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CONSIDERATIONS CONCERNING POWER ALGEBRA
I. PURDEA’ and N. BoTH'

Dedicated to Professor |.Muntesn on his 60'" anniversary

Received: July 2, 1991
AMS subject classification: 08A05, 08A40

RESUMAT. - Consideratii privind algebra piirtilor. S8e¢ dau doull
teoreme de caracterizare a extensiilor unei algebre universeale gi
anumes

1) Condigia necesard g¢i suficientd ca o algebr¥ de pirti sl fie
extensia unei algebra date.

2) conditia necesarX¥ gi suficientd ca o algebrX de piryi sX fie
extensia uneli algebre dintr-o varietate datX.

Let (A,f1) be an universal algebra, P(A) the Power set of A
and neN. Note 1, = {wenl @ is n-ary operation} and we have

a1= U f

.
neN ®

The operations from (A,fl) are extended to operations in
P(A), as follows: if e ¢ 1, and.xl <A, i=1,...,n, then

O(Xy,000,Xy) = {0(%3,...,%,) | X3€X;,i=1,...,n} (1)

(P(A),1) is called the Power Algebra of (A,N).

Here we continue the study of (P(A),f), contcidering the
variety of algebras. For more details see the bibliography.

The following theorem gives a necessary and sufficient
condition for a structure of 1 -algebra on P(A) to be obtained
from an 1 -algebra on A, by (1).

THEOREM 1. Let (P(A),Nl) be a structure of universal algebra
on Power set of A. There exists a structure of universal algebra
(A,f1) on A so that (f(A),n) may be obtained from (A,01), by (1),

if and only if (P(A),Q) verify the conditions:

* University of Cluj, Faculty of Mathematics, 3400 Cluj-Napoca, Romania



I. PURDEA and N. BOTH

i) The subset A = ((x)lx;A) is a subalgebra of the algebra
(P(A),0) .
ii) It ne N, v € O,; X;,...,X, €A, 1 = 1,...,n, then
X, =0 ® 0(Xy,.00,%X;) = o,
11i) If neN', ovefty, 1 = 1,...,n; Xy eee Xy 30X 1010000, X GA
and xu:A, jeJ, then

u(xl,...,xi_l, }JGJ X“,xiﬂ,...,xn) =

= gJ‘Jﬁ)(xl, ...,Xi_l,xij,xhl,.. .,xn) ’

thas is, each (not nullary) operation o € 0 1is distributive
relatively to union, on each from components.

‘Proof. Suppose that there is a structure of fi~algebra on A,
so that (P(A),Nn) is the Power algebra of (A,N). From (1) it
results that for every neN,wefl, and x;,...,X,€A, we have:

O({x3},.0.,{%}) = {0(X3,.0.,%X,)}.

Therefore A is a subalgebra of the algebra (P(A),R), and the
condition i). Also from (1) follows the condition ii).
Using (1), we hawe:

X € 0(Xy,...,X4_,, ny“,xul,...,xn) &2 there exist
[

(Xysooo s Xy 3oXg o RjpgreoeeeXg) € XX XXy xy”xljxxiﬂx...
ceeXXy, 80 that X = 0(Xy,ccc, X5 3,X,Xj43,000,%Xy) &2

«% there exists jeJ and (X;, ..., X 1,X{,Xj47/000,X,) €

€ XyXoo o XXy 1 XXy yXX54yX. . XX, 80 that x =
BO(Xy,e00 Xy 31X, X1410000,X,) &3 there is j € J so that

X € ya“(xl"“'xi-l'xij'xul'"'vxn)' and so, the condition
[

iii) is verified too.
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CONSIDERATIONS CONCERNING POWER ALGEBRA

Conversely,suppose that (P(A),Nl) verifies the conditions 1),
il), iii). From i) it results that for each n ¢ N, v ¢ 01, and
H1eseesXq € A, the subset e({x;},...,{Xx,}) contains the only
element x, that is, o({x;},...,{x,}) = {x}. Using this fact, we
aay define the n-ary operation w:A"<A by

O(Xy,e00sXy) = X (2)
S¢ is defined on A a stru'cture of Ni-~algebra. The symbol & denotes
both an operation in the gived algebra SP(A) N) and the
corresponding operation defined by (2) in A. Let ' be the
operation defined in P(A) by (1), starting from e in (A,0). To
close the proof, it is sufficient to prove the coincidence of the
operations ¢ and @' on (P(A),1). Give X; c A, i =1,...,n.
It X, = {x;} (L = 1,...,n), then from (1) and (2) it results:
O M ({X3)}seee s {Xg}) = {O(Xg)000,%X3)) = @({X3},00.,{%Xp}). (3)
If one from the sets X;,...,X, is empty, then from (1) and (i)
follows: ©'(X;,...,X,) = @ = 0(X;,...,X,).
If each of‘ the sets X;,...,X, is nonempty then, from iii) and (3)
follows: @(Xy,...,X,) = o U {X3},004, U {x,}) =

X, €X, X €X,

~ U (O({x3},eeer{xy}) D (3,000, %) €XyX%0 0o xX )} =
= | (0 ({2}, eee X)) b (%g,00e,%) €Xyx. . XX} =
@t U (X3} oeees U (X)) = @' (Xy,...,%,).

