r }  indicates that the sorts, subsorts, predicates, functions, and 

axioms of the listed models are imported into the module being defined The equation 

X Y Z = X’ Y’ Z’ - X = X’, Y = Y’, Z = Z’

is a Horn clause with equality, where H=" represents equality predicate defined on types, 

respectively

In the same way, we define EXP, that is based upon TERM, and specify the Poisson

expression, viewed as a list of terms, m which the symbol is separator

psp EXP Is
imparting Term 
sorts Term NeExp Exp 
subsorts Term < NeExp < Exp 

op
_+_ Term Term -> Exp [assoc comm id 0]

Term Term -> Exp [id 0]
Term Term -> Exp [assoc comm id 1 ]
__ Exp Exp -> Exp [assoc id ml]
j = _  Exp Exp -> Bool 

head_ NeExp -> Term 
tail_ NeExp -> Exp 
empty7 Exp -> Bool 

vars
T Term
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E Exp

sinX,
N/M • { } * Y, Term

cosX,

smX,
P/Q • { } • Y, Terni

cosX,

sinX2
P/Q • { } • Y2 Term

cosXj 
eq

sinX, 8UlX,
N/M • { } • Y, ± P/Q • { } • Y, =

cosX, cosX,

sinX,
= (N/M ± P/Q) • { } • Y,

cosX,

(N/M • cosX, • Y,) * (P/Q • smX2 • Y2) =

=((1/2 * N/M * P/Q) • sin(X,+X2) • Y, ■ Y2 ,
(1/2 * N/M * P/Q) • sin(X2-X,) • Y, • Yj)

(N/M • sinX, • Y,) * (P/Q • sinX2 • Y,) =

=((1/2 * N/M * P/Q) • cos(X,-X2) • Y, • Yj,
-(1/2 * N/M * P/Q) • cos(X,+X2) • Y, -,Y2)

(N/M • cosX, • Y,) * (P/Q cosX2 • Y2) =

=((1/2 * N/M * P/Q) • cos(X,+X2) • Y, • Y2 ,
(1/2 * N/M * P/Q) • cos(X,-X2) • Y, • Y2) 

head(T E) = T 
tail(T E) = E 
empty 9_E = E == nil 

endpsp.

In addition, we define two modules for differentiating and integrating of Poisson 

expressions
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psp DERIV is 
importing Exp 
sorts Term Exp NeExp 
subsorts Term < NeExp < Exp 
op

—  Term Set —> Exp
d -

—  Exp Set —> Exp
d -

vars
E Exp 
T Term

cos(N,-X,+N2-X2+ +N.-X,)
N/M • { } • Y,M1 • •YhMh' Term

sin(N,-Y,+N2-Y2+ +N.-X,)

eq
d cos(N,-X,+N2-X2+ +Nk,Yt+ +N.-X,)

— (N/M • { } • Y,M1- -Y^”1* •YhMh) =
dYy sin(N1-X,+N2-X2+ +Nk-Yk+ +N,-X,)

cosCN.-X^Nj-XjL +Nk-Yk+ +N|’X|)
= (N*Mk/M • { } • Y,M1- -Y^'1- ■YhMh ,

sm(N,-X,-lN2-X2+ +Nk-Yk+ +Ц-Х,)

sin(N,-X,+N2-X2+ +Nk-Yk+ +N,-X,)
iN*Nk/M • { } • Y,M1- .-Y^0, •YhN,lh)

cos(N,-X1+N2-X2p +Nk-Yk+ +N,-X,)
d (0) -  0

a
3Y,

(nil) m 0

^ ( E í - ^ í h e a d  E ) ._ L ( .a , l  E)

endpsp.

In the specification of INTEG module given below, we use the following abréviations
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/N /М • sin(N1-X1+N2,X2+ +Nk-Yk+ +N.-X,) • 
Mk.| p MkH Mh 

Y ,- Yk.j • Yk • • • Yh dYk ,

and
jN /M -cos(N ,-X 1+N2-Xa+ +Nk-Yk+ +N,*X,) •

where p Int, p^-l (the case p=-l does not preserve the form of Poisson expressions, because 

the integration leads to logarithms)

psp INTEG is
importing Exp 
sorts Term Exp NeExp 
subsorts Term < NeExp < Exp 
op

E Exp 
T Term 

P Nat
N/M ■sin(N,-X1+N2-X,+ .+N|-XI)-Y1M1- ■YhMh Term 
N/M ■cos(N,-X1+N2->4+ +N,-Xi)'Y,mi- •YbMh Term

I0 = (-l/Nk*N/M) • cos(N1,X,+N2-X2+ +Nk-Yk+ +N,-X,)-

Mt Mk_t 0 Mk+1 Mh

/_d_ Term Set ->  Exp 
/_d_ Exp Set —> Exp

vars

’ Y, • Yk.j • Yk • Yk+1 • • Y,

= ((-l/Nk*N/M) • cos(N,-X,+N2-X2+ +Nk-Yk+ +N,-X,)-

IVI, ivt l кл M,

(l/(Nk*Nk)) • sin(N,-X1+N2-X2+ +Nk-Yk+ +N,-X,)-

M, MkI 0 M 
Y, ■ Yk. , - Y k -Y

M,

= ((-l/N k*N/M) ■cos(N,-X1+ N /X 2+ +Nk-Yk+ +N,-X,)-
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Mi p Mk(I M„
■ Y, Yk., • Yk • Yk+1 • ‘ Yh ,

(N/M*p/(Nk*Nk))-sin(N1,X1+N2,X3+ +Nk-Yk+ +N.-X,)-

M, Mk., p-1 Mk<1 Mh
• Y, * Yk., • Yk • Yk+I • • Yh ,

-(N/M*p/Nk*(p-1 )/Nk) • lp.2 ) - p > 1

J0 = (l/Nk*N/M) • sin(N,-X1+N2-X2+ +Nk-Yk+ +N.-X,)-

M, Мы 0 МкИ Mh
• Y , -  Yk. , - Y k -Yw - ' Yh

J, = ((l/Nk*N/M) • sin(N1-X,+N2-X2+ +Nk-Yk+ +N,-X,)-

M, Mk., 1 М|ц.) Mh
■Y, • YM -Yk -Ykt l - • Yh ,

(l/O V N J) • cos(N,-X,+N2-X2+ +Nk-Yk+ +N,-X|)-

M, M,., 0 M*, Mh
•Y,* Yk., • Yk • Yk„ • • Yh )

■Ip = ((l/Nk*N/M) • sin(N,-X,+N2-X2+ +Nk% +  +N.-X,)-

M, Mk_! p Mktl M„
■ Yt • Yv„ • Yk • Yktl • • Yh ,

(N/M*p/(Nk*Nk)),cos(N, •X^Nj-XjT +Nk-Yk+ +N,-X,)-

M, Mk_, p-1 Mkfl M„
• Y, • YM • Yk • Yk+1 • ■ Yh ,

-(N/M*p/Nk*(p-1)/Nk) • Jp.2 ) - p > 1

JÖ dXk = 0 
Дш1) dXk = 0
JE d \  = Jhead(E) dXk + Jtail(E) dXk

endpsp.

