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ON SOME GENERALIZED WENDORFF-TYPE INEQUALITIES
Nicolaic LUNGU'
Dedicated to Professor P Sziligyi en s 60* auniversary

Recerved. November 20, 19593
ANIS subgect classification 34440

REZUMAT. - Asupra unor inegalitifi de tip Wendorff generalizate. In lucrare se deduc
inegalitifle de tip Wendorff pe baza inegalitifit operatonale stabilith In [5] pentmi operatord
monolom cresciter.

1. Introduction, Cioiocnse ood Thashen praved n [S) en eporcizicd doooectiyy

analogous to those of Gronwall and Bihan for monotonic and continuous operatbrs. IfFEis
a Banach space and X a cone, then ¥ = y if x-y € K. Theorem 1 from {5) states: if # verifies
the 1r;equalxty
usAu+f | 1)
where fis a fixed element and A — E 15 a monotonically increasimn ezcrator, and if the
equation y = 4 y + fhas a unique solutton 3’ then v <
Gronwall’s and Bthari’s inequalities result immediately from (1). There zieo was
proved a Demcufi-ypo inequality analogous to the corresponding equation of the same nans.
In [3] there was provoed a Riccati-type inequality snalogous to the equation of the same typs“
In the present paper we use this methed to deduce Wendorff-type inequalibies for t:'.:ncticns

of several vanables [4].

" Techmeal Universtty, Departiment of Mathematics, 3460 Cluy-Napoea, Romania



N LUNGU

2. Main results. First of all we prove

THEQEY] 1. Let m,v € C[B.,R 1, ¢ = 0. If the function m(x,y) fulfils the

inequality

mix,y) s J:' Lyv(s,t)m(s,t)dsdt te,xex,yay,

@

where v(x,y) is a monotomcally increastzy fction, and if 4 is the nmque solution of the

equation

ou ¥ .
u ( i v(x,t)dr) u(%,2)

then m(x,y) = u'(x,)).
Proof Define the function g(x,y) = fl:yv(s,z)m(s,r)dsdf +C,

g(x,¥,) = 0, and consder the operator

Am(x,y) = f‘[‘yv(s,i)m(s,t)dscﬁ, X=X, y z Y.

By {(2) 1t is obvious the m(x.y) s g(x.)). It 1s also clear that
38 . j;yv(x.t)m(x,t) dt s :u’v(x,:)dr)g(x,y)
ax (] » N
Since g(x,y) fulfils the mequality '
ag 4 . qr
=2 s (J; v(x,i)dt) a(x,y)
the comparison theorem [1] and (3), (4) lead to
g(x,y) s u(x,y),
hence m (x,y) = w*(x,y) Also, from
#*(xy) = c exp (Lx £yV(s,d)mdt)
Wernidorft’s inequahity [4] follows clearly

3)

@)

Gy

THEOREM 2. Consider the functions mv,h € C[RK R If m(x) fulfils the

mequality

m(x,y) = hix,y) +Lx£yv(s,t)m(s,t)dsdt, xz=x, yzy,,

©



ON SOME GENERALIZED WENDORFF-TYPE INEQUALITIES

where v(x,y) 1s monotorically increasing, and if u'(x,y) Is the unique solutions of the equation
L ( Lyv(x,t)dt)-u(x,y) + £’v(x,t) hix,t)dt Q)
dx 2
then m(x,y) s u®(x,y) +h(x,y) .
Proof, In this case the function g(x,y) is
glx.y) = L" L’v(s.:)m(s,r)dsds, 8(x,,y) = 0,

and we define the aperator

Am(x,y) = L j; vis,ym(s,)dsdl, x = x, yz ), (8)
From (6) fol!ows immediately m(x.3) s g(x,y) + hfx.y). Because g(x,y) fulfils the inequality

a9 .

2 ( [ve, t}dr) g} * [V DA ©)

then from the somparison theorem {17 and (7), (9} it resuits gy s #'(xy), whm #'(x.y) is

the unique solution of the equation 7). Stnce the. salutlen 4" has the form

u(x,y) = J: ifv(s,f)k(Q,:) exp ( 1‘ £ yv(z,r)dzd')dsdt ‘ (10)
one obtains the merﬂized Wendotff's inequality [4]
m(x,y) s h(x,y)+ L‘ J;yv(s,t)h(s,i) exp { f i f V(z,) dz'dr)dsdt. an
oo, U7 &) 1o tooseering, ihen mix,y) fulfils the inequality [4]
m(xy) s hix.y) exp ( j; L v(s,t)_dsdt) | : (12)

- The inequalities of this kind can be cmoxes) ey fizotions of 1 varisbles In this
case the inequaliﬁes between vectars are understood to be cohaponerxtwise {4] Forx = xy, x,%,
€ R" let us use the notation .
J::v(s)ds = EL: _{:"(svsr" ,;s",,)dsla‘.'f2 . ds,,
where ¥ = (x,,%,, . ., x,,) ¥ = (xm,x‘m vy Xg,)
THEOREM 3 Let m,v,h € C{E R 1, x = x,. If m(x) fulfils the inequally
' m(x) s B(x) + [[visy m(s) as o 13)

5



N LUNGU

where v(s) 1s monotonically mcreasing, and 1f u"(x) 1s the umque solution of the equation

au__(f _Lv(xvsz’ .8 )ds, ds)h'(x)+

+.[cz »[:n:V(xl’Sz’ "Sn)h(x1782: ARl ] ,,)dS dsn

(14)

then nifx) = h(x) + u'(x)
Proof Define the‘functton g(x) = I vis) m(s) ds, g(x,,%,, ..x,) = 0, and the
eperator
Am(x) = L“v(s) m(s) ds, ¥ = X, (1%
From (13) follows obviously m(x) = g{x) + #{x} Eince g{x) fulfils the mequa-llty

..(?Lg. s U;:, 'Lx.V(xPSZ, . ,S,,)dsz ds,)g(x) +
“+ fxx L V(X]aszx ’Sn)h('cpszg- 'l‘s‘n}{i&l ) {JS'",
‘m 0

(16)

the comparison theorem [17 and {14), {16) lead to g(x) = 4'(x), where #'(x) is the unique

solutton of equation (14) Since #" has the form [4}:

wey = [* exp( v(z)da)l v, )b s )ds ds"]ds an
o ,
u*(x) = L‘v(s)h(s) exp ( f “0(z) dz)ds N (18)
one gets the generalized Wendorff’s inequahty [4]
mix) = g() + [ V() h(s) oxp (L’v(z) dz) ds, x=x, 9)
| Remark If h(z) 1s creasing, then i(s) fullilds the inequality [4]
m(x) = h(x) exp ( [v@ dz) | 20)

REFERENCES
1 Corduneanu,C, Ecuafu diferenpale §i integrale, Umversitalea Al LCuza, lag, 1977
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| REZUMAT Us madcd mwmmgmm prefulu tatr-o piati cu
o inasfil. Piz x( prejul do plath of unel mef} lo momenil 4 lnpwmalummmmdmd
wimnitord mode! '(ﬂ g P, 1R, .
x(t) = W(‘)& A Pt,(’}
I Intmductlnm There exist maay exsmples of (nctiend) - Qe ‘dl model_for
price ﬂuctuaﬁon ina singla oommodxty market (xoe {3] [4], {39 For exampka Farahant and

Grove ([3}) have studied the fol}owifng mode}-

e a _oex"(t-7) ’ 1
x'(t) errrr S e e x{i), 1)

forall 1€ R,, »
w) = 9U), 1€ (5,00, )
where g, b, ¢, d, v, m € R, and n € [1, +oof »
Our purpose fore 19 1o study the following model
) = Pt A, (ER; @)
$(N) (), 1€[-50). - (4)

oy
«

2, General romarks. We consider the Cauchy problem (3) + (4) In what follow wo

* "Babes-Bolyai" University, Facully of Mathematics dnd Computer Science, 3400 Cly-Napoca, Romaiia
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suppose ‘that Fe® <R, R) and ¢ € C(f-5,0], &) Let :
Xi= C([=5, +o[ ,R) N C'(B,.R).. '
‘We have
" LEMMA 1. Let ¥’ € X be @ sobution of (3) + (4) Then
(;}' 90) = 0 tmphies ¥'@) = 0, for all 1€ l&
mw(e)wmfzesx{ma Jor alf 1€ B,
" Proof. From () + ) wo b thas
5{() = ¢(0)exp J Fistshata-myds. ®
LEMDA 8. b cormpese #mf -
" (8) F(} is locally Lipschitz,
(b) there exists My > O suck ‘that
{F(u,v)| s M,, foraliu,vER,.
Then the problem (3) + (4) has 11 X a unique solutton, X,
. Proof Letx* € C([~%,4, [ ,B) N C'([0,1,[,R) be & masimal sofution of (3)
+ (4) From (5) and (b) we have ' ‘
x(t) = @(0)e™*, for all t&[0,¢ [
From the steps method (se¢ [5, [6], [7]) and the theorem of the maamal sobstion (see [1])

we have that thers exists a unique x* and £, = +o0

3. A model in the case of naive consum&. Now we consider the followang model

@) = G0) - ge-T1x(0), (ER, T @®

| (1) = 9(1), 1€ [~7,0), N o
where T> 0, £ g € C®,R,) and ¢ € C((-1,0), R,).

S



A FUNCTIONAL-DIFFERENTIAL MODEL

We have
THEORE:M 1, We suppaose that
(a) f1s locally Lipschitz,
(b) 1, < t, implies fit,) > i), 4, LER,,
©A0)> 0 and lim f(1) = 0,
(d) 1, < , imphes gt) < g, 4, L E R,
(e) g(0) = 0 and ,ll'?m g(n) >0,
® 9(0) > 0.
Then
(1) the equation (6) has a unique positive equilibrim solution, 1,
(1) the problem (6) + (7) kas m X a unique solution, x*, and thus sofution 1s posipve,
(iii) there exists m, M € R, 0<m<Msuchthatmsx() s M, orall t € R,;
V) ifx" is r’ -nonoscillotory, then
‘lim x* () =r°
Proof.(1) Follews from the continuity of /and g and conditions (c) and (e), (b} end {d).
(i1) Follows from Lemma 1 and Lemma 2
(11i) See the proof of the Theorem 1 in [3]
(tv) Let 7> 0 be such that x(#) <77, for alt # = T Then we have that Fx(Hx{t)) >
O forall 1 > T + <, This implies tha't x'(f) > 0 forall + > 7+ v Thus there exists lim x(7)

-+ @

We suppose that lim x(#) = 1 < r* Then £{1,1) <0 This is.in contradiction with a reauit

{4

of Barbilat (see {2]) from which follows that hm x/ (¢) = 0

v 1=+ 0

cu®

Remark 1 See [3] for f(u) = % and g(u) =
b+u d+

11
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4. Coincidence points and equilibrinm solutions, We consider the equation (6) where
fand g € CR,R,) Let E be the set of equilibrium solutions of (6), and E, = {r € E| r > 0}
We alse denote:

Cifg):={t ER|f(1) = g()},

C.ihe).={recirg >0l

We remark that

E=C(f.8)

From tlus remark we have the following results on the equilibrium sclution of the
squation (6).

LEMMA 3. If there exist o, € R, such that o) > g(ex) and AP) < g(P), then

E,N Ja,B] » & .
If fis sirictly decreasing and g 15 stricily increasing, ten F, = {#"}

LEMMA 4 If A0) » g(0), g is surjective and there ex;f.s*t{ t, € R, such that fit,) <
gy, then &£, w & ‘

LEMMA 5. Ifg(R,) D [a,b), fB.) C [a,b] and fi0) = g(0), then E, » B.

LEMMA 6 We suppose that

) g®,) =R, and f0) = g(0),

() there exists a € 10,1] such that

1£() - F()| s alg(n) - g(t) |
Jorally, 1, € R,.

Then, E, = &,

If g is byective, then, E, = {r'}

Proaf Follows from a general cotncidence t'heorem of Goebel (see [4] and {7])

12
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5. Remarks.

51 The following problem anses in the study of the equlibrium selution of the
equation (1)

Problem 1 Let g € CR,R,) We suppose that AR,) = ]0,M;] and g@,) = [0,M]
Establish conditions an fand g which imply ‘that t'(fg) w D

52 Consider the following problem

(0 = 1) - 52 5 ) o e m, ®

x(0) = x,. ’ ‘ » ©9)

For the problem (8) + (9) we have }

THEOREM 2 He suppase that

(8) £g € CR,, R,) and f and g are locaily Lipschitz,

(b) /18 strictly decreasing,

{c) A0) > 0 and !imf(t) =0,

(d) g 1s strietly increasmyg,

{e) g(0) = 0 and ltm g(1) '> 0,

1>

0 x,> 0.
Then

(i) the equation (8) has a warque positive equilibrium solution, r’,

(1) the problem (8) + (9) has in C'R,R.) @ unique solntion, x°, and this solution is
posthive;

(1) theire exisis mM E R,, 0 <m <M, such that

msx(1) s M, foralItE‘R*, o

(v) 1f x*1s r* -nonoscillatory, then hm x*(f) = r*.

v+

13
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REZUMAT ~ Asupra unor miodele de hnctuaw aiepwtnku im‘m coopane @pta;i.u -
Ccnsumatmut inmommmiedsma}ﬁ,trebms&«;tmummmmnﬂﬁm B&épmml.
. creste, de obleehcererca segde. Pwuuamnmwnpwédemm mmmﬁaommmw“wv"
- nweidherazécemreadeﬁfpregmcmsL& inacmstﬁtacm#Wunmﬁ:we“mdﬂ
. dﬁﬂﬂcﬂ!ﬁtbﬂmﬂﬂi whﬂmmﬁméﬁm&wsaummﬁﬂ%mﬁmm

‘ Inamaﬂcﬂtﬁomnmy acousu;ner must pufcha&e his mswmﬂan ofcommduyatﬁw
market price. c
In censidenng the dynamics of prics, producnon and cﬂnsumptian oI‘ 4 pammﬁar
commodity, Bélair emd Mackey {1] have smdied. the modet A o -
P> PO A2 . o RO
whefe p(z) is the ihncﬂﬂn which means the price ‘of ccmmodxty at the momem i and p, P
are the demand pm:e respectively the supply price of this commudfty

A special caae of the equaﬁon {1} is so called mive cmwumer modei .- “ -

a - _ cp{g(n) SRS DI
AU p(t)( +pt{f) - d+p’ (g{t))] o (2)11*

beoause the demand never decreases as price mm

In the equatl{m (2) we have a,b,c,dr < {0, 00) which are oonstams, emd q € f1,%0) is

" "Babeg-Bolyai™. University, Faculty of Mathemancs ontd Compuiter Scicnce, 3408 Clu-Napoca, Romantia
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a constant.

The function g € C({0,),R,) 15 the deviating argument which fullfiles the conditions

0=g(@)<t, forall t € [0, m) 3)
t - g{f) 1s bounded for # = 0, and Egz (t-g()y=a>0 C))

In this paper we prove that there exists the solution p of equation (2), with the
condittons

pECH([0,2),R), p0)=p, , (%)
and it 18 upque

Precisely we have

'I‘HEOE}EM 1 fabedr € (0,0), g & {1,0) and the finctiong € C{({0,=),R)
Jullfiles the conditions (3) and (4), then there exzs;\s an urigue stmvé sofution of problem
Q)H(5) and it is bounded jfor all ¢ &€ [0,0).

Preoof By the method of steps, it 19 clear, from the equation (2), lhat as lc;ng as the

solution p exists, it satisfies the relation

2t = p, exp (Lx( a - cpr(g(S)) )ds} ) ) ) )

bepi(sy d+p’(g(s))
and so p 1s umque as long as 1t exists and it 15 positive as long a3 it extsts

We prove that p is bounded for all ¢ € [0,%), and so in particular, p exxsts forall t €
{0,%).

It is clear that p 15 bounded from below For prove that p 13 bounded from above we
suppose that this 1s not the case and so we obtain g contradiction

We suppose that p is net bounded from al;ove Then there exists 7> 0 and a sequence
(zn),,z;, t, = T as n — o, such that

imp(¢) =, and p/(£) 20

16
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The contradiction will con'e from the consideration of the following two cases-

1° hm inf p(g(Y,)) > 0, respectively

n—®

2°, lim inof p(g(z,}) = 0.

n—@

1° We suppose that hm inf p(g(z,)) > 0. Then there exists £ > 0 and », € N, such

o pe(1,))
that p(g(t,)) = & for n = m, This 1mplies that
F a5 (80,0

A ") is bounded.
bp )
It follows from the equation (2), wath ¢ replaced by ¢, that ltm p/(¢)) = ~».

n—+®o

is hounded away from zero

How g = 1 we have also that

But this is imposstble because p’(£) 2 0.

'2° We suppose that hm inf p(g(r)) =0. If is necessary, by passing to a

n-sa

subsequence, we may assume that lim p(g(r)) = 0

H-*@

By integrate of equation (2) from g(#,) to #, we obtan

P -ple(t) = [F 2B gy 4 _cPLSED) g

Wb +po(s) 2d +p(g(s))
L ap(s) o
SL:,)]; +pq(s)ds @, -8(1,)) b+pc) ’

form some ¢, € {1,8(t.)]

But this 15 imposstble because Hm(p(7, ) - p(g(t,))) = ®, hm (2 ~g(t.)) = a>0,

s

o

and the function F [0,%0) —» R, given by F(w) = , is a bounded functmn

Therefore p 1s a bounded funotion for all ¢ € [0,%), and so, in particular, p exists for
all 1 € [0,0)

We next ¢laim that }un infp(f) = 0

For the sake of contradiction, we suppose that this 1s not the case. Then there exists
a sequence (f,),., I, —> ® as h — oo, such that lim p(#,) =0 and p/(z) <0

Tt 15 useful to rewnte equation (2) as

17
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pl) . a  _ ep'(g(n) ' )
p()  bepi(ny d+pi(g(t) o :
Then 1t folllows from equation (7) when ¢ is replaced by ¢, that

cp'(8(t)) a a

~> . By N> @,
. dp)y bepilsy B -
and so there exists £ > 0 and n, € N such that p{g(t,)) = & for n = n,. Now, by ntegrating

equatton (7) from g(#,) 1o ¢,, we obtan

p)  epr(ats)) K - ® .
e bt b+p“(-9) d+p (8(S)) S
But, this is xmpossible because
plt,),
m N i =

s D(ELLD) | :
while the right hand side of relation (8) is beundsd,

Thus,'tha pmof ‘is complets.