X, €X, X €X, .
Therefore o = o', axat is, the Power algebra of the algebra (A,1)
coincides with (P(A),0').

The set O of \;he operation's symbols, together with the
*arity"-function 1 4 N,is called signature. The fact that o is

the symbol of a n-ary operation is designet by o ¢ 0.

To give an algebra of signature 0 on the set A means to give

-]



1. PURDEA and N. BOTH

a function which associates to each v ¢ f1,, an n-ary operation
on A (designed by © too). If N is a signature and X is a so
called alphabet (from 1, disjoint set), then we may define the
algebra of f-words (or the algebra of polynomials) over X,
inductively, by the folloving:

(1) The elements from X U i, are words (polyncmials).

(ii) Ifn e N, 0 € 0, and Pis+-+,P, are words (polynomials)
then o(p;,...,P,) is a word (a polynomial).

If the f1 -words over the same alphabet X are expressed by
Xy,+++,%X, € X, then the formal equality
. P(Xy,eee X)) = d(Xq,60.,X,)
is called fi-identity. This identity is verified in the algebra
(A,0), if for every replacing of x; by a; ¢ A, i = 1,...,n is
obtained in A the equality:

p(ay,...,a,) = a(ay,...,ay).

Let A be a set of O -identities. The class of all the QO -
algebras which verify each of the identities in A is called
variety of 0 -algebras defined by A, denoted by (01,A).

It is shown that, even (A,f1) is in the variety (§i,A), the
Power algebra (P(A),l) is not necessarily in the same variety.
The following theorem characterizes the 1 -algebras on P(A),
defined by (1) from (A,0), which belong to a given variety (fi,A).

THEOREM 2. Let A be a set, (P(A),01) an universal algebra on
P(A) and (,A) a variety of 1 -algebras. There is a structure
(A,0) of universal algebra on A, in the variety (fi,A), so that
(P(A),0) 1s the Power algebra of (A,0), if and only 1if the

algebra (P(A),0) verifies the conditions 1i),ii),iii) from Theorem

6



CONSIDERATIONS CONCERNING POWER ALGEBRA

1 and the condition

iv) The subalgebra A = {{x}! x € A} of (P(A) ,Q) belongs to
the variety (fi,A).

Proof. From Theorem 1 it follows that there is a structure
of 1 -~algebra on AAso that (P(A),0) is the Power algebra of (A,N)
if and only if (P(A),Q) verifies the conditions i), ii) and iii).
In accordance with 1),. A is a subalgebra of (P(A),N). The
function f:A - P(A),f(x) = {(x)}), mappes izomorfely the algebra
(A,Q1) on th?‘subalgebra A. Therefore (A,fl)e(n,A) if and only it
Ae(0,A).

COROLLARIES. 1) Let A be a set and (P(A),'} a groupoilde.
There is a structure of semigroup (A,°) on A so that
(4). X.¥ = {x.ylx € X,y € Y}, for each X,Y € P(A), if and only
i1f (P(A),*) verifies the conditions:

i) A={{x}|x € A} is a subgroupoide of (P(A),").

il) X =¢or ¥ =¢ a3 X.¥Y = ¢.

iii) (x VU x').¥ = (x.¥) U (x'.v),

X.(Wy') = (x.Y) U (x.Y'), for each X,X',¥,Y' c A.

iv) (A,°) 1is a semigroup.
The groupolde which verifies the conditions above is a semlgroup.

'2) Let A be a set and (P(A),') a groupoide. There is a group
structure on A, (A,') so that the operation in (P(A),°') is
defined by (4), 1f and only if (P(A),') verifies tbe above
conditions i),ii),iii) and (A,°) 1s a group.

3) Let A be a set and (P(A),+,.) a structure with two binary
operations. There is a stru&ture of ring on A, (A,+,.) so that

X+Y = {x+y | x € X and y € Y}
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X.¥Y = {x.y | x ¢ X and y ¢ Y) for each X,Y ¢ A,
if and only if (P(A),+,.) verifies the conditions:
i) {x} + (y} and {x).{y) contain all a single element,
that is, A is subalgebra of (P(A),+,.).
ii) X =@ or Y = ¢ = X+Y = ¢ and X.Y = ¢.
144) (x VU x*)+y

(x+Y) U (x'+Y)

X+(Y U Y*) = (X+Y) U (xX+Y')
(xVU x*).y = (x.Y) U (x'.Y)
X.(Y U y*) = (x.¥) U (%.¥'), for each X,X',Y,¥'c A.

iv) (m,+,.) is a ring.