The NORMAL module provides a normal form of Poisson expressions
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psp NORMAL is 
importing Exp 
sorts Term Exp 
subsorts Term < Exp 
op

normalised_ Exp -> Bool 
normalising_ Exp -> Exp 

vars
T Г  Term 
E E’ Exp 

eq
normalised(ml) = True 
normali3ed(T) ■- True
normalised(2T E) - T = T’, normalised(T’ E) 
normalising(E T T’ E’) = normalising(£ 2T E’) - T=T’ 
normalising(E) = E - normalised(E) 

endpsp

The basic building blocks of parameterized programming are parameterized modules 

Parameterized programming is a powerful technique for the reliable leuse of software In this 

technique, modules are parameterized over very general interfaces that describe what 

properties of an environment are required for the module to work correctly.

Here is an example of a parameterized module, intitulated SUBST, over the theories 

SORTI and SORT2 In our example, SUBST module provides the symbolic substitution 

operation

psp SUBST [SI SORTI,  S2 SORT2] is 
importing Exp 
sorts Term Exp NeExp 
subsorts Term < NeExp < Exp 
op

_sub__  Term SI S2 -> Teim
-sub__ Exp Si S2 -> Exp

vars 
E Exp 
T Term 
X SI 
Y S2
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eq
sub(0 X Y) = 0

sub(nil X Y) = nil
sub(T X Y) = sub(T X -> Y)
sub(E X Y) = sub(head E X Y) + sub(tail E X Y)

etulpsp.

where the meaning of expression sub(T X -> Y) is all occurences of the symbol X are

replaced by the symbol Y in term T SORTI and SORT2 are theories defined as follows

Th SORTI is Th SORT2 is
sorts Sori sorts Sor2

endtli. endth.

The following specification

view SUBS is (Sori as Rat
Sor2 as Set)

define a view called SUBS, mapping fiom the sorts of SORTI and SORT2 to the other sorts 

already defined, that preserves the subsort relation, and a mapping from the operations of 

SORTI and SORT2 to the operations of Rat and Set, preserving anty, value sort, and 

attributes

To actually use a parameterized module, it is necessary to instantiate it with an actual 

parametei The Make command applies a parameterized module to an actual one, by use of 

a view For example,

Make SUBSTITUTION is SUBST[SUBS] endm, 

uses the view SUBS to instantiate the parameterized module SUBST with the actual 

parameteis Rat and Set

In the same way, one can construct new PSP modules, which implements new 

opeiations on Poisson series, like power expansion (including exponents integer numbers or
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îational numbeis of the form 1/M or M/2 with M nonzero integer), inverse of a Poisson 

series, binomial expansion and so on (see, for example, [2]) Also, on the basis of PSP we 

can realize new specialized modules, like Kepler or Taylor ones In Keplenan module, for 

example, the polynomial and trigonometric variables are the well-known elliptic elements For 

these elements, there are transfoimation rules, which can be considered, from our point of 

view, as rewriting rules The next level of absti action consists of modules for constructing the 

approximate solution of differential equations up to an desired order One can construct 

different modules for each "perturbation method", each of them using operations defined in 

previous modules Using different methods applied to the same problem, one can compare the 

obtaining solutions, keeping in mind the fact that many of methods are asstmptottcally 

equivalent This can be another facility of theorem proving of PSP

3. Concluding remarks PSP is intended to be a symbolic processor, with features of 

theorem proving, dedicated to the study of the motion of celestial bodies From the 

implementation point of view, theie are some modules that are not so efficient, this difficulty 

remains to be considered later Taking into account the built-in abstract data types, the 

denotations! semantics of initial models, the opeiational semantics based on rewriting rules, 

PSP, considered as open system, can be helpful in othei fields, too
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A MATHEMATICAL MODEL 
TO SOLVE THE TIMETABLE PROBLEM USING PROLOG
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REZUMAT. - Un model matematic pentru rezolvarea problemei orarului ulilizînd 
limbajul Prolog. Lucrarea prezintă un model matematic general al problemei orarului precum 
şi utilizarea acestuia de către un algontm de rezolvare a problemei Modelul matematic propus 
asigură descrierea unor restncpi extrem de diverse ce caracterizează soluţiile fiabile Algoritmul 
propus asigură găsirea soluţiei optime din punct de vedere al mai multor criteru, construind 
numai soluţiile fiabile susceptibile de a fi soluţii optime

1. Introduction. Timetable problems are by their fundamental nature resource 

allocation problems, whose solutions represent activity plans Every activity (also called 

’meet’) needs certain available resources (persons, development places, tune, etc ) and 

different conditions for development, depending on the activity itself or other activities 

(avoiding certain times, activities sequences and certain parallel activity pairs)

These problems depend on the educational systems and they can be mutually very 

different Some practical lequirements cannot be easily caught in mathematical formulas 

Therefore it is very difficult to model and solve these problems For this reason a model 

should be universal and very flexible

Timetable problems are known to be NP - complete, only some reduced problems are

"ßabe,\-ßolyai“ University, Faculty o f  Afnthemtilics and Computer Science, 3400 Ctuj-Napoca, Romania
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polynomial In our situation, such a special case requires the permanent availability of 

lecturers and rooms

In this paper we are concentrating on timetables for university faculty and propose a 

PROLOG rule system which can be run on a microcomputer The mathematical model is 

extended such that a prion fixed assignements, faculty connections and other miscellaneous 

constiaints are supported

2. Problem formulation Let’s assume given the set of faculty teaching staff, the set 

of student groups (called classes), the set of available rooms and their sizes and the set of 

activities that have to be scheduled in a certain week

Furthermore, a maximal allowed number of time periods (called hours) is assigned to each 

day The lunch breaks the day into two daily ammounts of consecutive hours (called daily 

quantums) with a given extent An activity should not be interrupted by this break

Every professor and class should have a set of unavailable hours due to a priori scheduled 

activities or other reasons

For the feasibility, the timetable have to satisfy certain requirements The set of all the 

requirements of the problem is pailitioned into three groups, corresponding to the various 

degrees of strictness ([1])

- hard requirements, which must always be satisfied

- medium requirements, which should be satisfied although they can be relaxed in some 

cases

- soft requuements, which should be satisfied if the other requirements allow this

92



A MATHEMATICAL MODEL

The hard requirements should lead to physically feasible timetable and they are expressed ' 

as constraints In our case, conflicts due to activities taking place simultaneously but involving 

classes or professors in common, have to be avoided Other constraints arise from the fact that 

the activities should not be interrupted and they should not be scheduled in an inadequate 

room or at hours which are unavailable for one of its participants Also, all the activities have 

to be scheduled during the time span of one week

The soft requirements deal with preferences and they aie modelled as objectives Our 

objectives are that the timetables for classes and professors are compact, with no time 

windows, with as many as possible morning courses and othei pedagogical recommendations 

Every medium requirement can appear either as a constraint oi as an objective, depending 

on the nature or the interpretation of the problem As a medium requirement, two courses of 

the same topic (called equivalent couises) should not be scheduled in the same day

The objectives are the actual parameters for a given quality function which reflects the 

prefeience for one timetable solution over the othei It is often difficult to quantify the 

desirability aspect of timetabling However, a weighted sum of the objectives is a satisfactory, 

flexible and simple solution and for these reasons we chose it

On these conditions, the problem to solve is to find the feasible optimal solutions foi the 

timetable If there results several optimal solutions, then a decision makei will choose the 

preferred solution

3. The mathematical model In this section it will be piesented a mathematical model 

for the timetable problem based on the situation in oui llmveisitv, but the model is flexible
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enough to allow application to many différent situations