" We have a]so .
THEOREM 2. The equation (2) has an mziq:.re pzmﬁw equiiibn’um salm*im

Praof The equihbnum solution of equation {2) is that whwh is indepeadent of :

therefore that for whmh p (0)=0, for gll t & [0,°) We cbtam, witb the tmtatmn p for tbe ,

equiibrium solution, equation

a_cp’.=0 R (9
Lp? depr 9

\From the equation (9) we obtain
cpitt +-(bc—a)p’—ad=§. ) - o l . N 1o - -

Let be the fanction f°[0,@) — B, defined by 1 | |
fp) = E:p‘?*'+(bc-a)p'—;7d ‘
qu‘ﬁ (p)‘= c(q +r5p"”“ +« (bo-a)rp!, the ;zvgtiaﬂgn f (p) = 0 has the ffeal ;;osntxve '
solution only if ¢ - a < 0, and how -
S(0) = ~ad < 0, hm f(p) = +e

po

18



ON SOME MODELS OF PRICE FLUCTUATION

we get that the equatton (10) has an unique posttive solution which 1s the equihbrium solution
of the equatton (2) The proof is complete

Remark 1 Stince the equation (7) can be written in the form

p() a(p - p(1)) . cd™-p'(g(O)
p(t)  (b+pi()(b+p?) (d+p )d+p (1)) ,
we see that p(r) converges monatonically to p, the equilibnum solutton of equatien (2)

Remark 2. The Theorem 1 is a generalization of a result of A.M Farahani and

E A Grove {2] -
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STUDIA UNIV BABES-BOLYAI MATHEMATICA, XXXVIII, 2, 1993

DIFFERENTIAL INCLUSIONS FOR ELLIPTIC SYSTEMS
WITH DISCONTINUOUS NONLINEARITY

P, SZILAGYT
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REZUMAYT. - Incluziuni diferentiale pentyu sistene cliptice cu nelinearitate dlscontinui.
Se studiazi probleme a Hmith pentru sisteme de incluzuni diferentiale de forma
Ly, € f, - Gfu), us(®,, .4,

unde L, sunt operatori inean, de ordimt doi umform elptici

ABSTRACT. - Boundary value problems for difzyenocl inclusions systems of the

~

form
Lu € f - Gu), u=(u, ...4,),

are studied, whers L, are uniformly elliptic linear operators of order two

Let Q2 C R” be a bounded domain with Lipschitz boundary 8Q In this paper we

study existence conditions for the boundary value problem of the form

Lug f - G in 3 u=(u,, ) )]
“llmmu 0 1=1,..m

where L, are linear elliptic operators of order two, G, are multivalued mappings, £, given
functions (functionals) Such differential inclusions appear, for instance, in the study of

boundary value problems

" "Babeg-Bolya1” University, Faculty of Mathematics and Computer Science, 3400 Chy-Napoca, Romania
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u, + gy =j m Q =1, .m

'u'|m = O

@

when the functions g, B” — R have discontinurties In this case we shall replace the functions
£, by multivalued mappings, in which the jumps aro filled 1n.
Let H'(Q)= nELHQ) | .g.;.‘. € L), 1=1, .1}, HY) the space of all the functions
i

of HY§) with generalized homogeneous boundary values. In H}(Q) we use the scalar

product resp norm

), = i u "" dx, lu? = i (a ) €))
=1 e,

H(Q) will denote the dual space of H}(Q)

The elliptic operators L, 1 (1) are of the form

LI ou
Lu =-Y _Zlat Lt+alxyu i=1, .. @
izl _/,I.g axj N axk O() i n

We assume that a;, a; € L), agx) = 0 ae. in £, and there exists a positive constant

y such that

fj aEE = yIEF forag xEQandforall EER (%)

Hh=1

We present here a possible filling i of the jumps of the functions g, Suppose
g, R™—=R i=1, ,m are given functions in L9 _(R™), that is, the restnction of g, to any
bounded measurable set A C BR™ 13 in L*(4).

Let A € [0,A] a real varisble,

22



DIP:FERENT'IAL INCLUSIONS FOR ELLIPTIC SYSTEMS

r

g, () = esssup g(?)
It-sf<n

(6)
1 s,1ER", ME[0A ]

) = essi
Eg,1 ) ess :f g0

It s clear that gm(s) s 8,(5), for fixed s, gﬂ(s) 13 an increasing function n X, g,(s) is

decreasing, both 84(S) and g,(s) are bounded for A & [0.] Let

8(s) = lm g,(s), gs) = lim £,(9) -
sE R
G5 = g @ G) = [ sfo) O ®

In this paper we study the Voo cebieoy ‘, -
If <, f) with fEHYR) 15 given, wo look for all w=(n, u), w, EHR) for
which there exists at least ome v=(v, v), vEHYEBNL(R) such that
v(X)E G(u,y) ae m & and

Lu, +v =f Ly, €F-Gwy) =1, m ©)

The equalities are understood in variational senss, that s

=1 k=] =1

:[ Li% “ﬁ(x)-—-——-—' +ageyuw } du + IE V(W )y s = o)

E <fw> Y w, € HiR).

1~
Such ptoblems, for ene equatton (in=1), are studied 11 many recent papers, a e [1-2},[41,[6-8]
We follow some ideas of J Rauch{7]

THEOREM 1 f the jollowing conditions are fulfilled:

23
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1° L, are uniform elliptic operators of the form (4),
A, ay € L°Q), ajix)=0 ae in
2° g el @) i=1, ,m

3° There exist a positive constant r and an angle 8, & [O’%) such that

n

$5g(H =0 and B =8, forall s € R with sl = r 11

=1

where © = A(s5,8(s)) is the angle between s and gis) in R™, .

thenforall f=(f, f) S € H'(Q) thereexisisct least one w=(,,.. u,), 4, € H} and
V(0 o) ¥ € HINL® such tiat v(s) € Gu@) ac.in Q and (10) 15 fidflled
forall w, € HYRQ)

};(oof The space HY} 1s separable, therefore we can find 8 countable set of
finite-dimensional subspaces  VV,C .CV,CV,,C. . of HYS) with the propesty that for
all ;1 é.H}S{Q) and & > 0 thereax,ists‘ NEN ad w, €V, ;3w':hthat bu-uf <e -

Let p be | a mollyfler 1 B that is: p:'B” - B p ECYR,

supp p € BO,T), p(x) = O and ip{x)dr = |. We denots

ps) = NpNs), g9 =(py * g)s) =L, ..m,
 SER, Nel2.

12)

From the hypotheses g € L7 (R®) results, that g, € CHB”) and the set
(g ] i=1,. m, N=1,2, 4 C R s umformly bounded with respect to s, when § describes a
bounded set. |

QRN

We consider the following family of perturbed boundary value problems
% ' , o
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Lu +gfu) =f (13)
u"gg = D Nulaz’ v uﬂ(uix :um)

and use the Galerkin procedure to determine approximate salutions . We look foru, € V,,

for which
Ea,(u,w) + ‘[E g luw,dx = E<f,,w,> Vw €V, (14)
=] (i ()
where
O, dw
i (Y 1 e (15)
afuwy = !ll ‘a },‘(x)_a_x;_.&; ao(x)u,w}}

We prove that (14) has at least one solution uy=(Wy ..., ). For this we introduce the

mapping T, (V)" —(V4y" defined by 3

<Tfw)w> = Za(uw) + !E;g,v(u)wdx E<fw> (16)
Py -
From the construction of g, results that for all w €(V,)™ there exists 4 positive censtartt C,
such that | g ()] s C, |w(kx)| ae m Q Vw € HYQ)
Thus the integrais l gy dx existforall u € (V)" and w, € H Q) (Lebesgue theoren)
We see also that 7, 15 a continuous operator

We prove that the equation T, = 0 has at least one solution for all N To see that this

ts true we apply a corollary of the Brouwer fixed point theotem From (16) for w = u we

obtain

<F, uu> = }: afwuy + lzgw(u)u dx - E <fu> (17)

=1

The operators Ly, satisfy the untform ollipticity condittons (5) and a (x) = 0, so we have
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Ea(uu) 2 ygz (Vu)dr (18)
The hypotheses on g gives that z £,/9)s, is uniformly bounded m BOr 7 with respect to N

and .
i!gw(s)s, =20 f s ER\ B, r) (19)
where B0y} = {s € B"{ Jstf < r}.
Then there exisis & positive constant C such that ‘
T = vl - C - VB, Ywe vy @
Thus we have | ‘
. '<T‘.§,u, wa0 N=12,.. o o 21)
if Juf, = B, with an R>0 convenlently chosen. R doesn’t .tiepf’s;xd on N \V;. is finite-
dimensional linear space, therefore all norrus on ¥, afe equivalent. It‘ wachaﬂge the nerm n
VN, then (21) rematns valid eventually With a diﬂ‘arem R I fnﬂawa thcn {5 gage 58} that for
cach Nthere 18 . u, E(V,)" with Tfu)=0and-fuf s & . L
The space H () 1 reflexive, 0 Is compactly embodded in L(@); therefore.the
bounded set {w, | N=1,2, } C HYQ) is relanvely wca,!dy compact tn #(£2) and relatively
strongly campact in Lz@). Thus {u, | N=1,2,. } contains a sul:)seqym_}ce, denoted bj,"(u,v)!\"M
too, so that | - |
Uy~ u, weakly 1n H;(Q)r
", —> u, strongly in L’(Q) 141,:.'.,121“

u () = ufxy: &e" in £2

Next we mvesngate the convergence of the sequence (gN(uN)) For this we use the
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following cnterion on weak compactness in LY(R) Let Q C R" a bounded domain,
FC LY(Q) & bounded part of LY(Q) Fis relatively compact in the topology o(Z',L°) if

and only 1f for all & >0 there exists a >0 such that

Jlﬂx)ldx<8 ¥ fE Fand ¥V 4C R measurable with meas 4 < d

[3, page 76]

We try to estimate | g,(u,)| by ! | E w8 fu M dx C(mditiéa (11) gives
[

i |g u,, 8okt dx =

ist tu foor 5h

- ] xfiuwgmwdx N Tuseads @
b fo<r )
E quN(uN)dx + 2 {i 8t} dx

o< 1

Since () = 0, we have

}:a(u "y + L[E g ku )y, dx - <fu,> = 0 ‘ 3
=1 =]

But {u, | ¥=12,.} s bounded in H(Q), au,u,) = y[luwljf = 0, so we find a postive

constant C; such that

1%l

. ! E g e, = C,

This and (22) give

ilzuwgm("mﬂdx sC + lE iy, gm(uu)'dx =
, et . fu fOer 1 (24)
= C, + C,7 meas Q s C

Using the hypotheses of the theorem and this estimate we prove that the set

a7



P SZILAGYI

{g(u,) | N=1,2,. } is relatively weakly compact in L(Q).

Because of condition 3° from theorem 1 we have -
Es,g;(s) = C4Hsﬂ Eg(s)“ for HSH S L
1

thus

ist .
lg o = gl = ﬁggﬂg},{t)ﬂ + -ﬁ»ﬂg,v(a)ﬂ s

(25)
s au O + 8, & k8 '
10} 8,0 —W?_;I &N()l
Foragivene >0 wefindan N, €N and 6>quchﬂ1al
1 - B ’ - | ‘
'(7:17,{'] gx:uwgﬁ(ify)ldl x~.§.. forall N2 N, | ) (26)
and - ,
b o< £ ‘ ' ; @
&fgggp!lgmﬂ 5 o ‘ . @)

’

IF ACQ isamessurablesetaa meas A< B, thonby (25), (26) and (27)

L + 1 m .
sl = [ sp Voo ek ooy 13l <
sﬁess~sup[lgN(s}ll +.§.sa .

Thus fg.u,J} contains g sybsequence, denoted by {g*(uu)} 0o, wtuch is weakly cenvergent ‘
in L%Q) Letv, the weak-limit of {g,{uyl}. But TN(uM)~0 therefore '

¥ agm) « !E? iy, s = ):<f > VYweEY,
1 = J-t .
If ¥ - weobfain ' ‘ ‘
Eal(u,W) + lg v,w,cbc E<j;, YweErl, o (28)
-l =l L

.28
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The number N n (28) is arbitrary, and PnVN is dense in H}(Q), therefore (28) can be
extended to all w, € H(Q)
The correspondence w, — Iv, wdc  defines a lnear ~bcunded functional on
HYL), so v,€ HY(Q) and
Lu +v,=f
Finally we must prove that v &€ G(¥), or equuvalently

gux) s vix) = gu(x)) eaein Q@ i=l.m

The shown properttes of the sequence {uy} 1mply that for all > 0 there e:;lsts 2
measurable set 4 C Q, suchthat mens 4 <% and w, — v unformlyon R\ A

Thus for any A > 0 we can find an N, € N such that

}uw(x)-u,(x)|<_27: forall xEQ\A and Nz N,

From the definition of the functions & and g,  results that

7Y

§m(u(x)) s g u)s gx)) xEQN\NA4 N=zN,
and

DLgm(u(x))w(x)dx s nLgW(uN(x))w(x)aﬁ; s QLj;'A(u(x))w(x)afx

V w € L=(R) for which w(x) = 0 ae in @ But g fu,) —~ v, in L'(), thus after

passing to limit { N — «, & ~ 0) we obtain

a[rg,(u(x))w(x)dx s va,(x)w(x)dx s (Lg(u(x))w(x)dx

Because w(x)= 0 ae m Q (otherwise w ts arbitrary from L *(Q)), results

29
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g,(u(x))s v s gux) 8 6. in Q\A4 .

But n can be chosen arbitrarily small and meas 4 < 1, 50 1t fallaws that

30

pA

gt(u(x))s vix) = g,(u(x)) ae in R
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REZUMAYTY, - Funciil spline polhwtnl'.ile naturale de grad par. Lucrarea definegte §i

studrazh proprietaft ate funcfiilor sphne polinomiale nsturale de grad par, Schimbénd cordifiile

de mterpolare care definesc funcila sphine naturals de interpolare do grad impar, se obpne

funciia splire naturald de grad par ce inerpoleazli derivatele pe muljimea nedurtle functied

splire Sunt obtinute citeva propneti|i extremale remarcabile analoge celor din caznl funciritor

spline naturale de grad impar

1. Introduction. The rapid development of spline functions is due primarily to their
great usefulness in applications Classes of spline functions possess many ymportant properties
as well as excelent appioximations powers Since they are easy to evaluate and manipulate
on computer a lot of applications 1n the numencal solytion of a variety of problems have beess
found These include for examples data {itung, function approximation, numerical quadrature
and differentiation, numerical solution of operator equations, optimal contrel problems,
calculation of eigenvalues and etgenfunctions of opsrators, numerical methods of probabilities
and statistics, and so on For a defailed problematics on spline functions we reffer te the
monographs [6,9] and for an exhaustive hiterature on sphne functions and thetr applications

we reffer to [7] Almost all papers-underline the fundamental properties of natural spline

functions of odd degree, namely the minimum nonn property, the best approximation

" “Babey Bohuar” University, Faculty of Mathematics ond Computer Science, 3400 Cluj-Napocea, Romama
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propert);, etc

In this paper, changing the interpolation conditions, we shall define a natural sphine
function of even degree which is keeping all remaxicabla properties of odd degree one and we
shall develop a theory of natural spline functions of even degree. Our disscusion led us to the
conelusion that the space of natural polynomial spﬁne functions of even degree should be

usefll for approximation purpose

2. Basic definttions and properties. Let’ [ab] be a ﬁmtciclosed intervai of the real
axis, and let | ‘
A =z}, with @ = x,<x,< .<x,<x, < .<x,<x_ =b
be a pattition of it in # subintervals
I =1Ix,x [, k=0,1,.,n
Let m be a givenr positive integer..
DEFINITION 1 The function s . [¢,5] = R 1s called the 'nan;ral spline function' of
degree 2m if ‘
I s € C*'{a,b],
2 sl,}E'G’gm, k= T,'Fl", s|, €8, él,.E e,
where 8, is the slat of polynomials of degree_s k.
We call the space
S,. (A) = { s thero exists polifnomials Sgs 51y . - S,
such that s{x) = sx) forx €1, 1=0,'1, . , n;
Ds, (x)=Ds(x) forj=0,1,.,2m-1}
the space of natural polynomial sphnes of even degree 2m with the simple knots x,, x,, ", x
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The space S, (A,) of splines is a subset of C**'[a,b] In the most practical apphcations
the natural setting for approximation problems is a closed nterval [a,5], but every spline has

a natural extension to the whole resl Hne Indeed, if 5 € §,.(A,) then we define

5,(x), for x<a,

s(x) =

s{x), for x>b,

where 3, and s, are the polynomials defining s in the intervals /, and 1, respectively

We now show that 5,,(4.) is 8 ﬁnitg dimensional linear space snd we give a basis for
it

THEOREM 1 8,.(A,) is a linear space of dunension n+} Any element s € §,,(A,) has

the following representation

n

s(x) = f: Axi+ E; a,(x-x 3", e}

1=0 P
where the real coefficients (a,)] satsfy the condittons

n

ga‘xklﬂo, m J“ﬁ,”,"!

ke
FProaf. The number of all parameters of s are (2024 1){(n-1) + 2(m+1). The conhimnty

conditions (smoothness) in the keots (x); are 2mn Thus the free parameters of s are
@mr1Y(n-1} + 2(m+1) - "mn = i,
From the Definition 1 it is clear that

s(x) =%, Ax'+ }i a,(x-x)".

