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ANTAL BEGE

divisors are 1 and p¥ except if y = 3 or 6; those of p® are

1,p,p? and p*; and those of p® are 1,p?,p* and pb. In this paper

we introduced some functions related to triunitary divisors and

we established some properties.

We write d|,n,d|,n and d|;n if d unitary divisor of n,d bi-

unitary divisor of n and 4 triunitary divisor of n respectively.

2. Functions of triunitary divisors. Let u(n) the Mobius

function and u*(n) = Ky (n) the unitary analogue of u(n):

1 if n=1
p(n) =1 (-1)* if n=p,p,...Dp,
0 otherwise

(n) 1 if n=1
p,n) = (_1) a +azt. .. va, if I]=p;1. . .p‘:u
We define the function p(n) in the following way:

DEFINITION 1.

i if n=1

o {5 sl

(=1)#"n if m1

It is easy to observe that the function Bo(n)
multiplicative function.

If n 2 1 we have:

1 1if n=1

d) =
;;u( ) {0 if m>1

and for u"(n):

LEMMA 1 ([3]), LEMMA 2.4).

is

a









TRIUNITARY DIVISOR FUNCTIONS

Proof. We have

2;1,;,'@)-5;(_3) = %;.;,(d)-‘% £(8) = er,n W, (d) £(8) =

= z_j £(8): Y, wy(d = £(n)
= dla%

by Theorem 1. Conversely:

=;g(6)°

by Theorem 1.

for

4.

S.

DEFINITION 2. For n 2 1:
¢,(n) = ; py(d) -8
2n

COROLLARY 2. If n 2 1 we have

;;tp,(d) =1

Proof. The Corollary follow by Definition 2 and Theorem 2

f(n) = ¢(n) and g(n) = n.
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REZUMAT. -~ Proprietk{i de separare locall in categorii ale
spatiilor de convergent¥. In lucrare sint date caracterizliiri ale
proprietiitilor de separare T,, T,, PreT, gi T, in categorii
topologice ale unor spatii de convergen;i o] serio de relatii
intre aceste proprietidti sint de asemenea studiate.

Abstract. In this paper, an explicit characterization of
each of the separation properties T,, T,, PreT,, and T, at a
point is given in the topological categories of (Local) Filter
Convergence Spaces, Limit Spaces, Pseudotopological Spaces,and
Pretopological Spaces. Moreover, speciffic relationéhips that
arise among the various T,, PreT,, and T, structures are examined

in these categories.

Introduction. In [1], various generalizations of the
separation propertieé are defined for an arbitrary topological
category over Sets, the category of sets. These generalizations
are given at a point i.e. locally, then they are generalized to
point free definitions by using the generic element, [6] p. 39,
method of topos theory. One of the other use of local separation
properties is to define the notion of cloged subsets of an object
of a topological category which is studied in [1].

General results, involving relationships among these

generalized separation properties at a point as well as

interrelationships among their various forms will be established

- . . .
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MEHMET BARAN and HUSEYIN ALTINDIS

in a subsequent paper.

One of the separation properties, namely Pre T3[1], has
already appeared in ([5] as a generalized Hausdorff condition
arising in the study of gJgeometric realization functors that
preserve finite limits. Furthermore, some of our T, structures

(52,14) have appeared in (9] under the name of %“Hausdorff
convergence spaces" in the case of local filter convergence
spaces, limit spaces, pseudo  topological spaces, and
pretopological spaces. Also, our ﬁ; has appeared in [11] under
the name of "T, objects" in the above categories.

In this paper, we give explicit characterizations of the
generalized separation properties at a point as well as we
examine the specific relationships that arise betweed the various
forms of "T,, PreT,", and "T," structures in these categories.

Let E be a category and Sets be the category of sets. A
functor U:E -+ Sets is said to be concrete if it is faithful (i.e
U is mono on hom sets) and amnestic (i.e if U(f) = id and f is
an isomorphism then f = id). The functor U is said to be
topological if it is concrete, has small (i.e sets) fibers, and
for which every U—squrce has an initial lift or, equivalently,
for which every U-sink has a final lift (4] p.125 or [8] p. 279.

Let A be a set and X be a function on A whose value K(a) at
each a in A is a set of nonempty filters on A.

1.1. DEFINITION. A pair (A,K) is said to be a Filter
Convergence Space if for each a in A.

1. [a) belongs to K(a), where [a] = {B c A / a is in B}.

2. If a and B are filters on A and a < B, then B € X(a) if

10



-

LOCAL SEPARATION PROPERTIES

a € K(a). A morphism (A,X) - (B,L) is a function f : A = B such
that fa ¢ L(f(a)) if a € K(a), where fa denotes the filter
{U|U ¢ B and U > £(C) for some C € a}. We denote by FCO, the
category so formed. See (10] p. 354.

1.2 DEFINITION. A Filter Convergence Space (A,K) is said to
be a Local Filter Convergence Space if a N [a] belongs to K(a)
whenever o belongs to K(a), {9] p. 1374, a Limit Space if a N B
belongs to K(a) whenever a and # do, ([9] p. 1374, a
Pseudotopological Space if a filter a belongs to K(a) whenever
all the ultrafilters containing a belongs to K(a), (9] p. 1374,
Pretopological Space if the intersections, N,, of all filters in
K(a) belongs to K(a), [9]. These spaces are the objects of the
full subcategories, LFCO, Lim, PsT, and PrT, of FCO.

1.3. The discrete structure (A,K) on A in FCcO, LFCO, Lim,
PsT, PrT is given by K(a) = {[a], PA = [¢]} for all a in A. See
(7] p. 528.

1.4. A source {f; : (A,K) - (A;K;) 1 € I} is an initial
lift in Fco, LFCO, Lim, PsT, PrT, if and only if a € K(a)
precisely when f;a ¢ K;(f;(a)) for all i in I. See [9] p. 1374.

1.5. An epi sink {i;,1i, : (A,K) = (A},K;)} is final in FcoO
and LFCO iff for each a, in A;, a € K;(a;) implies there exists
a in A and B8 in K(a) such that for some k = 1,2, ia = a, and
1,8 c a. These are special cases of [9] p. 1375.

1.6. An epi sink {i,,i, : (A,K) - (AVPA,KI)}, where Ava is
a wedge and 1,,i, denote the canonocal injections, in Lim is
final iff for each a » p in AVPA, a ¢ K,(a) implies there exists

b in A and 8 in K(b) such that i,b = a and 1,8 c a for some k =

11
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=1,2. For a = p, a € K;(p) implies there exist 8, y in K(p) such
that i;8 N i,y ¢ a. These are special cases of [9] p. 1375.

1.7. An epi sink (i,,i, : (A,K) = (A;,K;)} in PsT is final
if for each a in A; and each ultrafilter a on A, a € K,(a)
implies a = 1,8 for K = 1,2 (an ultrafilter a € K; implies a ;
= 1,8 for some ultrafilter B8 in K and some k = 1,2). These are
special cases of [9] p. 1376.

1.8. An epi sink {i,,i, : (A,K) - (AVPA,KI)} in PrT is final
iff for each a # p in AVPA, @ € K,(a) implies there exists b in
A and N, in K(b) such that i N, ¢ a and i,(b) = a or some k =
= 1,2. For a = p, a € K;(p) implies there exists N, in K(p) such
that 1;N, N i,N, < a. It is easy to see that these are a
generalization of quotient maps in PrT given in (9]. |

Let X be a set and p a point in X._Let}xvpx be the wedge
product of X with itself, i.e. two distinct copies of X
identified at the point p. A point x in XVPX will be,denoted‘py
X1(xy) if x is in the first (resp. second) component of prx. Let
X2 = X x X be the cartesian product of X with itself.

1.9. DEFINITION. The principal p axis map, Ay prx - X2 ig
defined by A,(x;) = (x,,p) and A (xy) = (p,Xy) .

1.10. DEFINITION. The skgwed p axis bap, Sp: prx g kz is
defined by S,(x;) = (x;,X;) and S,(x3) = (p,X;).

1.11. DEFINITION. The fold map at p, Vot xVPx ~ X is given
by V;(xi) = x for 1 = 1,2.

Let U : E -~ Sets be a topological functor, X an object in
E, and p a point in UXx = B.

1.12. DEFINITIONS.

12



LOCAL SEPARATION PROPERTIES

1. X is T, at p iff the initial 1it of the U-source {3,
: BVPB -~ U(x?) =B% and V, : BVPB - UDB = B} is discrete, where
DB is a discrete structure on B.

2. X is T, at p iff the initial lift of the U source {id :

BVPB -+ U(XVPX) = vaB and Vp : BVPB - UDB = B} is discrete,

vhere vax is the wedge in E i.e. the final 1lift of the U-sink
{i;, i, + UX = B =~ BVPB} where 1,,i, denote the canonical
injections.

3. X is PreT, at p iff teh initial lift of the U-source {S,
: BVPB - U(X?) = B2} and the initial 1ift of the U-source
{A, BVPB -+ U(X?) = B?} agree.

4. X is T; at p iff the initial 1ift of the U-source {Sp ¢
: BVPB - U(x?) = B? and v, : BVPB - UDB = B} is discrete.

5. X is PreT; at p iff the initial 1ift of the U-source
{sp : BVPB -+ U(X%) = B2 and the final lift of the U-sink {i,,i,:
s UX =B —~ BVpB} agree.

6. X is T, at p iff X is T, at p and PreT, at p.

7. X is Tj at p iff X is T, at p and PreT, at p [1] p. 15 and 16.

1.13 Remark. We define pIIPZle by 1 +p, p+1, 1 + 1 :
: BVPB -+ B, respectively where 1 : B - B is the identity map, p:
: B~ B is constant map at p, and w; : B2 - B is the projection
i=1,2. Note that mA, = py = M,Sp, MA, = Py, MyS, = Vp'

1.14 COROLLARY. Let a;, I = 1,2,3 be proper filters on B.
If 0 = p{lalupgiaqu“1a3,then o is a proper filter iff either (a)
a; < [p] and a; U a3 1s proper or (b) a;, < [(p) and a, U a; is
proper (2) p. 95.

1.15 THEOREM. Let a;, i = 1,2,3 be proper filter on B. There

13
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exists a proper filter o on BVPB such that p,0 = a,, p,0 = a,,

and Vo = ay iff

1. if (a) of 1.14 fails, then a; = a3 and a; = [p]
2. If (b) of 1.14 fails, then a, = ay and a, = [p].
3. If neither (a) nor (b) of 1.14 fails, then a; N a; =

= a3 N [p) [2] p. 96.

1.16 THEOREM. Let «, and aj; be proper filters on B. there

exists a proper filter o on BVPB such that p,0 = a; and Vo = a,

irf

1. If a; v a3 is improper, then a;, = [p] and p,0 = a,.

2. If a; ¢ [p), then a; = a3 and p,0 = [p].

3. If a; < [p] and a; v a3 is proper, then .a; > a3 N [p] and
P20 = a3 N [p].

Proof. [(2)] p. 105.

2. BSeparation Properties at p. In this section, we give

explicit characterizations of the generalized separation

properties at p for the topological categories of FCO, LFCO, Lim,

bsT,

at p

at p

at p.

and PrT.

2.1 THEOREM. X = (B,K) in FCO, LFCO, Lim, PST, or PrT isT,
iff rfor each x » p{x] € K(p) or [p] € K(x) [3].

2.2 THEOREM. X = (B,K) in FCO, LFCO, Lim, PsT, or PrT is T,
iff for each x » p [x] € K(p) and (p] € K(x) [3].

2.3 THEOREM. All objects in FcO, LFCcO, Lim, PsT, PrT are]ﬁ

Proof. X = (B,K) isIﬁ at p means for any o and z in the

wedge, o > 1,0,, some 0, € K(x) with i, = z for k = 1,2 and

14



LOCAL SEPARATION PROPERTIES

Vo = [x) or [¢]) iff o = [z] or [¢]). If o > i,o0, for some 0, €
K(x) and Vo = [x] or ([¢], then if follows easily that o =
((x,p)}, [(P,X)], (@) Oor 0 > [(x,pP)] v (P,X)]. Since ¢ > i,0, for
some

6, € K(x), it follows that ¢ = [(x,p)] or ([¢]. Similarly if

o > 1,0, for some o, € K(x), then 0 = [(p,x)] or [¢] since
i(x) = (p,x). If 0 > i,0, or i;0, N i,0, (in the case of Lim,
PsT, or PrT, 1.6, 1.7, 1.8) for some g¢,,0, € K(p), 1,(p) = (p,p),
k =1o0r 2, and Vo = [p] or {¢], then it follows that ¢ = [(p,p)]
or [¢]. Hence X is T at p.

2.4 THEOREM. X = (B,K) 1is Prefz at p iff for each x in B,
condition (1) holds for X if X is Lim, PsT, or PrT and conditions
(1) and (2) hold for X in LFCO, and conditions (1), (2), and (3)
hold for X if X 1s in FCO, where the conditions are:

1. If K(x) N K(p) * {[¢]}, then K(x) = K(p).

2. Kp(x) = {a|a c [{p) and a € K(x)} is closed under finite

intersection i.e. if a,B € K(x) and a < [p}, B c [p]l,
then a N B € K(x).

3. For any a € Kp(p) and B € K(p) if a v B is proper and
BN [p)] €< a, then B N [p] € K(p).

Proof. Suppose X is Prefg at p i.e for any filter o and any
point z in the wedge, if p,0 € K(p;z), then p,0 € K(p,z) iff
Vo ¢ K(Vz) (1.4, and 1.13). Assume that x = p and K(x) N K(p) »
* {[#]}. We show that K(x) = K(p). To show K(x) < K(p), let B ¢
€ K(x). If B is improper, then B8 € K(p). Assume B is.proper.
Since K(x) N K(p) * {[¢)}, there exists a in K(x) N K(p) such

that a » [¢#]. We consider two cases foe a: namely a < [p] and

15
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a ¢ [p].
case 1. If a < [p), then [p] € K(x) (since a € K(x)). In

1.15, let a; = [(p} and a, = B = a;. Note that a; < [p] and e, v
v a; = B is proper. further, if a; v a; = [p] v B is improper,
then by 1.15 (1), there exists a proper filter o on the wedge
such that p;0 = a; = [p], p0 = a; = B = a3 = Vo. Now p,0 =

= [(p) € K(x) and Vo = B € K(x). Since X is Pref; at p, it
follows that p,0 = 8 € K(p). If a; v ay = [p] v B is proper, then
B c (p). Note that a; N a, = [p] N B = 8 = a3 N [p}. Hence by
1.15 (3), there exists a proper filter o on the wedge such that
pyo = a; = (p), and p,0 = a;, = B = a; = Vo, and consequently pPy0
=B € K(p) (since X is Pref; at p).

case 2. If a ¢ (p), then in 1.15, let a, = a = a3 and a, =
= (p). Note that a, < [p], @; v ay = a is proper and «; ¢« [p].
Hence by 1.15 (2), there exists a proper filter ¢ on the wedge
such that p;o0 = a; = a = a3 = Vo and p,0 = a, = [p]. Since p,o0 =
= a € K(p) and Vo = a € K(x), it follows that p,a = [p]) € K(x)
(since X is Pref;at p) and consequently the proof follows as in
the first case. Hence K(x) < K(p).

We next show that K(p) < XK(x). Let B € K(p). If B is
improper, then B € K(xf. Assume that B is proper. K(x) N K(p) +
* {[(¢]} implies that there exists a in K(x) N K(p) such that
a *» [¢). We consider two cases for a again: namely a < [p] and
a ¢ (p].

Case 1. If a < [p), then [p] € K(x) (since a € K(x)). In
1.15, take a; = (p) and @, = B = a;. Note that a; < [(p) and a, v

U a3 = B is proper. Furthei if @; U a3 = (p] u B is improper,

16



LOCAL SEPARATION PROPERTIES

then by 1.15 (1), there exists a proper filter o on the wedge
such that p,0 = a; = [p] and p,0 = a, = B = a3 = Vo. Since p;o =
= (p] € K(x) and p,0 = B8 € K(p), it follows that Vo = B € K(x)
i.e. B € K(x). If a; U a3 = [(p] u B is proper, (then in
particular B < [p]). Note that a; N a, = [p] N B =8 = a3 N [p].
Hence by 1.15 (3), there exists a proper filter ¢ on the wedge
such that p;0 = a; = [p]} and p,0 = a;, = B = a3 = Vo. Since p;o0 =
= [(p] € K(x) and p,0 = B € K(p), it follows that Vo = B € K(x)
(since X is PreT,at p).

case 2. If a ¢ [p], then in 1.15, let a; = @ = a3, a, = [p]
and note that a, < [p), a; v @3 = a is proper and a, U a3 =
= [p] v ¢ is improper (since a ¢ (p]). Hence by 1.15 (2), there
exists a proper filter o on the wedge such that p;0 = a; = a =
= a3 = Vo and p,0 = a, = [p]. Since a € K(x) N K(p) i.e. p,o € €
K(p) and Vo = a € K(x), it follows that p,o0 = [p] € K(x) (since
X is Prefg at p) and the proof follows as in case 1. Therefore
K(p) < K(x).