We consider the following sets 

G - the set of classes 

D - the set of teaching staff

P=GUD - the set of participants in teaching activities 

S - the set of available rooms

M - the set of teaching activities (comses, seminars, practical training, etc )

H - the set of available hours per week Foi example, if we have 10 available hours per 

day, we consider that Monday is represented by the {1 10} hours, Tuesday is

represented by the {11 20} houis and so on This convention can be changed in

order to satisfy certain interests
j ' 1 ' '

and the constants

, hdpsN* - the number of hours per day

mhcN* - the number of hours of the first daily quantum 

(morning hours)

To solve in a smart way the problems of the lunch pauses and the end of a day, we add 

an hour between the two daily quantums and an hour after each day Then we will mark all 

classes and professors as unavailable at these fictitious hours Therefore, we avoid the 

interruption of the activity

Now we can define the time window as the free time period between two occupied time 

periods, which does not contain fictitious hours
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For an easy handle, the rooms and the activities are coded with positive integer numbers 

Throughout this paper, the activity lists are ordered ascendingly on the codes and the room 

lists are ordered ascendingly on the room capacity

The following functions give us information about these sets 

u Q -> N* u(g) = the number of students in the group g 

V P -> P(H) v(p) = the set of hours when p is available 

c M -> P(S) c(s) = the set of suitable rooms for the activity m 

p M -> P(P) p(m) = the set of participants in the activity m 

r M -> N* r(m) = the extent of the activity m 

From this information we can determine the function 

a M -> P(H) a(m) = the set of hours when the activity m could begin 

This function can be calculated using the following foimuta 

a(m) = {yeV | y, , y+r(m)-leV} where

V = П v(x) represents the houis when all the xep(m) participants at the activity 

m are free

In these conditions we consider a timetable solution as a function t M -> HxS, t=(t,,t2) 

with the following properties

I) {^(m), , t,(m)I-r(m)-l} С a(m) V meM

II) t2(m) e c(m) V meM

III) nu-m and {t,(m), , t,(m)+r(m)-l} П {t,(n), , t,(n)Tr(n)-l} * 0  => р(т)Пр(п)=0

and t2(m)wt2(n) V m,ncM

(The simultaneous activities must have diffeient participants and must be
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scheduled in different rooms) ' ■

ív) mp!n and p(m)=p(n) => |t,(m)/hdp] A[t,(n)/hdp]

(The equivalent activities should not be scheduled in the'same day)

Due to the relations between the activities, their different lengths and the problems 

concerning the rooms which may appear in the general case, the set of activities which could 

be scheduled at a certain hour depends on the activities scheduled before Therefore we are 

forced to construct every possible solution, hour by hour, in an heuristic way and then to 

evaluate its quality Note that there exist papers on the optimal timetable construction in a 

deterministic way using Operations Research, but they solve the problem only m particular 

cases ([4]) 1 '

We understand now that, in the general case, since the timetable problem is NP-complete 

the number of solutions we have to construct is extremely high and it has an exponential 

growth in the number of participants ([2])

As an interesting particulai situation, if all the activities have the same lengths and there 

are no problems with the rooms, we can consider the graph with the vertex set V = MUH and 

with edges among every different hours, among the activities which have common participants 

and among the activities and their unsuitable hours In this case, the timetable construction 

problem is equivalent to the graph 'colouring problem, with | H | colours

Also, we are very interested in the reduction of the number of constructed solutions There 

are two posibihties .

The first is almost obvious If we evaluate the solution quality during the construction of 

the solution, we can check at certain moments (at the end of a day, for example) if we die
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able to reach a quality which has alieady been obtained If we don’t, it is useless to continue 

the construction of that solution

With the second method we obtain an extremely important reduction of the number of 

constiucted solutions, with a very low risk of loosing high quality solutions Let’s suppose 

we are constructing the hour h of the timetable and at this hour we can schedule activities 

fiom the A set Actually, due to restrictions, we can schedule only subsets of A Let Eh be 

the set of all these subsets, EhCP(A) The idea is to construct only the timetable solutions 

which have scheduled at the hour h the maximal elements of (E,„Q

For example, let {m,, , mkj be a maximal element of E,, (the activities m,, , ink may

be scheduled to begin together at the hour h) A flill heuristic algorithm will try to construct 

solutions with all the following activity sets

0 . {ni,}, , {mk}, {m„m2}, , {m„ , mk}

scheduled to begin at the hour h This means 21, alternatives

But scheduling only a subset of (m,, , mk} implies that some professois and classes will

have empty places m their timetable and this fact will decrease the quality of the solution 

Therefore we can try only with the maximal configuiation and the risk to loose this way an 

optimal solution, is very low

'fins method also decieases the number of iemairung activities and thus it leduces the 

complexity of the following stages

4. Using the PROLOG programming techniques. The structure of the program

We r esti iot the piesentation and explanation of the progiam to those elements which
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are indispensable for a global comprehension of its ideas and an insight of its 

structure

, The information about faculty teacheis,'activities; rooms and classes are stored in an 

internal database >

The first module is an initialisation module which creates the information database using 

the consult predicate to read a given text file containing the input data Then it creates a woik 

database which contains the constraints deduced from the information database These 

constraints concern the activity pairs that could not be scheduled simultaneously due to theirs 

common participants, the houis that are inadequate for a certain activity due to' the activity 

length and the suitable rooms for every, activity

The target of the main module is the heuristic search of feasible timetable'considering all ' 

the restrictions, including the one which deals with the size of the rooms and the auxiliary 

support The best solutions achieved up to the present are stored in a distinct database and 

their quality is compared with the quality of the latest constructed solution If their quality 

is equal then the new solution is attached to the database Else, if the quality of the new 

solution is bettei, then the solutions stoied in the database are removed and the new solution 

is attached to the database Therefore, at the end of the construction process, we have only 

the best solutions If the result database contains several solutions, we can apply other 

constraints concerning pedagogical requirements such as rational distribution of couises and 

effort during the week or other preferences

The last module is a tool which allows an interactive refinement of the solution The usei 

can choose the preferred solution, if theie are several optimal solutions from the given cm temi
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point of view, and then he may introduce the a pnori assignments This module also assists 

the user to change some assignments preserving the validity of the solution

At the user’s choice, this module calls the output module which sends the results to the 

screen, printer or a given file Among the results there is a new database which represents the 

updated input database with the new situation of the participants ocupation This database can 

be useful for unexpected situations which may occur dunng the semester, and to connect 

faculties This is an important fact because in general, the professors from a certain faculty 

assure the majority of courses in the University, which are related to the faculty realm 

from all the facts mentioned until now, it results that the algorithm that I propose is 

semi-heuristic and that it is based on the backtracking mechanism Since the timetable 

construction problem is suitable for the descriptive programming and the backtracking 

mechan sm is an internal mechanism of the PROLOG language, it becomes clear that the 

piogramming effort was considerably reduced this way ([3])

We will present now the predicate for the timetable hours construction which ensures the 

optimization described above and the predicate for the timetable construction, in a 

PROLOG-1 ike pseudocode language 

constructhour(h,m,A,S,[y|L]) if 

3yeA, 3shi:S a suitable room for the activity у which is 

fiee between the hours h and h+r(m),

Select ycA, y>m, for which exist suitable rooms where it should be scheduled 

to begin at the houi h and
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let ry be the most suitable from them,