=0 b}

But the last condition 5|, € @ tmplies §*"(x) = 0 for any ¥ € 7, This mneans
; 2m(2m+1) mafx-x)"'=0, x& 7,
- .

wiich is equivalent with

n m-1 m-1 L
0% 3 (o) FESTCN A o EY (”’;‘)(Zaﬁ ) =0
h= =1 Jj=0 k=1
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That implies

Z{akxk’ =0, for j=0,1,.,m-1
kw

DEPINITION 2. Let » = m be given integer positive numbers and ¥ € R™,
Y= (J’a.y{ . .. ¥ ) a given veetor. The splins function s € 85,(A,) is called the derivative-

imterpalating spline for the vector ¥ {f )
8{x,) =y,, %, is a glven point from {4,b],

sx) =y, 1 =T
We denote the derivative-interpolating spline for & given ¥ by s,

@

THEQREM 2 Let n  m ang the vector ¥ - {r, ,,y,’ s VE ) be gtmn Then there
gxists and it is wique a doplriivodaienpalmlng Lot o (0 B0
Proof The derivative-interpolating conditions (2) for the s, € 5,00 are.

o 7 am

§A1x4+gak(xa—xk), =y, . - | |
5;"4»‘/ +2m2a,fx Y=yl 4= TR, , @
'Earbnt} J =0T

b
Thus is & linear nonhomogensous system of m + n + i squatwns with ﬂte m+a+
unknowns 4, 4,, .., 4,,4,,4,,...,a,. This system hes 8 unique solunon if‘ and oaly {f the

corresponding hnmogeneous system possesses only the tdvia! SOhJﬁOtL
Lets, € 8,.(A) be the sounon of the homm d::s&vcﬁ problem

Using the generalized integration by parts fonnula

/=0

Lbf(x)g""”(r)aﬁf = {:S: (-1y5° (x)g"'"’(x)};’(*i}”’"ﬁf‘"’"’iﬂg” (x)ele
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for f(x) = 5" V(x) and g(x) = 5,(x) we have

m-2 g
| [ fax = l): (—Wsé'”“*”(mé'""’(x)Lr
a j-O
s "5 3 (x) sy (x)dx

But
st (@) = s by =0, jeUTH-Z,

therefare we have

[

f [s62 (0)) Cax = (-1 s (6) s (x)dbx =

a q

o

- -1y EfgéZ”’(x)s (e = CyE [l s -

)
*eed

= (-1 *Ec,‘xf s () = (-1)”";_‘5_‘{@,[;; () -5 ()] = 0
because s§-"(x) =c, = const on [x,,x,,,] and 5 (x,)ﬂyl =0, I follows thats& Nz} = 0,
ie s, € B Taking mto account that 8 (x,) = 0, for k = T,7, and # = w0 we have
st(x) = 0, ie sMx) = const From s5y{x,) = O it i3 clear that s,(x) = 0 and the theorem Is
proved

COROLLARY | Iff - [a,d] — R is a given function for that the values £x,) and
F'(x,), k =T7 are known, there exists and it is wnique a natural spline function
5,E 8, (A,) which 1s derivative-nterpolanng for j, 1.6 s; sansfies the condlifions:

5/ () = f1(x), k=T74,

s(x,) = f(x,), for x, fixed from [a,b}

COROLLARY 2 There exists a unique sel of fundamental natural pehmornal splivie

Junctons s, € §,, (A)), k =T 1 and s, € 8, (7)) satishing the following conditions:
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s (x)=0,, t,5=TH, 5(x)=0, k=T,

sfx) =1, si(x) =0, k=TR, x, fived rom {a,b)

B is clear that the functlons s_, s,, & = 7,7, form a basis of the linear space
8,,.(4,), and for s, we have the following representation

§,(x) = 5,(3) F5,) +§sk<x3/* ). @

Remark ¥ m = n it {ollows that 5, @,

3. Extremal propertics of the aatural spiite function of even degres. Lct inreduce
the following scts of functions ‘
P8, = {f {ablRI/ = s abs cont. on exsh 1, snd ForiE L b)),
vz {remri sy = i, & =T,
and let denote
Iy = [ m e, ey
THEOREM 1 (Minimal norm property). if €8, (8,) O v, then |
J(s) = min {J() . fE V)
Remark With the usual potattons this theorem assests that
oD <o fEv, i, being the L, ~nomm .
Proof Takmg fEv and sES, (4 ) N v we have.
froen - sl e [Plreme - s e s -
- [lreoa]as - [fls=o @] ax-
=2 [Ts @) [ i) - s e ()]
k is not difficult to show that the last term 1s zero Taking in the generahized integration by

parts formula of the previous section f = s gnd g@*1? = frh - g} e gey
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[fsem@ e @ - s ] dr =

b

- [2: (1Y s 2 () (f () - s () |+
-1y [[sem e ) -s" )] ax a
From the definttion of s follows that
s (q) & g0 (b)) = 0 for y = T, -2 and we have’
[[sevmlrene - se @) ds -
= (D)@ [P50w () [ () - 5” (1)) e =
= (-1 2 ! [ @) -5" @)]ds = (- 1)""2},[!'(:,) s'(r)]= 0
because s®7(x) = ¢, = const on {x,¥;,,] and fs € v Sa we obtatned
e -steenfy w P}l - a0,
1e ﬂs“’"”ﬂz = ﬂf“"’”ﬂ;
COROLLARY 1 Forany f€vand 5,€ S, (M) N v we have
ﬁf(m”ﬂ:“ﬂ <m+us Hf(m.x) (mfl)az
COROLLARY2 Ifs€ 8, (AYNvand§ = s+p_,wherep € B_, it follows that
lsonlis ey, o fev,
even in the case that § does not belong to v
COROLLARY 3 For any f€ W,""' (A) we have
[0 s drenls
COROLLARY 4 If v, ={fev|f(x) =y}, then exisis a wusique
s€v, NS, (A) such that
lswsofta Lol v se,
helds



P, BLAGA and Gh MICULA

THEOREM 2 (Best approximation property). Let f € W,""' (A) be a given function
and s, < S,,,(8,) the ratural derivative-interpolating sphne functton of even degree. For any
sE€ S, (&) holds

[sim0 - goen] s fseon - guon ]l
where gEv, ={h€ Wy ) R(x) = f(x), k=TF }
Proof
[0 - gl ax =
= [lseme -s @] b+ [ 500 - g0 [ ax +
w2 [sengy - s | [ - I

In the same manner as in the previous theorem it can be shown that last term of the

above equality is zero, and it follows directly that

sy - g e o [*fsimigy « g fax
a f a
forany g€ v,

Remark In the above relation the equelity holds if gnd enly if 5,- 5 € @,

2

CORQLLARY 1 [sf= ol st ool wses, () with the

2

equality yyand only if s,- s € 8
COROLLARY 2 n the condutions of the Theoremn 2 we have

2 2 2
Hs(,,,q)__ g,,,u)uz - ﬂs(’"’” - Sf(ml)uz + ﬁsj(m*!) _ g(,un)g

2’

with the equality (f and only if s, ~ s € @_.
COROLLARY 3 H.s"“")— s;*’””g:s s gl v ses (A) andgev,,
with the equality if and only if s,~ s € €
* t

It is possible to extend 1n the same manner also others properties of the natural

polynomial splines of the odd degree for the natural splines of even degree with the
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denvative-interpolation conditions More important, 1t seems, to be the applications of thus

kind of spline function, especially to the numerical solution of differential equations, because

of therr derivative-interpolating conditions. Such kind of applications will be developed in a

next paper

10
11
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REZUMAT. - Asupra contrarel inegalitdtli pe frontierd 2 I Krasnnsclskil-Browder., Fio
@ o submylfime deschist s mirginith a spajiud Banach Xou & O gl fic/0 aplicaie do 1aG
in spatind dual X'. Incgalitates po frontier a tui Ktusnosctskil-Browdar: (5,40) = 0 ponirn
ordce ¥ € 8G, este pentns anumite tipurl dg aplicapl, sufictemd pentrn exisionts unéi solujti
x € G a coudtiel fls) = 0, Pmmﬂmmtsemupademmmmmmw.m
(Ax)) s O pontru orice x € 3. Asititim o dach X ests un spaliy Hilbert ifini-dimencional,
J=1- gunde [ este identitatea ful Xol g: G- X cste complet contini, stwnch ircgalitaen
(1)) = 0 nu are loo pentry tofl x € 8G. fn conseciagh, dowl teoreme de punct Tix demanstrate
in |4] nu au obiect fiindcd ipotezele lor au pot i satisficute. Apol punem probleina dact u
rezultat negativ de tiput cehn de mal sus, este valabll st peniru aplicatit y'de tip monoton, maj
generale La aceastd tntrebare se di un sispuns pargial

1. Abstract, Let G be a bounded opsn subset of a Bangch space X with 0 € G and
let f be a map from G ;t;to the dual X" The following Kiasnoselski-Browder boundary
Inequality’ (x, f(x)) = 0 for all x € 4G is for some types of maps suffictent for the exiastence
of solutions x € G for equation fx) = 0 This ariicle deals with the reverse of the above
inequality, namely

(xfx)) = O for ali x € 3G
We prove that if X is an infinite-dimensional Hilbert space, £ = 1 - g where 7 15 the

¥

identity on X and g G — Xis completely continuous, then the inequality (x, f{x)) = 0 can

" "Babey-Bolyar" University, Faculty of Mathematics and Computer Science, 3460 Cluj;Napoca, Romamm
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not be true for all x € G Consequently, two existence theerems proved in [4] have no
content since their assumptions are never satisfied "We then ask if such a negative result holds

true even for more general maps of monotone type. A pastial answer is finally given

3, Introduction. Let us start with the defintion of ;; general concept of degree of map

DEFINITION 1 ({1}, [2]) Let X and ¥ be topological spaces Let Obe t;elass of open
subsets of X For eaeh & in O one considers a fami]y of maps f. G-V, the collection of
all such maps for the various G of O s denoted by & Yor aach Gin Oconslder 3 faxmly of
hemeataples { £, 0sfsel}of maps in #; al} haviag the mmmm domain G dcno&e by 3£
the cnliecﬁon of all such hotnetoples for the various G tn G Thes hy 8 dvgt’eﬁ function on
the famxiy & which is tnvariant with respeet ta the hemotopies in‘Hand which is aomnltzed
by @ given map £ from X into Y ane means an integer - valued function fé[,ﬂ{}.y)‘wtﬂch ég
defined for alGe o, JEF £G ¥, yE I\J(BG) sich that the followlng thres
condtiions are satisﬂed ‘ o

(8) (nonnahzatwn) K dfGy) w 0, then y € £G) For each G in. 0 ){, 15 - and
if y € f(G), thcnd(j?,ia,ﬁr yy= +1, . ‘

(b) (edditivity on domain). If f € & f-\('}' -> Y and G, G, € @ are & pair o%
disjoint open subsets of G such that y & f((:": \ (Gl y] Gz)), then f{g}lkami ﬂ@ both lie
in Fand 4(1,G.3) = d(f15.G,.9) + d(£15.G,.5)

(6) (invariance under homotopy). If {f;; 0 = ¢ = 1} is a homotopy in H with fixed

A

domam G end If {y,;D stsl } is & continuous curve in ¥ such that for all 1 [0,11, .

L

Y, & £,(8G), then d{f,,G,y,) is constant on [0,1].

The following propesition is & vartant of Proposition 1 and Preposition 3 in [1] and
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shows how a boundary 1nequality is useful for existence results

PROPOSITION 1. Assume q degree function exists as i Definttion 1 and Y 1s a linear
topological space. Let G be a set m O, y a given element in f(G) and let f G — Yhesin
F Suppose that H inclides the affine homotopy f, = (1 - 1) /|5 + tf. If for each x € 8Q
there exists a lmear functional w on Y such that

(,) =0, (W, () > 0and (w, f()) =0, o
then y € f(G)

Progf Suppose y ¢ f(@G) Sice y € f(G), from (a) one has
d(f15.G,y) = +1 Toshow that d(f,G.») = d(f]l5.G,¥) = +1, it suffices to see
that d(f,,G,y) isconstantins, where { f, 0 s ¢t = 1} isthe aﬁinehmnatcpywhichjuim_}; ls
and f This follows from (c) if we can verify that y & f,(8G) for all ¢ in [0,1}. Buppose,
however, that for some x € 3G and some ¢ € [0,1), we have y = fi(z) = (1-9f,(x) +« ¢f(x}.

Then
0 = (w,) = (W, /() = (1= (w, () + 10w, f(2)) =
= (1 —t)(w,ji,(x)) >0

which 13 a contradiction
In the particular case X = Y 18 a Hilbert space, @ in the class of ail baundéd open
nonempty subsets of X, & 1s the famuly of continuous maps f .G — X with G € 0 and
I-f) (5 ) relatively compact in X, H 15 the famuly of continuous homotcentes
{f, 0 s17= 1} m F with a common domain G such that there is compact subsct K of X
with (7 —f,)((-}—) C K for all 1 € [0,1], f; is the tdentity of X and y = 0, condition (1} Is
satisfied plrowded that
(x,f(x)) = 0‘ for all x € aG 2)
Condition (2) 15 just the well-known Krasnoselskii boundary inequelity Thus, 1f we set f =
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I - g, we obtan the fixed point theorem of Krasnoseislsxi
PROPOSITION 2 (Krasnoselskn) Let Gbeg bounded apetr subset of a reat Hllberl
space X with 0 € G. Suppose that ths completely gmxtmuaus map g froni G jmo X sana;ﬂes
| (Jy,g(x'))a]xiz Jor all x € 86, . ‘ B 3
Then g has at least on;z Axed point in G. 4 . N l (
An ebvious question ‘is what happens if ﬁw oqrimey) é@ QEEL c:,tiva!entiy in (3), is
reversed This question was asked by Lakshm»kanﬁram atxd Sun in {4} whers the fbtiowmg

~ 6o

“answer was given 3
PROPOSITION 3 (Lakshmikanﬂmm & ﬁa,m} Lot Xte maf Hlfbeﬂsmm qﬂr;ﬁmm '
dimension and G a -bounded apen. set af X wn“h a G Suﬁg:me uw dae aomp&ewiy

conmwous map g from G into X sajisﬁes . ~' N K _: )

"
P
[EX S

gDz P praixeed. @
Then g has at feast one fixed potiit in G. A ol
An other statement m [41 is the f‘olicwinge 4 A
PROPOSITION 4 (Lakshmiksnthain & Sun). et xae ammfibempmajwze o
dimension and GI, G, fwo bounded apen 38!3 of X szwh that 0@. G‘ and G t’; G, . Sup}w A
that the completely conitinuous map & from G into X saﬁ@h: w ;l..i‘::y‘:j oﬂﬂﬁiﬁm
(%, g(x)) a |x|? kmd g(x) w ijrany Y= BG‘ ). T : ,f,f‘ (Sj
fx, g(z:)) = ]xlzforanyw aG . T 1‘; - w(th)
?hen g has at least two fixed pomts in G o : - -r KI' "" ‘ ;
Proposition 3 s true if X is. 2 space oF ﬁnite dimcnswp Thls can be proved by
Bmuwer s degree ([4], Remark 1) since ‘

A(1-8,G,0) = (~1)¥ 0
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Indeed, if g satisfies (4) and g(x)=x for any »E3G, then g 18 homotopic to 8/ for any 6 > 1,
the homotopy being

gx) = (1-1)Bx+ig(x), Ostsl
It 15 easily seen that g(x) » x for all x € 3G and ¢ € [0,1] Hence,

d(I-g,G,0) = d(I-g,,G,0) =

= d{I-g,,(G,0) = d((1-9)],G,0) =

w d(~1,G,0) = (-1)**¥,

Let us remark that Proposition 4 is true if X is a space of odd finite dimes,xaim. Indeed,
under conditions (5), (6) end g(x} » x (for all ¥ € 8G,), by additvy crezoxy of the dcgme,
one has | ,

'd(I-g. G\G,,0) = d(I-g.G,,0) -
- d(I-g,G,,0) =1 - (-1y=¥=2

If X is a space of oven finite dimension, Proposition 4 is nct true q.s'shi;ws tha
following example: |

Example 1. Le'&X-Rz",G1 ={xE R, |x| < 1},G,={xe®", |x|<2},g: (:’;g——wl&_"
where

g0s)y, = 2%, HsPet) v x,, k=1,2, .0

g(x),, = 2x,, /(|x]2+ 1)-xg,‘_l, ke=1,2,. . 8.
For |x| = 1 we have g(x),, ,=x, *+x,, 8(s), =Xy ¥y, #nd so(v,g(x)) = |37 = 1
and g(x) = x Hence g satsfies (3) For [x|=2 we have (x.g(x)) =.§_ix{’=_§,<4-1xl2,
which shows that (6) also holds Nevertheless, the unique fixed pomnt of g is @ Indeed, if

g(x) = x, then
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2x2;,_1/(|x[2+])+xzk B Xy .

’ , k=1,2, \n . ' (N

2x, /{|x]P+ 1) ~xyy, = 2y, ‘

If we multiply each of these equaltties by ¥y, and x,,, respectively, and add, we obtain
2{xP/(|e 2 1) = |xf2,

which is possible enly 1f |x} = 1 or |x| = 0. In case |¢} = 1, from (7) we'ﬁnd

Xyt Xy = xz,[_‘l J ¥y =Xy, =%, k=1,2, .8, whence =0, a contradiction Thus, ¥=0

is the unique fixed point of g

3, In spaces of inflnite dimensian the complote continuity and the reverse of the
Krasnoselskli Inequality are incampatible, k ‘ .

THEOREM 1. Let X be a real filbers space of infinite dimenszon, Ga boanded o,wn
set of X with 0 € G and let g be a completely contimons sap ﬁ‘am G hutq ); Then, there

1

exists x € 8G such that \
(.2 < |xP. e
Proof Suppose otherwise Then | ‘ - |
(x,g8(x)) ‘l~x|3 for all ¥ € §G. ' ‘ & |
Since G is open bounded and 0 € G there exist Fy, v such that | ‘
0<,r's}x|sr for all x € 0G. ' 10y
On the other hand, the compaciness of g 1mplles thet K= g'(?m') is ccmpact and
|g(.w:){ s R for alle&G '
where R > 0 From (9} and (10), we have
rlx] = [xPs (r,8() 5 x| [g()| for any x € 3G
Hence ‘
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0<r s|gx)|sR forall x< 4G
Agamn from (9) and (10), we have
(x,8(x)) = |x] |g(x)] cos Ax,g(x)) 2 |x[* = r,|x]
It follows that
cos Ix, g(x)) = r,/|g(x)| = r,/R (x € 4G).
Thus
4x,g(x)) s a = arccos (r,/R) < /2 for all 3 € 3G
Now, for each y & K define a subset U, of X by
U ={x € X\{0}, Ux.p) <a/2 - a}.
Clearly, the family {U, ; y € K) 1s an open cover of K Since X is compact there 15 a finite
subcover of X, say ' |
U,.U,. .0,
For any x in G, theie extsts 1 € {1, 2, ., m} such that g(x) € Uy.
Since L(x,g(x)) s o and 4(g(x),y,) <n/2-a, we obtain I(x,y) < xn/2 and so,
(x,y,) > 0 On the other hand, X being of nfintte dimension, we may find an element x,
on 8G such that {x,, y) = 0 for all j € {1, 2, , m} Therefore we reach a conuamcdbn,
Theorem 1 15 thus proved
Remark 1 Here is an equivalent statement for Theorem 1
Let X be a real Hilbert space of infinite dimension, G & bounded open set of X with
0 € G and g a completely continuous map from G to X, Denote f =1 - g Then
sup {(x,f(x)), x & aG} >0 1))
Remark 2 Proposition 3 and 'Proposmon 4 have no contents Indeed, by Theorem 1,

the assumptions (4) and (5) never hold
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4. The reverse of the Krasnoselskii-Browder beundary inequality and maps of
monatone type. The question we ask is if (11) fxalds true even for mare general maps of
manotone type The answer we give is cnly a p_arltia{ ong. '.

Let us first recall some definitions and standard nofations of nonlinear ﬁ.m‘ci(unal
analysis. If X is a rea} Banach space and X its dual, we deaote by (v.w) the palring Eatween\
xin X and w in X We use the symbof ~v fiar strong convergence wd - for weak
convergence If 2 s a subset of ,X and fa map fmm D inm X, fis sald to be dmnicoﬂtinurmé
if it 18 continuous from the strong sopology of X on D to the waak tapology of X, fis sald
to be of elass (5}, if it 18 demiwnﬁnuwa ang 1F for any sequezm (x,) in b with x, - % f‘mt ‘
some ¥ € X for which T (x, - x,f(x)) s 0, we have x, x,ﬂs said{uhcpseudv—
monotone if it is demicontinuous and if for any sequence (x,) hl B witb ¥, ~x for same x €

X for which T (¥, - ¥,5(x)) = 0, we have {(x,-x, f{s )3"’9 Wbilc lfx € D “then
flx)—~fx). A muld-valued map 7 of X igto ﬂw subsets of X ls mannwae it’ for any
etements {x,u] and {y, v] of its graph, (c-y, u~v) 20, 7 maxlmal mcmoﬂme if it xs muxima$
in the sense of inclusion of graphs among monotanq maps of X }z;tq ;hs subsets of X'

Nots that If X is a Hilbert spoce andg is a completely elouénuuns map i"ron'l‘],) into
X, then the map =1 - g is of class ®), ' ‘ “

T‘ne classes of maps we shall deal with includs ‘the bouaded maps of type (S),, the
bounded pseudo-monotone maps and the sums of mmcimal nionatone, maps and baunded maps ‘
which are of class {S), or pseudo-monotone. For alt these c}gsses of maps g degrﬁ’s function
is known (see [1], [2]) and with respect to the correspunding dggree theory, Krasnoselskii- .
Brov'vder boundary mequallty wa" gepd" condition in the sense of an existenclé theorem itke

Proposition 1 What we can prove for the moment 15 that, unlike this, the reverse of the
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Krasnoselskii-Browder inequality is a "bad" condition for the degree theory

Let X; be a finite-dimenstonal subspace of X, G an open subset of X such that
G N X, = G, 18 nonempty and let f G—>X" be a given map. Then the Galerkin
approximant from £ is the map £, G — X, (=X,'), £i(x) = ' (A(@(x))), where @ is the
injection map of X; tnto X and ¢" the corresponding projection of X" onto X;.