BIBLIOGRAPHY
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ON THE JENSEN - HADAMARD INEQUALITY

J.8ANDOR*
dedicated to Proffteor I. Huntaan on hit 60th tnoiverstry
Raeived: Janary B, 1901
ANS subject citttiffeet lon: 26A51
RESUMAT» - Despre Inegelitates lui Jemen-Hedtaard. Tn aceasta

nota obtinem o generalizare pentru functionalele liniare si
pozitive a inegalitatii lui Jensen-Hadamard; extensii comune
pentru o .inegalitate a lui J. Sandor [3] si H. Alzer [1]; precum
si alte rezultate Inrudite.

1. Introduction. The famous Jensen-Hadamard inequality states
that for a (continuous) convex function Tf:[a,b] = K (with a<b)
b
one has (b-a)f( a+b) sf £(x)dx < (b—a)[-f_@_)_fﬂ.t_’l (1)
2 a 2
For relation (1) many applications in different branches of

mathematics have been obtained (See e.g- [2]1,[3].,[4]1.[5}.[6]1) and
certain extensions and generalizations are also known ([3], [11,
[2D - The aim of this paper is to obtain some new generalizations

and other relations related to the Jensen-Hadamard inequality.

2. A generalisation. Let f:[a,b] - R be a (continuous)
convex Ffunction and L:C[a,b] -*l1a positive, linear functional
on C[a,b] - the space of all continuous functions defined on
[a,b].- Let us denote by ex) - xk, x e [a,b], k e N.
THEOREM 1. ITthe above conditions are satisfiec
L(e0) « 1 , then:
F(LE)) sL(F) st TOTE@ +bT@-2rO

Proof. Since f is convex, it is well-known that

Jme Forteni, 79, Harghita County, Romania



'J. SANDOR

f(x)- f£(y)2 £, (y) (x-y), x,y€[a,b)
By setting y = L(e,) and applying the positive linear functional
L we get L(f)2 £(L(e,))- Le,)+ £;(L(e,)) (L(e,) - L(e,))= £(L(e,))
by L(eg) = 1. This gives the left side of (2), where clearly,
from a 5 e;(xX) S b we have aL(eg) s L(e,) < bL(ey), i.e.
L(e;) € (a,b].

For the right side of (2), let us consider the inequality
_ay E(b) oy f(a)
f(x)<(x a)——b_a + (b-x) B

which means intuitively that the graph of £ on {a,b) is below the
line segment joining (a,f(a)) and (b,f(b)). From e,(x) = Xx,
ey(x) = 1, x € f{a,b) by application of L, after simple
calculations we get the ‘desired result B

Remarks. 1) For L(f)-= b—{af:f(t)dt we have L(ep) = 1 and
L is positive linear functional. For this L, relation (2) gives
exactly inequality (1).

2) pet w; 20 (i=1,...,n) with ] éwiﬂ, and let

a, € (a,b}, i=1,...,n. Let us define L(f)= gwif(a,)

Then clearly L is pozsitive linear functional, so by (2) we get:

n n n
f(gwiai)sgwif(ai)s(z;wial)[f(bl)):;(a) . bf ‘ag)::f‘” (3)

for a convex function f[a,b] - R. The left side of this relation

is the well-known Jensen inequality for n numbers.

3. On an inequality of s&ndor and Alzer. In this section we

shall obtain a unified method to prove certain generalization of

10



ON THE JENSEN - HADAMARD INEQUALITY

(1) discovered by J.Sa&ndor [3] and H.Alzer ([1]. First we state

two lemmas.

LFMMA 1. For x € [a,b] one has
(b-a)®/27! < (x-a)"+(b-x)" < (b-a)", n21 (4)
Proof. We consider the functions h:(a,b] - R defined by

h(x) = (x-a)® + (b-x)". Here h(a) = h(b) = (b-a)® and
l\(a;b)= (b-a)" / 21, obviously, h'(x) = n[2x~-(a+b) ]} - q(x), with

q(x) = (x-a)™? + (x-a)®3(b-x) + ... + (b-x)™2 > o,

80 h'(x) < 0 for x < (a+b)/2 ; and h'(x) 2 0 for x = (at+b)/2.
a+b ,b)

We get h(x)<h(a) for x € [a, a;b] and h(x)sh(b) for x € [
in all cases h(x) < (b-a)® and h(x) 2 (b-a)® /7 2™l @

LEMMA 2. For f ¢ C"(a,b] and t ¢ [a,b] one has

(- l)f f(x)dx = ;[ (t-a)i (t‘b) ]f 1) (g) - (-1)P102 4
x -aYnf (n) b _h)nf (n)
n,[[‘ (x-2)"¢ ® (x)dx + [ (x-b)ne ¢ (x)dx]

(5)

Proof. Applying the generalized partial integration formula

(called also "Green-Lagrange identity") we can write:

.[t(x-a)"fkn’(x)dx = (t-a)Pf -V (t) - pn(t-a)?1if 02 () + n(n-1) -
a
- (t-a)P-2f ™3 (£) ~. . .+(-1)*n(n-1)...(n-k+1) (t-a)"k -
< £k () 4, .4 (-1)"1n] (t-a) £(t) + (-1)nf‘mf(x)dx
a

and likewise
jlb(x—b)“f‘"’(x)dx = -(t-b)?f "V (t) + n(t-b)"1f P2 (¢) - n{n-1) -
c(e-D)P2EMI (k) 4+ ., + (-1)%'n(n-1)...(n-k+1) (b-a)"k -

LS EUNTS SN (-1)"nl(t—b)f(t)+(—1)“fbnlf(x)dx
: 1 4

Adding these two relations and dividing with n! we obtain (5) @

11
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We now prove the following:
THEOREM 2. Let f ¢ C?*[a,b) with £(2k)(x) > 0 for x ¢ (a,b)

(k 2 1, positive integer) and let t € [a,b) be arbitrary. Then:

[Jrooaxs ?:[ (£-a) (e |(q)smpun ey o

(6)
(21];) : { (t;;f_)lzk .[f (2k-1) (t) - f (2k-1) (a)] + Sk,.,b(t)}
and
b < (t—a)1-(t°b) ] _1yi-1¢ (1-1) 1.
f. f(x)dx < p[ (-1)*1f (t) *W (7)

{ (b-a) 2k [£ 3k-1) () —f (2k-1) (4)] +Sy ap(€))

where S, ,,(t) = f.b(b-x)“f o (x) dx - zf:(b-x)”‘f @0 (x) dx.
1r r(?%) (x) > 0, the inequalities are strict.

Proof. We apply Lemma 2 for n = 2k and first the right side
of (4), then the left side of (4).Since f:’ - f” -[% . the
theorem follows by simple computations. From the proofs of (4)
and (5) we can see that for f{?%)(x) > 0, x € (a,b), the
inequalities in (6) and (7) are strict B

THEOREM 3. Under the same conditions,

k-1 k-1
_{b-a) 31 ) farb £ (x) dx (b-a)?+ |
g 221(23+1)z ( ) f (x) dx < ;;, 233 (2j+1)1 (8)
£ an[atb 1 b-a)?k [f k-1 (p) - £ (3k-1) (4)
(%5 g P (b) (a))

Proof. Let us apply Lemma 2 with t = (a+b)/2. Since
- i
b a ( = 2(———) for i odd; = 0, for i even; with the

notation i=2j+1 we easily can find the left side of (8). In order

12



ON THE JENSEN - HADAMARD INEQUALITY

to prove the right-hand side inequality, we can remark that

(x-a)2* ¢ (b-a) , if x € [a, a+b , and (b-x)% g (b-a)*k
for X € [a;b

’

b] S0, in all cases the second term is less than

1. (b-a)3k rb. (5 o1 (b-a)® Cake1) gy £ (2K-1)
KT o« f.f () dx = <ot = a (b) -f (a)] @

Remark. The left side of Theorem 3 is due to J. S&ndor (3)

THEOREM 4. With the same conditions,

(b a) -1 1y i-1¢ (1-1) (b-a) 3
2; (£ (a) +(-1)11f (b)]+

oy T

- £k (5) )¢ ]'bf (x)dx < p (b a) (£ 4D (a) +(-1) 12 -1 (b))

(9)
Ir £%)(x) > 0, the inequalities are strict.

Proof. Setting t=a and t=b in (6), after addition we get the

left side inequality. By doing the same thing with (7) we get the
right side of (9) R

Remark. The right side of (9) is due to H.Alzer [1)

4, 86-0 related inequalities. Finally,

related results.

we will prove two

THEOREM 5. If £ ¢ C"(a,b], then:

E(222) - 2 [Tecoax] <
[%2]

. (b-a) ! (23) ( @+b (10)
< —u It (———-) +
Y |

+ 2“°nlf |€£ ™ (x) |[dx

Proof. We apply Lemma 2 with t=(a+b)/2. The modulus-

13
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inequality for sums and integrals implies at once the result it

—ayt b\t —a\t
we observe that %) - (a_b =0, 1 even; =2 (Bz—a)

n-1
2

’
otherwise. Remark that i=2j+1snejc¢g » where ([x]
denotes the integer part of x 8

Remark. For n = 1 we obtain the inequality

If( a;b) - b_faf."f(x)du < %f:lf'(x)dx (11)

for £ € cl{a,b]. This improves the relation

Ts (a;b)| p b—faf."f(x)dx . %f:lf’(x) |dx (12)

known as "Gallagher - Sobolev inequality" (([7)])
THEOREM 6. If £ ¢ C"(a,b) and |£(™(t)| < M for all

t € [(a,b), then

If. f(x)dx+p[ (t-a)'- (t"b)‘]( _1)if G- n(t)|‘£4_(_b_a_)ﬂ (13)