Al = A \l(y ),

SI = S \  {ry}, 

constructhour(h,y, A 1, S1 ,L) 

constructhour(_, 

where meM

A is the ascendingly ordered list of nonscheduled activities

1 M -> P(M), l(m) represents the set of activities which have common participants 

with m,

l(m) = {neM j p(m) П p(n) * 0}  

ttconstruct(_, [],_,[],_,[]) if 1

ttconstruct(h,A,R,Eq,Ocr,[L|Tt]) if h á the number of hours per week, 

Construct Act - the list of activities from A which might be scheduled to begin at

the hour h,

Construct AvR - the list of moms from R which are available at the hour li, 

const! ucthour(h,0, Act, Avi ,L),

Create the Al, Rl, Eql, Ocil lists as the A, R, Eq and Ocr updated lists,

hi = h-H,

ltconstruct(h 1, A 1 ,R1 Eql ,Ocrl ,Tt) 

where, in addition to the above descnbed lists

R is the list of available rooms at the hour h 

Ocr is the list of occupied rooms at the hour h
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(RUOcr is the constant set of all rooms)

Eq is the activity list which should not be scheduled in the present day due to the 

constraint concerning the equivalent activities 

Tt is the constructed solution

Note that these lines must be understood with the PROLOG conventions, l e if an 

assertion fails, the program will automatically try to find other solutions for the previous 

assertions m the same clause or if this is impossible, with the following clauses of the 

predicate

This predicate respects the above considerations on the maximally At a certain moment, 

theie is selected F={m,, , m,}, FeE^ where m, < m2 < < m,

If 3 xeA\F, х>Ш| such that FU{x}cEh, then x will be attached to F and the searching 

process continues Otherwise there are two possible situations

1 If 3xeA\F such that FU{x)rEh, then F is a maximal element of (Eh,Q 'and the activities 

fiom F will be scheduled at the hour h In this case the first clause of the predicate fails and 

it will be used the second clause

2 If 3xeA\F such that FU{x}rEh but x<m„ then F is not a maximal element of E,, and due 

to the ascending order selection of the activities, FU{x} was selected in a previous stage The 

piedicate fails due to the cut backtracking (!) piedicate call

5. Concluding remarks and possible extensions Now we can notice the tremendous 

advantage of considering a relation oriented approach using logical programming techniques 

The PROLOG piogiamming language is a very fast and flexible prototyping tool Additional
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restrictions and situations can be easily included as new predicates or by extension of the 

existing attribute list, * . , r

If this database is too large to fit in the memory, we can use the PROLOG facilities to 

work with external databases stored on disk

I mention here that 1 used Borland's Tuibo Prolog 2 0. Certainly a PROLOG compiler 

does not generate very fast programs but Turbo Prolog allows interfacing PROLOG programs 

with modules written in C or" even assembler language for the speed critical parts of the 

program, Also, knowing that menus and user interface could be programmed more efficient 

with traditional programming languages, we can use Ç libraries to do this

I also suggest two usefU extensions for this model

- the intioduction of the predecessor-succesor relation between the activities as new

constraints, , •

- the introduction of dynamic topics, when we dispose only of the total amount of hours 

for a certain subject matter, sö that we can choose their activity grouping
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Rezumat. Generarea Crucialilor de forrná regulată prin limbaje pleturate ín această lucrare este prezentată 
o modalitate de generare a fractalilor de formă regulată, utilizând şiruri de comenzi peiitrn desenarea acestora 
Aceste şiruri de comenzi sunt generate pnn funepi care permit dezvoltarea, prelucrarea şi recunoaşterea acestor 
variatluni geometrice numite fraciali

The fractal textures are more and more often used in computer graphics since they can 

model properly 3D-flgures and natural forms and they have the advantage of representing the 

models on a plane surface Fractals can have regulat forms, based on repetition of a motif 

(primary detail) or randomizing forms, which are defined probabilistic They can be built 

starting from curves, surfaces or figures and they are defined either by a flinction or by a 

construction rule [2]

Regular form fractals can be generated using a language of commands for drawings 

(images) [1] Given a set of graphical primitives (corresponding to a set of drawing 

commands), from which one or more starting pnmiftves (primary detail) are chosen, we will 

apply a transformation to this initial set, then to the obtained set of primitives we will apply 

again the same tiansformation and so on, as many times as we want Finally, the resulting set
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of pnmitives represents the desired fractal, respectively if the result is a string of commands 

then the fractal will be obtained executing these commands

Let’s consider the set C=(c,,c2, ,cp}, containing the graphical primitives which form 

a fractal family These primitives can be drawn by coiresponding graphical commands So, 

we can achieve a drawing executing a string of such commands

Let S = { x,x2 xm / m>0, x„x2, ,xm G C } be the set of command strings obtained 

by concatenation of the elements from the set C A family of variable fractals of regular 

type is a set of fractals which have been obtained starting from a primary detail D G S, which 

is developed step by step according to a transformation rule f  C->S, rule which is applied to 

every graphical primitive (command) This tiansformation gives the development rule for a 

primitive and is specific to every fractals family

The development function which allows a fractal to be transformed entirely with an 

iteration is

t S -*S, t(x,x2 xm) ’
f(x,), if m=l 
f(x,)f(x2) f ( x j ,  if m>l

(where uv represents the concatenation of u and v)

The development of a fractal after n iterations (n "years") is described by the function 

t n S —S t n(X )’ t(X), if n=l 
t n l(t(X)), if n> 1

We can say that t"(D) returns the commands stnng representing the fractal in the n-th 

step of the development This observation makes us think that we can define a fractals family 

specifying the pnmitives set C, the pnmary detail D, and the development rule f

F=(C,D,0. n=l,2,

The definition of the transformation rule f will use the following function

104



GENERATING FRACTALS OF REGULAR FORM

Since this function is bijective, we can construct the reverse function, which will simplify the 

definition of the function f

Example 1 Let’s consider the following set 0{r,u,l,d} where 

(r.uj.d) is (— [3] 

and f (x) = X Next(x) x Next"‘(x) x , V x E C 

(x concatenated with Next(x), concatenated with x, ) and D=r 

Then t‘(D) , t2(D) , t3(D) , represent the following family

Either in constructing or in recognizing a fractals family defined in the way we 

described, the following property of the development function is very useful

The above property can be proved by complete induction as follows

for n— 1 t‘(XY) = t(XY) = t(x,x2 xmly,y2 ym2) = 

= f(x,)f(x2) f(xml) f(y,)f(y2) f(y„p>

= t(x,*2 xm)) t(y,y2 yro2) = t(X)t(Y) ,

Figure 1

f(XY) = f'(X) t"(Y)

assuming that tnl(XY) = tn,(X) f f Y )
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then t"(XY) = r'(t(X Y)) = tnl(t(X)t( Y)) = tnl(t(X))tn '(t(Y))=

= tn(X)t"(Y)