Let A be the partially ordered set of finite-dimensional subspaces X, of X, ordered by
nclusion  For eacﬁ A, denote by ¢, the injection map of X, into X and by ¢, the
corresponding projection of X* onto X, )

LEMMA 1 (Browder) let X l?e a real reflexive Banach space, G a bounded open
subset of X with 0 € G and let f G »X" bea baunded map of c!x;ls.s (8), such thas
0 & f(8G) Then, there exists Ay in A such that for all h > ?.0, 0 €& £(6G,) and Browwer’s
degree d(f,,G,,0) is ndependent of A {(where G, =G N\ X, and J, = ¢, /9, ).

The common value of d(f,,G,,0) for A > A, is depoted by H£G,0) and is called
Browdes’s degree of f (see [1]).

The main result of this section 15 the following theprem

THEOREM 2 Let X be a real reflexive Banach space of infinte dimension, G a
bownded open subset of X with 0 € G Suppose that the bounded map f fi om G o X 15 of
class (8), and satisfies the follewing condition .

' (x,f(x))s 0 foranyx € 0G (12)
Then f has ai least one zero on 8G

Preof Suppose that the assertion were false Then 0 ¢ faG) and by Lemma 1, there
would exist A, In A such that for all 7\ >%,. 0 & £(9G,) and Brouwer’s degree d(f;, G,,0)
15 independent of A But, from (12), we have
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(x,£(¥)) = (x,f(x)) s 0 for any x € 8G,
Hence, d(/,,G,,0) = (-1 h anci so the degreé d(f,,G,,0) could not be independent of A
Thus, the assertton in Theorem 2 is true. |
Remark 3 By Theorem 2, the following proposition is trus
Let X be a real reflexive Banach space of ifimte dimension, G a bounded open subset
of X with 0 € G and f a bounded map of class (S}, from G wito X', Then
sup {(x,/(x)),x € aG} =2 0 . (13)
and in case that sup {(x,f(x)), xE BG} = (1, there exists x € 3G auch that fx) =0
Our question is does the sirict inequelity hold in (13)? As we have already seen
(Remerk 1), the answer 18 posttivs for maps qf the form f = F - g with g completely
continuous 1 Hilbert spaces For the broader class of maps of type (S),, this 1s an open
problem
COROLLARY 1. Lt X be a real refloxive Banach space of mfinite dimenston and (G
a. bounded open subset of X with 0 & G Suppose that f .G —;X * Is bounded pseudo-
monotone Then inequality (13) holds
Proof If 0 € F{3G), mequality (13) obwviously holds Thus we may assume
0 & F{oG) Suppose that (13) were false Then there would exist a positive number e, such
that
(x,f(x)) + eolxl.z = 0 for any x € 4G (14)
For each 0 < € =< g, the map f, = f + eJ (J is the duahty map of X) 15 of class (), and
bounded By (14), J. satisfies condition (12) It follows that there exists x, € 8 such that
fix.)=10,1¢

J(x) +eJ(x)=0
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Letting e - 0 we find that 0 &€ F{9G ), which contradicts our assumption Thus (13) holds.
COROLLARY 2. Let X be a real reflexive Banach space of mfinite dimension, G a
bounded open subset of X with 0 € G. Let T be a maximal monotone map of X nto the
subsets of X' with 0 € T(0) qnd let f be a bounded map of G mto X of class (8),. Suppose
that there exists a sequence (e)), 0 <e;, e, —> 0, such that |
(x,(T.’+f)(x)) <=0 forallx € dG,y=1,2, ., (15)
where T, = (T'+e J™')Y" 15 the Yosida approximant of T. Then thére exists at least one x
€ 0G such that
0 € f(x) + T(x)
Proof The map T, + f(e > 0) is bounded and of class (S), 'So, by Theorem 1, for
each j there exists x;, € dG such that
7,G5) + f(x) = 0.
Denote y, = T=,(xl) = =f(x,) Since G and fare bounded, we may suppose that we have
X, = x, and y, =y,
I'rom y, = T, ,(x;)’ we see that
¥, € T(x, - 6,07(3))
Hence, for any x € D(7) and any y € 7{x), we have
(x-eJNy)-x,y-y)=0
Thus,
(x-x,y-»=z(Jy),y-y) =
= =(e J7(y),p) = - lyliyvl
Smce (y)) is bounded, we deduce o=
m(g-xoymyy=0 L0 S (16)
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.

If Tim (xj - X, ,f(xj)) < 0, then since fis of class (5),, we gét X; —> x, and y, = -flx,) Next,
from (16) we obtain »

(v,-x, ~f(x0) -y) =0
Since 7'is maximal monotone and x € D(7), y € Hx) were arbitrar, v;le deduce that x, € D(7)
and -flx) € T(x), which finishes the proof It remains only to showr that
Tim (x,-%,,f(x)) =0 Suppose otherwise, i. Tim {x, - x,, f(x)) >0  Then
im (x ~4x0,yf) < 0 and so, lim (x,, ) < (x5, %) On the other hand, by (16)

Bm (x,p) = (-x,0) + (x,3)
Therefore

(xy- % ¥ -3)>0forall x € D(T) and y € T(x).

Since I'1s maximal monotone, 1t follows that x, € ZX7) and y, € Tix,). Thus the ahove; strict
inequality must also be true for x = x; and ¥ = 3, , which is absurd The proef is now
complete.

Remark 4 Let X'be a real reflexive Banach space of inﬂnit;e dimension, G a bounded
open subset of X with 0 € G, I a maximal monotone map of X into the subgeté_of' X with
0 € 7{0) and let f be a bounded map of G 1nto X' of class (S),. Then there exisfs 8, > 0 such
that »

sup {(x,(?‘. +f)(x)), x €3G} >0 forany 0 <e s e, \‘ o Qa7n
or there exists ¥ € 4G such that 0 & fx) + 7(x) L ‘

We canjecture that there 18 £, > 0 such that the strict inequality (17) x'al{vays holds

COROLLARY 3 Let X be a real reflexwve Banach space of mﬁrgitq di}nemwn, Ga
bounded open subset of X with 0 € G, T a maximal monotone maz; of X into-the subsets of
X with 0 € {(0) and let f be a bounded pseudo-monotone map of G o X T lhen
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sup {(x, (7,+/)(x)),x €3G} =0 foranye >0 (18)
Proof Suppose otherwise Then for some & > O there would exist a positive number
d, such that
(2, (T, +N)(x)) +d,Ix)> <= 0 for any x € 4G (19)
For each 0 < 8 < &, the map I, + f + &/ is bounded of class (§), end satisfies (12) By
Theorem 2 there exists x, on G such that
T,0x) + £ (%) + 8H(x,) = 0

If we set x — x, 1n (19) we get (8, ~8) x> = 0 (8 <§,), a contradiction

5. Concluding remarks. Let X be a real reflexive Banach space of infinite dimension,
G a bounded open subset of X with 0 € G, fa bounded map of G into X" and T a maximal
monotone map of X into the subsets of X’ We have established the following results
1) If X is a Hilbert space and f= I - g, g completely continuous, then
sup {(r,f(x)), x € aG} >0
2) If f1s of class (S5),, then
0 & f(9G) => sup {(x,f(x)), x €3G} >0
3) If /13 pseudo-monoctons, then £
sup {(x,f(x)), x € aG} 20
4) If /15 of class (§),, then
0 & (T+)(dG) = sup {(x,(’]'.+j)(x)),xeaG} >0 for any O0<ese,
5) If /15 pseudo-monotone, then
sup {(x,(’l"_+‘f) (x)), x €3G} =0 forany e >0
We conjecture that in cases 2) and 4) the strict inequalities on "sup” also hold 1f 0 €

53



R PRECUP

S0G) and 0 € (T + fH(3G), respectively We recall that the conditions 0 & A9G) and 0 &
(T + /)(8G) are required by the definstion of Browder’s degree Thus, we have shown that for
bounded maps of type (8),, the reverse of the Krasnoselskii-Browder inequality, namely
sup {(x,/(x));x € aG} s 0,
implies 0 € f0G), i o it is a bad condition 1n the degree theory Also, for sums T + fwith
bounded maps of type (S),, the reverse of a-Krasnoselskii-Browder type condition, i e
sup {(x,(T“J+f)(x)), x € BG} = 0 for some sequence e 0,
imphes 0 € (T + 3G) Hence it 18 also a bad condition for the degree theory
We conclude ‘thh an apphication to Leray-Lions maps Let Q C B be open bounded,
I<p<w, F QxBxR"—R" sgtisfies the Caratheodory conditions, i €. (', s, E) is measurable for
all s, 8 and F(x, *, -) is continuous a e x € Q Also assume
|F(x,5,8) | 5 C(3) + 0, lslt+ oy 51
and ' )
(E-E" F(x,s,8)-F(x,5,8")) 2 0,
forallE, &', sendae x EQ, wherec, , ER,, Cx) 2 0, C(x) € LP() (Mp+ p’' =1)
1t 13 known that the m&z:.:g ‘
7 W,,‘-{f'g) — WP (Q), f(u) = - grad F(x,u, gradu)
13 bounded, continuoul; and pseudo-monotone

By Corollary 1, for each R> 0, we have

sup {(u,f(u)) = LF(x,u,gmdu)gradudx, furlpe = R} =0
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REZUMAT. - Puncte fixe pentru operatort multivoel retractibill. Scopul ecested lucrird este

de a stabili, folosindu-se tehnica structurilor de punct fix introdusl de T A Rus in {4}, teoreme

generale de punct fix pentru operatori multivaci ce nu tnvariazi domendul de dofinitie, din care

se va despninde ca gl consecingd un rezultat cunoscut,

1. Introduction. The notton "fixed point structure”, given by I A Rus in [4] (see also
[S] and [6]) 18 a generalization of some notions as "topological space with fixed point
property" (Brouwer, Schauder, Tilonov, etc ), "ordered set with fixed point property" (Tarskt,
Bourbaki-Birkhoff, . ), "object with fixed point property” (Lawvere, Lambek, Rus, )
Recently, I A Rus extended this technique to multivalued operators and gave new results in
the fixed point theory for multivalued operators (see [4])

The object of the present paper is to extend this technique to multivalued operators
which doesn’t map the domain into uself and to gtve some new results for such non-self -
multivalued operators As consequence, one obtain a well known fixed point theorem forl s c.

'

multivalued operator (see Demling [2])

2. Preliminaries. Let X and ¥ be two sets We follow terminologies and notations in

[4]
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We denote by M(X.Y) the set of all multivalued operators 77 X —0 ¥ If X = ¥ then
M) =M(Y)

DEFINITION 21 Let I X -0 X be a multivalued operator (briefly m-operator) Then,
by definttion an clement x € X is a fixed pownt of T'iff x € T(x) We denotf; by Frthe fixed
points set of T

DEFINITION 22 Let T x -0 X be a m-operator By definition a subset A C Xis an
mnvanant subset under 7'1f 7(4) C 4 We denote {(1) = {4] AT X, K4) C 4}

Let X'be a nonvoid set and ¥ € P(X) »

DEFINITION 2 3 ([4]) A tiple (X,5,3°) 15 a fixed point structure (briely fp s) if

B SCPX),s§=@

@ M° PO —Oy_LPJmM"(Y), Y -0 MYYCT M®(Y) 15 a mapping such that if

ZCY, Zw @ then M(Z) D {T); | TEM(D) and ZE KT}

(i) every ¥ € § has the fixed point propesty with respsct to M(Y).

Now some examples of tixed pont structures |

Example 2 1 ([4]) Let X be a Hausdorff locally eonvex topological vector space and
M@Ty={T Y- P, (N Tisusc} Then (XP, M) isafps,

Example 22 Let X be a Banach space and M(Y) = {1 Y = P, ()] Tislisc}
Then (XP,, (XM )tsafps

DEFINlTIQN 24 ([4]) Let (X,S,M")/ be a2 fps,8 Z—=R, (SCZCPX) and
p PX) — PX) The pair (0,p) 18 a compatible pair with (X,S,M°) if

() p 1s a closure operator, S C w(Z) C Z and 8(p(¥)) = 8(¥), forall Y € Z

wr,nzcs

kxample 23 ([4]) Let (X,S,M°) be as in Example 2.1 or Example 22, Z = P,(Y),
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0 = «a, (Kuratowski measure of noncompactness) or 8 = a, (Hausdorff measure of
noncompactness) and p(A4) = ¢o A Then the pairs (ay,p) and (o,n) are compatible pairs
with (X;5M)

Following Halpem-Bergman [3] and Deimling [2] let us introduce

DEFINITION 2 5 ([2]) Let X be a Banach space and ¥ € P,,_(X) Then I(x)= {x +
My-x) | A=z0,y€E Y} forx €7 is the inward set of x € Y with respect to ¥

DEFINITION 2 6 ([2]) Let X be a Banach space and ¥ € P £{X). We let

K, (x) ={z€X| lim A'D(x +Az,Y) = o} forx &Y

A0,

K, (x) = {z € X| h;r:(lzy’)»"D(x*rAz,Y) = o} forx € Y
and Y/ (x) =x + K (x), forx €Y

Some basic properties are contained 1n

PROPOSITION 2 1 ([2], [3]) Let X be a Banach space and Y € P, (X) Then.

(1) 0EK, (x) CK,(x), foranyx €Y

(1) Ky (x) =X, forany x € int ¥

() K/ (x) and K, (x) are closed for any x € Y

(v) MKy (x) C K/ (x)and AK,(x) C K(x),foal N=0andclix €Y

(V) IfY is convex then K, (x) = K ¢ (x) and Ki(x) is convex, for el x € ¥

(v1) IfY 1s convex then 1;(x) = I(x}, forallx €Y

(vir) If Y 15 convex then Ki(*yislsc. on Y

‘Now we shall present the notion of retractible muluvalued operators (see also [1] and
(6D

Let X be a nonvoid set and ¥ € P(X)
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DEFINITION 2 7([1]) A multtvalued operator R X ~» P(Y) 1s called a retraction of
Xonto YifR|, =1,

DEFINITION 2 8 ([1]) A multivalued 7% ¥ — P(X) 18 retractible onto Y if there is a
retragnon R X — P(Y) such that Fp;p = Fr

The next results are given 1n {1} |

PROPOSITION 22 The following two. set are equal U= {x € ¥| x € 1(x) or
T6) N RYx) = @ and V = F; U CfFp,;) (where RY(x) = {z € X| x € R(2)}}

'PROPQSITION 23 T7he following conditions are equivalent:

i) xERIMN\N=xETNx)or TX)NR'\(x)=D

() For G Fr

(iit) Fror = £

Example 24 ([2]) Let X be a Banach space and ¥ € P(XS Consider the metnc
projection I, X — P(Y)

) = {u € Y| x-ul = D(x, 1)}
Evidently IL |, = 1, )

If Y € P,(X) then I1, X—; PY)isusec.

If Y€ P, (X then ITfx) is convex forall x € X

3. Basic results. The following general results are essential in tile fixed point theory .
of nonself multivalued operators ‘

PROPOSITION 31 Let (XSM) beafps, YES R X— P(Y) a retraction and
T Y — P(X) a multivalued operator. If'

(1) RoTEMY)
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() T s retracuble onto Y by R
then ¥, = &

Proof From (ii) we have Fp; = F; From Re T€ M(Y), Y € § and (X,SM ) fps
it follows that Fpr = & M

PROPOSITION 3 2 Let (X,SM’)beafps, YE S, R X— P() a retraction of X
onto Y

Let T Y — P(X) be such that:

(1) T adnuts a continuous selection t

(1) ReotEMY)

Gii) T is retractible onto Y by R
Then Fp e 3

Proof, Let t Y — X be a continuous selection for 7, ie #x) € 1I(x), foral x € ¥
Fiom (ni) it follows that I, = F, We have R c 1 € M(Y), Y € § and (X.SAM)fps,
therefore Fy., = & The conclusion follows taking into account that ., C Fy,, B

From Proposition 3 2 we have the following theorem

THEOREM 3 1 Let X be a Banach space, Y € P, (X)and T: ¥ — P, (X} Isc. [f
Nx) C I/ (x), for al x € Y then Fp » &

Proaof. LetIl, X— P, (Y) be the metric projection From Example 2.4 I () ts usc.
on X By Michael’s selection theorem (see {2]) there 18 continuous operator ¢ ¥ — X such
that #(x) € 1(x), for all x € Y Evidently I, o¢ ¥ — P, (V) is usc Let (XSF) be the
fps given in Example 2 1 It folows that I1, o r € AP(Y) We claim that 7'1s retractible onto
Yby Il ie Fp., G F, -

If x &€ (II,  T)(x) then there 13 an element y € 7{x) such that x € II,(3) We have the
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following alternative:
a)yEY ThenI,() =y Sox=yand hencex € Tx, 1 e
xEF,»J
b) y & Y Since y € T(x) and x € I1,(y) we have that
ly-x} = mf jy-z1 = D(y,7)
cEY
We shall prove now that for any /# € ]0,1{ ‘
D(-h)x + hy, ¥y = [ (1-h)x + hy - x| *)
We suppose that there exists # € 10,1{ such thatz € ¥, 2w x and (1 - Ay + hy - z|
< (1 - Ay + hy ~ x|} ,
But Jy - zlf s §(1 - B + By - 2] + (1 - A)Ge - )0 < WL - e+ Ay -x § + (3 - B)x - )
= fx - yll, which contradicts x € I1,() It follows that the relation (*) holds

Therefore
D((1 ~hyx +hy,¥)
h .
Since y € T(x) C I'(x) = x + K, (x) we have that y - x € K/x) Consequently (see
Proposition 2 1) hm inf bt ‘h); thy. 1)
’ h—0,
Applying Proposition 3 2 one obtain the conclusion &

D{x, Tx) = |x -yl = hm inf
. o,

= 0 Hence D(x,T(x)) s 0, ie. x € 1(x)
Remark 31 Theorem 3 1 appear in [2], where it is estab}ished in a different manner
Remark 32 A sinular result for usc multivalued operators -which satisfies the

weakest condition 7'(x) N I,/ (x), forall x € Yis given by K Deimling (see {2]) An open

problems 15 to prove such a result using the technique of the fixed point structures for non-

self multivalued operators n

Remiark3 3 Fixed potnt theorems for 8-condensing non-self multivalued operators are

established 1n a previous paper A general techmque for constructing fixed point theotem 1n
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the case of non-self multivalued (8,¢@)-contraction 1s also given
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REZUMAT. - Notdi asupra unel teoreme de punct critle. in lucrare se demonstreazi

urmitoarea variantd a unel teoreme privind existenta a trel puncte critice Fie M o varistate C?