If x = p, then K(x) N K(p) = K(p) * {[¢]} since [p] € K(p)
and clearly X(x) = K(p). This shows condition (1) holds.

We next show that condition (2) holds i.e Ky (x) is closed
under finite intersection i.e if «,B € K(x) and ¢, B c [p], then
@ N B e K(x). Assume that x # p. Since a € K(x) and a < {p],
[p) € K(x) N K(p) and as a consequence of condition (1) holding,
K(x) = K(p). If a3 = a, @; = B and a3 = a N B, then a; U ay = a
and a, v a3 = B are proper, ay, ay < [p], ay N a; = a N B and
@3 N [p] = a N B (since a N B < [p)) and consequently a; N oa, =

= a3 N [p]. Hence by 1.15 (3) there exists a proper filter ¢ on

17
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the wedge such that p,0 = a; = a, p,6 = a, = 8 and Vo = a3 = a n
N 8. Since p,0 = a € K(x) and p,0 = B € K(p) = K(x), it follows
that Vo = a N B € K(x) (since X is Pref; at p). Hence a N B ¢
€ Kb(x). Suppose now that x = p. If «,B € Kp(p), then clearly
a N B c [p]. It remains to be shown that «a N B ¢ K(p). If a, =
= a, a, = B and a3 = a N B in 1.15, then a,,a, < [p], a; U a3 =
= o and a, U a3 = B are proper, and a; N a, = a N B = a; N [p]
(since a N B c [p]). Hence by 1.15 (3) there exists a proper
filter o on the wedge such that po =a, p,o =8, and Vo = a N 8.
Since p,0 = a € K(p) and p,0 = B € K(p), it follows that Vo =
=a NP € K(p) (since X is Pref;at p). Thus a N B € K (p). This
shows condition (2) holds.

Finally, we show that (3) holds i.e. for any a ¢ Kp(p) and
B € K(p) if a u B is proper and B N {p] < a, then B N {p]) € K(p).
If ay = a, ay = B N (p], and a3 = B in 1.15, then a,,a, < [p],
@ vay = a u B, and o, v a3 = B are proper (the former by the
assumption). Further, since a; N a, = a N (B N [p]) = B8 N[p]
(B N (p) ¢ a by the assumption) and a3 N [p) = B N [p], it
follows that «; N a; = a3 N [p]. Hence by 1.15 (3), there exists
a proper filter o on the wedge such that p,0 = a, po =8 N [p],
and Vo = B. Sinée P10 = a € K(p) and Vo = B ¢ K(p), it follows
that p,0 = B N [p) € K(p) (since X is Pref; at p). This shows
condition (3) holds.

To prove the converse, we must show that X is Prefg at p
i.e. by 1.4 and 1;13, for any filter o0 on the wedge and any point
z in the wedge, if p,0 € K(p,z), then pzd € K(py,z) 1iff Vo ¢

K(Vz), if (1) holds when X is in Lim, PsT, or PrT, and if (1) and

18 -



LOCAL SEPARATION PROPERTIES

(2) hold when X is in LFCO, and if (1), (2), and (3) hold when
X is in FCO. we begin by showing that for any filter ¢ on the
wedge and any point z in the wedge if p;0 € K(p,z) and Vo ¢
K(Vz), then p,0 € K(p,z). There are three possibilities for z:
namely z = (x,p), (p,x), and (p,p), we first assume z = (x,p).
If o is improper, then clearly p,0 € K(p). If o is proper, then
we have p;0 € K(x) and Vo € K(x). We are now applying theorem
1.15 with @; = p;0, a; = p,6, and a3 = Vo. In case 1 of theorem
1.15, p,0 = Vo and p,o0 = [p] and consequently p,0 € K(p). In case
2 of theorem 1.15, p,0 = [p] and p,0 = Vo, and consequently p,o=
=[p] € K(x) N K(p). Hence from the assumption, we get K(x) = K(p)
and consequently p,0 € K(p) = K(x) (since Vo € K(x) and Vo =
py0) . In case 3 of theorem 1.15, p;0 N p,0 = Vo N [p]. Since p;o
c (p] and p;o € K(x), it follows that [p] € K(x) N K(p) and
consequently by assumption (1) K(x) = K(p). If further X is in
LFCO, Lim, PsT, or PrT, Ry,PrT, then Vo N [p] € K(p) = K(x) since
Vo € K(x) = X(p) and consequently P10 N p,o € K(p). Hence it
follows that p,o0 ¢ K(p). If X is in FCO, then let a = p;0 and 8
= Vo. Note that a € Kp(p), B e K(p), a u B = pyo u Vo is proper
and B N {p) = Vo N [p] < p;0 = a. Hence from assumption (3) we
have 8 N [p] € K(p) and consequently p,0 € K(p) (since-B N [p]
€ p,0). We next assume z = (p,x) with x # p. Now p,0 € K(p) and
Vo € K(x). We show that b,0 € K(x). We again apply theorem 1.15
with o, = pi0, a; = p,0, and a; = Vo. In case 1 of theorem 1.15,
p,0 = [p] and Vo = p,0, and consequently pio0 € K(x) N K(p)}. Hence
by assumption (1), K(x) = K(p) and consequently p,0 = [p] € K(p)

= K(x). In case 2 of theorem 1.15, py,0 = [p] and p,0 = Vo and
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consequently p,0 € K(x) since Vo € K(x). In case 3 of theorem
1.15, p,0 N p,o= = Vo N [p]. We have p;o u Vo is proper and is in
K(x) n K(p), and thus, by assumption (1), XK(x) = K(p).

If X is in LFCO, Lim, PsT, PrT, then p,o > (Vo N [p]) €
€ K(p) = K(x) (since Vo € K(p) = K(x)) and consequently p,o €
€ K(x). If X is in FCO, then let a = p,c and B = Vo. Note that
a € Kp(p), B € K(p), a uB = p,ou Vo is proper (since case 3 of
1.15 holds) and 8 N [p] < p;0 = a. Hence by assumption (3) 8 N
N [p] € K(p) = K(x) and consequently p,0 € K(x) (since B8 N [p]c
c p,0). Finally we assume z = (p,p). Then we have p,0 € K(p) and
Vo ¢ K(p). We must show that p,0 € K(p). We again apply theorem
1.15 with ay = p,o, a, = p,0, and a; = Vo. In case 1 of theorenm
1.15, we have p,0 = (p] and Vo = p,0, and consequently p,o €
€ K(p). In case 2 of theorem 1.15, p,0 = [p] and Vo = p,0. Hence

P,0 € K(p) since Vo € K(p). In case 3 of theorem 1.15, P1@ N pyo=

Vo n {p}. If X is in LFCO, Lim, PsT, or PrT, then p,6 > (Vo N
N [pl) € K(p) (since Vo € K(p)) and consequently pyo € K(p). If
X is in FCO, then let a = p;0 and B = Vo. Note that a € Kp(p),
B € K(p), @« v B = pjo v Vo is proper, and B N [p) c p,0 = a.
Hence by assumption (3), B N (p] € K(p) and consequently since
b0 2 8 N [p], po € K(p).

We next show that for any filter o on the wedge and any
point z in the wedge if p,0 € K(p,;z) and P20 € K(py,z), then Vo ¢
€ K(Vz). If o is improper, then clearly Vo € K(Vz). We may assume
o is proper. There are three possibilities for the point z:
namely (x,p), (p,X) and (p,p). We first assume z = (x,p) with

¥ » p. Hence p,0 € K(x) and p,0 ¢ K(p) and we must show that
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Vo € K(x). To this end, we apply theorem 1.15 with «; = p,o,

a; = p,o and aj= Vo. In case 1 of 1.15, p,0 = [p] and p;o = Vo
and consequently Vo € K(x). In case 2 of 1.15, p,o0 = [p] and
p,0 = Vo. Hence pyjo = [p] € K(x) N K(p) and thus, by assumption
(1) K(x) = K(p). Consequently, Vo ¢ K(x) (since p,0 € K(p) = K(x)
and p,0 = Vo). In case 3 of 1.15, p;0 N pyo = Vo N [p]. Since
p;o € K(x) and p,o0 < (p], [p] € K(x) and thus from assumption (1)
K(x) = K(p) and consequently if X is in Lim, PsT, or PrT, then
Vo > (pyo N pyo) € K(p) = K(x) and thus Vo ¢ K(x). If X is in FCO
or LFCO, then by assumption (2) p;0 N p,o ¢ Kp(x) (since p,0, pyo
c {p) and p,0, p,0 are in K(x) = K(p)) and consequently Vo ¢

€ K(x). We next assume that z = (p,x), x #» p. Then p,0 € K(p),
p,0 € K(x), and we must show that Vo ¢ K(x). To show this we
apply 1.15 with &y = p;0, a, = p,0, and a3 = Vo. In case 1 of
1.15, we have p,0 = (p)] and p,0 = Vo. Since p,0 € K(x) and p,o =
= [p], it follows from assumption (1) that K(x) = K(p). Hence
Vo € K(x) because p,0 = Vo, and p,0 € K(p) = K(x). In case 2 of
1.15, pyo = [p} and p,0 = Vo, and consequently Vo € K(x). In case
3 of 1.15, we have p,0 N p,0 = Vo N [p]. Now p,o0 < [p)] and p,o ¢
€ K(x) and thus by assumption (1), K(x) = K(p) and consequently
further, if X is in Lim, PsT, or PrT, then Vo > (P10 N p,o) €

€ K(p) = K(x) and consequently Vo € K(x). If X is in FCO or LFCO,
then by assumption (2), P10 N pyo € Kp(x) since p,0, p,0 < [p]

and p,0, p,0 are in K(x) = K(p). Hence Vo € K(x). Finally, if z=

(p,p), then pjo € K(p) and P20 € K(p). We must show that Vo ¢
€ K(p). To this end, we apply 1.15 with a; = p,0, a, = p,0, and

@3 = Vo. In case 1 of 1.15, p,0 = [p] and p;0 = Vo. Hence Vo ¢
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€ K(p). In case 2 of 1.15, we have po = {p) and pyo0 = Vo and,
thus Vo € K(p). In case 3 of 1.15, we have p,;0 N p,o = Vo N (p]
and if X is in Lim, PsT, or PrT, then p,0 N p,0 € K(p) and
consequently Vo € K(p). If X is in FCO or LFCO, then by
assumption (2) p,0 N py,0 € Kp(p) since p,0, p,0 < {p] and p,0, p,0
are in K(p), and consequenﬁly Vo € K(p). This completes the
proof.

2.5 THEOREM. X = (B,K) is PreT; at p iff condition (1)
holds for X when X is in Lim, PsT or PrT and conditions (1) and
(2) hold for X when X is in FCO or LFCO, where the conditions
are: (1) for each x # p, K(x) N K(p) = {{¢]} and (2) Kb(p) =
= {(p)}.

Proof. Suppose X is PTeTg at p i.e. by 1.4, 1.13, 1.5, and
definition 1.12 for any filter o on the wedge and point z in the
wedge (a) pyo € K(pyz) and Vo e K(Vz) iff (b) o > iy0, for some
0; in K(x) where i,(x) = z, k = 1 or 2 for X in FCO or LFCO. If
X in Lim, PsST or PrT, then by 1.6, 1.7, or 1.8, condition (b)
must be replaced by (c): o > ipo;, for some dl € K(x) where
iy(x) =2, k =1or 2 if x # p and ¢ > i,0, N i,0, for some 040,
in K(p) where i,(p) = (p,p) = iy(p). We begin by showing that if
X is PreIZ at p, then (1) holds. To this end, suppose there
exists a proper filter a € K(x) N K(p) for some X » p. We
consider the two cases a c {p) and a ¢ [p). if a c [p], then [p)]

€ K(x). If « = [((p,x)], then clearly p,0 = [p] € K(x) and Vo

[x] €
€ K(x). Since X is PreIZ at p,0 > i,0, for some o; € K(x) and

ir(x) = (x,p) i.e. k = 1. Note that p,0 = [x) > p,i;0, = [p], a
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contradiction since x # p. Hence a ¢ [p). However, if a ¢ (p],
then in 1.16, let a; = a = a; and note that a; U a3 = a is proper
and a; = a ¢ (p). Hence by 1.16 (2) there exists a proper filter
o on the wedge such that p;0 = a; = @ = a3 = Vo since a € K(x) N
N K(p), p,0 € K(p), and Vo € K(x), it follows that o > i,o; for
some 0, € K(x) and i,(x) = (p,x) (since X is PreTg at p) and
x #» p. Now p;jo = a > [p} = p;i,0,, a contradiction since a ¢ [p]
and a is proper. Hence K(x) N K(p) = {[{¢])} for all x # p. This
shows condition (1) holds.

We next show that (2) holds i.e. Kp(p) = {[p)} if X is Fco
or LFCO. Suppose there exists a € K(p) with a ¢ K(p) and a * (p].
1f we take a; = « = a3 in 1.16, then a; U a3 = a is proper, a; <
< [{p), and a3 N [p] =ac dl =.a. Hence by 1.16 (3) there exists

a proper filter o on the wedge such that p,0 = a; = a = a3 = Vo

and p,0 = a3 N [p] a N [p] = a. Since p,0 ¢ K(p) and Vo € K(p),
it follows that o > i;0, or i,o, for some 0, € K(p) since X is
PreT{ at p. If o > 1i,0;, then po = o > pji,o; = (p), a
contradiction. If ¢ > i,0,, then by 1.16 (3) p,0 = a3 N [p] =
= a > p,i,0, = [p] i.e a = [p), a contradiction. This shows
condition (2) hold.

On the other hand, suppose conditions (1) and (2) hold. We
must show that X is PreTﬁ at p i.e (a) holds iff either (b)
holds for X if X is in FCO or LFCO or (c) holds for X if X is in
Lim, PsT or PrT. By [1] (b) implies (a) and (c) implies (a) since
all of the categories FcO, LFCO, Lim, PsT, and PrT are

normalized. Thus it remains to show that (a) implies both (b) and

(c). Suppose for any point z in the wedge and any filter ¢ on the
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wedge p,0 € K(p,2) and Vo € K(Vz). There are three possibilities
for z: namely z = (x,p), (p,x) and (p,p). If o is improper, then
clearly p,0 is improper and so i;p;0 ¢ 0 is improper. If o is
proper and z = (x,p), x *» p, then p;0 € K(x) and Vo € K(x). We
now apply 1.16 with a, = p,0 and a3 = Vo. In case (1) of 1.16, we
have p;o = p and consequently [p] in K(x) N K(p), a contradiction
(assumption (1)). In case 2 of 1.16, we have p,0 = Vo and p,0 ¢
¢ [p). We show that ¢ > i;p,0. 1If U ¢ i;p,0, then U > i,p,W for
some W = Ulvaz in 0. We may assume that U, = ¢ since p,0 ¢ [p]
(because (b) of 1.16 fails). Hence U > ip,W = U; = W and
consequently U € 0 i.e. 0 > i;p,0,. In case 3 of 1.16 we have

pyo » Vo N [p]. Since p,0 € K(x) and p,0 < [p), it follows that
[P} € K(x) N K(p), a contradiction. Therefore only case 2 of 1.16
holds and in that case ¢ > i;p,0. If z = (p,x) and x * p, then we
have p;0 € K(p) and Vo € K(x). We show that ¢ > i,o, for some

0, € K(x) with i,(x) = (p,x). To this end we apply theorem 1.16
with a; = pyjo and a3 = Vo. In case 1 of 1.16 p;0 = [p]. Clearly
0 > i,Vo. To see this note that if U € i,Vo, then U > i,W for
some W = Ulva2 in 0. We may assume that U, = ¢ since p,0 v Vo is
proper ((a) of 1.16‘fails) and p;0 < [p]. Hence U > i,W=u, =
= W and consequently U € 0 i.e. 0 > i,Vo. In case 2 of 1.16,

p0 = Vo € K(x) N K(p), a contradiction. In case 3 of 1.16 P10 U
v Vo is proper and is in K(x) N K(p), a contradiction. Finally
we assume that z = (p,p). For this case we have p;o € K(p) and
Vo € K(p). We apply 1.16 with a; = p;o0 and a3 = Vo. In case 1 of
1.16 we have p;0 = [p]). Clearly ¢ > i,Vo (the proof is given

above). In case 2 of 1.16, we have p;0 = Vo and consequently
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o > i,py0 (the proof is given above). In case 3 of 1.16, we have
pyo 2 Vo n [p] and if X is in Lim, PsT or PrT, then o > 1,Voa N
n i,Vo. Tc see this note that if U € i,Vo N i,Vo, then U > i,V u
v i,V, for some V,,V, € Vo. Since Vo is a filter, V =V, NV, ¢
¢ Vo and consequently V > W for some W = Ulvpu2 € g. Since W =
U, UU, and U 2 4V U 4w > WY W = Uy v oV, vy o

> U1VPU2 = W, it follows that U ¢ ¢ and consequently o > i,Vo N
n i,Vo. If X is in FCO or LFCO, then we have p,0 < [p]) and p;o U
v Vo is proper (since case 3 of 1.16 holds). Hence from
assumption (2), p;9 = [p] (since p,o0 c K,(p)) and consequently

Vo = [p] (since py0 u Vo = [p].u Vo is proper iff Vo < [p]). Thus

g = [(p,p)) = 1i,(p] i,{p). This completes the proof.