This property allows us to draw a fractal succestvely on sections and also to analyze 

a fractal reducing it at its subfractals which compounds it 

We consider now another two examples 

Example 2 Let C=(r,e,u,f,l,g,d,h} be the set with

Example 3 Let C={u,b,c} be the set with 

(a,b,c) = (-’■.y H  ,

and f(x),= x Next(x) Nexf’(x) x x , and D=abc 

Then t'(D) , t2(D) , t3(D) , generate the family

The set C might contain even compound primitives (2D-figures or 3D-figuies), and 

in this situation when we represent the fractals we should achieve a projection of the structure

and f(x) = Next(x) Nexf'(x) x , and D=urdl

Then t‘(D ), t2(D) , t3(D) , represent the following family

Figure 2
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XX XX
Figure 3 

14]

Some fractal transformations can be achieved modifying the commands string t"(D) 

through some operations

1) Scaling the figure can be increased к times, applying the following function

sk S ->  S , s4x,x2 хт)=х,кх2к xmk . 

to the string tn(D)

2) Translation a figure can be translated к times on the direction of a primitive c if we 

apply the function

dbk(X) = ckX 

to the string X -  f(D)

3) Rotation the function pk defined below achieves к lotations of the fractal

pk(x,x2 Xn^Nex^x^Nexf'Cxj) Nextk(x,„), kEZ 

The rotation can be performed with an angle multiple of 45, 60 or 90 grades, depending on 

the selection of the primitives Since the order of the primitives in the set C is important, we 

must icspect the anticlockwise direction We notice that the function p has the following 

property pk(t"(X)) = tn(pk(X)) This property simplifies the computation in fractals 

geneiation, fiactdls which have a primary detail compound from more than one pnmitive
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Let’s consider again the second example 

t"(urdl) = t"(u)tn(r)tn(d)t"(l) =

= f1(u)f’(Nexf2(u))fl(Next4(u))tn(Next2(u)) =

= f  ( u ^ P > ) ) tV ( u ) ) tn(p2(u)) = ■

= tD(u)p-2(tn(u))p4(tn(u))p2(f(u)) .

We notice that we can compute f(u) one time, then the commands are executed, eventually 

transformed by the rotations p'2, p4 and p2

If wé have to recognize a fractals family then we will proceed as follows we find the 

primitives, construct the corresponding commands string, we decompose the commands string 

in substrings of length equal with Дх), then every substring f(x) is substituted with x We 

apply the same action to the resulting string until we obtain D [5] The commands string t2(D) 

from the second example,

ru rd r uluru rurdr drdld ru rdr , is transformed by f 1 in

rurd r -*■ r , uluru -* u , ru rd r -*■ r  , drdld -* d and ru rd r -»■ r, then the resulting string 

rurdr, which is f(r), is substituted by r s
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Rezumat: Notă atupra logicilor nemonotone. Raţionamentul aproximativ e deosebit de 
Interesant pentru că modelează mat exact reprezentarea şi tratarea cunoştinţelor în cazul 
informaţiilor incomplete Acea stil lucrare introduce o modalitate de a obţine teoreme pornind 
de la astfel de cunoştinţe (knowledge) incomplete, similar cu deducţiile în cazul clasic al logicii 
de ordinul întâi Pentru cazul (eonilor normale, se demonstrează că problema e complet 
reductibilă la cazul clasic

1. Introduction The classical logics are inadequate to capture the tentative nature of 

human reasoning Since people’s knowledge about the world is necessarily incomplete, there 

will be times when we could be forced to draw conclusions based on an incomplete 

specification of pertinent details of the situations Under such circumstances, assumptions are 

made (implicitly or explicitly) about the state of the unknown factors Because these 

assumptions are not irrefutable, they may have to be withdrawn at some later time,if new 

evidence prove them invalid If this happens, the new evidence will prevent some assumptions 

from being made, hence all conclusions which can be arrived at only in conjunction with 

those assumptions will no longer be derivable

In common-sense reasoning, assumptions are often based on both supporting evidence and 

the absence of contradictory evidence Traditional logics cannot emulate this form of
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reasoning, because they lack any tools for considering the absence of knowledge

Non-monotonic logic has been developed to deal with reasoning about incomplete 

informations There are four major formalizations of non-monotonic reasoning 

, • McCarty’s circumscription [1]

• Moore’s autoepistemic logic [4]

• Reiter’s default logic [5]

• McDermott and Doyle non-monotonic logic [2],[3]

Reiţer’s default logic [5] is one of the most proeminent , formalizations of non­

monotonic reasoning One of the reasons for its attractiveness is the simplicity and naturalness
' . . , r , ’ - 1 - '

of its underlying idea This logic represents defaults as certain type of inference mles whose 

applicability does not only depend on the denvability, but also on the underivabllity of some 

formulas

Classical logic deals with tthe formalization o f absolutely ooiTect forms- of

reasoning The aim of this note is to prove that, ' - , ,’ ? 1 J ‘
in the normal context, the,problem is completely reducible to classical case The deductive 

systems of logic allow us,to formalize reasoning of rigurous proof,of theorem and to infer 

conclusions from premises It defines a deduction relation between,formulas; denoted by f— 

This, relation has the following properties [6] ,

• reflexivity - , - ,

Ui,U2, ,Un,V h - V

* monotomcity , , i ,

■ ifU „U 2, ,U „,hr V th e n U .A , ,U„,Z h - V  . .

no
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• transitivity

ifU „U 2, ,Un h - V a n d  U,,U2> ,Un.V Z 

then U„U2, ,Un \ -  Z

where U,,U2) ,Un,V,Z are the formulas in first-order logic

2. Default logic The property of monotonicity tell us that a derived result cannot be 

invalidated by flirther results Also, the inference rules in deductive systems of classical logic 

are permissive They are always of the form U„U2, ,Un |—r V with the significance "If 

Ui,U2, ,Uk are theorems, then by rule rk (of anty k) it results that V is a theorem "

A system which should be able to model non-monotonic resoning should also contain 

restrictive rules, of the form 

" V is a theorem if U„U2, ,Uk are not theorems "

Default logic allows formalizing default reasoning by means of particular inference rules, 

called defaults A default has the form a and is interpreted as follows "if one behves
Y

u and if is consistent to belive p, then one can also belivcs y"

A default theory will comprise, besides the default rules, a set of closed formulas of

predicate logic which represent the basic knowledge and are treated as axioms

Definition 1 A default theory T is a pair (D,F) where
«AYR

(1) D is a set of defaults (d) ---------------- 1 , and «,(!,, ,ßni,v aie closed formulas in
Y

first-order logic

(ii) /•' is a set of closed formulas in first-order logic 

- u  is called the prerequisite of default
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- у is called the consequent of default

We denote by Pte(d) the prerequisite a  of the default d E  D,and by Cons(d) the 

consequent у of the same d S i n u l a r y . w e  introduce Pre= U Pt e(d)
itSD

Definition 2 An extension of default theory T is any set of all formulas that can be infered 

by means of the classical inference rules or by means of the defaults We will 

denote this set by 'lh(D.F) and we will call them the set of theorems of

T=(D,F)

A default theory can have an empty extension Howevei, it can be proved [5] that a non­

empty extension exists for so called normal default theories, which all defaults have the form 

a  Afß
P

By analogy with the definition of a deduction for a formula U, and in accordance with 

definition 1 and definition 2, we can introduce the

Definition 3 Let T*=(D,F) be a default theory, and U and V two set of formulas in the first- 

order logic We denote U i- V (and we call this V is non-monotonic deductible 

from Ü) if V is obtained from U either by application of a classical inference 

rule (like modus ponens, foi example) or by a default rule In this last case, U 

contains a  and V contains ß, if the normal default applied is. (d) ,a .^P .
ß

We can specify that the default d  is applied by denoting '