- Finsler completd firi frontiert gl fie fAf — R o funcfie C' cu valori reale Daca f este

mirginied infenor, satisface conditia lui Palais-Smale si are doud minime locale, atunci fposedh

cel putin trej puncte critice distincte

1. Introduction. In the present paper the following variant of the three cntical points
theorem 13 proved- Let M be a complete (*-Finsler manifold, without boundary, and let f M
— R be a " real-valued function Assume that fis bounded below, satisfies the Palais-Smale
condition and 1t has two local minima Then fprosses at least three distinct critical paints.

Remaik that an analogous result is given in M S Berger and M S Berge: [4, pp 58-62],
R Courant {10, p 223}, M Struwe [24, Theorem 1 1, pp 66-68] for Af = R" with the coercivity
condition fx) —> o when x| — o, and in P H Rabinowitz [22, Corollary 3 15] for M a real
Banach space with the same regularity hypotheses on / Other versions and applications to
variolis problems tn the theory of partial differential equations are presented tn H Amann [2],
A Castto and A C Lazer [6], K-C Chang [7], {8, Section 5, pp 71-78], [9, pp 128-129],

M A Krasnoselsk [10], L Nirenberg [17] and P H Rabinowitz [21]
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2. Preliminaries on Finsler manifolds. Let M be a C' Banach manilfold without
boundary (i e HM = $) and led 1(M) be the total Lspace of tangent bundle of A/ A continuous
function | | (M) — R, 18 a Finsll_er structure on 7(M) if the following conditions are
satisfied.

(1) For each x € M, the restriction | i, =04 QT_ ) 18 8D equwalyent norm on T (M),

(ii) For each x, € M, and k > 1, there is a trivializing neighbourhood U/ of x, such that

SUh=ll =kl ), (V)xeU
"M 18 said to be a Finsler mamifold if it is regular (as a topological space) and if 1t has
a Finsler structure on’ M)

" It 15 known (see R S Palais [18, Theore;n }2 111) that every paracompact C' Banach
manifeld admits Finsler structures and that every C' Riemannian mamntfold is a Finsler
'manifold (see R S Palais {1.8, .Theorem 212}

Suppose that M ts connectedv For x,y € M dofine Q(x,y) /the set of ‘all C - ptec;audse
path o [0,1] - M such that o(0) = x,o(1) = y.lThe length of o E Q(x,y) is gi;'en by

1) = ['1o()l,ds - | )
Consider the Finsler metnic or; M de,ﬁned as follows ‘
dy (5,y) = 10f (€(0) GE Q) @
One can show (see R 8 Palais [18, Theorem 3 3] or K Daimling [11, Exercise 8, p 376)) that
{M,d.) 18 a metnc space and tf;at the metne topology coincides with thé topology of M

To a given Finsler structure on 7(M) there~ comaspond‘ a dpal stl;xcture on the

cotangént bundle T{MY' given by |
Iul = sup (Ju(x) | Iel, = 1}, p€ 7MY (3)
Let f M — R be a C' - differentiable mapping A locally Lipschitz continuous vector
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field v Af— 7(M) such that for each x € M the following relations are satisfied

® Iv s 24(df) ]

() (df) (v) = Il(df),ll‘2
whete || (df),Il 1s given by the Finsler structure on 7 (M)", 15 called a pseudogradient
vector field of f(in short pg f of /)

This important notton was introduced by R S Palais [18] An tnteresting modification
was given by F E Browder [5] (see also K Detmling {11, p 372})

1t 13 known (see R S Palais [18]) thqt if M1s a C* - Fingler manifold and f M — R is
a C' - differentiable mapping, then V()) = ¢, where

V()= (vEX(M) vispgf off) @

15 the set of all pseudo - gradient vector fields of f Let us note that if M 18 a Hilbert mamfold
with the Riemannian structure | |, the norms [ |, come from 1nner products by
Il =<, > and we can define a p g f of fby p — (grad f)(p), where (grad f)(p) 1s given
via the well-known Riesz representation theorem by

(df ) (X) = <X, (gradf ) (P)>,, (V) X € T, (M)

(sve 1 T Schwartz [23, Chapter 1V])

3. The main results. Let M be a (* - Finsler mamfold, connected and without
boundary For a (' - differenuable real-valued function f M — R, define by

CU) = (p €M (df), =0) )

the critical set of f and by B(f) = AC{f)) the bifurcation set of f The elements of C{/) are

celled the critical points of fand the ;:lements of B(f) represent 118 critical values 1If p & C(f),
s & f3()), then p 13 a regular point and s 1s a regular value of the mapping f
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For s € R denate by C(f) = C(f) N /7 (s), the crtical point set of fat the level
s It 1s obvious that s 1s a regular value of f1if and only if C (f) = ¢ We also consider
M (f) = [ ((-,5])

It is well-known that if s & B(f) then /™' (s) 13 ¢ or a differentiable submanifold
of M, of codimension 1, and M, (f) 1s a differentiable submanifold with boundary of M, of
codimension O, and M ( f ) = F(s) (see for imstance R.Abraham, JE Marsden and
T S Ratiu [1, p 197]). .

Suppose that th‘e manifold A and the mapping fsatisfy the following hypotheses

(a) (Completness) (M,d.) is a complete metric space, where d) represents the Finsler
metnc on M defined by (2) A

(b) (Boundedness from below) If B = inf { f{x) x € M} then B >,

(c) (The Palais-Smale condition) Any sequence (x, ), ., in M with the p;npertiefs that
(/ (%,)),.0 15 bounded and | (df ), | — 0 has a convergent subsequence '(x_')kw X, p

The above condutions (a) - (c) are sometimes called compa&ness conditions because
1f M 13 a compact manifold they are automatically verified It is clear that the p(;int p, which
appears in condition (c) of Palais-Sinale, 15 a critical point of £p €'C(fH \

Let vE V() be a pgf of fand let x € M be a fixed point Because v is locally

Lipschitz the following Cauchy problem

o) = v,
{q)(O) - x ' ©)

has a unique maximal solution @ (w.(x), w,{x)—= M, wbgreu;f (%) €0 < w), (x)
Denote by ¢; (.X) the above sotution and by ¢ — ¢ (x) the corresponding integral curve of
(6) Taking into account the hypotheses (a)-(c) it follows that w; (x) = s, ie {q):'} JRE

a semigroup of diffeomorphisms of M (see R S Palais [18} or K Deimling, {11, Lemma 27 1])
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For a vector v € X(M) let us consider the sets Z(v) = {p EM v, =0 } ,
Fix (¢) = {xEM g(x) =x,(V)IE (ui(x),mﬁ(x))} It 1s easy/ to see that the

following relations hold

cU) = N Zo )

CU) = veam Fix (¢') ®)

I£x & C(7), then 75} (6)) < £(x) for 10 nd F(gL(9) > £(2) ©)
for i <0

Our main result 1s the following

THEOREM Let M be a C? - Finsler manifold, connected and without boundary, and
let f M — R be a C - differentiable real-valued mapping. Assume that the hypotheses (a) -
(¢) are satisfied and there exist two local minima points of f. Then f posses at least three
distinct critical ponts.

Proof Let p,,p, € M be the local minima points of / Then p, p, € C(f) and 5, = £p),
4= 1,2 are untical values of f Let us suppose that p,,p, are 1solated minima of f and s, 2 s,
Then the set M, { /) has at least two connected components M\, M, with p, € M|, p, € M,

Wl

has also at least two connected components M, , , M, , with p €M, . , p,EM, |

Because fis continuous it follows that there exists a positive number &, > 0, such that the sei A

%

Let us consider the family of compact subsets of M defined by
R={KCM Kis connected, compact and p, p, € K}
We shall show that the family 3 is invariant with respect to the flow {g,},_, generated by
apgf of fv € V(f) Indeed for any 7 = 0 and for any K € R the set ¢(K) 1s connected and
compact since @, 1s a diffeomorphisn; of the mamfold M Moreover, according to the refation
(8), 1t follows that ¢, (p,) =p, , i =1,2, foranyr=0,1e p ,p, € ¢ (K) for any ¢ =
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0 and for any K € R

Define the mini-max of f with respect to the family it by |

mmm-max (f,R) = inf max f(x)
KeER xeK

It is obvious that mini-max (f,)) represent the smallest real number s € R such that
for any e > 0 there exists K, € it with K, C M,,,(/) )

Because the family 0 1s invariant with respect to flow {®,},., generated by a pgf
v € V(f), according to the mim-max’principle (see R S Palais [18,' Theorem 5 18]) 1t follows
that s = mini-max (M) 13 a critical value of the mapping f/ It 18 easy'tq see‘that(the following
mequalities hold s = 5, = 5,

If s = s,, using the definition of mtni-max (/;R), there exists Kloe M such that
K. G M, (f), where e, s the number considered at the beginning of the proof BecauseX,
18 connected and p,, p, € K-.,’ one obtains a contradiction with the chotce of e, Therefore
s > 8 =z 5 and ¢ff) = ¢ So, there exists a critical ‘point p, € C,(j) with
P E C,'(j), t=1,2, and the agsertion 18 proved | ’ ) , _

The following two corollaries are obtained from the above main x'es;ult -

COROLLARY | LetMbe a C* - Finsler momfold, connected and without boundary,
and let f M — R be a C' - dyferenniable real-valued mapping. Assume that the.hypolheses
(a)-(c) are satisfied and f has a local minimum pomt which is not a global minimum point
Then f posseses at least three distinct critical points

Proof Let us consider B =1nf {f{x) x €& M} Then B is the global mmimum of f(see
R S Palais {18, Theotem 5 7] or K-C, Chang [7, Lemma 4}, D Andrica [3, Theorem 3 2 9])
and thc:a,re exists a ciincal pomnt p, € C(fy such that p,) = B Considering p, the local

minimum point given in the hypothesis, we can apply the above theorem, and the desured

70



NOTE ON A CRITICAL POINT THEOREM

conclusion 1s obtained

COROLLARY 2 Let M" be a m-dimensional C*-mantfold which 1s closed (ie M s
compact and without boundary) and connected. If f M—>Risa C L. differentiable real-valued
mapping with two local minima points, then f posseses at least four distinct critical points.

Proof Let p,p, be the local minima points of f given in the hypothesis Because M
1s compact, f has & maximum point p,, and 1t follows p,p,.p; € M(f) (see D Andrica [3,
Pioposition 226 1) Consider p; the cntical pont obtained by the mini-max pnnciple in
Theorem It 18 clear that the following inequalities are valid s, = 53 > 5, = 5, where
s, =f"(p), i = T,4 If the dimension of M 1s greater that 2 (ie m = 2), taking into
account the definition of the mini-max of f with respect to tile family R, 1t results that s, >
55, therefore {C(f)| = 4 If the dimension of M 1s 1 (1e m = 1), using the classification of
one-dimensional ;namfolds (see V.Guillemin, A Pollak |14]) one obtains that M is
diffeomorphic with the sphere S' and n this case the property 1s also proved.

Remarks 1) The following example shows that there exist sinooth functions f R —»
R having two global mimma points and without other critical potnts The polynomial function
f6y) = (% - x - 1)* + (x* - 1) has global mimma at the points (1,2) and (-1,0) and no other
critical points (this example 1s simple modification of the polynomtial given 1n A Dustfe et al
[12])

2) One can show that 1f M” 1s a closed C®>manifold and M) 13 the real- algebra of
C" -differentiable real-valued functions defined on M then for every function f € M) the
inequality [C(f)| = 2 holds (see D Andrica {3, Proposition 22 6}) The lower bound of the
cardimal number of cntical set C(/') 18 very stmfxg connected to the topology of M For
mstance if m = 2 and the manifold M 1s not diffeomorphic with the sphere $* then |C()| =
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3 (see D Andnca [3, Theorem 43 6] and M W Hirsch [15, Exercise 13°, pag 29] for a

particular case) If m = 3 and the fundamental group w,(M) is not free, then |C()| = 4 This

inequality follows from a recent result concerming the Lusternik-Schmirelmann category,

obtasned by Goémoz-Larrafiaga, J.C Gonzalez-Acufia, F [13]
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REZUMAT. - Tcoria Ljustemik—Schnlréhnnn pe submulfiml fuchlse ale unor Cl-yarletiti.

Rezuliatul principal, Teorema 2 4, gencralizeazll, la C'-vanetdi{i, unele resultate obtinute de

Wang st Szulkin . ‘

1. Introduction. Let M be a C'-Banach manifold which 1s modeled on the Banach
space If (U,p) 18 a chart of M at x, € M, then denote by ¢ U— Tx,(M ) the function by
P(x) = [U,9,9(x)], foreach x € U In what follows we shall denote by 7M the tangent
bundle of M

DEFINITION 1 1 A Finsler structure on the tangent bundle 7A4, 15 a continuous real
function |-} 7A4 — [0,+f such that

1) for every x € M, the restniction |- 1s an admsible norm on 7.(M),

1,0M)
ny for every x, € M and K > 1, there 1s a charl (U,g) of M at x, such that the following
inequaltties
(w.o.nL ] < (v 0.nLf 5 #](v.0.01]
hold forall A€ Eand x € U

A C' - Banach mamfold, which is a regular space, whith a fixed Finsler struciure for

" "Babey-Bolyar” University, Faculty of Mathematics and Computer Sclence, 3400 Cliy-Napoca, Ramania
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TM 13 called a Finsler manifold

R Palais [ti] proved that for every C' - Banach paracompact manifold there cxists a
Finsler structure on the tangent bunde

If x and y € M are two pornis 1n the same component of M, the distance p(x,y) 1s the
infimum of 1(0), over all C* paths joining x to y Then p M x M — [0+ is & metnc on
M which is consistent with the topology of M

DEFINITION 12 Let Mbe a C' - Banach mamfold, SC Ma nonemi)ty subset of M

/

A vector v € 71'(M )/ 18 called tangent to S at x, € S if there 15 a chart (U,¢@) of M at x, such
that )
L d(g(n) ThY (), @(UNS)

!
h;—-o h

where d is the distance on I

Let us denote 7(S) as the set of ell tangent vectors at x € §,

D Motreanu [3] proved the following result

THEOREM 11 Let M be a C' - Banach mamfold, S C M, x, € S and (U ) a chart
of M at x, Avector v, € 71°(A/[ ) 1s tangent to S at x, iff there 1s a function u  }-a0] = £
such that

) hm u(h) =0 -
ht-0

i) @(x,) + h(vy+ru(h)) € o(UNS), forall h

DEFINITION 13 Let M be a ! - Banach manifold A subset § C M 1s iocally
convex 1if, for each x,&S, there 15 a chart (U,) of M at x, such that ¢(UNS) is convex 1n £

Let M be a (" - Finsler manif‘old, JEC'WMR), ST M x €S Consider the following
notations

Ndf (el = sup {df(x)-v) | v E&T(S), vl =1}
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DEFINITION 1 4 Let M be a C' - Finsler manifold 5 a subset of M and f€ C'(M,R)
A point x € S 1s called a cnitical point of frelative to §1f §df(x)]; = 0

KS ={x € 8| ldf(x)l; = 0} - the set of all critical points of /relative to S,

KS =KSNfc), foreschc ER

DEFINITION 1 5. A function f € C' (M,R) is said to satisfy the Palais - Smale
condition relative to S at the level ¢ € R, if for each sequence {x,} ., © S such that fx,) =
¢ and {ldf(x, )~ O, there exist a convergent subsequence

The function f 15 said to satisfy th'e PS condition relative to S ((PS), in short) if £
satisfies this condition for all level c € R.

In what follows, we use the Ekeland's variational principle [7]

THEOREM 12 Let (Zd) be a comp!ete( melric space and 1 Z —> ]-x  +o} g
lower semiconttnuous, proper (m # +®) function which 1s bounded below. Then for each e

> 0 and for each x € Z such that n{x) < if n(z) + e, there exists a pont y € Z such

EZ
that
D n(y) = a(z)
) d(x,y) s e
3y m(z) - a(y) = ~ed(y,z), foreachz € Z
In what follows, we shall need the defimition of the Ljustermik - Schmrelmann
category

DEFINITION 1 6 Let X be a topologtcal space and 4 a subset of X' The Ljusternik -
Schnirelmann category of 4 m X is &, 1f there exists & (but not exist &£ - 1) closed of X,
contractible m X, which cover A .Denote cat,{(A)=k If such a k& does not exist then
cat(A)y=+cw
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THEOREM 13 Let X be a topological space and A, B subsets of X The following
results hold

a) cat,{A¥=1 iff A 1s contractible to a point n X

b) If A C B then cat{A) < cat(B)

c) cat (A UB) = cat (4) + cat (B)

d) If cat (B)y<to, then cat{A-B) = cat4) - cat(B)

e) If A 15 a closed subsets of X and a Ax[0,1,] — X 1s a continuous function such that
o(a,0) = a, ¥V a € A4, then cat(A) = cat{af{4. 1))

) If M s a C' - Finsler manifold and A C M, then there exists U € vy (A) such that

caty (U} = cat(4)

2. The Existence of Critical Points. Let M be a C' - complete Finsler manifold and
let § be a nonempty, closed and locally convex subset of M

DEFINITION 2 1 A pseudogradient vector for & function f € C'(M,R), relative to S,
at the pont x € §, is a vector v € 1¢(x} such that

a) vl <2 §df(x) i

b) df(x) - v > [df(x)

Letx, € 5-KSte |dfixly = 0 Using the definition of [|df(x,)ls, we get that there
exists a tangent vector w, to § at x, such that fw,f = 1 anddf(x,)-w, > é fledf (x, )
Denote v, = % I dfx, )M g w, Tx,.(S ) lt1s easy to see that v, is a pseudogradient vector fot
7, relative to §, at x,

Let (U,g) be a chart of M at x, and P = (¢ (x,))*

df (%) = Vo = (JH7), (9(x,)) * vy
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It 18 easy to check that | df(xu)|l§ <df(x,) vy s 1df(x ) v, e
Ivall > 1/ ()l and dfCsy) - v, > B eyl > vl

Using the continuity of the functions (feyp™), and U N § 3 x — [df(x)}], we get
that there exists r > 0 such that

hwl > ldf(x)ls, forall x€ UN 5, w € T (M), fw-vll <r
and

)y -w > %uwna forall y € o(U) end dll w € T (M)
with fw - v, | <r

For a complete metric space (X,p) denote by K the set of all subsets of X; closed and
boxlr;ded On the set K we introduce the Hawcdsx7 cacime d<lined by 5

dist (4,B) = max {sup p(a,B), sup p(b,A)}

a€ A bEDB

Stnce X is a complete metric space, it follows that (X, dist) is also a complete metric
space

We need two results which are proved in Mawhin-Willem [2].

LEMMA 21 Let (X.p) be a complete metric space and suppose that X is an ANR. In
this case if T, = { AC X | cat,(4) = j, 4 compact }, (T, dis:j is a complete metric space.