2.6 THEOREM. X

I

(B,K) 1is f; at p iff for each x in B,
condition (1) holds for X if X is Lim, PsT, or R PrT and
conditions (1) and (2) hold for X in LFCO, and conditions (1),
(2), and (3) hold for X if X is in FCO, where the conditions are:

1. For each x » p, K(x) N K(p) = {[¢]}-

2. K (p) is closed under finite intersection.

3. For any a € Kp(p) and B € K(p) if « v B is proper and

BN [p) ca, then B N [p] € K(p).

Proof. Suppose X is f; at p i.e. by definition 1.12, X is
at p and Pref; at p. If K(x) N K(p) » {[(¢)}, for some x # p,
then py 2.4, K(x) = K(p) (since X is
Pref; at p} and consequently (x) € K(p) and (p] € K(x). This is
a contradiction since X is T, at p (2.1). Hence for each x + p
K(x) N K(p) = {(¢])} arnd (1) holds. If X is in LFCO, then clearly

Kp(p) is closed under finite intersection since X is Pref; at p
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(2.4). If further X is in FCO, then condition (3) holds since X
is PreT, at p (2.4).
on the other hand, if conditions (1), (2), and (3) hold in
the appropriate cases then, we will show that X is f% at p and
Pref;at p. To this end, it is clear that for x = p, {x] € K(p)
or [p] € K(x) since K(x) N K(p) = {[¢)}. Hence by 2.1 X is T,
at p. To show X is PreT, at p, since K(x) N K(p) = {{¢]}
condition (1) of 2.4 is trivially true. It remains to be shown
that (2) and (3) of 2.4 hold. If «a,B € Kp(x) and x * p i.e.
a,B € K(x) and a,B < ([p], then ([p] ¢ K(x) 0O K(p), a
contradiction. Hence x = p and we are reduced to showing that
K, (p) is closed under finite intersection. But this is true by
assumption (2) if X is in LFCO. Condition (3) of 2.4 is the same
as the given condition (3) if X is FCO. This completes the proof.
2.7 THEOREM. X = (B,K) is I at p iff condition (1) holds
for X when X is in Lim, PsT, or PrT and condition (1) and (2)
hold for X when X is in FCO or LFCO, where the conditions are:
(1) for each x +# p, K(x) N K(p) = {[¢#)} and (2) K,(p) = {[p]}.
Proof. Since all X's in the given categories are Tﬁ at p
(2.3), the result follows from definition 1.12 and theorem 2.5.
2.8 Remark. For the categories FCO and LFCO, fﬁ at p, prel;
at p, and 7{ at p imply Tﬁ at p, Prefg at p and fg at p
respectively. But the converse is not true. For the categories

Lim, PsT, and PrT: f; at p and Preig at p imply Yﬁ at p and Preﬁ

at p, respectively. further in these categories f; at p and 1J

at p are identical. (2.6 and 2.7)
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REZUMAT. - M&rginirea superiocar¥® uniform¥ a unor familii de
functii numerice. Se indic¥d condit{ii suficiente pentru ca o
familie de func{ii numerice, fie preaditive, fie presubtractive
pe o submult{ime nevidd inchisid a unui grup abelian topologic, si
fie uniform mirginit# superior pe o vecinitate a elementului
neutru al acestui grup.

1. Let X be a topological abelian additive group, whose
zero~element is denoted by o, and let F be a family of functions
from X to the extended real axis. When Y is a subset of X, then
we say that F is:

i) preadaditive on Y if there exists a real number ¢ > 0 such
that

f(x +y) £ c max {f(x), f(y)} (1.1)
for each £ € F and all x, y € Y;

ii) presubtractive on Y if there exists a real number c>0

such that
f(x - y) € ¢ max {f(x), £(y)} (1.2)

for each f € F and all x, y € Y;

iii) pointwise bounded from above on Y if

sup {f(x) : f € F} < o for every x € Y;
iv) uniformly bounded from above on Y if
sup {M(f, Y) :+ f € F} < o,

where

M(f, Y) = sup {f(x) : x € Y} for every f € F.
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The purpose of the present paper is to point out conditions
which, together with the assumption on F to be either preadditive
or presubtractive on a nonempty closed subset of X, assure that
F is uniformly bounded from above on a neighbourhood of o. The
results, we shall have obtained, generalize not only the
classical uniform boundedness principle concerning a family of
continuous linear mappings from a normed linear space to another
one (see for instance E.Hille and R.S.Phillips {2, p. 26, Theoren
2.5.5]), but also sevaral other extensions or variants of this
principle given in the framework of normed linear spaces by
E.Hille ‘and R.S.Phillips (2, p. 26, Theorem 2.5.4), S.B.SteZkin
(4}, and W.Smajdor (3, p. 49, Theorem 3.10]. Other uniform
boundedness principles for families of numerical functions
defined on a topological group have been proved by J.Danes [1]

as well as by P.P.Zabrelko and E.I.Smirnov (5].

2. In this section we establish sufficient conditions for
the existence of a neighbourhood of o on which the family F is
uniformly bounded from above. First we deal with the case when
F is preadditive on a»certain subset of X.

THEOREM 2.1. Let U be a closed symmetric subset of X, and
let F satisfy the following conditions:

(i) F is preadditive on U;
(ii) each f € F is lower semicontinuous on U;
(iil) there exists a subset T of U which is of the second
category in X, dense in U, and on which F is pointwise

bounded from above.

30



UNIFORM BOUNDEDNESS FROM ABOVE OF FAMILIES

Then there exists a neighbourhood of o on which F is uniformly
bounded from above.
Proof. For each positive integer n set

Y, = { x € U: f(x) <n for every f € F }. (2.1)

n

Note that all the sets Y, (n € N) are closed. If Y is defined to
be the union of the family (Y,), then we have T c Y. Therefore
Y must be of the second category in X. Consequently, there exists
a positive integer m for which Y has interior points. Let x, be
any interior point of Y,. After that select a neighbourhood W of
o such that x5 + W - W c Y,. Since -x5 € U and T is dense in U,
we have (W - x35) N T * ¢. So there exists a y; € W such that y, -
x, € T. Taking into account that F is pointwise bounded from
above on T, it results that there is a real number ¢, such that

sup { f(yg -~ Xg) ¢ £ € F } 5 ¢4
We claim that

sup {M(f, W) : £ € F} £ ¢ max {m, c4}, (2.2)
where ¢ > 0 is a real number satisfying (1.1) for each f ¢ F and
all x, y € U.

To see this, let f be any function in F and let x be any
point in W. Then we have x, + x - Yo € Xg + W - W ¢ Y,. Therefore
Xg * X - Yo lies in U and satisfies f(xy + x - Yo) £ m. But,
because T is a subset of U, the point y, - x, lies also in U. By
applying the preadditivity of F on U, it follows that

E(x) = £((xg + x = yg) + (Yo = Xg)) < .

S cmax {f(xg + x - yg), L(yo - Xp)} s ¢ max {m, cg}.

Thus (2.2) holds, as claimed.

So it has been proved that F is uniformly bounded from above
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on w.B

THEOREM 2.2. Let U be a closed symmetric neighbourhood of
o, and let F satisfy the following conditions:

(i) F is preadditive on U;

(ii) there exists a real number ¢, such that for each f ¢ F
there is a neighbourhood V of o for which M(f, V) < cy;
(iii) there exists a subset T of U which is of the second
category in X, dense in U, and on which F is pointwise
bounded from above.
Then there exists a neighbourhood of o on which F is uniformly
bounded from above.

Proof. For each positive integer n define the set Y, by
(2.1) and then denote by Y the union of the famiiy (Y,). Since
T ¢ Y, the set Y must be of the second category in X.
Consequently there exists a positive integer m such that the
closure cl Y, of Y, has interior points. Since U is closed, we
have cl Y, ¢ U. Furthermore, cl Y, satisfies

sup {M(f, cl Y,) : f e F} < c max {m, Cy}, (2.3)
where ¢ > 0 is a real number such that (1.1) holds for each [ ¢
€ F and all x, y € U. Indeed, let f be any function belonging to
F, and let x be any element belonging to cl Y,. Due to condition
(ii) there is a neighbourhood V of o such that M(f, V) < Cg-
Since

. (x —~UNV)yNY, * ¢,
there exists a y ¢ U NV such that x - y ¢ Y,. The points x -y
and y lie in U, and so the preadditivity of F on U ylelds

f(x) = f((x - y) +y) < cmax {f(x - y), £(y)} s ¢ max {m, cg}.
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Thus (2.3) holds, as claimed. For short we put c;= ¢ max {m, cg}.

Now choose any interior point x, of cl Y,. After that select
a neighbourhood W of o for which x5 + W = W c ¢l Y,. Since -x,4 €
€ U and T is dense in U, we have (W - x5) N T » ¢. So there
exists a y, € W such that y, - x, € T. Taking into account that
F is pointwise bounded from above on T, it results that there is
a real number ¢, such that

sup {f(yg - xg) : f € F} < c,.
We claim that
sup {M(f, W) : £ € F} < ¢ max {c;, Cy}. (2.4)

To see this, let f be any function in F and let x be any
point in W. Then x5 + x -~ y5 € X + W - W < cl Y,. Therefore
Xg + X - Yo 1lies in U and, according to (2.3), it satisfies
I(xq + X = yg) S ¢;. But, because T is a subset of U, the point
Yo - Xo lies also in U. By applying the preadditivity of F on U,

it follows that

£ (x) E((xg + X = yo) + (Yo — Xg)) S

iA

c max {f(xg + X = yo), £(Yp - Xg)} S c max {c;, c,}.
Thus (2.4) holds, as claimed.

So it has been proved that F is uniformly bounded from above
on w.@

Next, we assume that F is presubtractive on a given subset
of X and show that under this assumption theorems similar with
the preceding two ones are true.

THEOREM 2.3. Let U be a closed subset of X, and let F
satisfy the following conditions:

(i) F is presubtractive on U;
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(ii) each f € F is lower semicontinuous on U;

(iii) there exists a subset T of U which is of the second
category in X and on which F is pointwise bounded from
above.

Then there exists a neighbourhood of o on which F is uniformly
bounded from above.

Proof. For each positive integer n define the set Y, by
(2.1). As in the proof of Theorem 2.1 we can conclude that there
is a positive integer m for which Y, has interior points. Select
any interior point x, of Y,. Then W = Y, - X, is a neighbourhood
of o. Provided that ¢ > 0 is a real number satisfying (1.2) for
each f € F and all x, y € U, it follows that

f(x) = £f((x + xg) - Xg) < ¢ max {f(x + xg), £(Xg)} < cm
for every f € F and every x € W. Hence F is uniformly bounded
from above on wW.H

THEOREM 2.4. Let U be a closed neighbourhood of o, and let
F satisfy the following conditions:

(1) F is presubtractive on U;

(ii) there exists a real number c, such that for each f € F
there is a neighbourhood V of o for which M(f, V) < cg;

(iii) there exists a subset T of U which is of the second
category in X and on which F is pointwise bounded from
above.

Then there exists a neighbourhood of o on which F is.uniformly
bounded from above.

Proof. For each positive integer n define the set Y, by

(2.1). As in the proof of Theorem 2.2 we can conclude that there
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is a positive integer m for which cl Y, has interior points. The
set ¢l Y, is again contained in U and satisfies (2.3), where

¢ > 0 is a real number such that (1.2) holds for each f € F and
all x, y € U. In this case, however the proof of (2.3) must be
performed as follows. Let f be any function belonging to F, and
let x be any element belonging to ¢l Y,. Due to conditioﬁ (ii)
there is a neighbourhood V of o such that M(f, V) < ¢g5. Since
(x +Uunv)y ny, * ¢, there exists a y € U N V such that

x +y € Y . Taking into account that F is presubtractive on U and

m
that the points x + y, y lie in U, it results that

f(x) = f((x +y) - y) £ cmax {f(x + y), £(y)} < ¢ max {m, c4}.
Thus (2.3) holds, as claimed.

Now choose any interior point x; of cl Y,. Then x; lies in

U and W = ¢l Y

m — Xo is a neighbourhood of o. Since F is

presubtractive on U and satisfies (2.3), it follows that

f(x) = £((x + xg) - xg) < cmax {f(x + x5), L(xg)} S c?

max {m, cg}
for every f € F and every x € W. Hence F is uniformly bounded
from above on W.H

The above-stated theorems assure merely that F is uniformly
bounded from above on some neighbourhood of o. But, as the next
theorem shows, there are cases when this behaviour of F near o
implies that each x € X possesses a neighbourhood on which F is
uniformly bounded from above.

THEOREM 2.5. Let F satisfy the following conditions:

(i) F is either preadditive or presubtractive on X;

(ii) there exists a subset T of X which is dense in X and on

which F is pointwise bounded from above;
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(iii) there exists a neighbourhood V of o on which F is
uniformly bounded from above.
Then there exists a neighbourhood W of o such that F is
uniformly bounded from above on x + W for any x € X.

Proof. Let W be a neighbourhood of o such that W - W < V.
We claim that F is uniformly bounded from above on x + W for any
x € X.