U hj V or U I- V by rule d  Now, we are ready to define the concept of a proof for 

a formula U according to a default theory T-(D,F)

Definition 4 A formula U is a theorem in a default theory T-(D,F) (or, \}&Th(D,F)) if it 

exists a finite sequence of set of formulas UU,U„ ,U„, such that
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U0 = F , U , =  A J{a), a  G Pre , U e  Un and

a) U, ь U,„ , 1= 1,2, ,n-1

b) U, is consistent,i=l,2, ,n (therefore Ц  does not contain a formula V and his 

logical negation -’V)

Observation: The sequence Uy.U,, .,U„ has the property 

U0 Q U, Q Q Un

3. The main reiult Example Let T=(D,F) be the normal default theory having the 

following set of premises

(l) F={ C -> D , А л В -> E , E v D , D -> G } and

(ii) D={ d„ d2, d3, d4 } as

£  V G M ( A A G )
( d t)

Ц )

о

Ц )

Ю

A A G

A MB  
В

A A E M C  _ _ _ _ _

M\E
n r

According to definition 4,a proof for U=D may be the following

О U0 = F,

2) U, = f U ( E v O ) ,

3) U, = U, U ( А л G } , U, i- U2 by rule d,,

a a g4) Uj -  U2 U { A , G } , U2 н U3 by rule
A ,G

5) U4 = U3 U { B } , U3 h U4 by rule d2>
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6) U5 = U4 U [ А а  В ) , U4 н Lf by rule

7) U6 = Uj U { E } , U5 h U6 by rule

A ,В
~Жв'

A A B ,A A B ^E
E

A , E8) U7 = U6 U { A л E } , U6 и Uv by rule

9) U8 = U7 U { C } , U7 I- U8 by rule d3>

10) U9 = Ug U { D } , Ug h U9 by rule

As D e U9 , и0)и„ ,U9 is a proof for D

The following theorem emphasizes a conechon between the relation t- and the 

classical relation |— of deductibility in the first-order logic

Theorem, If T=(D,E) is a normal default theory then UE.n(D,F) iff F,P |—U where P is the 

set of formulas defined as

"<x->0 e  P iff “__e D"
P

Proof: The direct implication results by induction about the number к of utilised defaults 

If k=0, then we have P |— U and thus E,P |— U

Let U E Th(D,F) such that for U are applied k+1 defaults If the last default is 

(d) then U(=p) E  Un,

U„.! Pj U„, and aEU„., By induction hypotesis, as for a  are applied к defaults, F,P |— 

a  As a->ß E  P, we obtain 

F.P h -  P(=U)

By analogy,the converse implication can be proved 

Observation: If a default theory is noimal, then a deduction in this theoiy can be simulated 

as usual way in first-order theory

A similar theorem can be proved for the senunormal default theories [5]
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REZUMAT Articolul "Asupra unor modele de performantă paralelă" prezintă câteva 
dintre cele mai folosite modele de caracterizare a performanţei algontnulor paraleli Acestea 
au ca trăsătură comună folosirea fracţiilor seriale şi paralele in studiul performantei Paralel cu 
prezentarea lor sunt discutate atât calităţile şi defectele lor cât şi relaţiile existente între ele 
in finalul articolului este dat un exemplu de folosire al acestor modele in caracterizarea 
performantei paralele

1. Introduction. New requirements in engineering and computational science had 

lead to a strong interest in constructing a "teraflop" computer Parallel processing is 

constdeied to be the great hope in obtaining such a performance Ideally, on np processors 

a program will run np times faster than on a single one Unfortunately this is tarely the case 

One reason is the great disproportion existing between the progress in hardware technology 

and the methods of programming the paiallel computers In what concerns the software part, 

there are a lot of problems waiting to be solved Two of them are the inexistence^ of a 

common complexity model for parallelism and the difficulties encountered in analyzing the 

performance and corectness of parallel algorithms

This paper presents a number of models of parallel performance, models that have in 

common the use of serial and parallel fractions in characterizing the parallel algorithms.

"Habey Bolyai" Univenity, Faculty o f  Mathematics and Computer Science, 3-100 Cluj-Najmca. Romania
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showing the relations between them and how can we use them in predicting the parallel 

performance

S(>i,n )  = , b\n,n  ) ■= —
T(n,n) flp

2. Preliminaries. The most common used measures of parallel performance are 

speedup and efficiency [2,3] They aie both functions of problem size n and number of 

processors n,, and formally can be described by
V

(!)

T(n,i) is the time spent to solve a problem of size n by i processors Because of the 

overhead introduced by parallelization, T(n,i) is considered relative to the best senal 

implementation

The influence that the two parameters n and n,, have on the speedup and efficiency is of 

great practical importance By varying one or both parameters, different models of parallel 

performance are coming out

In older to make more readable the article, we will not mention always the parameters 

of a function For example, we will wnte S instead of It should be clear from the

context on which parameters a function depends In geneial, all the functions have two 

parameters In the case that one of them is fixed we will not mention it

3. Amdahl’s Law Considei an algorithm solving a problem of given size n that has 

one part inUmsically sequential and the other part, 100% parallelizable, can be distubuted 

equally among the available processors Now, if s is the fraction of time spent by a 

uniprocessor on the serial paît of the algorithm (senal fraction) and p is the fraction of time
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spent on the parallelizable part by the uniprocessor then the time spent by n,. processors on 

the same problem will be (s+p/n^TXl) So, the speedup will be given by

s - № П Р  m » m
i + ( l -*)/« ,

This is a steep function of s near s = 0 For a fixed number of processors the speedup is 

increasing unbounded with the decreasing of s This case can be used in selecting the most 

efficient parallel algorithm (in the sense of efficient use of processors) among different 

algorithms solving the same problem the one with the minimum s is the best

What’s happening if we have a single algorithm for a fixed-problem size and an 

increasing number of processors7 Then the speedup is assimptotically bounded by 1/s

S  -*  1Л as np -*  oo (3)

This is the performance forecast by Amdahl’s Law if a computer has two speeds or 

modes of operation during a given calculation, the slow mode will limit overall performance 

even if the fast mode is infinitely fast [1,4] It means that if an algorithm has 2% sequential 

part, speedup greater than 50 one can not obtain even if it has thousands of processors 

This result was used by Amdahl as an argument against building massively parallel 

systems

The limitation of speed given by (3), as we will see in the next sections, is valid only for 

the case under consideration, i e for fixed-size problems That’s the reason why the model 

discussed is also called the fixed-size model
Г

4. Moler’s Law Moler was one of the firsts to show that Amdahl’s limit can be 

beated [1] He had proved that parallelism can attain desned speedup for sufficiently large
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computations

instead of considenng a fixed size problem'and an increasing number of processors, he 

had study the case of a fixed number of processors and instances of the same problem but 

with different sizes He had shown that the serial fraction s is dependent on the input size 

S = s(ll) So, s isn’t constant (the main assumption in the fixed-size model) Even if S is 

bounded by 1/s, this limit isn’t fixed He define an effective parallel algorithm as one for 

which s(n) —* 0 when n - » »  In this case, for a fixed number of processors n,>, one would 

obtain

1
ä(h)+(1 -s(n))/nD

n , for n (4)