LEMMA 22. The function n T, —= R, defined by n(4) = sg;;f (x) s lower
semicontinious

THEOREM 23 Let M be a C' - Finsler manifold, § © M, nonempty, closed and
locally convex Let f€ C'(M,R) and x, € S a regular point of f relative (0 S (i e §ic)l,
= 0) Suppose that (U,g) 15 a chart of M at x, such that ¢(U 1 §) is convex in E. If r >0
a fixed real number, then there extsr‘ v, € 7;3(,5') a pseudogradient vector for f, re—lattve to
S, at x,, an open neighborhood V of x,, V © U, a positive real number h, > 0 and a
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continuous function i’V — E such that

a) lu' () s 1, for eachx €V ‘

b) @(x) - Ay(v, + ' (x)) € @1 N S), for ecachx E V
h Proof 'Let v, = [ U,y, Uo]r“ € T_B(M ) be a pseudogradient vector for frelative to §
at x,, where ¥, = ¢/ (x,) v,

Using the Theorem 11 obtain that there exists a funciion #  ]-a,0] — £ such that

1) im u(h) = 0, and
ht-0

it) (p(x(,) + (v, + u(M)) € @(u N S), for all # € }-a,0]

If hy > 0 15 fixed, let ¢ =v,+u(-A) and V, = ¢/(x,)"'9, We have
@x,)-h, P, EGU N S)and since U N 8) 13 convex n E we get
o(x,) - ho, € (U N S), forall h,0sh<hy Henced(p(x,) - A9, p(UNS))) = 0,
Oshsh, v € 7;,(‘5')

If hy 13 small enough we may assume that v, 13 a pseudogradient vector of f, relative
to S at v,

Let I be an open neighborhood of x, such that §p(x) - p(x)f < 7, foreachx €V

Let #° ¥V — E the function gtven by

u(x) = -,i—ow(xn) - g(x)

We have

Px) ~hy (9, + 1™ (x)) = @(x) = b (¥, + 7:—(<P(X) -9(x,) =

@(x,) - AP, € o(UNS), for each x EUV

The following theorem 18 a generalization to C' - mamfolds of Wang's ‘[8] and
Szuli\'m’s [7] rezul‘t§

THEOREM 24 Let M be a C' - Finsler and S a nonempty, closed and locally convex
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subset of M. Suppose that f € C'(M,R) 1s bounded bellow and sanisfies the conditions (PS);,
forall ¢, ) =Tk where

A, ={ ACS | Acompact and caty{4) = } }

¢, = mmimax (f,A)) = :’Ell(, .:‘IEI{: f(x), and

A, = 0 for some k=1 Then f has at least k distinct critical poinis relative to §.

Proof Without less of generality we can suppose that M is connected Since A, C
A, fory=1, , k1 1t follows that

SO s0 S S <®

Given J, suppose ¢, = ¢, = = ¢, = 0, for some p =2 0 [t suffices to show that
cat, (KS)zp+1 /

Let 'q) be the collection of all nonempty, closed anc{ bounded subsets of § On the
account of the fact that (S,p) is a complete metric space, we obtain that (¢p,dist) is a complete
metne space 100 By Lemma 2 2, we have that the functionn A — R, a(4) = fg{‘) J(x)
15 lower semicontinuous Recall that we want to show that cat, (KS) = p + 1

Suppose that cat, (KS,) s p and denote

N, ={xE S| p(KS,) = 8}, ford>0

Let k € }1 ,%[ be a fixed number Since fsatisfies (PS);, 1t 18 possible to choose
b > 0 such that cat,(N,; KS,) = cay, (KS) = p

Using (PS);, we may find an arbitrantly small &€ > 0, with the property that

tdf(x)l; = 6, forevery ¥ € § N /™ [c-e,c+e] - N(KS.) 4))

Choose an 4, € A, ,

Let 4,=A-N,(X5) Then xn(A4,) = ¢ + e and

caty, (4,) = cat,,(4,) - cat, (N,,(KS) =z y+p-p = jmplying 4, € A, Using the

such that n(4,) s ¢ + &’
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Ekeland’s vanational principle for © = A, — R we obtain There 1s an 4 € A, such that

n(4,) =c+e’ \ )
dist (4,4,) = e, and . - 3)
a(B) = n(4) - edist (4,B), Y BEA, )

Simce e < & and dist (4, 4,) = e it follows

AN N(KS) = & o )

Our goal is to obtain a cntradiction by constructing a B € A which u;ill fail to satisfy
@ ‘ :

Denote S‘ =AN {x EEM'If(x) 2 ¢ -.%.e} Because 4 € A, we have
iggf(x) mec>c¢ —.;.e, so that there exists x € 4 such that f(x) = x 7..;,8, hence
S =@ ‘ '

Let x, € 8, ’oe an arbitrary point Choose a chart (U,g) at x; such t’hm if
W, = ¢ ()" ° g, then

Sl s LS kL, V€U ©)

Because x, & N(KS,), p(x,,KS,)> 8. If U, is sufficiently smail then'
U Cf([c-e,c+el) - N(KS,) -

Henee fdf(x){, = 6¢, for each x € U, ﬂ S, and therefore {dfix)li; » 0 '

It follows that there oxists & pseudo-gradient vector v, = [U, Tr 9‘; L' for f relative
to § at x,, and there exists r; > 0 such that

Wl > 4df o)l . @

Y W) w > il o ®)
for a'll xeUNS,yeqyp) we TX’(M), sgch that fjw —v,llx‘< r,

Let l{, be an open nelghbgrhood qf x, such that f, C U, (M 1s regular space) Let b,

82



LJUSTERNIK-SCHNIRELMAN THEORY

> 0 be a real number such that

p(V ,M-U) =0, and )
d @), LM) - 9(U)) =9 (10)

where d_ 15 the distance induced an 7,(A) by [l
Also, we can suppose that ¥, (U, N §) is a convex set
In this way we obtain an open covering {V,} of §; Since §, 13 compact, there exists
a fimite subcovering V,, , V,, to which we may subordinate a continuous partitton of unity
E, JE.1e E M-—[0,1] are continuous, supp E,C ¥V, i=1, , m and i E =1 onS,
i=1
Letx M — [0,1] be a continuous function such that XIS. =1 and Xlu,-by, = 0, and

let 6, = x& M~ [0,1]

It follows that

supp 8, supp g, CV,i=1, ,m (1)
Y6, =1ons (12)
I}

6= =6,=0 on M-UV (13)

=1

Denote by 8, = mun {8,,8,, ,0,}, ry=0un {r, ,r,}

We apply now Theorem 23 Foreach =1, , m there exist the continuous functions
u, V,— 7;'(M ) such that

lu, ()l =sr,, VxEV, (14)

P (x) ~hy(v,+u(x) €Y (U NS) (15)
where /1, 15 a fixed positive number

Ustng (7) and (8) we obtatn

v, + a > 1df(x ), Yx & A N supp 6, (16)

(0.0 - (5 () > v, + ()R, a7
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YxEANsupp B, VyeEy)

b
Fix a real numbet ¢ > 0 such that ¢/ < mun 1 ‘;{2 , ho( min v | - ro)
+

1~1,m

Because 718 arbitrary small, we can suppose that r, < minfjv |
1=l.m

4 ()-—tB‘ ) v+ (x)
Let al(t,x) = 1% [P n¢; __—_-—Ttlv“"",(x 0

] ifxe U
t, otherwise

We will prove that a, is well dofined and eontinuous
We have [(0.(x) 1) o % b and
’ IIV +1,(X5ﬂ 1+k2 7
d (9, (x), T(M)-9,(U,)) = 60, for each x € supp 9,
+ u(x)
Therefore ¥,(x) - 16,(x)
1 1 ﬂ l(x)

Now we elaim o, (¢, 4) G S Indeed ff x EA-supp 0, 0 (tx) =x E 4

€ P,(U,), hence a is well defined

If x € 4 N supp 6,, then

) = B (il - 1) s &, and according fg (15)
B TN €T B T €5 Y R &1
(5)-10.00) ) s
* e - "
Hence X)) EUNSC S .

Because «; [0,/] x M — M 18 a deformation, according to Theorem 1.4 (f) we obtain
that caty(a,(1,4) = cat,(4) = J, and because a,(1,4) C S, 1t follows that a,(,4) € A,
For an arbitrary pomnt x € U, let 0y(s) = a,(5.x), 0 s s s ¢
Then o, 1s a C* - path jotning x to o,(£,x)
. Hence p(x,q,(7,x)) = Llll o,(s)llds = £8,(x) 1 for every x € U,
If x € M - U,, the last inequaltty 18 also true Therefore
p(x, o (1,x)) s k8 (x)1, foreachx E M (18)
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Now we use the mean value theorem If x € U, we have

v, (x) i _
m fwl (‘h(f))

V. v ) [ M+ ()
=y (wl(x) Mﬁl(x)._..__..__.._] ( tﬁ,(ﬂm) <

Jay(6,%) = f(x) = finy' [w,(x) - 18,(x)

v, +ue)l

—tel(x) i 1
S e Iy 1o -lye -
v, +u,(x)] 4 by, + 2, ()l e E v, ru ()]

But { v, + u(x) | > ldf(x)1,, implying
ot (1) = ) = = 10,06) - Udf(x) ly
s —_i_tﬂ,(x)és = ~._;_191(x)c , for each x € U,
If x € U, then 8,(x) = 0, ,(1,x) = x and the last inequality holds Therefore, we have

Jo, (1, x) - fix) = —%e 18, (x), for every x € M (19)

v, +u,(a,(1,x))
v, + (o, (1,x)) 1

P [0, (1,%) = 18,(x)
Let a,(f,x) = 3
if a,(1,x) €U,

a(f,x), otherwise

We shall prove that «, 18 well detined and continuous

Let x € supp 0, and let be a path joinng x to o,(4x)

60

o
Then p(v,M-U,) = b and p(x,0(1,x) = k8 (x) s 5 S _2.0. , Implying that

1+
a,(f,x) € U,

It o tleaves U,, then No)zp(x,M-U)=3, Therefore
p(x,a,(s,x)) = inf {1((1)|u joins x to o, (4,¢), 0 © Uz}

Furtheimere, if ¢ C U, then

b 1 .
{(5) = f Fo(yhdr = o h,(a,(60)) =, (x) I,
Combiing these fact we obtain
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Dpy(a,(1,3)) = ,(0) 1, = kp(s,c,(1,%)) = k¥

Hence
v, + i (a,(1,x))

v, + (e, (4,2)) |

I, (a,(1,5)) - 16,(x) - (1), =

v, + w(a,(7,x))
v, +u,(o, (4,%) ] i

s Fp, (o (6,x)) — 9, (0) I, + {7 0,(x)
s (B2+1)¢
It follows from (10) that

v, + uz(at(i,x))

v, + uz(a‘(t,x)) ]
Now we prove thet «,(fA) © § Indeed if x € 4 \ supp 6, then

€ ,(U,) showing that a, ts well defined

a,{fx) =a(x)ES
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If x € 4 M supp 0, then

P{a, (8,x)} - A,(v; + (2, (1.x))) € (U, N §} and
18,(x) < Ay (vl = vy )

v, + a(a, ()] v, + w(a,(1,x))}

v, + (o, (1,x))

vy (o, (16)) ]

= #,, therefore

Py(a,(#,x)) ~ 10,(x) ) E P (U, N S)

According to Theorem 1 4 {f) we obtain that
caty (a,(1,4)) cat,{A) = J, so o,(tA4) € 4,

Proceeding like for «, we abtain the following inequalities

p(x,0,(1,X)) s k(8,(x) + 8,(x)1 | (20)
Sa (1) - fo(.x) s - _;_ e 18, (x) ‘ 1)
So by (19)

Ja(t,x) = fix) = = 2 e4(8,(x) + 8,(x)) @
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Proceeding as above, we define

a v, +u (a _ (1,x))
-10

o (1,%) = Yo (P, (., (1,) ~ 10 (x) TR CRN D)
a,_,(1,x), otherwise

), ifa (t,X)EU,

and show that
p(x, e (1x) k(B,(x)+ +8 (x)) = ki @3)
So (%) = f(x) 5 = 28 1(8,(x)+ +8,(x)) (24)
and «, (1,4) € A
Let B = « (f,4) By (23), dist(4,B8) s
Since n(B) = ¢ and fo (1x) = fx),
sup fa (f,x) = sup fa_(f,x)
v o
Recall thet & < % and 8,(r) + +8,0)=1on §

Using these facts we obtain

-%e: < -kt < e dist (4,B) < n(B) - n(4) = sup fo_(1,x) -
L XES,

~sup f(x) = sup (o, (1:¥) = f0)) = = e,

a contradiction

3. Applications to the Geodesic Probem Let M be a finite dimensional Riemannian
mantfold By L’(I,M) we mean the Hilbert Riemannian manifold of absolutely continuous
map from / = [0,1] to M, with square 1ntegrable derivative

R S Palais proved in [5] that 1f M1s a C*** Riemannian manifold, then L] (I, M) 1s
a C* manifold, and the energy mtegral £ L] (7,M) — R defined by

‘ |
i(0) = = ["1oto P,
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15 also of class C*

If 6 € L'(I,M), then the tangent space TDL,z(I,M) consists of all absolutely
continuous vector fields X along o with square 1ntegrable covartant denivatives V_ X

The Riemanmian structure of L (/,M) 1s given by

<X,¥> = L‘(<X(t), Y(£)> 0+ <V X)),V Y(1)>,, )dl
where X, Y € T L} (I,M)

If M 13 a complete Riemanman manifold, then LI, M) is also a complete
Riemannian mantfold

In what follows, suppose that M 1s a C°, complete, Riemannian manifold Let
P LX(IM)— MxM be the function defined by

P(o) = (0(0),0(1))

If NoMxM, then we denote by A,(A) = P7'(N), the space of paths in M which start and
end in N

T Wang 1n [10} proved the following theorems'

THEOREM 3 1 Ler N be u localy convex, closed subset of M % M Then the following

~

assertions are equivalent

1 o € AUM) 15 a critical pomt for E relatve to A (M)

2 ois a geodesic with endpoints m N, orthogonal.

THEOREM 32 [let N be a closed subset of M = M, such that
PNy M or P(N)= M is compact Then E satisfies the PS condition relative 1o Ay(M)

E Fadell and 8§ Husseim proved the following results

LEMMA 3 3 Suppose X 1s a space such that for some field F the cuplong of X ovel
I using singular cohomology 1s =k. Then X has a compact subset of category >k.
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LEMMA 34 Let M be a finite dimensional ANR, which 1s not contractible Let M,

and M, subsets of M, which are contractible m M Then cat A~,~~,(M) =+ and contans

-compact subsets of arbitrary high category

1esults

Usind the Theorem 24 and these lemmas, we can immediately get the following

THEOREM 3 5 Let M be a C°, complete, fintte dimensional, Riemanman manifold,

N a closed, locally convex subset of M x M, such that P(N)= M or P,(N)= M is compact

Then there are at least cuplong (A (M)) +1 geodesics with endpoints i N, orthogonal to

PAN) and PAN)

THEOREM 26 Let M be a C°, complete, finute dimensional, Riemannian manifold,

which is not contractible, My, M, locally convex subsets of M which are contractible in M,

and M, or M, 1s compact Then there are infinitely many geodesics which start in M, and end

n M, orthogonal ta M, and M,

o0
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REZUMAT. - Formule de cubaturis omogene. {n lucrare sunt constnute citeva formule
practice de cubaturd, msistdndu-se asupra formulelor de cubatur3 omogene

i

Let D be a domamn in R%, £ f D — R an integrable function on D and A,f, , A,fsome
given information of f/* Next, one suppose that Af are punctual vatues of f or of certain of its
denivatives

One considers the following problem using the informations A/, |, A/ deternuined
a cubature formula

¥
1f = [[fyydsdy = T ANS « R,
1e find the coefficients 4, & =b1, , V and the corresponding remainder teim R.(f)

The most results are been obtained when D 1s a regular domain in B* (rectangular,
simplex, etc ) and the information (data) are regularly spaced

An effictent way to construct cubature formulas 1s based on the extension of the
results which are known in the univaniate case (for quadrature rules)

At this class of cubature procedure belong the tensonal product and the boolean-sum

rules

" "Bahey-Bolvar" Unversity, Fuculty of Mathemanes and Computer Sctence, 3400 Clug-Napoca, Romania
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The purpose of this paper 15 to construct some practical cubature formulas with a

spectal emphasis on homogeneous such formulas

1. Let D C R* be a rectangle (D = [ab] x [ed]), Ax. a<x,sx, = =sx,<ba
partttion of the interval [a,d] and Ay. c s 3, s ), 5 sy, s d a partition of [¢,d]

If A f end X are given nformations on f with regard to x respectively y, one
constders the quadrature formulas

I = S d = (@7 N )+ RNHE)
and '

bf = f'df(x.)')dy = (N, )+ (RN, ),
where the quadrature rules ()" and O, are given by

@ )C) =T 40009
respectively
Q1) (x, ) = 2 BOS)(x, ),

with R" and R,” the corresponding remalmder operators, 10 R' = I~ Q' R’ =1'- (/.

It 15 easy to chech the following decomposition of the double integral operator /¥

=007+ (RI"+ "R’ - R} Rl’;) ' O]
and

17 = Q1+ 1707~ Q1 Q7)) + RIRY , RS

The tdentities (1) and (2) generate so called product cubature formula

I = QU QU+ (R + 'R - RUR)) f : )
resp‘ectl vely the boolean-sum cubature formula

I2f = QU1+ Q1" - 07 Q) f+ RIR f : (4
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Example 1 Let A, and X/ be the Lagrange’s functionals (A f=f(x,,»), & f=f(x.)))
and Q," respectively (,” the corresponding trapezoidal rules
@) = 221 +1(b,0)]
() (x, ) = —-[f(x ¢) + f(x,d)]

The formulas (3) and (4), in some supplementary differentiability conditions on f

become

Lbff(x,y)dxdy = -(—111‘1)4—(‘1———0—) [f(a,c) +f(a,d) +f(b,c) +f(b,d)] + R, (f) (5)

with
R,,(f)"" _(b a) J'f(zo)(gl,y)dy (d C)J’j(o:)(xnl)dx_
_(b-ay(d-c) .
Qray ) jon (g, m,)
respectively

-C b

[*[remasdy = Z2[Layy <11y« LE[ 1 7x.0) + Sy o -
(b-a)(d-c) ©)

- "—"‘—T— [f(a:c) +f(a)d) +f(brc) +f(b)d)] +Rs(f)
with

b
R =-L-aVd-c) ran ny,
144

where &, &, &, € [a,5] and m, m,, m, € [cd)]

This way, there are obtained the trapezotwdal product cubature formula (5) and the
trapezoidal boolean-sum cubature (6)

Let p, and g, be the approximation order of (J," respectively Q,”, i e the sup norm
of R*f1s O(|Ax|) and the sup norm of Ry f1s O(|Ay|*), where |Ax| and |Ay| are the
norms of the partition Ax respectively Ay Next, one supposes that |A| = ,IAxl = |Ay| (or
|A] = max {|ax],|Ap{})

From (3) and (4) 1t follows that the approximation orde: of the product formula 1s min
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{p1,9,} while the approximation order of the boolean-sum formula 1s p; + g,

Hence, the boolean-sum cubature rules has the remarkable property regarding 1ts
highest approximation order

Otherwise, the boolean-sum formula contains the simple integrals Ff respectively Pf
But, this simple integrals can be approxtmated, in a second level of approximation, using new
quadrature proceduies

From (4), cne obtains

f= Q0O+ 07 -GN Q7R Y QPR+ RIRT ) S M
where ;" and (;” are the quadrature rules used in the second level of approximation

The quadrature rules ;" and (J,” can be chosen in many ways First of all, it depends
on the given information on the function /

A natural way to choose them 13 such that the approximation order of the intial
boolean-sum formula to be preserved Ii 1s obvious that i1ts approximation order cannot be
increased |

DEFINITION 1 A cubature formula of the form (7) dertved from the boolean-sum
formula (4) which preserves 1ts approximation ordes is called a consistent cubature formula.