To see this, pick any x € X. Since T is dense in X, we can
find a point y, € W for which x + y, € T. Taking into account
that F is pointwise bounded from above on T, it results that
there is a real number c; such that

sup {f(x + yg) ¢t £ € F} < c,- (2.5)
Further there exists a real number c, such that
sup {M(f, V) : f € F} < c,. (2.6)
Since W - y, and y, -~ W are subsets of V, it follows from (2.6)
that
sup {M(f, W - yg) ¢ I € F} < ¢y (2.7)
as well as that
sup {M(f, }0 - W) : £ € F} £ c,. (2.8)
If F is preadditive on X and ¢ > 0 is a real number satisfying
f(t + u) < ¢ max {f(t), f(u)} whenever f ¢ F and t, u € X,
then we obtain from (2.5) and (2.7) that

I(x +y) = L((x +y) + (Y - ¥o)) <

c max {f(x + yog), £(Y - Yg)} S c max {c;, c,}
for any f ¢ F and any y € W. Similarly, if F is presubtractive
on X and ¢ > 0 is a real number satisfying

f(t - u) < c max {f(t), f(u)} whenever f ¢ F and t, u ¢ X,
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then we obtain from (2.5) and (2.8) that
f(x+y) = £((X +y9) - (Yo -y)) < cmax {£(x +yg), [(yo - ¥)}<
c max {c;, Cy}
for any f € F and any y € W. Consequently, in both cases the
inequality
sup {M(f, x + W) : £ € F} < ¢ max {c¢;, Cu}

holds, that is, F is uniformly bounded from above on x + W.H

3. By using the theorems established in the preceding
section we state now sufficient conditions for F to be uniformly
bounded from above on a given bounded neighbourhood of o. We
recall that a subset Y of X is sald to be bounded if for each
neighbourhood V of o there exists a positive integer n such that

Yc V+ ... +V
—_—

n terms
THEOREM 3.1. Let U be a bounded neighbourhood of o, and let
F satisfy the following conditions:
(i) F is preadditive on U;
(ii) there exists a neighbourhood W of o on which F is
uniformly bounded from above.
Then F is uniformly bounded from above on U.
Proof. Let c; > 0 be a real number such that
sup {M(f, W) : f € F} < ¢q-

Further, there exists a positive integer n such that
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UcUNWH+ .. +UNW , (3.1)

AN /
h 4

n terms
because U is bounded. Finally, choose a real number ¢ > 0 such
that (1.1) holds for each f ¢ F and all x, y € U.
Now pick any f € F and any x € U. In view of (3.1) x can be
written under the form x = x; + ... + x, where x;, ..., X, €
€ U N W. The repeated application of (1.1) yields f(x) < ¢y when
c <1, and f(x) < coc"’1 when ¢ 2 1, respectively. Hence we have
£(x) < max {cy, coc™1}.
Since f. and x were arbitrarily chosen in F and in U,
respectively, the family F is uniformly bounded from above on U.R
COROLLARY 3.2. Let U be a bounded, closed and symmetric
neighbourhood of o, and let F satisfy the following conditions:
(1) F is preadditive on U;

(ii) either each f € F is lower semicontinuous on U, or there
exists a real number c, such that for each f ¢ F there
is a neighbourhood V of o such that M(f, V) 5 cp;

(iii) there exists a subset T of U which is of the second
category in X, dense in U, and on which F is pointwise
bounded from above.

Then F is uniformly bounded from above on U.

Proof. Depending on the part of condition (ii) that is true,
first we apply either Theorem 2.1 or Theorem 2.2 and we conclude
that F is uniformly bounded from above on a neighbourhood of o.

Next we apply Theorem 3.1.8

THEOREM 3.3. Let U be a bounded symmetric neighbourhood of
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o, and let F satisfy the following conditions:
(i) F is presubtractive on U;
(ii) there exists a neighbourhood W of o on which F 1is
uniformly bounded from above;
(iii) f(x) 2 0 for every f € F and every x € U.
Then F is uniformly bounded from above on U.
Proof. In view of the conditions (i) and (iii) there exists
a real number c¢ 2 1 such that (1.2) holds for each f ¢ F and all
x, y € U. Fix any function f ¢ F. If x € U, then (1.2) implies
f(-x) = f(o - x) £ ¢ max {f(o), f£(x)}
as well as
f(o) = f(x - x) < cf(x).
Thus we have
r(-x) < czt(x) for all x € U. (3.2)
From (1.2) and (3.2) it follows that
f(x +y) s ¢ max {f(x), £(-y)} < c max {f(x), c?*f(y)} s

< 3

max {f(x), f£(y)}
whenever x, y € U. Since f was arbitrarily chosen in F, we have
proved that each f ¢ F satisfies

I(x +y) s c3

max {f(x), £(y)} whenever x, y € U.

This means that F is preadditive on U. Hence we can apply Theorem

3.1 and conclude that F is uniformly bounded from above on U.H
COROLLARY 3.4 Let U be a bounded, closed and symmetric

neighbourhood of o, and let F satisfy the following conditions:
(i) F is presubtractive on U;

(1i) either each f € F is lower semicontinuous on U, or there

exists a real number Cg such that for each f ¢ F there
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is a neighbourhood V of o such that M(f, V) < cg;

there exists a subset T of U which is of the second

te
S

category in X and on which F is pointwise bounded from

above;

(iv) f(x) 2 0 for every r € F and every x € U.

Then F 1s uniformly bounded from above on U.

Proof. Depending on the part of condition (ii) that is true,

first we apply either Theorem 2.3 or Theorem 2.4 and we conclude

that

Next

4.
5.

F is uniformly bounded from above on a neighbourhood of o.

we apply Theorem 3.3.0
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REZUMAT. - Functii intregi cu derivate Gelfond - Leontev

univalente. Se obt{in margini superioare pentru functiile intregi
apartinind claselor E(n,) i E (ng).

Abstract. Let:{np};_1 be a strictly increasing sequence of
positive integers. Let E(ny) (resp. E (np)) denote the class of
entire functions f for which Fhe Gelfond-Leontev derivatives D"°f
of f are analytic and univalent (resp. convex) in the unit disc.
In the present paper, we found upper bounds for the type of

functions belonging to the class E(n,) and E (np) respectively.

1.Introduction. Let

£(z) =Y a,z" (1.1)

ne=o

be analytic in the disc { z ¢ C: |2| <R}, 0 < R g o, For a
nondecreasing sequence «i&;l of positive number, the Gelfond-

Leontev derivative (GLD) Df of f is defined as (3]

Df(z) = Y d,a,z™? (1.2)

ne1

For p = 2,3,..., the pth iterate D°f of Df is given by

N
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DPf(z) =Y Jye - - dyp@,2"P
n=p

It is readily seen that for d, = n, n=1,2,..., Df is the
ordinary derivative of f; where as, if d, =1, n=1,2,...,D is
the shift operator L which transforms f, given by (1.1), into

Lf(z)==$5 a,z"*. If f, defined by (1.1), is analytic and
univaleétlin the unit disc U = {z ¢ C : |z| < 1} then (2]
la,| < nla,| (1.3)
for n = 2,3,... .
Let f(z):=ibanz“ be an entire function of order a,

n=0

0 < a < @, and type T. In [1, p. 11], it is proved that

limsup n |a,|*" = eaT (1.4)
Pl
Further, if
limsup n |a,|'" < te (1.5)
P

then f is of exponential type no bigger that r.
Juneja and Shah (5] proved that if f is an entire function
of finite order a and type T, then

liminf
n~os

nt/e« aT

dnpn—z ]‘I < d; (1.6)

where p, is the radius of univalence of D"f. We note that if all

the GLD's D’f are analytic and univalent in the unit disc U and
(dy/n) ~~ as n - o then f is of minimal type, i.e., T = 0.

However, if infinitely many p,'s are zero, (1.6) does not give

any non-trivial information about the type of the entire function
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In this paper, we partially solve this problem by
considering some of the GLD's of f to be analytic and univalent
in the unit disc U. In the process, we find a number of new
results.

To simplify notations, we shall write a(np) for a, and
d(np) for d% . We shall assume throughout in the sequel that

dp-*ooasp—ooo,

2. Entire functions of finite order. For a strictly
increasing sequence{n,,;_1 of positive integers, we denote by
E(np) the class of entire functions for which D"°f are analytic
and univalent in the unit disc U. Likewise, let E.(ny) be the
class of functions in E(np) such that D"°f are convex in U.

We now prove

THEOREM 1. Let f(z) =z-: a,z" € E(np) have order a, 0 < a <

n=0

< o, and type T. Let the sequence pid;l in (1.2) satisfy

d(n,+k) . _k ,
d(k) k-1

k=2,3,...,p2p,. (2.1)

Then

id(nl) .d(nz) .. .d(np) }tv./no’x

lim inf
f 2ndad npvl !
. ap/n
pmsup(2d,) (2.2)
eaT
< (2d;)*
eaT

Proof. Since f ¢ E(np), we have that
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D™f(z) =Y, dn,+k...d(k+1)a(n,+k) z*
k=0

is analytic and univalent in U. In view of (1.3), this implies

that for k <y 3,... and p =1,2,...,

kd(ny+1) ...d(2) |a(n,+1) |
d(n,+k) ...d(k+1)

la(n,+k) | < (2.3)
Due to (2.1), the function k/(d(np+k)...d(k+1)) decreases with

k for every p 2z p, so that (2.3) yields for k = 2,3,... and p 2
2 Po

2d(nE+1)...d(2)|a(nE+1)|
d(np+2)...d(2)

2d(2) |a(ny+1) |
d(np) )

la(n,+k) | <
(2.4)

Now, letting k = n - n, + 1 and using inductive argument on p

P+l P
in (2.4), we get for p > p,

(2d(2))7™ |a(n, +1) |
d(n,)...d(n,,)

la(n,+1) | <

Thus 1f, 2 < k < Npyy - Ny + 1, it follows by using the above

inequality in (2.4) that for p > p,

(2d(2))%% |a(n, +1) |
d(n,)...d(n,)

Iq(np+k)|s

A(2d(2))*
d(n))d(n;) ...d(n),)

where A is an absolute constant. From the above inequality, we

deduce that
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]
N 1/24
exponential type no bigger than JE?%%TET (1+1/B)%/2) (X +1).
e
Proof. Since (np+1 - np) < A for large p, we have (np+1 -
- ny) = o(log np,;) so that it follows directly from Corollary 1
(8, p-398] that a < 1. To prove the second part, we assume,
without 1losa of generality, that (np+1 - np) < A for all p
(otherwise, we let m, = n,,, and work with {me) . ). Since
£ (z) is univalent in U, it follows from (1.3) that

kki (n,+1)! |a(n,+1) |

(n, < 0 1 (2.7)

la(n,+ k)| <

Setting k = Doy — 0, + 1 and inducting on p in (2.7), we get for

p=2,3,...

p-1

D‘
JI (ny,, - ny+1) (ny,; - n+1) |
-1

|a(np+1)| £ _G]—p—:_i—)_!

where D" = (n, + 1)! |a(n; + 1)|. Using the above inequality in

(2.7), we conclude that for p 2 2 and 2 < k < Npyy = Nptl,

. p-1
latn,+ k)| < J’)T“’(‘;'H (ny,, -ny+1) (ny,, -ny+1)t  (2.8)

If n is a positive integer greater than 1, then [6, p.183)
there exist two positive numbers A and B such that
A nY2(n/e)” < n! < B nt/2(nje)"n
where A =Be*/?* = /Ix.Using this in the right hand side of (2.8)
and taking the (nytk) - th root of both sides of the resulting
inequality and applying (2.6) to part of right hand side of this,

it follows that for 2 < p and for 2 < k < Npyy = Nptl,
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1/ (np+k)

1/ (ng+k) D*B Penx‘l‘P k3 1/2
(n,+k) |a(np+k) |t/ (2 < [ e - 5

(2.9)

Sp/2n p-1
x(l+£ﬂ) kk/(npm)n (nj.,-n;+1) (ny,y=n;) /0y k)
P 3 *

Since (np - npy) S A for all p, it follows that for 2 < p and

for 2 < k < npy; - nptl.

1/ (ny+k)
p-1 rd
p -
(2) (ny,,-n;+1) {1y "f’]
e J_Il

<(B/e)?™ exp

P-1
= 3, (n5-ny) 1og(n,.,-n;+1)
P -
<(B/@)P™(A+1) .

kk/(n,»k)

Further, as is an increasing function of k, we have

kk/(n'wk) Ny, -n,+1)/n,

(
< (ng,,-n,+1)

< (A+1) BV o 5(q)

and
D*e™* [ k3 /2 1/ {ngek)
T(m) =1+0(1).
Hence,

Llimsup kla,|*/* =1im sup { (n,+k) |a(n,+k) |/ ™

2 <p, 2skzsn,, -n,+1}
< (B/e)? (1+1/P)%F/2 (X +1).
Substituting /2w e'/3* for B, we finally get
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2 ]

S ol/24
lkimsupklakP/“se[—i:ti—fm—m(1+1/0)5/"l (A+1)
-y e

1/2455/2
ge[_Mzz_ (A+1)
e

Remark. We note that the estimate obtained in Theorem 2

improves the corresponding estimate obtained by Shah and Trimble
[8, p.398].

We next prove results in other direction.

THEOREM 3. Let f(z) =) a,z" € E(n,) hava order a(0 < a < w)

n=0

and type T. Let the sequence {dn};_1 satisfy (2.1). If there is a

positive integer M > 1 such that limsup (n,,,-n,) 2z M, then
p—-

{d(ﬂl) d(nz) .. .d(np-l)}“‘—l)/n"‘ N

< (2.10)
Ny, exT

liminf
p‘.

Proof. From (2.3), we get for k = 2,3,..., and p = 1,2,..

K.d(n+M) ...d(2) |a(n 1) |
|2+ k) |< g tp dtae2) ) (da b d(ken) (20

Since, by (2.1), k/(d(np+k)...d(k+1)) is a decreasing function

of k for all p 2 p;, for k 2 M + 1, there exists a positive

integer Q; such that for p > Q,

kd(n+M) .. .d(2)

(M+1)d(n£+M) ...d(2)
d(np+k) ...d{k+1)

d(np+M+1) .. d(M+2)

(Me1)d(Me1)...d(2)
d(np+M+1)

<1.

Thus, for p 2 max {Po,Q;} and k 2 M+1, (2.11) yields
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|a(n,+1) |
d(n,+M) - . .d(1,+2)

ja(n+k)| <

(2.12)
la(n,+1) |

d(Dp)“_l
Also, there is a positive integer Q, such that for p 2 Q, and
k22

kd(n,+1) ...d(2)
d(n,+k) ... d(k+1)

Using. this in (2.11) again, it follows that for p 2 Q, and
kz2
la(np + k)| < |a(np + 1) (2.13)

-ny) > M, there is a positive integer Q; such

Since, lim inf (n,,,
p--

that for p 2z Q,, (np,,1 - np) 2 M. Let Q = max {pg,Q;,Q02,Q3}. Then
(npyy = Ny +1) 2 M + 1 for p 2 Q and so the inequality (2.12)

implies that for p 2 @

la(n ’1+1)| < Mﬁ}.)__l__
14 d(np)n-l

An inductive argument on p in the above inequality shows that for

p>0Q .

Ia(np+ 1) |

{d(ny) ...d(n, )}
Cl

T @@ din,) .. .din, )y

la(n,+1)| <

where C, is an absolute constant. If 2 < k < gy = By + 1, then

P
using the above inequality in (2.13), we have for p > @

50



ENTIRE FUNCTIONS

Cl
(d(n)d(n,) ...d(n, )"

latn, + k)| <

Thus,
eaT = lim sup kla,|*/k
k~on

= lim sup{(n,+k) |a(n,+k) |*/ .2 <k <n,,-n,+1, p>0}
l .
(N-1) /D,
{d(n,)d(n,) ...d(n,_)} ™D/ ]

N,

<

liminf
p-'-

This completes the proof of Theorem 3.
COROLLARY 4. Assume all the hypothesis of Theorem 3. If

lim(n,,, -n)) = and
f aad
(d(n))d(n,)...d(n, )}*'

n,,,

liminf
p—‘.

>1,

then T = 0.
Putting d, = n in Theorem 3, we have the following:
COROLLARY 5. Let f defined by (1.1), be an entire function

of finite order a and type T. Let {np};_lbe a strictly increasing

sequence of positive integers such that f'"  are univalent in
U.
If there 1s a positive integer M > 1 with li.r.n inf(n,,, -n)) 2 M,
then "
lim inf (7.7, 'nP).Ml)/np 1 (2.14)
pese n eaT

4

Remark. We have not been able to obtain an entire function

and a non-decreasing sequence {ci,,};_l of positive numbers for
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which equality holds in (2.10). Even for d, = n, the estimate
(2.14) is not sharp.

The following results for functions belonging to the class
E.(np) can be obtained by a proof similar to that used in Theorem
1 and Theorem 3. At this place, we do not need the hypothesis
(2.1) on the sequence {dn};-x'

THEOREM 4. Let f(2) = z-: a,z"€E,(n)) have order a(0 < a <

n=0

< o) and type T. Then

/n
«/n,., limsupd;” ™
Lim inf {d(n,)d(n,)...d(n,))} < p=
P n,,, eaT
d;
eaT’

THEOREM 5. Let f(z) =Y a,z"€E.(n,) have order a(0 < a < «)

n=0

and type T. If there is a positive integer M > 1 such that

liminf (n,,, -n,) M, then
¥ ald

P n,,, eaT

«(N-1)/n,,
liminl{’jﬂnl)d(nz)-..d(nﬂ_l)} n,, ) )
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REZUMAT. -~ Reguli de cuadraturd Lobatto-Turén gi valoarea
principald Cauchy a integralelor. Se deduc anumite reguli, bazate
pe formulele de cuadraturd Lobatto-Tur&n, pentru evaluarea
numericl a valorii principale Cauchy a integralelor
unidimensionale g§i se demonstreazd convergenja unui subgir de
astfel de reguli. In continuare se prezintX inegalitatea Posse -
Markov ~ Stieltjes pentru sume de cuadratur¥ Lobatto-Tur&n. De
agsemenea se dau anumite inegalitdt{i pentru zerourile polinoamelor
s-ortogonale.