It follows that for problems large enough, it can be obtained the desned speedup (the 

processors are used efficiently) In practice, n cannot grow to infinity but it can be made as 

big as the available memory allows

S. Sandhi’s Model The researchers from Sandia Laboratories had studied the variation 

of speedup starting from the following observation if one has more computing power, he 

usually don’t use it to solve the same pioblem of fixed size but larger instances of the 

problem [1,6] The reason is obvious there is no point in using more processors than the 

concurrency of a problem because then, some of them will remain idle Also, by increasing 

the number of processors the overhead due to communication is incieasing and if the problem 

size is fixed, than the computational time will remain fixed, while the communication time 

will grow, affecting the overall performance

By scaling the problem size proportionally with the number of processois, the serial
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fi action s can be made as little as we want The serial component of an algorithm is 

deteimined by the startup time, serial bottlenecks and I/O, which are not dependent on the 

problem size The parallelizable part of an algorithm vanes with the input size It follows that 

s can be made to shrink under these circumstances

Adding more processors bnngs more memory and more speed How do we scale the 

pioblem size with memory or with speed“7 Most scientists scale the problem in order to 

occupy all the available memory This is called the scaled model and it is the one proposed 

by Sandia They assumed as a first approximation that the parallel part grows proportionally 

with the number of processors

The model proposed by Sandia as an alternative to the fixed-size model is, in fact, the 

inverse of the Amdahl’s paiadigm Instead of asking how fast a given serial program will 

run on n,, piocessors, it’s asked how long it will take to run a given paiallel piogram on an 

uniprocessor

If s’ is the fraction of time spent by a multiprocessor machine with n,, processors on 

senal pails of a parallel progiam and p’ the fraction ot time spent by the same multiprocessor 

on the paiallel part, the time to run the program on an uniprocessor will be (s’+p’*n,,)AT(ii1,). 

Then , the scaled speedup will have the foim
( л '  * / i  )* ' / ' ( > I )

S  -  ____ 1____ « s / + ( | - л >  „  (5)
(.s'+//)*?'(»)

It is easy to see that the scaled speedup is a function of modei ate slope l-nP of s’ (a line) 

and it giows with increasing n,.

Another alternative is to scale the problem size in order to maintain constant execution 

time This is called the fixed-time model An example for the use of this model is the
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weather prediction It doesn’t make sense to have an execution time greater than 24 houis 

in predicting the time for the next day

To illustrate the difference between these mortels (in fact, the fixed-time model is 

intermediary between the fixed-size model and the scaled model), we will present an example 

For the multiplication of two matrix (with dimensions nxn), the memory needed is 0 (n 2) but 

the number of operations is 0 (n3) For the scaled model (pioblem size scales with memory) 

na grows proportionally with nP but for the fixed-time model, n3 grows proportionally with 

nP (i e u2 grows as nPM)

6. General Model of Parallel Performance Carmona and Rice proposed a general 

model of parallel performance which capture the previous presented models [2]

They use the same criteria of characterizing the parallel algorithms, speedup and 

efficiency, but with some slights modifications of (1) Instead of considering running time as 

a measure of the complexity of algorithms, time beeing dependent on the architecture, they 

use as a measure of work the computational counts or unit counts based on the size of an 

indivisible task

If wa is the work accomplished by a parallel program and we the work expended by 

the same progiam, the efficiency can be expressed by E = wa/we

The work accomplished is given by the number of operations done by the best serial 

implementation and it’s not depending on the number of processors, only on the problem size 

In general, wa < we because the parallelization introduces some overhead, redundant 

operations, communication requirements not needed in the serial case
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The difference ww = we-wa is called the wasted work It covers the time needed for

the following activities waiting for other tasks to complete work, communication delays 

and/or memory contention (dependent on the particular architecture and the implementation 

of the algorithm), operation redundancies introduced by the implementation, including task 

activation/ termination and synchronization code Ww is a function of both problem size and

number of processors

Under these considerations, the expressions for efficiency and speedup will be

wa(n) wa(ii)E i n j i } _______
' we(n,u^ wa(n)+ww(n,n^)

S M  - E * n  =

(6)

. , . ___ _________  * ti (7)
p p wà(n)+ww(ti,nf)  p

Using these work parameters, Rice and Carmona give also new interpretations for the 

senat fraction s and the scaled senal fraction s’ From (2) and (7) it follows

( V 1)
w  1s = ___*___
wa и -1p

(8)

So, s can be interpreted as the distribution acioss the additional processors of the ratio 

of work wasted to work accomplished Similarly, from (5) and (7)

• (" >D
ww +
we n -1

P

(9)

Therefore, s’ can be interpreted as a collective wasted effort nP*sl, where si is the

distribution across the additional piocessois of the ratio of work wasted to work expended 

From eqs (8) and (9) it follows that s,s’,p,p’ are functions both of problem size and the 

number of processors This modifies the previous points of view, î e s was considered 

constant for fixed-size problems as the numbei of processors increases, s’ was considered

only for scaled problems, with n=n(n,,) a increasing function of nP These differences appear 

from the fact that the new definitions of s and s’ incorporate wasted work

123



D VÄSARU

It is not difficult to see that the fixed size-model is a particular case of these new 

definitions if the wasted work has the form ww = (nP- 1) * w(n), where w(n) is a function 

only of n, then s will be constant for fixed-size problems Intuitively, ww has this form if 

each one of the new nP-l processors contnbutes in equal part to the wasted work (with w(n)) 

and these contributions don’t depend on the number of processors In a similar way we can 

show that the other described models are particular cases of this general one 

Using eqs (6),(7),(8) and (9),it results the following law

ţs/s ' , ww>0

(10)

s - )s,s' ■ ww “ 0

£  B [ P ' l P  , W > 0  
l 1 , M'w=0

This law relates s and s’ for different combinations of n and np, while the previous 

models showed the trend in speedup when s and s’ are varied for a given number of 

processors, or are held fixed and nP is varied The law (10) also gives an interesting relation 

between the fixed-size and the scaled model, showing how can one predict the other From 

(2),(5) and (10) it’s easy to denve

’ V • 0 0л+(1-л)/н,
S  *» — ,----- — ------- (12)

s +(\ - s , )*np
These relations can be used in two ways for a given speedup, one can determine from 

the base scalar fraction the scaled senal fraction (or viceversa), secondly (and more 

important), from the serial fraction of a base problem s one can denve the scaled serial 

fraction s’ (and, therefore, the scaled speedup) for a larger problem, by simply making s’- s  

in (5)
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The general model proposed by Carmona and Rice is described by a group of assertions, 

assertions stating how the parameters influence each other on the curves of the form n = 

n(n,,) These curves represent all possible relations between the problem size and the number 

of processors Given a function f(n,np), the notation ff (respectively f | )  denotes that f 

increases (decreases) on some fixed curve n ш n(nP) as nP increases Also, f f r  (respectively 

f j r )  denotes that f  approaches the limit r on the curve as nP -*■ »

The performance model is given by the following assertions 

A1 s 'i  =t> s j => Sf (for any curve n = n(nP))

A2 sf => s’t  => E l (for any curve n = n(nP))