Remark 1 The cubature form;ﬂa (7) 1s consistent if the orders p, and ¢, of the
quadrature procedures ;" respectively ()", used n the second level of appioximation,
satisfy the tnequalities p, = p, + g, - |, gz p; + g, - 1

As the approximation order of the boolean-sum cubature cannot be increased, 1t s
preferable to choose the quadiature procedures Q," and Q,” such that each of the remainder
telm.of (7) to have the same order of approximation

DEFINITION 2 A cubature fornmnula, of the form (7), of which each term of the
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remainder has the same order of approximation 1s called a homogeneous cubature formula.
Hence, (7) is a homogeneous cubature formula iff p, = ¢, =p, +q, - 1
A homogeneous cubature formula can be derived from the trapezoidal boolean-sum
cubature (6) for the standard domain D, = [0,h] x {O,A]
THEOREM 1 If f*9, 049 23 & C(D,) then we have the homogeneous formula
jD [£Ceyydedy = ”T [(0,0)+7(h,0)+7(0,h)+f(h,h)]+

3 8
A L0 703 (0,0)+ (S0 - O 0, 1) ®

SOV =749 (h,0) = (S0 + fO0) (b, 1)} +R(S)

with
RO = g [0 G 270 G =10 ) |
Proof For D= D,, formula (6) becomes
[[7 e - 2 U@ Ty + 2 [ 15 5,0) ¢ £ )k -
—7’72[f<o,0>+f(h.0) “f(0.h) +f (h, )]+ R(J)
where

h6
R = - (1,2}
() mf (E.m)
In order to obtain a homogeneous formula, we can use in the second level, the
following quadrature formula
& h h? ’ /
[dr =2 1g(0) + g(h)] + 2= 18" (0) - 8" (W] + R(g)

where

R(g) = 2 g (8)
720 |
and (8) follows
Remark 2 From the trapezoidal boolean-sum formula (6), 1t is alse obtained a
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homogeneous cubature 1f, in the second level of approximation, we use the Simpson’s
quadrature
h h b hs
Bdt = | f(O)+4f[ — |+F(M) |- b
['g® é{f() f(z) f(r)] i/ ®

One obtains the following trapezoidal-Smnpson formula

| lf(x,y)dxdy . -’-’;-{-—;-[f(O,O) L £(0,h) S (h,0)+ f(h,)] +

4 h h h i
4] ) ) o3

h* 11 !
R(A = - L orae w2 orone @0
O = =gz [ 357" @ = 5 10 Eom S0 5 |

Remark 3 Foimula (8) contains the same nodes as the initial one (6), while in the

©

where

trapezoidal-Simpson formule appear new nodes

THEOREM 2 Let fbe a mregrable fimction on D C 8* Then from any boeolean-sum
cubature (4) can be derwved, In a second level of approximation, a hamoge@us cubature
Jormula. _

Proof If mn (4), p, 1s the order of approximation of Q" and g, is the order of
approxinwﬁon of @, then both quadrature rules @, and O,” used In the second level must
have the same order of approximation p, = q, = p, + ¢, - 1

But, 1t 18 know that, for any p € N, there exists a quadrature rule of order p

Remark 4 If r is the degree of exactness of a quadrature procedure () then the

approximation order of (0 18 r+2 [4]

2. The product and boolean-sum cubature formulas can be obtained applying the

integral operator £ to both members of the product respectively boolean-sum nterpolation
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formulas correponding to the function f and t:) the data A;f, i =0,1, ,m and
Nf, J=01, ,n
Such a practical homogeneous cubature is obtained, for example, using the
homogeneous spline interpolation formula generated by hinear and cubic spline operators, i e
=878 +878  -8"8')Yf+(S'R’ + S8R’ + R'R’ ) f . (10)
where S, and S, are linear respectively cubic spline interpolation operators with R, and R, the
corresponding remainder operators

Taking into account that

ED0 = ¥ s' (D81 | an
with -

RO = [‘o,(.)f ()
and

S0 = X8 (08 (2)
with "

(R = [‘o 21" (2)de
where s, and s, are the corresponding linear respectively cubtc cardinal splines, and ¢,
respectively @, are the corresponding Peano’s kernels, we have
THEOREM 3 Let be D ={a,b) x [ed], Ax asx, < .<x, s band Ay cxpy < <
Yo s d I f22, 1%, f € C(D) then
[ 7y deay = S (4B 4B - 4B ) (¥.p)+ R, (f) (3)

vl g
where

4 = jbs"(x)dx, B' = fdﬂ'j(y)dy
Al = f"s,’(x)dx, B = f"s’j(y)dy
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and
IR, (NI = (C, f+Cm S+ Chy N S A ,
with A = |Ax| = |Ay| and C,, flK(a)|dsC fu((z)]d: C, = flK(s)]dstK(t)]dt

(x "S)
2 and so on.

-— 3 n
where K,(s) = b 6S) —E 4,
=]
Proof The cubature formua (13) follows from (10), takuing into account (11) ~ (12)
Remark 5 For the standard domain D, = [0,h] x [0,h] with x, =y, = 0, x, = y, = h/2

and x, = v, = h, one obtains

ﬁ ' L"'f(x,y)dxdy - 13’_ {f(0,0) + f(0,h) + f(h,0) + f(h,h) +
h h h h h h
)] o) ] ) e

9, .. 4
Mt M,,f)iAl

with

IR,(D] 5 - (;_j M+
where |A] = A2

Remark 6 Taking into account that a quadrature formula-cbtained from the natural
spline interpolation formula 18 optinal in sense of Sard 6], the cubature formula (13) has an
optimal character

Such homogeneous cubature formula can be also obtained for a triangular domain Let
us constder the standard triangle

Th={(x,y)€]l?|sz,yzO,x+ysh}

For example, if f€ 5,,(0,0) then the product P of the Lagrange’s operators L,, L,, /.,

defined by

(L) (xy) = 2% y f(0,) +
(L) (x.y) = h ,,fxy F0) +

X f(h-y,)
h-y

Y f(x, h-x)
-x
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(L f)(%,p) = ——f(x+y,0) + L_f(0,¥+p),
x+y xX+y

generates the nterpolation formula

foeyy =2 ‘;‘y £(0,0) + %f(h,o) + %f(O,h) + (RO (x,9) (14)

with
(RN (5,) = ["0y (18010 (5,0)ds + ["@, (3,0 f*2 (0, 0)dt +
+ f}[ L (6,9,8,8) fED (s,8) ddlt
where @y, ¢y, and ¢, are the c(:rrespondmg Peano’s kernels
THEOREM 4 If f€ B (0,0), f29(-,0), f*?(0,") € C[0,h} and
Se e C(1,) then
e - 2LI0.0) + 7(h0) + 1O.M] + RY)
with '
R(f) = =2 700,00 + 7o 0m) - Fo g,
where §,m € [0,h], €, ,n,) €T,
The proof follows from (14) integrating both hands of this formula
Using the homogeneous interpolation formula [6]
J = Gof(0,0) + G, f(h,0) + G, £(0,h) + G 4 (0,0) +
+ G SOV (R,0) + Gy f40(0,h) + Gy £ (0,0) +
* G £0(1,0) + Gy (0,h) + RS,
where

(h=x-y)h*+hx+hy-2x*-2y%)

2 -
G, (¥,¥) = G, (x,y) = X Bh72%)

h3 h3
Gy (x,y) = y[(h—x—y)(zy—‘z):+(h_x)(h*2")], Gy (x,y) = "(h—x),f,h—by)
G ry) = ZCTh) gy o 50X
?? h?
O (eyy = YENBzx-y) o ga sy L XY
X w F) ==
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) h-x-y)(2y-h h-
Go(: (x,p) = yi(h-x-y)(2 :2 ) +xy(h-x)
and

(RN x) = [0y 3,000 (5,0)ds + [, (,3,3) 1% (5,00 s +

i%@mﬂﬂ”@OW+U%@y 5,012 (s, 1) dsds
Th
with @, the conesponding Peano’s kernels, cne obtains a new homogeneous cubature formula

THEOREM 5 [f f € B, (0,0), /@2 (-,0), /" (-,0), f*¥(0, ) € C[0,h]
and f' V€ C(T1,) then we have l

Uf(x,y)a&cdy = _1"2_’0 [ 22/(0,0) + 18£(h,0) + 201 (0,k) + 3hf 0 (0,0) -
~ AhfO0 (h,0) + 3RFOD(0,h) + 3R (0,0) +

+ 2RfCV(h,0) - 5AFCV(0,1)] v R(S)
where

IR = [clreoe.ol = clrev .ol + e hremo, b + clremf]n

with

.1
(’| "56( 5—7 )
c, =L V016

100
C, = _7.;_0.(58—25‘/»)
c o= _1
‘T30

and | is the umform norm.
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REZUMAT. - O schemd aproape explicitli pentru o elasd de ecuatii de evolujle nelinlare,
Lucrarea prezimt3 o schemdl numericll bazath pe tehnica corectlel in spagiul dominant pentry
problemele Cauchy provenind din discretizarea spatiala spectrald a problemelor la mit3 pentru
ecuatil de evolutle neliniare B¢ obfine o imbunitiijire a conditter de stabilitate impuse pasului
de ump de metoda explicitd de bazli fird o cregtere esentialll a volumului de calcul
Let us consider an equation of the type
u,=Lu+f on Qx[0,T], QCR (§)]
with appropniate mtial and boundary value condittons Here we denoted by Z a {nonlmear)
differential operator in space, like
Lu=~u-u +vu_ in—l,l) 2)
with the given function f and the unknown # assumed to be sufficiently smooth for what
follows
When we discretize (1) 1n space by a spectral method, like Chebyshev collocation
method, we define -

. a) N, the cut-off frequency

b) {x,,1=0,N} the set of Gauss-Lobatto collocation ponts x, = cos(1/N), 1=0, N

" “Babey-Bolyat" University, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romanta
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c) {u, 1 = U, N} the set of the N+1 sampled values of u(x) u, = u(x), + = O, N
d) D, the (N+1) x (A+1) matnix giving the set {u/,1 =O,N} of the N+1 sampled
values of the uy (x) (where uy is the Lagrange polynomial approximation of #(x)) from the
set {u,,1 =0, N}
u,’ = ﬁDU w1 =0, N
=0

The discretized collocation formulauon of (1), (2) reads

N N
WD w02, 15, 0) -t OF D, u(x, 1) + £, 1) ®
dt J0 =0

n(x,, 1) = u(x,,1) =0 i=T,N-T
Kwedenote v,(f) = u(x,,1), g ) =f(x,,t), i =T, N-T, the problem (3) will
be wntten in compact matrnix form as follows —
v, =vA vy -veAv+g=f(I,v) 4
where the (N-1) x (A1) matrices A, and A, are
(8, =(D"), 1,)=TN"T, k=1,2 (5)

and we have (cf 1]

-1y
(Al)lj= (x—)x IF’-]-’-]"I,N"I

1 / .
-x (6)
(A), = ———— 1=TN-T
2(1-x7)

It is well known that the spectral radius of the differentiation matrix is Q(N?) [2] and
that only some of the numencal eigenmodes coriespond to some approximations of the
analytical ones, the other nurmerical eigenmodes being of pure numerical ongin, generated by
the discretization procedure itself and by round-off effects Hence, the resulting ordinary
dtfferential system (4) will be suff for moderate and large vaues of N, even for linear partial

cifferenttal equations
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Taking 1nto account the fact that the stiffness character as well as an explieit approach
lead to severe restriction for the time step, the implicit methods seam to be the most fitted
to such problems These implicit techniques atlow us to determin the unknown v at the level
“n+1" by usimg an algebraic system of the type

vy +0BF(L,V) (7
where y is the known term built on the previous "n" level, b 1s the time step white § is a real
constant connected with the choosen method This system must be solved at each step, not
by sumple 1iteration (which fails to converge unless the time step 18 again severely restncted)
but by expensive Newton iteration

In a preltminary paper [3], in the linear case, we proposed to improve the mentioned
imphicit procedure by consitdering an almost fully explicit scheme based on the correction
technique in the dominant space [4] Precisely, a pure tmplicit scheme 18 considered only for
the domunant directions, while the rest of the system 1s explicitely solved In the nonlinear
case, this technique requires the explicit computation of the dominaut eigensystem for each
time level "»n" This can be efficiently performed by an iterative method and homotopies
methods {S] will be used to get suitable tnittal approximations for the dominant spectrum

Let us consider now the nonlinear problem

vl = f(t,v), v(0) =v, vVERY >0 ®)
The correction tn the dominant space technique consists of

a) using a conventional explicit rational method (the basic method) to advance the
solution from £, =1, +udtot,, =¢ + &

Pitl= By ©)
where v 15 an approximation of the exact solution v(r,) For example, let us consider the
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Adams-Bashforth method ~
n+l) o n 3 {(n - 5 n-
gD v“+_ibf(tn,v ) _Z.f(tn_l,v‘ n) (10)

b) computing the dominant eigenststem of the Jacobian

T 2 )

+1?

Note that if AL.,, , Ay, are the eigenvaiues of J  .1» We suppose that there exists
a constant mteger 5, 1 s s « N-1 such that A,,;, ,A’,, are distinct, real and negative and

mml 1] > max li\,,,ll (1)

leius stlaiaN-1

Let =z.,,1=T,N-T be the nght (column) eigenvectors of

J

n+l

and y,.,,, 7 = T,N-T the left (row) cigenvectors of JM ,» corresponding to the
eigenvalues AL,,, AV}, normallzed\accordmg to the following rules

) <Y z> =t 0 =TRT

iy fzif=1, =TT (12)

1ii) the first nonvanishing component of z,,, is positive

iv) ‘z,, denotes the t-th component of 2., and 'Yz’ is a component of 5., with
maximum modulus, then

sgn{ towny } = sgn{ fong ! } =T,N-T,n =01,
Of course, we supposed that 2!, i =T N-T and y., 1 = T;N=T are bases on R*' for
each »

The dominant eigensystem 1s {k 2z y,,} i =T and the domnant space 1s the
space spanned by {z,,', 1= ﬁ}
¢) applying a correction tn the dommant space

p D oy Efgn., (13)

where E,,, 7 =T,5 are the scalar correcnon factors and 7, are approximations of
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z!,, 1 =T, 5, normalized too by the rules (12) Let us suppose that
N-1 N-1
= 2-1: o, iy Faa = /-21 T, Yaei (14)
where o, = 1 + oZe), T, = 1 + o(e) for { =T s and o, = o(e) T, = ofe) for
1=T,5, y=T,N-T,j=iande >0
The best correction factors E7,,, p = T, are
Ea= —<Ph, 7> 4, (1)
where @7, (1) = < §h,, v(#) >, the component of the exact solution v on Z°, The
functions 7., (7) satisfies the Cauchy problems -
Yo (1) = < gy, S, V(1) >
You(r,) = < 9L, v() >
A neighbonng Cauchy problem, whose solution &,,(#) 18 an approximation to ¥,, (¢) is
k) = < gt fl v (k) < 92,00 > )22, ) > as)
kya(8,) = < Py, v >
If we assume that v' = v(¢ ), then one can show that
k() =~ Wha(1,,) = o(®)
If we solve the problem (15) by the Crank-Nicolson method and 1f we ‘shorten the
notation by wrting
#(2) = < g oo (2 o< 52 w0 5 )22, ) > (16) -
we have the followmg‘ non!mear equations for &/, = K%, (¢ )
olhtn) = k2= < yh v > -;[F(rw o) e, < i v > )} =0 (17)

Finally, this system s solved by the following Newton tteration

' %]
[ TR 130 AN T i (k“p”) 18
n+l no s+l nel 6 p > ( )
1 —E < ,.’11,_/;, (t”+1xknp+l)inl:-| >
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for y= 0,1, where kP = 20 (r.,.)

It 1s straightforward to show that the convergence of (18) is essentially dependent on
the rate of change of the eigensystem and not on the stiffness Note that 1n order to evaluate
all a correction factors, s Cauchy problems of the form (15) must be solved, but these s
problems are uncoupled and the 1terations (17) can be performed separately on each of the
s unknowns &), , p=T)5 This ts an unportant feature because of the possibihity of

efficient simplementation in parallel computer arctutecture The smplicitness of Crank~Nicolson

method does not involve us 1n any matrix mverston, only some matrix by vector products are

performed at each time step
Onee convergence of (18) has been achieved, the correction factors are given by

L <P PO >

a+l n+l

p=Ts (19)
In o1der to establish the stabihity of this scheme, let us consider the linear problem

v/ =J v (20)

n+}

In this case the 1teration conveiges in one step and (18) becomes
8 < 5,«"/1] , j’”l ym >

kn{l = knp + 6 (21)
. L= 2 < "ﬁ“ ‘/nﬂ ZNnIil >
If ?)KSH bKN~1 € R, (the region of absolut stabolity of the basic method), we have
a+l’ n+1 d g N ’
1 _E < niilvj'[inl:l > = I"E)-N,:u - 6}\ﬁ.1 o(e)
2 " 2 (22)
ki=<y? v >+ M o(e) where M = {v?f, p=T3
and 5.,
P+ A 1
kloa=<yl,veo> 2 + M"(“M"")O(e)

b h)
L= A 8K, 0(e)  1-22A2, -8M2, 0(e)
It follows that 2 ! 5 10(
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<AL VO > = M, 0(e) + kP = [M, s 2M M 18, o) +
+<yP v > [ where |L| <1 If[Mn

= M tor n =0,1,

AN ALMOST EXPLICIT SCHEME

+

1
yH2M N,

A

1%, ] o(e) =

and p = 0,1, s, this scheme is domtnantly stable i e the restnction that

stability imposes on the ttme step will be essentially those that would arise if the dominant

elgenvalues were not present

As an example, let us consider the problem (1)-(2) (the Burgers equation)

u,=0lu_~wunu+f x&(-1,1)

u{x,0) =0

u(-1,t)y=u(1,1) =0

(23)

where f{x,f) = (1 - ) cos £ + 0 2 sin £ - 2x sin’ £ + 2x° sin’, with the exact solution u(x,7) =

(1-x*) sin ¢

After discretization 1n space by Chebyhev collocation method we have the following

Cauchy problem

v=01Av - voh v +g(l)=F(,v) 24
v(0)=20
The eigenvalues o J = F, for the exact solution v, for N = 8 and for some 7 ale
¢ 0 03 06 09 12 15
N -21 437 -21 659 -22 040 -22 360 -22 583 -22.677
A, -20 160 -19 879 -19 339 -18 811 -18 419 -18 219
Ay 3497 -3 026 -4 148+ ~38524 -3 780+ -3 767x
A, -4 0353 -4 190 =] 1411 +2 2231 +2 9641 +3 281
Ay -2219 -2327 -2 685 -2 597 -2 220+ -2 244+
A -0 987 -1108 -1411 -1792 +0 630i +0 8571
L N -0 247 0411 -0829 -1330 -1 597 -1661

1 2
In this case we have s == 2 and A, , A, are the domsnant eigenvalues
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The computation of the dominant e1gensystem for each # was performed 1n about three
steps (€ = 0 001) by a bi-iteration method /6/ started by the n-1 computed eigensystem An
indication of the rate of change of the dominant etgenvectors is given by the following

numerical values (Tab 1)

Tab 1

t 02 03 04 035 06 0.7

05720 05302 . 04922 0.4380 0.4363 04139

-0 1281 01159 -0 1088 0 0976 00922 -0 0876

00380 00363 00361 00371 00386 00408

2 1-00346 -00389 -0 0442 00500 -0 635 00614

00654 0.0749 00846 00941 0.1026 0 1109

02020 02171 02310 0.2436 02536 -0 2630

07802 0.8061 08263 0.8418 0.8496 0.8368

08428 0 9040 09389 0 9600 0.9702 0.9780

01627 -0 1615 -0 1342 -0 1440 -0 1319 -0,1196

00116 00014 -0 0097 -0 0207 00317 00419

2 00188 002358 00323 0.0381 00439 0.0486

00415 | -0.0417 00417 00413 00422 -6 0421

01276 01049 00868 00719 . 00635 00549

04947 03785 -0 2902 02212 -0 1804 ) 1425

Tab 2
t Vo Vean, <10 t Ve Veoms 10 t v,V %107

02 04l 11 343 45 . 709
03 o8l 13 374 50 697
04 119 1.8 429 57 266
0s 1353 17 446 63 267
06 184 19 4.18 70 v 494
07 219 25 163 73 623
08 256 30 234 7.9 717
09 290 35 392 80 . 703
10 320 40 -5 68 81 677

The correction in the dominant space technique has been used for s = 2, the time step
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AN ALMOST EXPLICIT SCHEME

6 =01, N =8, and the Adams-Bashforth method as basic method The errors for this
example after ahout three Newton tterations are as follows (Tab 2)

The conventional Adams-Bashforth method was also used for 8 = 01 and the
nstability was observed at about 7 = 1

As a final remark, the correction in the dominant space technique 15 an almost explicit
scheme that seams to be a real way to improve the temporal stability criteria associated with
explicit schemes and it could be easily combined with the spectral methods and implemented

on parallel computers
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EFFECTS OF SURFACTANTS ON AN
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REZUMAT. - Efectul surfactaniitor asupra unei piciturl nedeformablle inlfist tn repans.