Abstract. Some rules, based on Lobatto-Turdn quadrature
formulae, are derived for the numerical evaluation of one-
dimensional Cauchy principal value (C.P.V.) integrals, and the
convergence of a subsequence of such rules is proved. Further,
the Posse-Markov-Stieltjes inequality for Lobatto-Turan
quadrature sums is presented, and some inequalities for the zeros

of s-orthogonal polynomials are given.

1.Xntroduction. In recent years, several papers have been
written about convergence of Gaussian type integration rules for
singular integrands [2-5, 14, 15, 21-22]; further, some results
of the above papers have been extended to the case when Turén
type quadrature rules [12] (that is integration rules with

multiple nodes) are considered to evaluate C.P.V. integrals
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I(£;t)= f‘ﬂi‘lmx)dx -
-1 X-C (1.1)

t-e 1
i [ v o terc
where w is a suitable weight function, nonnegative on A:=(-1,1],
f is, at least, H&lder continuous of order u, 0 < p < 1.

The convergence of Lobatto and Radau integration rules with
simple nodes for singular integrands has also been analysed in
[21]); generalizing this approach we present here some results
concerning the convergence of the Lobatto-Turan quadrature rules,
(which are a particular case of rules studied in (23)), when
applied to the evaluation of (1.1).

In Section 2 we introduce some notations and the integration
rule; in Section 3 we give some results concerning properties of
the zeros of s-orthogonal polynomials, as well as an extension
of the Poasse-Markov-Stieltjes inequality for Lobatto-Turéan rules.
This inequality, in fact, provides an important tool to
investigate convergence rates of Gaussian or Turain quadrature for
singular integrands [15,12) and the same does in the case of
Lobatto-Tur&n rules.

In section 4, the rate of convergence of the latter rules
for evaluating C.P.V. integrals is studied, for pa?ticular weight
functions, belonging to the class of GSJ (generalized smooth

Jacobi) functions [17].

2. some basioc properties. Let w denote a positive weight
function on A = [~1,1], given a nonnegative integer s, it is well

known {7, pg. 74) that there exists a unique sequence {Png} of
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monic polynomials s-orthogonal in A, with respect to w, that is

satisfying the conditions
fX"[P,,,g(x)]“’lw(x)dxuo, k=0,1,...,m1 (2.1)
A

These polynomials are polynomials of least L,,,, weighted
norm (7,25].

The zeros of the polynomial P,, of degree m, are real,
simple, and lie in (-1,1); they depend on s, but for the sake of
simplicity we shall denote them only by x,;.

For the evaluation of the zeros of s-orthogonal polynomials,
and some monotonicity results:we refer the interested reader to
(8, 10, 16].

Based on the zeros of s~orthogonal polynomials are the Turan

quadrature rules {25],

m 2s

f £(x) w(x) dx = ?:;jchif“" (Epg) + Lpg (£)

exact for f € P,54.7).; and the Lobatto-Turdn quadrature rules

(or generalized Lobatto quadrature rules):

mel Iy

ff(x)w(x)dx ?:;;c EM (x )+ R, () (2.2)

where fw is integrable on A and f has the required derivatives,
more

Xo=-1; Xy=1; ro=p; r;=2s, i=1,2,...,m; r,.1=q; (2.3)
If in (2.3) p=-1, or g=-1, formula (2.2) reduces to a Radau-Turin
type rule, which, in this paper, will be considered as a

particular case o the Lobatto-Turin ones.
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The degree of exactness of (2.2) is v = m(2s+2)+p+g+1l when
the nodes x,;, i=1,2,...,m, are the zeros of polinomial ﬂms of
degree m, s-orthogonal in A, with respect to the weight function

W(x) = (1+x)P(1-x)Iw(x). (2.4)

The zeros x,; are 80 ordered: =-1<Xp, <Xy <...<Xp.<1l.

Rules (2.2) are of particular interest when f and its
derivatives vanish at -1 and/or 1.

Some properties of the rules (2.2) have been pointed out in
[13]), where the following estimates have also been established

dih Ko, i1
hl Xm, §-1 W(X) dx’

{i=0(1)m+y1, h=0(L)r,, (2.5)

|Chils

{ X, -1=Xmo ™= -1, xn,md:xm,m*z:l ’

di‘ max ('xm, 1+1 " Xmj l ’ |xmi “Xm, 1-1 h

Convergence and rate of convergence of integration rules

with preassigned node have been analysed in [9].
Turning to (1.1), we remark that it is known that I(f;t)

exists when f ¢ H,(A), 0 <4 <1, and w € G5J; that is
p
w(x)=¢(x)(1+x)‘(l—xl‘gllx-t,V’, x| <1, (2.6)
. -l

where -1 < t; < ... < tP < 1, Y; > -1, j=1,2,...,p, a > -1,
B> -1,y is positive and continuous and its modulus of continuity

w(y;) satisfjies the condition fw(w;b)b‘ldb < o,
A

Let o
Atka[ak,ak.ll, YV [a, a,,] < (t,¢t.)., k=0(1)p,

€o=-1, t,,=1.
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Xmo Xm Xm,mi1 . .
Qm(f,t)=f;f[p+g ST e, x| 0w dx,

m+l

© (X) H :H (x_x’"i)lnl

i=0

where f( ] is the divided difference based on the simple node
t, the multiple nodes x,; and x [23). The degree of exactness of
(2.8) is v + 1 = m(2s8 + 2) + p + g + 2.
We conclude this section with some more notations.
The zero of Il,,, closest to t will be denoted by X.(u
The symbol " ~ " will be used to compare sequences and

functions; if A and B are two expressions depending on somne

variablés, then

will mean
|AB~!| < const, |A"1B| < const
uniformly for the variables in question; "const" denotes a
positive constant, which may take on a different value each time
it is used.
A function f is said to be k-absolutely monotone (k-A.M.)
in an interval E if
) (x)y 20, x €E, 1=1,2,...,k; (2.11)
f is said to be strictly k-absolutely monotone (k-S.A.M.) if the
strict inequality holds in (2.11).
A function f is said to be k-completely monotone in E
(k~C.M.) if
(-1)ird)(x) >0, x € E, 1=1,2,...,k; (2.12)
f is said to be strictly k-completely monotone (k-S.C.M.) if the

strict inequality holds in (2.12).
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If (2.11) or (2.12) hold for every k, we shall omit the

index k in the short notation.

3. Auxiliary results. It is well known that the Posse-
Markov-Stieltjes inequality holds for Gaussian guadrature sums
[6,15]; recently it has been proved that even for quadrature sums
of Turadn type the above inequality is valid [11]. Here, the
latter result is extended to quadrature sums of Lobatto-Turan or
Radau-Turé&n type.

The following lemma (6, pg.30] plays a role in our proof:

LEMMA 1. Let f be (m+1)-S.A.M. in (-1,{]; let P ¢ P, and let

m;, = total multiplicity of zeros of f-P in (-1,§)
m, = total multiplicity of zeros of P in (§,w).
Then m; + m, < m + 1.

Now, let us turn to the quadrature sums in (2.2); the
following theorem can be stated.

THEOREM 1. Let m ¢ N* and s ¢ N; let v = (2s+2)m+p+q+l. If

f is v-A.M. in [-1,x,,) for a given k, 1 < k s m+l, then

k-1 Iy
Coi ™ (x,,) s [™F(x)w(x)dx (3.1)
;E; EE; hi 3 j:l

If, in addition, f is v-A.M. in (-1,X,x), then

k I
p Cr £ ™ (x,) 2 fx""f(x) w(x) dx. (3.2)
=Q h=0 -1

Proof. First, we assume f is S.A.M. in (-1,x,)7 let p ¢

€ P,_,, satisfy the interpolation conditions
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pP(x,,)=f"™(x,) , h=0,1,...,p;

p(x, ) =™ (x,;) , h=0,1,...,2s8+1; i=1,2,...,k-1;
p™(x,)=0 , h=0,1,...,2s; (3.3)
pP(x,,)=0 , h=0,1,...,28+1; d=k+1,...,m;

P® (Xy ) =0 , h=0,1,...,q.

Let £ be an arbitrary point in (X, x_j,Xp) i then
f-p has m, 2 p+1+(2s+2)(k-1) =: n, zeros in [-1,{)]
p has m, 2 g+1+(2s+2) (m-k)+2s+1 =: n, zeros in [{, «)
with
n, +n, =v, my + myg 2 n; + n,,
but, by Lemma 1, m; + my, < v, thus m =n;, m, = n,.
Hence f;p has only zeros of even multiplicity in (-1,§}, from
which it follows that f-p does not change sign in (-1,(] for any
§ < x,x; then r-p does not change sign in [-1,x,,). Since p(x,.)=
= 0 and f is S.A.M. in [-1,x,), then
f(x) 2 p(x), X € (=1,x..).
Moreover, as { > x, ,_; is arbitrary, then p has in (x, x_;,+®)
only the n, zeros listed above. Now, P(Xp k1) = t(xm,k_l) > 0 and
p has a zero of odd order in x,,, and zeros of even order at Hpio
1 = k+1,...,m; then p changes sign at x,, and
p(x) < 0, X € [Xpp,1]-

So, from (2.2), and (3.3) one gets

f_:"‘"f(x) w(x) dxzfx'*p(x) w(x) dx*fh)(x) w(x) dx=

-1

k-1 Iy

D> g‘: ChiP ™ (X,) =
1=0 he0
k-1 Iy

‘;: Cri £ (%)
= hoo

If £ is v-A.M., let us put f,(x) = £(x) + ee*; so we obtain a
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function v-S.A.M. for any ¢ > 0.

Repeating the above reasoning, when f is replaced by f,, and
passing to the limit as ¢ tends to zero, we éet (3.2).

If, in adaition, f is v-A.M. in [-1,x,,), We introduce a

polynomial g € P,_,, satisfying the conditions

g™ (xp0) = £ (x,4), h=0,1,...,p;
g® (xp) = £ (x,0), h=0,1,...,26+1; i =1,2,...,k=1;
g (x) = £ (x,,), h=0,1,...,25;
g™ (x,;) = o, h=20,1,...,26+1; 1 = k+1,...,m;
q(h)(xm,mi) =0, h=0,1,...,9.

By Lemma 1, reasoning analogously as above, we get
f(x) < q(x), x € [-1,x..]
g(x) 2 0, X € [Xpy, +o)]
from which (3.2) is derived.ll
For v-C.M. functions, the following Theorem 2 holds.
THEOREM 2. Let f be v-C.M. in (x,,,1] for a given k, O<kzm,

then

mel Xy

1
DI ICHELIEM sLﬂf(x) w(x) dx.

[1]
If, in addition, f is v-C.M. in {x,,1], then

mel I

Z; 2: Cuif ™ () 2 [ £00 W) dx.
I=k h=0 Kk

Proof. The proof follows from the one of theorem 1, making
the change of variable x - -x (See also {11]).R
We remark that Theorems 1 and 2 can be stated in a more

general form, related to a measure da(x) instead of w(x)dx; and
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when one considers some other prefixed nodes external to [-~1,1],
or when both prefixed and Gaussian nodes have different
multiplicity.

COROLLARY. Let f € v-A.M. in [-1,x,.]1 for any given k,

1<k<m+1, then

Ty
;: C ™ (x,;) 20, 1=0,1,..., k. (3.4)
0

If £ € v-C.M. 1in (x,.,1) for any given k, 1<k<m+l, then
I
;: Cpyf ™ (x,,) 20, idisk,k+I,...,m+1. (3.5)
=0

The proof of (3.4) is obtained by applying (3.1) and (3.2)
to the intervals [-1,x,;]; 1 = 0,1,2,...,k; similarly (3.5)
follows from the results of Theorem 2 applied to the intervals
[Xpiell, 1 = k,...,m+1.8

Now, we shall present some new results on the behavior of
the zeros of polynomials s-orthogonal with respect to G8J weight
functions.

While the properties of polynomials orthogonal (s=0) with
respect to GS8J weight functions, have been studied by Badkov [1]
and especially by Nevai [17], who also pointed out the behavior
of the corresponding zeros and Christoffel functions, little is
known about s-orthogonal polynomials, and asymptotic properties
of their zeros.

Hence Lemmas 2 should be of interest not in the context of

this paper, but also in itself, since it provide some new

“interlacing® type properties for the zeros of s-orthogonal
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polynomials.

In the analysis of the convergence of Turan [12] or Lobatto-
Turdn quadrature rules for evaluating C.P.V. integrals we need

the assumpion of the existence of a set

N := {meNl |0 0m - €] ~ z_ln} infinite, (3.6)

where X. m), the node of the integration rule closest to the

singularity t, is a zero of a polynomial s-orthogonal with

respect to the weight function v or i (see (1.4)) respactivaly

in the case of Turédn or Lobatto-Turin rules.

For the latter rules, then, we can consider the following
weight functions W

W(x) = (1_x2)s¢1/2,

W(x) = (1+x)°*1/2(1-x)"4/2, (3.7)

W(x) = (1+x)71/2(1-x)=*1/2,
for which it is known [19] that the corresponding s-orthogonal
polynomials reduce to polynomials orthogonal with respect to
suitable Jacobi weighs, and for Jacobi weights it has been proved
in [3] that (3.6) holds.

Beyond the weights (3.7), we shall prove that (3.6) holds
for a large class of weight functions. To be more precise, let

us assume W is an even function € GJ satisfying the conditions

{W(x) / (1-x?)#1/2 jg jncreasing in [0,1], (3.8)
W(x)y1-x? is decreasing in {0,1].

We shall denote by G" the set of functions just introduced
(examples of weights ¢ G" are provided by W(x) = (1-x2)%, with

- 1/2 < a <8 + 1/2). Then the zeros Xpy of the polynomial I, of
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degree m, s-orthogonal with respect to W ¢ GJ, are symmetric with

respect to the origin and the positive ones satisfy the relation

(19]

mi

Vi < Xpy €< Tpg o 1= [m;1]4-1,...,m, (3.9)

where v,; and 7,; denote the zeros of the Chebyshev polynomials

of the second and the first kind, respectively:

-i+1
m-i+l .

2(m-1)+1
1 ; Tp=COS————°mx (3.10)

Vi = COS o

As regards to (3.6), we now state the following theorem:
THEOREM 3. Let W ¢ G" and t = 0, then (3.6) holds true.

Proof. Assume

N=N, ={m€N | m=2n}.
then Hzn,.(O) » 0, and
lxc(m) - t] = |xdn,n' = |X3n,ne1l
hence (3.9) yields (see [3,(6.2.7)])
IXc(my = tl 2 Vap,ner 2 1/(2n+1). B
In order to show that the result of the above theorem can
be extended to values of t w 0, we pass to prove the mentioned
interlacing properties of the zeros of weight functions eG",
restricting ourselves to consider only the positive ones, due to
the symmetry.
LEMMA 2. Let w € G*, then the following relations
| Xmg = Xpmey, il ~ m7%, (3.11)
| Xme1,ie1 = Xzl ~ m72 (3.12)
hold for i = ((m+I)/2) + I,..., 14, where iy = ((Tm+5)/2}.