Proof. The result follows by an application of Lemma 2 and

the remark that
f‘(x-a)ndx N fb(b-x)"‘dx < ["[(x-a)u(b-x)"]dx s (b-a)"?
a As a

by Lemma 1 B

COROLLARY. Under the same conditions,

n
szbf(x)dx*z: {boa)? ((-q) g 40 (b) £ 4 (a)) )« ae)
. -1
(2M(b-a)"?
' nit

-

Proof. Using (13) for t = a and t = b, respectively, from

the modulus inequality we get relation (14) 8

14
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REZUNAT. - Asupra unor inegalitdti diferentiale gi integrale

pentru functiile analitice. Fie A, clasa functiilor f

analitice in diecul unitate U = (2; le < 1} care admit

dezvoltarea de forma f(z) = 2 + a,,,Z *14+..., 2 € U, unde
z

n2l. Pie g € A, gi tie £(2) = f g(t)/t dt. se aratX c&
0

dack g satisface inegalitatea |g'(z) -~ 1| < M,
unde M, este dat de (2), atunci| zf£'(z)/f(z) - 1 | < 1, care

este echivalentd cu Re];lg(uz)/ug(z) du>—;— pentru z € U.

In cazul N = 1 acest rezultat a fost obtinut in {3}.

l1.Introduction. Let A, denote the class of functions ¢
which are analytic on the unit disc U={z; |zl <1}, of the form
£(z) = z+a,,, z™1 + ..., zeU where n is a positive integer; In
a recent paper the first author obtained the following result:

If g € A = A, satisfies ig'(z) - 1l< M, = 8/(2 + v15) then

/
M——ll(l,forzeu where
f(z)

= [*9(t) = [*g(uz)
£ (z) ];-gt—dt foﬂ-u du

‘In the present paper we extend the above result to the class
A,, for all n21. This new result allow us to improve some of the

particular examples given in [3).

:.University of Cluj, Faculty of Mathematics, 3400 Cluj-Napoca, Romania
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PETRU T. MOCANU and XANTHOPOULOS 1. XANTHOPOULOS

2. Preliminaries* If f and g are analytic functions on U,
and g is univalent then we say that f is subordonate to g,
written f<g, or f(2)«g(z) if f(0) = g(0) and f(U)cg(U). We shall
use the following lemmas to prove our results.

LEMMA 1. [1, p-192]. Let h be a convex function on U fi.e
h is univalent and h(U) is a convex domain) . If p is analytic iIn
V, of the form p(z) = 1 + pnzn +..., zeU, nf£l and p satisfies
the differential subordonation p(z2)+z*p*(z) < q(z), then p(2) kK

x q(z) , where

= 1 z 1/n-1
a(z) = — [ h(eyer/etae

LEMMA 2. [2, p-201] Let E be a set in the complex plane C and let
g be an analytic and univalent function on U. Suppose that the
function H:CxU = C satisfies

H[Q® , m C q1(0 Z]CE,
whenever me€n, 1CI=1 and zeU. If p is analytic on U of the form
p(z) « q@) + pnzn +g.., and p satisfies

HIp z), zp“(2);z] e E, for zeU, then p—<g.

3.Main results.
THEOREM 1. If € An, nfl, satisfies
IT1(@ + zftM@ - I £EM, zeU, (1)

where M £ Mn, with

M (+1 )2 yY(n+1)6-4n-n (n+3) (2)
’ (+1)4-n (n+4)

then

18
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z2£/(z) _,

' 3
~£12) <1, zZ €U (3)

Proof.Since the inequality (1) can be rewritten as
£f'(z) + z-£%(z) < 1 + Mz,

by using Lemma 1, we deduce f'(z) <1 + Mz/(n+l) and

"£(z) Mz
1422
z < +(n+1)2 (4)

Let p(z) = z-£'(z)/f(z) and P(z) = f(z)/z. Since M <(n+1)?, from
(4) we deduce P(z) ¢ 0; which shows that the function p is
analytic in U and the inequality (1) becomes
IP(z)[ zp'(z) + p3(2z) 1 - 1l < M, zeu (5)
The inequality (3) is equivalent to
pP(2)< 1+z = q(z) (6)
and to prove (6), by Lemma 2, it is sufficient to check the
inequality
le(z) (w0 + 1 +0%) -1 2mM (7)
for all m 2 n, 1l = 1 and zeU. If we let { = el®, then
L(m,0,2) = |P(2)( m{ + ('1 + 0% -2 =
=iPz) (@ +{+m+2) -1l?%=
= (2c080 + m + 2){(2cos0 + m + 2)IP(2)I2% -
- 2 Re{el%P(2)]} + 1.
From (4) we deduce | P(z) - 1l < M/(n+1)? and | P(2)| > 1-M/(n+1)2.

For m2n we have

= (2cos0+m+2)-|P(2) |*-Re [e!®P(2)] -

|

1.
2

19
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@ (M2) ’|P(@) p+Re (eP(2) (2FTz7 -U }»
a |IP@ [{("+2) -IP@) |-I12P(2) -1 1) a

_ n+2 _ 2M
a |[P(@) F{n+2 (n+|)aM )

=IPP/n+1—UT! _m 1>0
\ n /

+
o/
ol

which shows that L is an increasing function of n.