A3 Assume that n = n(n,,) defines a constant s-curve Then s ’= 0(1) and s ’f 1

Furthermore, Sf l /c and E |0 , where s(n(nP),nF)=c (constant s-curve)

A4 Assume that n = n(nP) defines a constant s’-curve Then s = 0 ( l/n P) and s |0
, 4

Furthermore, S = 0(nP), Sţ and E j(l-c), where s’(n(nP),nP) = c (constant s’-curve) 

This general model provides a framework in which the various performance parameters 

can be compared and contrasted within a single unified view of speedup It is easy to see that 

assumption A3 is a generalization of the fixed-size model (Amdahl) and the assumption A4 

of the scaled model (Sandia)

Now, one question easily arises why these differences between the general model and 

the previous ones with respect to the number of parameters on which s and s’ depend? One 

reason it was given above The new definitions incorporate wasted work This is due to the 

fact that m all the other models the speedup was interpreted as the gain in time of a parallel 

implementation with respect to the serial implementation of the same algorithm, arid not over
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the implementation of the best serial algorithm that solve the problem, as it is the case in the 

general model (best serial implementation)

7. Example To illustrate the use of these models in predicting the performance of the 

parallel algorithms, we will give an example The problem to be solved is the evaluation of 

a polynomial expression at a given point x
n

л *)c E crx ‘
/=0

It is well known that the standard serial algorithm takes 3n-l unit counts (n additions 

and 2n-l multiplications, considering that an addition and a multiplication take each a unit 

count) The best serial algorithm is the Homer scheme and it takes 2n unit counts (n additions 

and n multiplications)

A parallel algorithm for solving this problem using p processors, p s  n/2, is the following 

(see [5,7]) each processoi i evaluates, using the Horner scheme, the following polynomial

«,(*) = E VA' " i =>0, j>-l
y=0

The value of the initial polynomial can be computed from the following expression
/>-1

A*) = E  gJL* ) * * 1
/’=0

This parallel algorithm takes (2n/p + 2*log p) unit counts (where the base of the logarithm 

is 2) For more details on the analysis of the complexity see [5]

In order to study the performance of the algorithm, we have to determine the serial 

fractions From above and from the general model of performance, we have 

wa = 2n,

we = p(2n/p + 2*log p) = 2(n t p*log p) ,
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WW = 2p*log p

S = (p*log p)/(n*(p-l))

s’ = (p2*log p)/((n + p*log p)*(p-l))

S = n/(n/p + log p)

E = n/(n + p*log p)

We can see that the parallel algorithm is efficient in the sense of Molei for a fixed 

number of processors, s(n) -» 0 when n-»°° and S —» p It depends on oui interests and on 

the available memory how much we will increase the dimension of the problem

From the restriction psm/2 it comes that we cannot increase to infinity the number of 

processors without increasing the dimension of the problem, if we want to make an efficient 

use of the processors

For a fixed problem size n, the speedup is an mcieasing function of p, when 1 < p s  n/2 

(it can be seen by studying the sign of the derivative) It follows that the optimal number of 

processors (in order to obtain a maximum speedup) is p = n/2 and the maximum obtainable 

speedup for fixed n is n/(l+log n) and the efficiency will be E = 2/(1 + log n) This 

efficiency is not very good, especially for big problems

If we want to find the optimal number of processors in order to obtain a maximum 

efficiency for a given problem size, we have to study the expression of E It is a decreasing 

function of p and so, if we want an optimal efficiency, it will be obtained for p=2 I this case, 

Епшх=п/(п+2) and S = 2n/(n+2)

We can see that maximizing the efficiency is not the same thing as maximizing the 

speedup Sometimes is better to find a way in between these two extremes
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If neither the dimension of the problem, nor the number of processors is fixed, we can 

predict the performance of the parallel algorithm for various relations between these two 

parameters For example, if n ■= c*p (with constant ca2, from the lestnctton on the number 

of processors), we obtain

S = n/(c + log (n/c)) and E = c/(c + log(n/c))

It comes that the speedup is increasing with the dimension of the problem and the number 

of processors, but the efficiency is deci easing

There are many interesting conclusions that can be find out from the expressions above 

We will conclude with one of them

If we are interested in maintaining a fixed efficiency E, how do the parameters n and p 

need to be corelated8 9 From the expression of the efficiency it comes out фа! 

n = (E*p*log p)/(l-E)

It means that we have to grow the dimension of the problem proportionally with 

p*logp (this is the isoefficiency function for the parallel algorithm, as defined in {4}) in order 

to maintain an efficient use of the processors

8. Final Remarks In conclusion, we will give a summary of the most important 

applications of these models:

- determining the best parallel algorithm for solving a fixed size problem on a given 

architecture (the one with the least scalar fraction),

- as the scalar fraction of an algorithm depends on the architecture used, we can determine 

the most appropriated architecture on which the parallel algouthm should be implemented or
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viceversa (finding the minimum s),

- for a fixed size problem we can determine the optimal numbei of processors to be used in 

order to maximize the speedup or the efficiency,

- we can find out what relation has to exist between the dimension of the problem and the 

number of processors in order to maintain a fixed efficiency (called the isoefficiency 

function)

There are also other models for predicting the parallel performance, for a general view 

see [4] There isn’t a best model, it depends on our interests which one should we use, each 

is appropriate for a different situation That is the reason why we had choose to present the 

models that have in common the use of serial fractions in this case, the general model of 

peiformance of Rice and Carmona is the best, as it is a generalization of all the others
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ANIVERSĂRI

P r o f e s s o r  E m i l  M u n t e a n  a t  h i s  6 0 t h  A d v e r s a r y

by

Mihton FRENŢ1U

Professor Emil Muntean was bom on July 31, 1933, in Măgura, Hunedoaia County 
After finishing secondary school in 1952, he studied at the University of Cluj-Napoca He 
giaduated m Mathematics from Cluj University in 1957 Still being in the fifth year, he was 
named at the Computing Institut of Academy Since then, the entire activity of Professor 
Munteanu is connected with computers He worked to the construction of MARICA (1959), 
a Romanian computer built from relays, and to the construction (m 1961) of DACICC-1, the 
first Romanian transistor-based computer Then (1967-1969) lie worked to the complex project 
of building DACICC-200. Also, he had contributed to the realisation of some piograms

He obtained his PhD fiom the SaintPetersburg University, S S S R , in 1964
In 1968 he became the Head of the newly institut of Computer Technology (ITC) As 

the Head of the ITC in a pionienng period, he has duected with much competence and 
inspiration the research activity, to design and implement high level software products He 
really was a very good organizer

In 1990 he become flill professor at our Faculty, Department of Computer Science, 
but his teaching activity started long time ago He used to teach Ihe students of the 
Mathematics various subjects connected with computers In the last four years he gave courses 
in Expert Systems, and Computers Networks Hts couises were held at a high scientifical and 
pedagogical level

There are 8 computer scientists who own their PhDegrees to their supervisor, professor 
Emil Munteanu In the last years he become interested in spreading computer science 
knowledge, l e. he is today a known editor of books in this area He was the father of 
Mlcroinformatica, and in the last year he invented Promedia

Professor Emil Muntean is a distingushed pedagogue, very appreciated by ins students 
Also, it is a pleasure for all of us to have such a generous collègue

Now, on celebrating his 60th birthday we wish him "Many Happy Returns of the 
Day", and a long life in health and happiness to him and his family
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