Proof. By (3.9), (3,10) one has
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Xmi = Xme1,i © Ymi = Tm+1,i
and a straightforward calculation yields .
Vmi = Tmel,i = 2sin( (4 (m+i-i)+1)/(2m+2))n/2)sin(n/(4m+4)] 2
2 1/(m+1) sin 3n/10 2 1/2(m+l1),
moreover
Xmi = Xpe1,1 S Tpi = Vme1,i S In/2(m+2).
Analogously, for the given values of i, one has v,,; ;,; > T,; and
then
Vmel, i+l T Tmi < Xme1,ie1 T Xmi < Tm+l,iv) T Vi
which, reasoning as before, yields
1/5(m+2)8in 17M/30 < Xppy 4y = Xpy S W/2(m+2).  (3.13)
Now, let t € D :=[-0.5,0.5), w € G*, then, again restricting
to consider the situation in the interval (0,1}, it is easy to
check that the zeros Vemyr Xemyr Te(m) closest to t correspond

to values of i 2 iz, for every m; more, the zeros of ﬂms and
|

3 can be stated.

m+1,s interlace. Under the above assumptions on t and W, Lemma
’
LEMMA 3. The set N is infinite.
Proof. Let x,.,, = X,;, for large m one has
Xpi St < Xm, i+l ¢ (3.14)
and
0 S Xpj St < Xpyp,441 < Xy, js1 S Ty, j41 S CO8 37/10,
(Or 0 S Xpyy,5 < Xpey,i41 S E < Xp,i+1 S COS 31/10).
If N were finite, there would result, for some m
lxc(m) - t| = o(m—l): (3.15)

passing to m+l1, one should have: Xo(me1) ™ Xma1,i+1 OF Xo(myy =

= Xp+1,ii 1n the first case (3.15) and (3.12) yield
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. -1
'xm+1,i+1 -‘t| 2 "xm+1,j,+1 - Xmil - |t - xmi" 2z const m™ -,

which gives rise to a contradiction.
For the remaining cases, the reasoning is similar.B
Finally, we remark (9], that (3.10) implies

| x

mi = Xm,i+s1| < const/m. (3.16)

4. A convergence result. We shall deal with the convergence
of rule (2.8) under the following assumption H: the weight
function W (2.4) and the singularity t of I(f;t) fulfil the
conditions (3.6), (3.16) and

|Cpi|l s const m™A-1 (4.1)

As it was shown in the previous section, conditions (3.6),
(3.16) are satisfied in several cases; as for (4.1), it follows
from (2.5) at least for any weight function € GJ.

For nzeiﬁ;we have x,, < t < X,,,, for some k; without loss
of generality we may assume Xo(my = Xmk-

Now, consider the following sums of the weights of (2.8)

m+l

E |Dns| h=0,1,...,1;.

120

under the assumpion H, the asymptotic behavior of the above sums

is described by Theorems 4 and 5.

THEOREM 4. The relation

m+l

Y D] = logm (4.2)

1=0

holds uniformly on K, meN.

Proof. Recalling (2.9), we may write, with me N
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B el
Lll)ml :ZIL)!I "1’3):‘ M E |U‘H|=
O 1=0

1:k4)

k-2 i ' | £, 1
-y ZC,“D"[ ] Loy C‘h,[Dh—-——x_L e (a3
i=0 | h=0 23 = X* Ky
+ E Chi [D"
Izkel X=Xl
Consider first i = 1,2,...,k, and observe that
Iy 1 ~
Dyl = Cpi| DP—— n [D"
' 01' hz=; ! x-t X=Xy ! t-x X=Xy
Since the function —tl_x is v-absolutely monotone in

[-1,Xm ) (see (2.11)), then the corollary of section 3 yields

Iy 1
Y G [D"—-—I 20
h=0 t-x X = Xy

0 one has

Iy
1 ,
Dy; =; Chs Dh__l , 1=0,1,...,k.
I 1| = 1 t_xx

=Xmi

Analogously, since the function —x%—t is v-completely monotone

in [X,,,,t]) we have

| Dosl = ECM[th : , I=k+l,...,m+1.

X=X

Making use of Theorems 2 and 3, one gets

Sk W(X) g NN D
=0 NN R
k-2 Iy

+ z: Z: Chi[ph o
1=0 h=0

t-x ]x-x,,,,

’
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hence

m. k-1 W(X} m. k-1 W(X)
[ XX dxsE|Dm|s|D0 wal + [ 225 ax

Similarly,

m+l

1 wi(x) W)
[ 52 axs 3 Pul <1Popal + [ 2 dx

then, from the last two relations we get

m+1

wilxX
fE ( ) dxsE|DO,|+ ;: |Das| € |Da, k1| +
k
WX) gy
+“D0,k+1|+f “l'_‘“[t X

(4.4)

where E;, = A\[Xpr-1 = Xpr+1)-
Now, since meN, we have | xpi-t] ~ mY , 3§ = k-1,k,k+1; thus,
taking into account (4.1), and (2.9), we find

|Do, ;I < const,  j = k-1,k k+1. (4.5)

Furthermore it is not difficult to prove that

w{Xx) w(x)-w(t) -
L&T;:Ede w(t)f - t|+ Tt dx~ logn

then (4.3), (4.4), (4.5) yield (4.2).8

THEOREM 5. The relation

m+l

Y |Dni| < const. m**,  h
1=0

I,2,....r,, (4.6)

holds uniformly on &, meN.

Proof. From (2.9), (4.1) one gets
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m+l m+l | Iy k-h
ki (1) C,
D, .|= P RS
z:l hll ; & h! (xj_t)k-hq
C
2; : ki’hl sconst.m'" W
2PN P = 1]

Now, we turn to the problem of the convergence of the
sequence {H,, (f;t)}, and prove the Theorem 6 below. We recall the
following well known result (24, pag.6};
if f € CF(A), for any m 2 r there exists a polynomial ¢, of

degree m, and a constant C, such that
r-1
IIQ.."IISC[I] “’{fm’Tln]’ i=0,1,...,r. (4.7)

where q, = f - ¢,, and |'| 1s the uniform norm.

We state the theorem below, where d = max (p,q,2s).

THEOREM 6. Let f € ¢c? (A), (9 ¢ H, (&), d < u < I, and let
assumption H hold, then the sequence {H,(£;t)}, me€ N converges
to I(f;t) uniformly on A&.

Proof. For everyjmeﬂi seen the degree of exactness of
(2.8), one has

£-£(0) )., [qm-qm(t)
x-t ma x-t

E,(f;t) =R,, [
= I(q@,: t) - H,(q,: t)
Then, from (2.2), (2.8), one gets

| B0 [ a2 et 0

+§ Pol|@n{Xmi] - m )] +

m+1 Iy

; ; }D,u| lq(h) mi]l 1=P,+P,+P,.
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We have

with

Then

qm"‘) qm‘t) @n (%) =g, (£) |
h (x)-w(t)|dx+w(t41;____;jz____dx

P <f,
s2| |q| I{fA @) 2wl | ae2w(e) Logm]| +

Jdree dn(X) -q, (L) szc[—lrw[f‘d’;i]-
t-1/m X—t_ m m

U wix) -w(t) dx +2 W(t)-logm]+J(f;t)
A x-t

w(t)dx

J(rf; t) = w(t) dx‘.

fhl/m Qn (x) -q,,,( t)
t-1/m x-t

(4.2), (4.6) yield

1}¢ (@, 1
P,<2iqdlogms 2const[;] -w[f ;Tn]-logm

5 d d-1
P, ‘p llqn(.ml'ml"'sconstw[f‘d‘;_l.] p [l] ,
= m|ff | m

d
where, as usual, ;: is to be considered = 0.

=1
Now, the assumption £(9) ¢ H,(A) implies

from

which the claim follows.l
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EXISTENCE THEOREMS
FOR SOME OPERATORIAL EQUATIONS IN HILBERT SPACES
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RESUMAT. - Teoreme de existentl pentru ecuatii operatoriale in
spatii Hilbert. In lucrare sint folosite citeva rezultate de cea
mai bund aproximare in spajii normate netede pentru a obtine
teoreme de existentd pentru ecuat{ii asociate unei clase de
operatori pe un spatiu Hilbert, care cont{ine operatorii liniari
strict pozitivi. S8int date aplicagii la ecuatii cu derivate
partiale.

summary. In this paper we will use some results of best
approximation theory in smooth normed spaces ([3] to give
existence theorems for certain equations associated to a class
of operators defined on a Hilbert space and containing the
strictly positive linear operators. Some applications to partial

differential equations are also given.

0. Introduction. We recall the concept of semi-inner product
on a linear space E over real or complex number field K.

DEFINITION 0.1. A mapping {,] of E x E into K is semiinner
product (s.i.p.) on E if the following conditions (P1)-(P4) are
satisfied (msee [5) and (6]):

(P1l) (x,x) 20 for all x € E and [(x,x] = 0 implies x = 0;

(P2) [Ax,y) = A[x,y) and (x,Ay] = Alx,y) for all A € K and

x,y in E;
(P3) ([x + y,z] = [x,8) + (y,8] for all x,y,z € E:

(P4) | (x,y1|? s (x,x])(y,y) for all x,y € E.

b4 . : .
University of Timigoara, Department of Mathematics, 1900 Timigoara,
Romania
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It is easy to see that the mapping E 3> x - [x,x]l/2 € R' is
a norm on E and if E is a normed space, then every s.i.p. on E

which generates the norm is of the form

(x,y] = <J(y),x> for all x,y € E,

where J is a section of normalized dual mapping [3]. It is also
known that a normed space E is smooth iff there exists a
continuous s.i.p. on it which generates its norm, i.e., a s.i.p.

satisfying the condition

lim Re{y,x+ ty] = Rely,x]) for all x,y € E (see [5]).
t-0

Lef two elements x,y in E and a s.i.p. [,] on E which
generates the norm of E. The element x is said to be Lumer-
-orthogonal over y or L-orthogonal over y, for short, if (y,x) =
= 0. We denote this fact by x L y. For some properties of s.i.p.,
L-orthogonality, representation of continuous linear functionals
in terms of s.i.p. we send to [1-6] where further references are
given.

Now, let (H;(,)) be a Hilbert space over the real or complex
number field K. An operator A : D(A) ¢ H -~ H, D(A) ie a subspace
in H, will be called of Lumer-type or of L-type, for short, it
the following conditions are satisfied

(L1) D(A) is dense in H and (u,Au) > O for all u € D(A)\{0};

(L2) A(au) = a Au for all u ¢ D(A), a € K;

(L3) |(u,Av)|? < (u,Au)(v,Av) for all u,v € D(A);

(L4) H}y Re(u,A(v + ut)) = Re(u,Av) for all u,v € D(A).

As examples of L-type operators, we can give the class of
strictly positive linear operators on a dense subspace of a
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Hilbert space H.
Now, let consider the operatorial equation
(A/y) Ax = y, x € D(A) and y is given in H,
where A is an operator as above. Further on, we shall give some
existence theorems for this equation in terms of best

approximation in smooth normed spaces.

1. Some preliminary results. In this section we shall give
some concepts and results in best approximation theory that will
be used in the sequel.

Let E be a normed space and x,y be two elements in E. The
vector x is called orthogonal in the sense of Birkhoff over the
vector y if f§x + Ayl 2 Ix| for all A ¢ K. We denote this x 1 y.

If G is a nondense linear subspace in E and

Pg(xg) = {yo € G| lyg = Xol = iyre_fo ly = xol}
denotes the set of best approximation elements refering to x, €
€ E\ G in G, then the following simple characterization lemma
in terms of Birkhoff's orthogonality holds [7, Lemma 1.14}:

LEMMA 1.1. Let E, G, x, be as above and g, € G. Then g, €
€ Py(xy) 1f and only 1if x5 - gy + G.

For other characterizations of best approximation element
in normed spaces see {7] and [2] where further references are
given.

In what follows, E will be a smooth normed linear space and
[,] will be the unique s.i.p. which generates its norm. The
following characterization of L-orthogonality in smooth normed

spaces holds (see for example (3, Lemma 1.1]):
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LEMMA 1.2. Let E, [,] be as above and x,y two given elements
in E. Then x L y iff x 1 y.

By the use of this lemma, we have the following proposition
(3, Theorem 1.2}:

PROPOSITION 1.3. Let G be a nondense linear subspace in E,
X, € E\ G and g, € G. Put G' := {w ¢ E | w L g, g € G}. Then
9o € Pg(xo) 1if and only if there exists an element w, ¢ Gt so
that x5 = gg + wg.

Another result which will be used in the following is
embodied in (see [3, Theorem 1.5)):

PROPOSITION 1.4. Let f be a nongzero continuous linear
functional on smooth normed space E, x, € E\Ker(f) and g, €
€ Ker(f). Then g, € Pyqr r)(Xp) if and only if the following

representation holds

£(x) = [x, T(x,} (x, - g,)/lIx, -g,#*) for all x € E. (1)

Now, recall the concept of proximinal linear subspaces in
a normed space. The linear subspace G is called proximinal in E
if for all x, € E the set Pi(x,) contains at least one element.
The following characterization of proximinal linear subspaces in
smooth normed spaces holds [3, Corollary 1.3):

PROPOSITION 1.5. Let E be a smooth normed space, [,] be the
s.1.p. which generates its norm and G be its linear subspace.
Then G is proximinal if and only if the following decomposition

E=G + G- (2)
holds.

CONSEQUENCES 1.6.1. Let E be a smooth normed space and G be

a linear subspace in E so that B, := {g € G| kgl s 1} is weakly
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sequentially compact in E. Then the decomposition (2) holds.
The proof follows by V.Klee's theorem (see {3] or [7, p.91])
and by the above proposition.
2. If G is finite-dimensional, then (2) is valid too.

3. If E is a smooth reflexive Banach space, then for every
closed linear subspace G in E the decomposition (2) also holds.
The following proposition is important in the sequel.

PROPOSITION 1.7. Let E be a smooth normed space, [,] be the
s.i.p. which generates its norm and f be a continuous linear
functional on it. Then the following statements are equivalent:

(1) Ker(f) 1is proximinal in E;

(11) there exists at least one u, in E such that the

following representation
r(x) = (x,u,) for all x in E (3)
holds

For the proof of this fact see (3, Corollary 1.6}.

The following consequences are interesting in themselves
too.

CONSEQUENCES 1.8.1. Let E be a smooth normed linear space,

f be a continuous linear functional on it such that Eﬁw(ﬁ

:t= {g € Ker(f) | gl s 1} is weakly sequentially compact in E.
Then there exists at least one u, in E such that (3) holds.

The proof follows by V.Klee's theorem and by the above
proposition.

2. If £ ¢ E*, then for every finite-dimensional subspace G
in E there exists an element Ur g € G 80 that

r(x) = [x,uf,G] for all x € G.

77



SEVER SILVESTRU DRAGOMIR

3. If E is reflexive, then for every continuous linear
functional f on it, there exists at least one element u, in E so

that the representation (3) holds.

2.Existence theorems. Further on, (H;(,)) will be a Hilbert
space over the real or complex number field K.
Let reconsider the operatorial equation:
(A’Yy) Ax = y, x € D(A) and y € H,
where A is an operator of L-type and y 1s a given element in H.
We observe that, the mapping [,], : D(A)xD(A) - K, [X,¥], :=
i= (x,Ay) is a continuous s.i.p. én D(A), i.e., the pair
(D(A); §.§,) where |x|, := (x,llx)l/2 is a smooth normed space.

Consider the following linear subspace of D(A):

vy i={x€D(A) | (x,y) = o}
The following characterization theorem for the solutions of
equation (A;y) holds.
THEOREM 2.1. If y: is a nondense linear subspace of
(D(A), §-4,), x5 € D(A) \ ;}(where ;} 1s the closure of y; in
the space (D(A); |'l,)) and g,€y,,then the following statements
are equivalent
(1) 9o € Py (x,)  in (D(A); N H,):
(ii) there exists an element z € (y;)* such that
Xo = gg *+ Zgi
(iii) the following relation is valid
(9,A(xg - gg)) = 0 for all ye€y,;

(iv) the element u, € D(A) given by
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(V, XO) (Xo - go)

(4)
(x, -9y, A%y~ Gp))

is a solution of equation (A;y).
Proof. " (i) e= (ii)". Follows from Proposition 1.3.
w(i) == (iii)". Follows from Lemma 1.1 and Lemma 1.2.
"(i) ~= (iv)". Let consider the linear func;ional f, : D(A)~
-+ K given by fy(x) ;= (x,y). Then Ker(fy) ='y; and since y,; is
nondense in (D(A),l‘)l,) hence fy is continuous in this normed
space.
Oon the other hand, because ngIﬂgn:ﬂ(xb) in (D(A), §-1,)
then by Proposition 1.4, we have the representation:
(x,3) = £,(x) =[x, F,Tx) (%, ~g5) /1%, ~Gola ] =
= (X, A0, V) (Xy - 99) / (X, - 9ys AlX,— g,))
for all x in D(A), and by the density of D(A) in (H;(,)) We
derive that A(ug) = y where u, is given in (4).
"(iv) == (L)". If uy = (y,xq) (Xg = 9o)/(Xg = Jo,A(Xy =gp))
is a solution of (A;y), then
(x,y) = (x,A((Y,Xg) (Xg = 9g)/(Xg = 9g,A(Xg = gg))

for all x in D(A). Consequently
£,(2) =[x, FT,TKT (%,-95) /1%, - g,l3] ,

for all x in D(A), and by Proposition 1.4 we deduce that
9o € Pror(r,) (Xo) in the smooth normed space (D(A); |'1},).