Hence we deduce

L(m,6,2) ZL(Nn,6,2) - (2cos0+n+2){(2cosO0+n+2) IPi 2 - 2Re[e®P)}+I1£
Z (2cosO0+n+2){(n+2)=IPi 2 + 2Re[ei8P(P-1)]}+1 £

2 (2cos0+n+2) {(n+2) =lIpi 2-21 Pi =1P-11 }+1 -

- (2cos0+n+2) 1Pi {(n+2) IPi =21 P-11 >+1 £

M . M L «
(n+|)aJJ(n+2) (n+1)2 _(n+l)2M JHHKan

Since O<M<Hn, where Mn given by (2) is the positive root of the
equation K(M)=M2, we deduce L(m,0,z)EM2, which yields (7). Hence
the subordonation (6) holds and we obtain (3), which completes
the proof of Theorem 1.
The following two theorems are versions of Theorem 1.
THEOREM 2. If g € An satisfies Ig"(z) - Nl <Mn, where Mn is
given by (@ then

z't" (2
f@@

<1l ,for zeu

20
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THEOREM 3. If g € A, satisfies |g'(2z) - 1l<M,, where M, is

given by (2) then

j;-g(“—zdu> for z € U.

E ’
From (2) we deduce the following particular values of M;:

M, = —2 _ =1.362 ...
Vis+2

and
81

M, = ~———— =2,198 ...
V721410

4.Examples.

Example 1. If we let g(z) = (sinAz)/A than g ¢ A, and if

[A<ln{1+M,+ M, TM;+2)] =1.830. ..

then we deduce

|g’(z)~1|=2Fin’igiszshzjéfl < 23h31%lsM,=2.198..

for zeU and by Theorem 3 we obtain

Sl(z)

1
= <1. ceey 8
Stz > 3 ¢ for |z|<1.830 (8)

where

si(z) = [’ 91’;25 u =[°‘Bié‘tdc.

.We note that in (3) the inequality (8) was proved only for
Izl <1.504... .

Exemple 2. If we let g(z)=(tanAz)/A, then g ¢ A, and if
Al s arctanvM, = 0.977...

then we deduce |l g'(z)-1l = |tan?Azl < tan?l Azl < tan?lAl < My,

21
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for zeU and by Theorem 3 we obtain

1 tan uz 1
Re —_—= du > = for |z| < 0.977... 9
foutanz 2 |2 (9)

We note that in (3) the inequality (9) was proved only for

| zl <0.862...
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REZUMAT. - Asupra univalentei unui operator integral* In aceasta
nota se obtine o conditie suficienta de univalenta pentru functii
de forma (1).

In this note we obtain a sufficient condition for univalence

of function

F.(2) (1)

where f(z2) » z + a2z2 + . is a regular function in U -
® {z:1 zZ1 <1> and a is a complex number. The following Lemma is due
to Ch. Pommerenke ([1])-

LEMMA ([1D)- Let f(z,t) - ax(t)z+..., ax(® * 0 be regular
for each tel = [0,-n®) In U, and locally absolutely continuous in
1, locally uniform with respect to U.

For almost all tel suppose

where p(z,t) 1is regular in U and satisfies Re p(z,t)>0, zcU.

If lax(®) I-*>, for t—4e and f(z#t)/al(®) forms a normal family in
U, then for each tel, f(z,t) can be continued regularly in U and
gives univalent /unction.

THEOREM 1. Let a be a complex number, Rea>0 and f(z) *

Vnivé&raity of Brasov, Department of Mathematics, 2200 Brasov, Romania
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= z+..., be a regular function in U. If

T _ z2£/(z) 2
(1-]z]*){(«-1) I 1 (2)

for all z € U, then function (1) is regular and univalent in U.
Proof. Let U, = {z:lzl<r}, r>0. Because £'(0) = 1 there
exists r;e(0,1] such that 11%5L= 1 +bjz+ ...+ 0 for all z € U,

It results that the function
-1
g(z) = Lﬁ{flJ. = 1+4C,Z+..., (3)
is regular in U, for all aeC and hence
g (z) = afzu‘*g%u)du = 2%+¢c,—% 214 2z%h(z)
. o Va+l n

where h(z)=1+c,

@ ze...,
a+l

is a regular function in U,, . Because h(0) = 1 there exists
r,€{0,ry) such that h(z) » 0 in U“ and hence the function

F,(z) = z(h(z))!/® = z+..., is regular in U,, for all a € C-{0}.
It results that the function

& -t “ _ a-1
H(z,t) = (i'_ii_z_)_) + a(ezc_l)( f(e-:Z) ) -
ez etz

(4)
= b, (t) +b,(t)z+. ..