Curgerea pe suprafan unel pichiturt gl migcarea de translatie a acestuis, datorate usior gradienft

de tensiune suporficlald ce apar pe suprafafa et sunt investigate teoretic pentra o picfiturd

nedeformabild, initial n repaus

Repartitia surfactantului pe suprafaja pickturii este dati prin legi particutare

Din punct de veders matematic s¢ rezolva sisteinul Stokes-Oscen printr-o metod de separare

a variabilelor g1 se face un studiu asimptolic al foriei (comporentelor normald g tangengiall)

ce acjtoneazd asupra picitum

Abstract. The surface flow and the translational motion of a drop cauzed by interfacial
tenston gradtents are theoretically investigated 1n the case of an undeformable drop, mutially
at rest (or at zero gravity) The interfactal tension gradients are induced by injecting the drop
with surfactant The spreading of the surfactant on the interface 1s described by a particular

law A covering degree of the drop by the surfactant 1t 1s found out beginning with which the

drop undeigoes an upward translational motion

Introduction A viscous liquid drop mmmersed 1n an immuscible liquid undergoes

complicated motions, when interfacial tension gradients anse on its surface The theoretical

" "Babes-Boyar” University, Faculty of Mathematics and Computer Science, 5400 Cluj-Napoca, Romana

" Instiute of Alathematics, P O Box 68, 3400 Cuy-Napoca, Romama
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model reported here considers that

- the drop is underformale and initially at rest,

- an interfactal tension gradient 1s established by injecting a droplet of surfactant 1n
a well-determined point on its surface,

- a real surface flow - Marangont fow - anses on the drop surface, with a distinct
front, which advances continously,

- from all possible motions, induced by the surface tension gradients (translation,
fotation, o.scxllations, waves on iis surface, deformation, fisston, etc) we shall take into
a;;count only the transiational motion of the drop,

- the translattional velocity varies with the covering degree of the drop by the
surfactant;

- no surfactant transfer, inside or outstde the drop 15 constdered

1. Governing equations. It will be considered an undefon;lable diop €2, (density p,)
immersed tnto an tmmscible hquid Q, (density p,) If the two liquids, have the same density
f =p,; = p,, the drop is called free and 1s motionless The two hiquids 1nside and outside the
drop (see Fig 1) are Newtonian, incompressible and viscous having the viscostties p, and y,
On the phystcal and chemical aspects of the problem see our previous works [2,8]

On the assumption of undeformability we note the following In the experiments
reported in our works [2, 8] the condition 1s fulfiled that surface tension at the interface

between drop and ambient liquid 1s strong enough to keep 1t approximately spherical against

p U

—_—

any deforming effect of viscous forces This condition (see for example Batchelor [1]) reads & >
a

and expresses that stress due to surface tenston should be large, compared with the nonnal
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n

\ < - 2,
o~ ©
8y i Y

—— Interface

ambient  liguid

Fig 1

sttess due to motion

We must notice that this condition don’t contradict the assertton from [2], "the drop
behaves like a rigid sphere for small interfacial tenston gradient and large viscosity of the
drop" First of all the smailness of the term L:fi 18 given essentially by p, fromU(y, < ¢,).
Mo}eovel, we know only by a qualitative point of view that for large interfacial tension
gradients and 1educed viscosity of the drop, 1t becomes strongly deformed and phenomena of

osctllation or possibly fission inay arise
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Due to the viscous interface the more wiscous fluid from the drop drives the less

i/iscous ambient fluid In [4], the authors state this fact in a suggestive way "high viscosity

'
'

liquds are the victing of the laziness of the high v?scoslty liquids because théy are easy to
f)ust around” |

' Because the drop is initally at rest, wo don’t possess a, characteristib vel;)city U, so
we can take that U = pjap; which permits to consider the Reynolds number Re, = 1 1 the”

system of equations describing the flow of the ambrent fluid (exterior flow) We shall call this
velocity "viscous" velocity Taking that 1nto account as a characteristic one for the flow inside

t

the drop, we’ll obtain

‘ Re = “

w
With the two values of viscosity taken from [8], the Reynolds number corresponding to the
drop ;‘)'hase ranges be;wee;1' 1/80 and 1/40 .
This observations suggested us to couple Oseen’s and Stol\(c':s' equations, the first one
f(;r the ambtent hiquid and the second for the dfop liqmd Taking Canwxan axes fixed relative
to t_he drop and (r, 6, ;b) spherical polar4 cootdinates, with ongin at the centre of the drop, we

denote by €, the interior of the sphere of radius a centered at ongm, and by Q, the

complementary space of @, 1n R’ (see Fig 1) The dimensions of €2, are extremely large

compared with the radius a of Q,

Using subscnp{s 1 and 2 related to quantities assoctated with the drop phase and

ambient fluid (hquid) respectively, we denote by g, = (qr‘,,q;,',) =(u,v,), 1=1,2 the

) ‘1 »

components of velocity, by p,, p,, the tangential and normal compaonents at stress tensot

respectively, and by o the interfacial tenston; ¢ = o(0)

\

The equations goverming the flow considered quasisteady (everf steacji); m Q,) and
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axisymmetric are

\

( 1, Vg, = Vp, ’ 1 m - ' o M)
' vl . -_le2 +_'1.2.'V’qz in Q; C Y )]
9z P P . ' .
C vy =0 : in QU (I=172) ) €)}

The following boundary conditions are considered

. lg,]—0, . ' ' : Co (4) .
"o gl s t;ouxtdcd, . r=0 G | , g o . (5
" Cae e o ©
(Po) = (Poh +’T:.g% rea i - Co ' (7)e
)= (p,,,)',+_23°_ rea - ‘ ) ®)

Since tﬁe liqulq is at rest at infinity we must take condition (4) and because inside the
velocity n;ust be bounded' - condifion (3) i‘he c_ondltlpn (6) expredses &he fautual,
1mpéneiri}billty of the tnterface (r = a) as well as .thc continuity of tangential velocity to the -
su‘rfam;‘ of the drop This last condition follows} from assumption that two 1mmiscible liq’utds
can not sltp over each other because of viscostty

In addiuon to these kinematic conditions there are two boundary dynamic conditions

[ . .

(7) and (8) The first one represents the contimuty of tangential stress on crossing the surface

of drop at any point We added there the term %_‘;% to express the Marangont spreading of

i \ ' - - e
the surfactant Indeed, if we consider that the surface tension of the drop is o, and 1f 1n the

Intersection pomnt of the positive Oz axis (Fig i) with the drop, the interfacial tension is

[
4

lowered to (s, < o) by mjecting a small quentity of a surfactant, an interfactal tension
diffevence o,-05; appears This interfacial tension diffference produces the spreading of the
suifactant on the surface We shall note by 8, the angle chaructenising the position of the front

v

\ LY
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of the invaded region In this region 0<6<8,and the surface tenston vanes at o,<0(8)=q,

The second dynamic condition (8) underlines that at the interface between immuiscible
viscous fluids in motion, the difference between the normal stress at any point of mterface
on the convex side and that on the concave stde 18 the quantity which equals the stress due
to the surface 2a/a, the normal being drawn from the concave to the convex side (the outward
normal, Fig 1)

As for the pressure we have the following conditions p, - m, — 0, r — ® and p, - =,
15 finite everywhere within the drop =, and =, are respectively hydrostatic pressures within
the drop and 1n ambient fluid When the drop 1s suspended at rest tn an immiscible liquid (p,

= g, ; = @,) they satisfy the well known Laplace’s equation

2qg,

J’IZl - Jl'2 =

[
After the start of flow p, and p, represent from the physical point of view
perturbations fiom =, respectively 7, and they are harmonic functions in Q, regpectively £2,

Following {7], for example, we introduce stream functions ¥, and W, in order to

satisfy the equations of continuity (3) by

1 oV, 1.2
cu a0
o= rignG a0
1 dY,
T A TY: R T

The system (1)-(8) will now be written tn dimensionless form We introduce as a
length scale the radws a, as a velocity scale the charactenistic velocity U = py/ap and as
interfacial tension scale the value ¢, With these we have the followitng dimensionless

quantities
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Also we have for dimensionless stream functions
— s o
We_ ', i=1,2
Ua?

In dimenstonless form and using ¥, variables, the equations (1)-(3) become (where the

superscrnpt '~ s dropped)
E'W =0 in Q, ©)
(b’ -Re,_a"?)E'w, “0 ing (10)

where

£y w B B8 8 (1 3()
57 7 50 (e o0

Now let us consider 1n turn boundary conditions (4)-(8) To ensure the asymptotic

condition (4) we take

Y o =o(r?) r—>w (1)
while (6) gives

v, vy, ‘
— e 12
i T (12)

oW, o,

Va3 =1 3
a1 ar ' i @ )

The condition (1 1) shows the fiee streaming relauve to the centre of mass of the drop
It should be noted that the assumption that diop temains sphencal in shape as 1t
translates means that
W=y =0, o= (14)
may be teplaced by
W aW, =0, r=l (15)

The dynamic condition (7) may be rewntten succesively

d v 1y au, Jd v I 9u, 1 g0
e ] gy |y ety Pty | gy +— t=a
& ar(r) I v ol Mol i T
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or, by virtute of (14), in dimenstonless form, reduces to

1 oal1 e, s 19 ow, i-o,/0,
—t —_ e |+ Car s’l, r=1 16
ol [77 7 B el Tl M = x (16)

Here 8, stands for the angle under which the front of surfactant convers the drop, 0

<8,=x 0= 0 s 06, the function o(8) 15 defined by
G, =0,
l—cosBj

50 90/00 = sinB - (0, -0,) /(1 -cos8,), and the dimenstonless number Ca is a measure for the

a(8) = (l-cos@) +a, o) = o, a(a,) =G,

1elative importance of capillary forces to viscous forces Ca = o,/Up, To unify the notations
we have to observe that for proposed "viscous" velocity Ca = VO, Oh =y, /m , being
the Ohnesorge number [3) and more Cu = 1/We, where We is the Weber number {9]

To be ‘scrupulous, we mention that, as 18 well known, the surface tension o usushly
depends on the sealar fields in the system (8 g the electncal field, the temperature field) as
well as on the concentration of foreign matenals on the surface [6] In the present paper we
focus on the variation due to the foreign matenal given by of8), in fact o depending not only
on 0 but on 65 g, and g, 1

The normal stress condition (8) gtves

34, 20

2p, 2 2
), — ——mp - s, r =g
S b e T

which by (14) in dimensionless form, reads

+ 2 v, 2 e, +2C 1 17
. - . - you
i Re r?sing 9raf i PR o an
The conditions (5) and (11) show that sustable forms ¥, and W, are ([7], [10], [9])
W= (4 e Brt)sine,  rs (18)
W, = C(1+cos0) {l*cxp [—_;_(1 —cose)” v D oo r = 1 19)
\ r

Thus there are four constants A, B, C, D to be deteninined, but five condittons (equations) to

be satisfied (15), (13), (16), (17) It must be remembered that, the addittonal boundary
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conditions (15), 1mposed to keep the drop underformable, have replaced the boundary
condition (12), and they are not one of the conditions (6)-(8) imposed purely by the

kinematics and dynamics of the problem

2. Results and discugsions We must observe the fact that 1n imposing the condition
of the tangential stress on the surface of drop, we cannot satisfy the equation (16) exactly (the
first term on the right hand side), but it can be satiesfied to ((1) in Re, It means that the
couphing between exterior flow (the solution of Ossen’s equation) and interior flow (the
solution of Stokes’equation) ts realized only appioximativelly A similar observation is valid
for the boundary condition ¥, = 0 and for the right hand side of (13),

So, on solving the equattons given by (15), (13), (16) we obtain
 Cah(a,8) '

| = - , B=~4, C=-24, D=A 20
B 1/ XY/ ! : @0
1-a,/o
where for the sake of brevity, we have noted Y TN
| 1y, we have noted y—g, ~ %)

’
For some values of parameters Ke,, 8; Ca eic we give in Fig 2 the streamlines for the flow

within the drop (¥, = const = 0) and 1n the ambient liqud (¥, = const = Q)

We observe that because of the aproximativelly imposed boundary conditions (see
above), the extertor streamhines présent & detachment (¢, = 0 for » > 1) from the surface of
drop As concern the interior streamhines is observad that they "start” only for s § > 0, which
depends on the constants taken into account This fact 15 explained by the fimte dimension
of the surfactant droplet, injected in the north pole of the diop

The expressions of tangential velocities on the surface of drop as hmits of intenor and

extertor flows respectively are
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v, = -24sin8, 0<8x8, - T @y
v, = —Asinb {cxp[_;.(cosﬁ—l)}ﬂ}, 0<08s8 ' 2

For some values of parameters in Fig 3 are plotted tholvclfx:itics w, on tho susfaoe of
the drop corresponding to 8, on x axe The differences between the values of \v,}amii W i"or the
same 8 are due to the approximativelly imposed boundary conditions SR

For a given 0, the velocity of front of surfactant become. :

v, = - Asing, {exp -;_(cosef— P?]*l }

The pressure p, within the drop 1s

A
-2
A

1

rcost

so in the centre of mass of the drap acts only the hydrostatxc pressure w,
With the condition for normal stress (17), not used in the computation of spectrum of

flow, and »yxth Di, we can‘ determine the value of p, on the surface of the drop. - -

®
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The foree acting on the drop may be calculated from the general expressmnl of force

’ . -
'

’ [6], which gives in this case
b = 2na ’Le' [ (P.,),co80 - (p,,), sind ]smﬂ -do,

where (p,.), and (), are the normal and tangential components of the viscous stress tensor

»

corresponding to the extertor flow We have respectively

2 du,

| S S
Re,. ar

(I’r, )z = =5

¢

1 1 du, v,
= —_— '__ +.__ -
(Pro)s Re, [ r 88 ar r

1

The notmal component of force I per unit of area; has the following expression

o . . . . N
°

123,
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8R
Foe2nCall-ny-
" 3 13Re, +12
, (23)
i a
y 1 '
+2nCa(Kcosﬁj—l)(l +cosej), A= -

1]

( 1+ cosﬁpcos’ Bj) +

Using the asymptoué expansion of the function 1/(1 + &) when & — o,, for the coefflcient
A with e = Re,, we may have simply an asymptatic representation for F,

Fischer, Hsiao and Wendland 1n [3] obtain an asymptotic representation for the force
exerted on a ngid obstacle by the fluid This representation has the form F = 4, + 4Re +
ORe® In Re™) as the Reynolds number Re-;o+ and 15 essentially differenit to ours by the
factor in Re™

From (23) it is observed that the normal (and tangential) component of foree acting
on the drop, depends direct proporiionally on Ca i ‘

As a final observation, we have to undertine that the tepfwcng;iﬂon (23) hudes the’
dependence of £, on Re, = 1 ‘

The assumption that the drop 1s undeformable seem to be too restrictive.

Re
A 1120 1/40 1/60 1/80
1720 165° 168° e | ame
1110 167° 171 7 | 1
35/102 169° 173° 114° u 175°
3/5 e | 1rs 176° T

Table 1
In fact there are some other effects (see Fig 6 from [2]), so we'cor;s‘ider that the force
corresponding to F, < 0 1s consumed for other type of movqmer'xts except transjation The

propulsive (hfting) force, £, > 0, responsible for the upward movement of the drop appears
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4

only when the covering of the drop with surfactant is greater than x/2 However this aspect
is only in a qualitative agreement with our previous experimental data {8] From Table 1
results that the smaller the ratio A is the smaller 8, for which £, > 0 will be. So, 1t is clear
that, for A —> O the obtamned values of 8, begtnning wttt; a lifiing force appears, tends to thoss
obtained experimentally A more clear judgement will be provided considering the shape of

drop deformable and, of course, the flow unsteady

Cancluding Remarks Perhaps, it v«(ould be of some interest to take for characteristic
veloctty U the experimantal values from our works [2] and (8] That mighi be the aym of 3
future work -

However, the aspect of our results, the spectra of flows inside and outside of —the drop,
the existence of the lifting force, as well as the asymptotic representation of force exerted on
the drop by ambient ixquid due to the variation o - o, are n good qualitative accordance with
experimental results The quesiion of quantitative accordance remain open from both side
theoretical and experimental It 1s very likely that the results presented in this paper would
be 1mproved if the differential system (1) - (8) were solved by a numernical method, e g a
spectral‘ method "I:his could also make the topic for a future work

" An asymptotic analysis in the spirit of [5] in the assumption of deformability of the
drop is almost finished There, all the quantities founci in this work, stream functions,
pressuies, etc will play the role of the first approximations

However, 1t seems that only by the use of some nonlimear terms (all possible} m
victnittes of the surface of the diop inside and outside [5 | one could solve some discrepances

between theory and expenments
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’ Y 1)""D“‘/1 (ruDu, D4 :)+g(xu) f

lajs & !

resp ‘ ’ ,
| k( 1)"D“A (x,u Du, ,D%) +g,(x,u) f im 1, ,m u '(“1.: ,u‘,)
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2
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