The proof is tinished.

Remark 2.2. The condition : y,is nondense in D(A) with the

norm |-, is equivalent with the existence of a constant k > 0
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so that
| (x,y)| s k(x,Ax)Y/? for all x in D(A). (5)

An operator of L-type will be called positive definite if

the following condition holds

(x,Ax) 2 m|x|? for all x in D(A),
where m is a positive number. As examples of such operators we
can give the positive definite linear operators defined on a
dense linear subspace in a Hilbert space.

The following corollary holds.

COROLLARY 2.3. Let (H;(,)) be a Hilbert space, A : D(A) -
H be a positive definite operator of L-type and y a given nonzero
element 1in H. If x,€D(A)\y, and g,€yx, then the previous
conditions (i), (ii), (iii) and (iv) are equivalent.

Proof. If y » 0, we have |yl = 0 and

l(x,y)| s Ixl Iyl s (Wyl/m*/?)’ (x,Ax)}/2 for all x e D(A).
Putting k = Nyl/m1/2 > 0, the condition (5) holds and then y;
is nondense in (D(A);i-l,) and the argument follows from the
above theorem.

The following existence theorem is also valid.

THEOREM 2.4. Let (H;(,)) be a Hilbert space, A : D(A) - H
be an operator of L-type and y a nonzero element in H. Then the
following statements are equivalent

(1) yi 1s proximinal in D(A) endowed with the norm [ B

(ii) the equation (A;y) has at least one solution.

Proof. "(i) = (ii)". If y, := Ker(ty) (ty(x) = (X,Y),

x € D(A)) is proximinal (D(A);i‘l,), then, by Proposition 1.7,

there exists an element u ¢ D(A) such that
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(x,y) = fy(x) = [x,u), = (x,Au) for all x € D(A),
i.e., u is a solution of equation (A;y).

w(ii) = (i)". If u is a solution of (A;y), then, as above,

we have the representation

fy(x) = [x,u], for all x € D(A),
i.e., by Proposition 1.7,\K§r(fy) is proximal.
The proof is finished.

CONSEQUENCES 2.5. Let (H;(,)) be a Hilbert space, A : D(A)c
< H - H be an operator of L-type and y be a nonzero given element
in H.

1. If the ball B—;,(A):=.=y;n{x€D(A)|leAsl} is weakly
sequentially compact in (D(A),/f /), then the equation (A;y) has
at least one solution.

2. If y 1s finite-dimensional in D(A), then the equation
(A;y) also has at least one solution.

Now, we will apply the above results to differential

equations as follows.

3. Applications to partial differential eguations. Let us

consider the following partial differential equation

n
b6 _Au.—;lézu/axf-fGLz(Q),QCR"

ulaa=0-

Putting ¢(2)(Q) :={u € c?(A)| ulz, = 0}, then ¢(?)(n) is a

dense linear subspace in L?(Q) and if we define the mapping:
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(')A:¢(2)(Q)X¢(Z) (Q) =R, (u,v) :=- Q le vdx
X

then (,), is an inner-product on ¢(?)(n), we have

(u,v) = Jﬂi'—gz-dx, u,ved'? (Q),
0 dx; Ox,

and there exists a real number k so that:
(u,u), 2 k% July, ued®(Q)

where |-|, is the usual norm in L2(n) {1, p.189].

PROPOSITION 3.1. Let wq € ) (a)\ £’ and go € ' where
L,z (2) =
£ {u€¢ (Q)lfuu(x)f(x)dx o}.

Then the following statements are equivalent
(1)  Pplwy) =lg) in (6@ (Q); (,),):

(ii) the following relation holds:

a(ug g,) ..
L gicu 0 if ger*;
(iii) the element u, € ¢?)(n) given by

f ): (3£/x -Bw,/dx,) dx
ug i (Wy = gp)
fa}:; (3w, - g,) /3x,)? dx

is the unique solution of the equation (A;f).

The existence follows by Theorem 2.1 for H = Lz(n), A= -4,
D(A) = ¢‘2’(n), Yy = f and y; = f*and observing that the subspace
¥a is closed in D(A).

The unicity is clear by the linearity of A.
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PROPOSITION 3.2. Let f be a nonzero e‘lement in Lz(ﬂ) . Then

the rfollowing sentences are equivalent:
(1) s chebychefian in (¢'2)(0);(,),), i.e. the set of
best approximation P, (x,)is a singleton for all xg;

(ii) the equation (A;f) has a unique solution.

The proof is obvious from Theorem 2.4.

Similar results can be stated for the following differential
equations:

-Au=feL?(Q), QcR”,

1. du + 0(P) ulya=0, 6 €C(0Q), o(P) 20, =constant >0.

on

and 940 is lipschitzian.

m

Zj (-1)*d ¥ [p(x)d*u/dx*) /dx* = fFEL?(0,1)
=0

u(o) = u®(0) =... =ul™v(0) =0

u(l) =u®(@) = ... =u™(1) =0

and p, (k = 0,...,m) satisfy the conditions

a. py(x) 2 0 for all x € (0,1) and there exists k; such that

Dy (x) 2p, >0  for all x € [0,1];

b. p, € ct®¥)(0,1), k =0,1,...,nm.
For other examples of this type we send to [1, pp. 167-235)

where further references are given.
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REZUMAT. -NotXk asupra unei teoreme abstracte de continuare. in
aceastd notd se arati c3 teorema de transversalitate topologicd
a lui Granas gi proprietatea de invariant3d la omotopie a
indexului de punct fix, pot fi deduse dintr-o teoremd abstractd
de continuare demonstrati in (6], [8). Aceste aplicatii ca gi
aplicatia privind proprietatea de omotopie a aplicatiilor zero-
epi in sensul 1lui Furi-Martelli-vignoli (9) aratd cd teorema
noastrd de continuare permite o abordare unitar3 a unor principii
de bazX ale analizei neliniare. In context, teorema de
transversalitate topologicd a 1lui Granas pentru aplicagii cu
valori intr-o submultime inchisd §i convex3 a unui spatiu Banach
E, este extins¥ la cazul aplicatiilor cu valori intr-un retract
al lui E.

1. Introduction. In this note our general continuation
theorem given in {6], (8] is used in order to derive two useful
principles in nonlinear analysis, namely, the topological
transversality theorem of A.Granas [2] and tﬁe homotopy
invariance property of the fixed point index. These applications,
together with that in (9] concerning the homotopy property of
zero-epi maps in the sense of Furi-Martelli-Vignoli, show that
our continuation theorem permits an unified aéproach to some
basic principles in nonlinear analysis. In context, Granas
transversality theorem for maps with values into a closed convex
subset of a Banach space E is extended to maps with values into
a retract of E.

For other consequences of the abstract continuation theoren,
several applications and related topics we send to [3], [4], [5]

and {7].

'”Babe;—Bolyci" University, Faculty of Mathematics, 3400 Cluj-Napoca,
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2. The abstract continuation theorem. Let X be a normal
topological space, A a proper closed subset of X, Y a set, B a
proper subset of Y,

H: [0,1) X X = Y
a map and let d be a certain function which is defined at least
on the following family of subsets of X:
{H(a(.),.)"} (B); a € C(X; [0,1}) constant on A} u {¢}.
The nature of the values of d is not important.
THEOREM 1. Assume that the following conditions are
satisfied:
(1) cl(u{H(t,.)”! (B); t €[0,1]} N A = ¢;
(ii) the map F = H(0,.) satisfies
d(H(a(.),.)”" (B)) = d(F'}(B)) * d(¢) (1)
for any function a € C(X; [0,1]) constant on A and such that
. H(a(.),.)|p = F|,-
Then there exists at least one x ¢ X \ A solution to H(1,x) € B.
Moreover, F = H(1,.) also satisfies condition (1) and
d(H(1,.)"! (B)) = d(H(0,.)"! (B)). (2)

The proof of the first part was given in [(6]. For the last
part, formula (2), we use the same argument as 1in the proof of
the second part of Theorem 1 in (8].

The meaning of Theorem 1 is that property (1), which is
stronger that F }(B) » ¢, is invariable to homotopy. 1In
applications, Theorem 1 ensures the solvability of the inclusion
H(1,x) € B when it is known that H(0,.) satisfies (1).

A map f in the class of all maps of the form H(a(.),.),

where a ¢ C(X; (0,1])]) is constant on A, is said to be d-essential
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if it satisfies condition (1). Therefore, Theorem 1 saies tpat

the d-essentiality property is invariable to homotopy.

3. Applications. Let E be a real Banach space and K a
retract of E (this means that there is a continuous map R: E =
- K such that R(x) = x on K). All topological notions referring
to subsets of K will be understood with respect to the topology
induced on X.

Let U be an open bounded subset of K and h: [0,1) xU-K be
compact.

a) A first application depends upon the concept of fixed
poiht index. For a compact map f: U~ K such that Fix(f) N dU =
= ¢ the fixed point index is the integer number
Dpg(I - fR, R‘l(U), 0) where D;g is the'Leray—Schauder degree.
We shall denote it by i(f,U,K) (see [1, pp 238]).

COROLLARY 1 (Leray-Schauder). Assume that the following
conditions are satisfied:

(1) h(t,x) » x for all t € {0,1] and x € 3U;

(ii) 4(h(o,.),U,K) = 0.

Then there exists at least one fixed point of h(l1,.) in U.
Moreover,
i(h(1,.),U,K) = i(h(0,.),U,X).

Proof. Apply Theorem 1 to: X=U, A = U, Y = E, B= {0},

H(t,x) = x - h(t,x), d(¢) = 0,
d(H(a(.),.)"}(B)) = i(h(a(.),.),U,K).
In this case, condition (1) is satisfied and its equality part

expresses just the boundary value dependence of the degree.
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Remark. Condition (ii) in Corollary 1 clearly holds if
h(0,x) = x5 for all x € U (recall x5 € U).

b) The next application depends upon the concept of
essential map. A compact map f: U~ K is said to be admissible if
it is fixed point free on dU. An admissible map is essential if
each admissible extention g of f|,;, has at least one fixed point
in U.

COROLLARY 2 (Granas). Assume that the following conditions
are satisfied:

(i) h(t,x) = x for all t € [0,1]) and all x € 9dU;

(ii) h(o,.) 1is essential.

Then there exists at least one fixed point of h(1,.) in U.
Moreover, the map h(1l,.) is essential too.

Proof. The conclusion follows from Theorem 1 if for each
admissible extension g of h(1,.)|5, (in particular for ¢ =
= h(l,.)) we set: X=U, A=3U, Y=E, B={0},

H(t,x) = x - h(2t,x) for t € [0,1/2}

=X - 2(1 - t)h(1,x) - (2t - 1)g(x) for t € [1/2,1)]
and d(¢) = 0, d(C) = 1 for C » ¢.

Remark 2. Condition (ii) in Corollary 2 also holds for
h(0,x) = x,, x€U. This follows by Schauder's fixed point
theorem.

Remark 3. Recall that every closed convex subset is a
retract and that every retract is closed but not necessarily
convex; for instance, dB,;(0) is a retract of E if dim E = o,

Remark 4. There are examples of compact maps having null

index but which are essential. Here is one from {10]: Let E be
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a real Hilbert space, U a bounded open subset of E with 0 ¢ U and
let f:U~E be compact such that f(x) * x on dU and

(r(x),x) =2 (x,x) for all x € oU.
If E is infinite dimensional, one has

Dig (I - f, U, 0) =0
and f is essential. Therefore, such a map can stand for h(o0,.)
in corollary 2, but not in Corollary 1 if E is infinite
dimensional.

Remark 5. The main ingredient in the proof of Theorem 1 is
Urysohn's extension theorem in normal (T,) topological spaces.
Using the extension argument in a way adequated to the separation
properties, we are able to prove Theorem 1 even for more general
T, spaces (n < 4); in particular, for Hausdorff locally convex
spaces.

Remark 6. Note that the properties in Corollary 1 and
Corollary 2 can be derived from Theorem 1 even for more general

maps.
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REZUMAT. ~ Teoreme de punct fix de tip Krasnoselskii pentru e-
contractii locale multivoce. Scopul acestei lucrdri este de a
demonstra teoreme de punct fix de tip Krasnoselskii pentru e-
contractii locale multivoce, extinzind astfel unele rezultate
obtinute in (5), [6].

1. Preliminaries. In [6] B.Rzepecki proved that if (X,d) is
a compact metric space, Y is a nonempty, closed and convex subset
of a Banach space and F is a multivalued mapping from X x Y into
Y, H-continuous in the first variable and k-contraction
(0 < k < 1) in the second one, then there is a continuous mapping
g: X x Y - Y such that g(x) € F(x,g(x)), for every x € X. As a
consequence a fixed point principle ot Krasnoselskii type is
given.

In 1985, L.Rybinski generalized these results to the case
of a multivalued ¢-contraction (see [6]). The purpose of this
paper is to prove fixed point ;heorems of Krasnoselskii type for
e-locally contractive multivalued mappings.

Throughout this paper, if it is not assumed otherwise, (X,d)
is a metric space, (Y, |.|) is an uniformly convex Banach space.
Let P_;(Y) be the collection of all nonempty, closed subsets of
Y endowed with the generalized Hausdorff metric H.

(P,;(Y) ,H) is a generalized metric space (see [7]). Let

Poj,cv(Y) be the family of convex elements of P_,(Y). In this

- . . .
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paper a multivalued mapping G: X — P_;(Y) is called H-continuous
if it is continuous in the sense of the generalized Hausdorf
metric.
Let us assume that ¢: X x R, - R, is a function such that:
(1) ¢ is continuous
(2) ¢o(x,.): R, - R, is nondecreasing, for each x ¢ X
(3) ib ¢"(x,t) <=, for each x ¢ X and t ¢ R, where
n=0
eO(x,t) = t, o"(x,t) = o(x,0" 7 (x, 1))
(4) for any continuous function a: X - K, the function
S:x-R,, S(x) = i:(p"(x,a(x)) is continuous.

n=0

If y e Y and A c Y, denote D(y,A) = inf{d(y,a)| a € A}.

2.Basic results. The following definition is modeled after
Nadler-Covitz's definition of a locally contractive multivalued
mapping (see (2]).

DEFINITION 1. A multivalued mapping G: X x Y — P_,(Y) is
said to be e-locally contractive (¢ > 0) if there exists
¢: X x R, - R, such that: u,v e ¥, ju - vj| < e =
H(G(x,u), G(x,v)) < ¢(x, ju - v|) for every x € X.

For the proof of ;he main result we need some lemmas.

LEMMA 1. ([5]) If ¢: X x R, - R, satisfies (2) and (3) then
¢{(x,0) = 0 and ¢(x,t) < t, for each x € X, t > 0.

LEMMA 2. (1)) Let (X,d) be a metric space, (Y,|.l) an
uniformly convex Banach space, g: X - Y a continuous singlevalued
mapping and G: X - Po;,cv(Y) a H-continuous multivalued mapping.
Then there exists a continuous mapping h: X — Y such that

h(x) € G(x) and | h(x) - g(x) | = D(g(x),G(x)), for evefy X € X.
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We will prove now the main result of this paper.
THEOREM 1. Suppose that (X,d) is a compact metric space,
(Y,l.l) is an uniformly convex Banach space and G: X x Y -

- P (Y) is a multivalued mapping such that:

cl,cv
(1) G(.,y): X ~ Pop,cv(Y) is H-continuous, for each y € Y
(i1) G(x,.): Y = Py o, (Y) is a e~-locally contractive
multivalued mapping, with a function ¢: X x K, - K,
which satisfies (1), (2), (3) and (4), for each x €X.
(iii) there is an element uy € Y such that D(uy,G(x,uy)) <
< ¢ for each x € X.
Then, there exists a continuous function g: X — Y such that
g(x) € G(x,g(x)), for every x € X.

Proof. Let u, € Y be such that D(uy,G(x,uy)) < e, x € X.
Since the mapping G(.,uy) is H-continuous, the function a: X -
- R,, a(x) = D(uy,G(x,uy)), x € X is continuous.

By Lemma 2. we can find a continuous selection of G(.,u,),
call it ¢g;1 X = Y such that g;(x) € G(x,uy) and |g,(x) - ugf =
= D(uy,G(x,uy)) = a(x) < e, for every x ¢ X.