is regular in U, for all tel and‘acC-{O}. Since b, (t) = 1+a (et~
-1)»0 for all tel, if Rea>0, there exists r,¢(0,r,] such that
H(z,t)»0 in UIz for all tel and hence the function

f(z,t) = (e tz)(H(z,t)}Y/% = a,(t)z+a,(t)z2+... (5)

where a,(t) = e ®(1+a(e?*-1))Y/* is regular in U, for all

24
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tel (for a,(t) we choose a fixed branch). We observe that al(t)¢o

for all teI and lim la,(t)| = e.

t @

If p(z,t) is the function, defined by

z of(z,t) / of (z,t)

plz,t) = 3% 3t (6)

then in order to prove that the function p(z,t) is regular and
with positive real part in U it is sufficient to prove that the
function

= (zlt) -1
w(z,t) {}C;TET:I (7)

is regular and |lw(z,t)l<1 for all z¢U and teI. A simple
calculation yields:
w(z,t) = (1-67%) (a-1) 2 2£(e7Z) (8)
f(e*z)
For t=0, w(z,0) = 0 for all ze€U.
For t>0, if lzl=1 then !e™tzl<l1 and hence by maximum
principle we obtain

fw(z,t)l < max lw(z,t)l = |w(el®, t)l (9)
lz|=1

where 0 is a real number.
If u = e **® then |u|=e~t and hence
/
|w(el®,t) |=] (1-]u|?) (a-1) LW (10)
f (u)

Because |u|<l, from (2), (9) and (10) we conclude that
Iw(z,t)l <1 for all zeU and t>0. Because w(z,0) = 0 for all zeU
and | w(z,t)| <1 for all zeU and t>0 it results that lw(z,t)l <1 for
all zeU and teX. From Lemma, for t = 0, it results that the

function f£(z,0) defined by (1) is regular and univalent in U.
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THEOREM 2. If f(z) = 2z+... is a regular and univalent
function in U and a is a complex number such that,
la-1l < 1/4, (11)
then the function (1) 1is regular and univalent in U.

Proof. If f(2) = 2z+... is regular and univalent in U, then

we have
|zf’(z) 1+]z]
< for all z € U, and hence,
[ £(2) 1-|z]
/
1-|z|? -1y 2£(z) “1z]?) la-1 ] 1012] -
(1-|z)|(a-1) f(z) <(-|zf) fa-1] 1-|z (12)

= |a-1] (1+]|z|)? < 4|a-1|

for all zeU.

zf£/(z)

By (11) and (iz) it results that (1-|z|?) “F

(x-1) <1,

for all zeU.
From Theorem 1 it results that function F, (z) is regular and

univalent in U.
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REZUNAT. - Asupra unei conditii suficiente de univalent¥. In
lucrare este dat un criteriu de univalentd care generalizeazk
rezultate obtinute de mai mul¢i autori.

An interesting exterision of the well-known condition for
univalence due to Becker was obtained by S.Rﬁscheweyh ([31).

V.S8ing and P.N.Chichra in [4) generalize this result.
Z2.Lewandowski proved in {[1]) the next extension of univalence
condition due tb Sing and Chichara.

THEOREM A. Let £(z) = z+... and h(z) = cy + ;2 + ...
be analytic in U = {z:|z|<1? and £'(z) »0 in U. If there exists

the numbers a>1/2, s = a+iff, a>0, ReR, k=a/a, such that

_zf'(z) _ as| _ a|s| (1)
f(z)g(z) o P
and
2k zf/(z) . i t2xy ( 2E/(2) zg’(z) , _ as (2)
I21* ey * T e ) T e

«
for all zeU, then the function f(z) 1s univalent in U.

The aim of this note is to generalize the Theorem A.

We denote by U, the disc {z:! zl <xr}, r>o0, U, = Uand by I the

* University of Bragov, Department of Mathematics, 2200 Bragov, Romania
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interval [0,«0) of the real axis. The next Theorem is due to Ch.
Pommerenke (21)- *

THEOREM B. Let £(z,t) - ax(t)z + ax(® * 0 be analytic
for all tel in zeUro, 0O<rOf£l and locally absolutely continuous in
1, locally uniformly with respect to Uroe For almost all tel

suppose
©)

where p(z,t) is analytic and satisfies Re p(z,t)>0 in U. If
J%y I (@©)I= «@and ffZjtd/a~t) forms a normal family in \¥o,then
for all tel, f(z,t) can be continued analytically in U and gives
an univalent function.

THEOREM 1. Let f(z)=z+... be anaytic and f"(z) * O in U.
IT there exists a function g(z) = 1+0]™+... analytic in U and the

complex numbers a,c,X, s = a+iB, a>0, BeB such that

Re(2aX-s)>0, Rea>0 (G))
c[l+c(e2at-1)] ® for all tel ®)
and
zf*(2) ®)
f (@9

|z|2k(fz(:)'é?z) —elk) + (1-]z]2) (c _elk) s

s (]
@)

for all zeU, then the function f(z) 1is univalent in U.