Invoking again Lemma 2, there is a continuous mapping
gzt X = Y such that g,(x) € G(x,9;(x)) and |g,(x) - g;(x)} =
= D(g,(x),G(x,9,(x)), for every x e x.'U-ing Lemma 1 we have:
19200) = g1(x)} = D(9;(X),G(x,g,(x))) < H(G(X,Up),G(X,9,(X))) <
S o(x,0g,(x) - ugl) < ¢(x,a(x)) < a(x) < e, for every x € X.

By induction we get an interative sequence of continuous
mappings (g,)peny ¢ Ipt X = Y satisfying
(M) go(X) = uy , gp. (x) € G(x,g,(x)), for every x € X

(B) 19p41(x) - g, (x)}| < ¢"(x,a(x)) < ¢, for every x € X
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and n € N.
From (B) (9g,)p,eN 1S a Cauchy sequence in Y so there is
g(x) =1limg, (x), for each x € X. Denote r,(x) = ¢*(x,a(x)) for

n-o

0,1,2,..., and x € X. Obviously

n =2k orn-=2k+ 1, n,k

Y r,(x) =2S(x), for each x e X. Thus by (B) we get

n=0

195, (x) -g,,(x)l]sni;1 r;(x), x€X.
in
n-1
Denote R, (x) =2S5(x) —;; r,(x), for each x € X.

By (1) and (4), R,: X -~ R, is continuous for n = 1,2,3,...,
(X,d) is a compact metric space and so we have that R, = 0, as
n - o,

Therefore, for ¢ > 0 there is n(e) € N such that R, (x) < e,
for every n > n(e) and x € X.

Since |g(x) - g,(x)} S R,(x) < e, or every n > n(e) and
X € X we obtain:

D(g(x),G(x,9(x)) s kg(x) = g,(x)} + D(g,(x),G(x,g(x))) s

< Hg(x) = go(x)) + H(G(x,9,.1(x)),G(x,g(x))) S R,(x) +

+ (X, 1g,y(x) = g(x)l) S R,(x) + o(X,R,_;(x)), for every
n > n(e) + 1 and every x € X.

Therefore g(x) € G(x,g(x)), x € X.

It remains to show that g is continuous on X. We following
the technique given in (5]. Fix an arbitrary x;, € X. For ¢; > 0
let m be a positive integer such that R,U%)<-%er

Choose an open neighborhood U, of x, such that

190 (X) - gulxg) ) < %el, |R,(X) - R,(X,) < %el, whe never x ¢ U,,.
Since §g(x) = g(xp)h < 4g(X) = G (X)k + 1gu(X) = gu(xo)h +
+ 1gn(x0) = g(X0)) S Ry(x) + §gpu(X) = gu(xg)l + R,(x) for each
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x €U we have:

m’
fg(x) - g(x,} | = R,(xg) +2—‘]i'- €, +R,(x,) <e,.

Therefore g is continuous on X. Q.E.D.

As a consequence, we obtain the following fixed point
theorem of Krasnoselskii type for e¢-locally contractive
multivalued mappings.

THEOREM 2. Let T:Y - X be a completely continuous operator,

G:X x Y = P +(Y) be as in Theorem 1.

cl,c

Then there is an element y, € Y such that: y, € G(T(yg),Yo) -

Proof. By Theorem 1 (with T{Y] instead of X) there exists
a continuocus function g:T(Y) ~Y such that g(x) € G(x,g(x)), for

xeT(Y) .

In virtue of the Schauder fixed point principle there is an
Yo € Y with yo = g(T(yo))-

Therefore y, = g(T(yp)) € G(T(Yo) .9(T(Yo)) = G(T(¥o).Yo)
Q.E.D.

Remark 1. One can get another version of Theorem 2 with the
assumption that for every function g:T(Y] ~Y satisfying g(x) €
€ G(x,g(x)), for x€T(Y] the superposition g 0T : Y -~ Y has a
fixed point.

Remark 2. An application of Theorem 2 to functional-

differentional inclusions can be given in the same way as in {3].
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REZUMAT. - Asupra procedeului de construire de statistici
suficiente cu aplicatie la familia de distributii Darmois-
Koopman. Obiectivul acestei lucridri este de a glisi legea de
probabilitate a variabilei Y = mkB° unde B este coeficientul
generalizat de concordantd al lui Kendall gi asemenga de a
c,lculqz statisticele suficiente pentru estimatorul y , adicd
y =mkb**.

‘Résumé. Les applications de test non paramétriques sont de
plus en plus répandues. Nous cherchons ici a améliorer la
précision de ces tests basés sur le coeficient de concordance de
Kendall. Par suite de travaux antérieurs du second auteur,
l1'objectif de notre travail est de trouver la loi de probabilité
de la variable Y =~ mkB?2 ol B est le coeficient généralisé de
concordance de Kendall et aussi de calculer les statistiques
suffisantes pour l'estimateur y", c.a.d. y" = mkb*?. En encadrant
les distributions trouvées dans la famille de Darmois-Koopman,
nous avons envisagé des procédures numériques spécifiques A cette
famille. Dans le cas de volume de l'&chantillon donné ng, hous
donnons la procédure pour construire les statistiques suffisantes
pour les paramdtres y*, en se servant de la méthode de Monte-

Carlo dans le calcul numériques des intégrales.

I. The s-dimension parameter Darmois-Koopman family has the

" Presented at 17th annual A.R.A. Congress 3-7 june 1992
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density function of probability given (see [2]) by:

f(u/p) = A(p)D(u) exp z:ig(B)Gj(u)}
=1

where A and H,,H,,...,H; are the arbitrary functions of the
s-parameter B, and D, G,, G, ...,G, are the arbitrary functions
of the random variable u. If we have a sample U,, U,, ...,U, of
the random variable u, we know that it is possible to construct
a s-sufficient statistice given by the formula:

Tit;;(%(Up; i=1,2,...,8 for the s-parameter 8. In our work
(see E6]) we have y" = mkb*? as a estimator of the Y = ka2_and

the following density bivariate of probability fiunction:

) -1/3,,-y"*/ (2mk)
d(u/yo) - (}' ) 1 ey 2.

glu/y*); (2)

-

2(k-1)/2 [1[ k;]- ] (2,‘)7

where m and k are the finite integral numbers and the g(u/y") is
the function of the random variable u and of the appraiser

(estimateur) y* is given by:

_u_1 u uuﬂé
EREY TP Y LR ¥t Y
(u/ ‘) - e mik *(k-1) ‘u 2
glu/y < (3)
3___u —-u
e 2 2m(k-1) | g| 2m(k-1) [p
Op, 9. b

where ¢ is the function of Laplace and o, = [2m?(k-1)+1] /2m?*(k-1)

is the variance of b,.

m(k-1)w
2m(k-1)

variable with the variance = 1 and m(k-1)w is independent from

In [6]) we have b =2z+ ,where z is the normal random

z and is chi-square distributed with k-1 degrees of freedom,
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therefore with the variance 2(k-1), see [2]. Consequently the
variance of b* is o} = [2m?(k-1)+1] /2m?(k-1).
The formulas (2) and (3) are result of formula (2.19) from

(6] which is the following:

Ay ._u . k1o
exp{ 2[b° 2m(k-1)]} %. 4T e
k-1

. 7 pfk-1

(2m) % -0y, 2 F( > )

wie

h(b,,u) =

(2.19)

(™

The second factor is Chi-square distribution.

The first factor (when u is constant) is normal distribution
(without the factor o,). We have normalised the first factor
with respect to bw, i.e. we divided by integral with respect b*
of this factor (when u is constant), which is just the Laplace
Function ¢.

All this is possible because we know the interval of
variation for b* i.e. (0,3/2) (see proof after Theorem which is
below) .

Next to all this, we used also the transformation y"=mkb#2,
The factor 1/2(mk)!/2 which becomes visible after being
multiplied by b* = (y")"1/2;2(mk)!/? have been ignored. This
factor is independent from the variable u and y".

In this case the formula (2) obtained from (2.19) represents
the probibility density function for random variable u and y".
This result is possible because y" is an estimator i.e. is a
random variable. But for each value of y" the distribution (2)
is conditional probability density for the random variable u. In
this second interpretation we have connection the Darmois-Koopman

family distribution when it has a single parameter (see
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explanation below by J.Johnston).

II. The object of our work is to prove the connections
between the Darmois-Koopman family f(u/f) and our family
distribution d(u/y"); and also the procedure for the construction
of a sufficient statistics for the parameter y".

In order to identify the best procedure which helps our
object, we make the following remarks:

a) The random variable u = m(k-1)w (see (4] and [6]) where
w is the value of the Kendall's coefficient of concordance: w =
= 5/Spax'S 1.
According to [4] we have also:

w o= [(m=1) pg+l]/m; (4)
where u, the average of the Spearman coefficients r,, and then we
have

w1l (5)
because r, < 1.

From (5) we infer also that there is u = m(k-1)w s m(k-1)
which is iho least upper bound of the variable w.

b) We have a single parameter y* which is the estimator of
Y = mkB?; (see (6)) because the b is an estimator of the general
Kendall coefficient of concordance B. We consider here b* as a
parameter in the same way as is considered the variance s? of the
sample in Student distribution t (see J.Johnston "Econometric
Methods" French Edition-Economica 1985 page 41). When we replace

o? by his estimator &2 bringe us to replace the normal

distribution by a Student distribution (after J.Johnston). The
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2

variance s? has its oun distribution function and s? is also the

parameter in the Student distribution. In our case all formulas
from [6]) are asymtotically satisfied when k - ®; the estimator
b, - B (real); so that in our case the distribution given by (2)
is a likely approximation of the distribution of a function in
random variable u.

We have s = 1, a single dimension by random variable u, and
then it is necessarry to construct a single sufficient

statistics, which have the following form:
n
T, -;GI(UJ) (6)
1

when we have the sarple U,,U,,...,U,.

III. The method. Our density function (2) is the same that

the density function (1) when we consider: 8 = y",

1
. -—e__h
- . -_.Lz—

2T or(A)

D(u) = 1
3. u —— 8
2 2m(k-1) |_ 2m{k-1) ||, (8)
¢ ¢ (Y
o, oy .

and also if it is possible to identify the functione Hl(y') and

Gy (u) such that we have:

_Aa ul o uyn ?

Bl POTESE k-1 (9)
exp [H, (y*) G, (W) ] «T, (u/y") = went et e |

wic
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THEOREM. If H,(y") = 1 in (9) then there is a function G, (u)
such that the distribution {2) 1is a particular case of the

distribution (1) i.e. the distribution (2) belongs of the

Darmois-Koopman family. f: 1
e~ 14+D.
Proof. From [6] we have: b,=-ii—;—2i-+-g; where p; > 0 for
K
. : . . . 1
j =1,2,3,...,k are random integers, then the inequality 2: o

J=1
< k gives us 0 < b, <1 + 1/2 = 3/2 because w < 1. For y" =

J

= m(k-1)b*? we have 0 < y" < 9/4m(k-1). Now, for H(y") = 1 and by
integration in (9) with respect to y" we have the following:

9
f am(k-1) eol(”)dy- =
0o

i
]

T
-g-_ll_u_’__] k-1, 9 5
2 2(k-1)2 = amik-1) 2 (k- -
=e 2 amik-1)2) ;72 fun(k U e mikiuen. gye,
Q

vl
wiw

The calculation of the second integral can be done by the
substitution v = (y")l/2 and by parts. After other calculation,

we have the following:

-3_1[ u?

—_— .5 Y —3v _
am? (k=107 |72 . 8(3:_;,/mllE 1y-4 (10)
om 3k 2 (k-1)?

The function under the logarithm in (10) is positive for k>1
and this involve there is the function G,(u). If we consider (7),
(8), (9) and (10) it is clear that the distributions (2) belong
to the Darmois-Koopman family, q.e.d. The sufficient statistics
will be calculated by the formula (6).

Remark: The hypothesis k > 1, (under the function in (10)
is finite) is met in most of applications in non parametric

statistics.

In many applications (for example in order to calculate the
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moments of d(u/y*)), one must calculate the integral from the
function F(u) as under Ln in (10) in the interval {0,m(k-1)). In
this case it is possible to apply a gquadrature formula whose
knots are the values of the order statistics u;, u,, ..., u,,
obtained from the sample U,, U,, ..., U,. We consider this
procedure because it is the same which makes possible to
construct the sufficient statistics for the parameters of
Darmois-Koopman family (see [2])). We have the formula

. H
T Yy u

] 1 k-1

ety CI9S 1 j__] PR

fm YP(u)du= ;;cle 2 Flamtuen? “[Bu,vaTk-17-4]-u * "+R (11)
0

where R is the remainder of the quadrature formula and C, for
1 =1,2,...,n are the coefficients of this formula.

The delimitation of R is possible because the function to
integrate without the constant 8/9m5/2k1/2(k-1)? which is given

by

_u_ 2 —.iz__ ‘5;4_1.43 12
Flu) =e ’[‘"'""'””]‘U 7 T3 uymik-17 -4} (12)

is simple, continuous differentiable and bounded in random
variable u.

In conclusion it is possible to find suitable quadrature
formula (optima) in spite of that U,, Uy, ..., U, are the values
of random variable u in the interval (0,m(k-1)), where the
integers m and k are finite.

When n = n,; (fixed) the remainder R will be delimited by:

IR| s C(ng): |F(u)lP| (13)
where only C(n,) =1/[m(k-1)1™; while the quantity |F(u)(P]| is

bounded because |F(u)} is bounded; p = order of the derivative
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of F, and |R| - 0 when n = ny —~ o,

When n is random it is possible to apply the sequential
procedures because the statistics T; is sufficient by means of
Frasser (see [1]).

Because the distribution of variable u = m(k-1)w is
specified (see [4]) and [6])), namely the Chi-Square distribution
with k-1 degrees of freedom, the calculation of (11) by the
Monte-Carlo method it is immediatly clear (see (3]).

The interval of integral from (11), being [0,m(k-1)], then
immediately we have the following knots

u; - wly-m(k-l), for 1 = 1,2,3,...,n; (14)
where w;, are the random numbers from the Chi-Square distribution
with k-1 degrees of freedom in the range 0-1. By means of the
relations (7), (8), (9), (10), (11), (12) all the criteria for
the construction of the sufficient statistics for family (2) such
as the Darmois-Koopman family (1) are satisfied (see [4]),

including the Sobel-Wald test with three hypothesis:

Hoto=dg;  Hy:e=¢y;  Hyi¢=¢,.

IV. The oconclusions. The construction of the general
confidence intervals for the parameter distribution of type (2)
is very important in applicable statistics, including the non
parametric statistics. These sayings are incontestable if we

analyze the means and the applications where we meet the

indicators as in the families (1) and (2).
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In cel de al XXXVII-lea an (1992) Studia Universitatis Babeg-Bolyai apare in
urmatoarele serii:

matematica (trimestrial)

fizica (semestrial)

chimie (semestrial)

geologie (semestrial)

geografie (semestrial)

biologie (semestrial)

filosofie (semestrial)
sociologie-politologie (semestrial)
psihologie-pedagogie (semestrial)
stiinte economice (semestrial)
stiin{e juridice (semestrial)
istorie (semestrial)

filologie (trimestrial)

teologie ortodoxad (semestrial)

In the XXXVII-th year of its publication (19¢2) Studia Unversitatis Babes-
Bolyai is issued in the following series:

mathematics (quarterly)

physics (;emesterily)

chemistry (semesterily)

geolcgy (semesterily)

geugraphy (semesterily)

biology (semesterily)

philosophy (semesterily)
sociology-politology (semesterily)
psychology-pedagogy (semesterily)
economic sciences (semesterily)
juridical sciences (semesterily)
history (semesterily)

philology (quarterly)

orthodox theologie (semesterily)

Dans sa XXXVII-e année (1952) Studia Un’versitatis Babes-Bolyai parait dans
les séries suivantes:

mathématicues (trimestriellement)
ph:sigue (semestriellement)

chimie (semestriellemant)

geologiz (semestriellement)

géographie (semestriellement)

biologie (semestriellement)

philosopinie (semestriellement)
sociologie-politologie (semestriellement)
psychologie-pédagogie (semestriellement)
sciences, économiques (semestriellement)
sciences juridiques (semestriellcment)
histoire (semestriellement)

philologie (trimestriellement)

théologie orthodoxe (semestriellement)