Proof. The function
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h(z,t) = 1+c(e?®t - 1) g(e™®t z) = by(t) + by(t)z + ... (8)
is analytic in U for all tel. Because Rea>o, from (5) we
conclude that there exists a number p>0 such that
Ibg(t)! =11 + c(e?2® - 1)l 2p for all tel.
It results that there exists a number r;, 0<r;<1 such
that h(z,t)»0 for all zeU,., and teI, and hence the function
£(z,t) = f£(e"%tz) (h(z,t)1* = a;(t)z+ ... (9)
is analytic in U, for all tel (in (9) we choose a fixed branch)
By (4) and (5) it results that
a,(t) = el2ad-8)t(c (1_c)e2at)) 4 o (10)
for all teI and t1}@1:1 la;(t)l = o. Thus f£(z,t)/a,(t) forms a
normal family of analytic functions in U,,, ro = r,/2.
By uniform continuity of the function df(z,t)/dt on
Uy X [0,T]), where T>0 is an arbitrarily fixed number, it results
that £(z,t) is local absolutely continuous in I, uniformly with
respect to U.,.

In order to prove that the function‘

of(z,t) / of (z,t)

plz,t) =z o0z ot

(11)

is analytic and with positive real part in U or all teI, it is

sufficient to prove that the function

W(Z,t) = M_—_}_ (12)
p(z,t) +1

is analytic in U and lw(z,t)l <1 for all ze¢U and tel.

By a simple calculation we obtain
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(1+8) A(z,t) +1 -2a + 8 (13)

wiz,t) - (1-8) A(z,t) +1 + 2a - 8

A(z,t) =g e*'zf'(e *'z) -1+

cAf (e ®*z)g (e %tz)

(14)

+ (1_3-2“)(e,'“zf/(e"f-z) . e-otzgl(e-uz))
Af (e *t2) g (e *tz)

Because f£'(z)+#0 in U and from (6) it results that f(z)g(z)/z+0in
U, we conclude that the function A(z,t) is analytic in U for all
tel.

The ineqality lw(z,t)| <1 is equivalent to the ineguality

laqz,t) + 1 -kl < Ixl, k=% (15)
or
Ie-m( e*zf/(e"z)  _ k) .
cAf (e ®tz)g(e®tz)

(16)

. (1_6_2“)(e-at_zfl(e—stz) R e-stzgl(e-“z) -k)' < |k'.
Af (e "tz g(e™*tz)

For t = 0 by (6) it results that

Sk = |2E2)
jA(z,0) +1 - K| SAE (D)9 (2) k|< 13

for all zeU.
If t>0, because a = Re s>0, we have |e™®* zl < 1 for all z,
lzl = 1, and hence
IA(z,t) + 1 - ki s, max lacz,t) + 1 - kl= (17)
= |acel®,t) + 1 - xl,
where 0 is a real number. If u = e ®t*i® then lul = et
and e~2at = |yl 2k k=aya.

By (14), (16), (7) and (17), because u € U we obtain

30



ON A SUFFICIENT CONDITION FOR UNIVALENCE

A(z,t) +1 -Kk|< ““"‘[Eﬁ% -k
+ (1 - hﬂ”ﬁ(l¥;ﬁ§% + E?%g%L - k)ls k
It results that the inegality (15) holds true for all zeéU and
teI. Because the function A(z,t) is analytic and lw(z,t)l <1
for all zeU and teI, by k13) it results that the function w(z,t)
is analytic in U for all telI,
By Theorem B, for t=0, it results that function f(z) is
univalent in U.
Remarks 1. If Re c>1/2 then condition (5) of the Theorem
1 holds true.

2. If in Theorem 1, a is a real number, a>1/2, A=s
and g(z) =h(z)/c, where h(z) = c+c,z+... is an analytic function
in U, then from Theorem 1 we obtain Theorem A. r

THEOREM 2. Let f(z) = 2 + ... be an analyticlfunction and

£'(z) » 0 1n U. If there exists the complex numbers A, k such

that Rek>0, Re(kA)>1/2, kA - 1l <1 and

~ |4 |aRek _yy 2£/(2) zf/(z) | _ 18
(1 - Japee )| (1-2) 2 +;.(1+ f,(z)) Ak| £ [A[Rek  (18)

for all zeU, then the function f(z) is univalent in U.
Proof. If in Theorem 1, c=1/(Ak), g(z)=zf'(z)/f(2), then
Re(2aA-8)= aRe(2kA-s/a)>0, Rec = Rel/(AKk) > 1/2, because
P - ll <| 1 |, __Efliﬁl__ ~-cAk =0 and hence the conditions
k| k] £(2)g(z)
(4), (5) and (6) hold true. Replacing in the inequality (7) ¢

with 1/1k and the function g(z) with z2f'(z)/f(z) we obtain
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1a13y| (1 -2y 2E/(2) z£7(z) ) _
[(1-|z]3*)]|(1-A) £12) +A(1+ o) ).k]l s |Ak| (19)§

|
i

For z = 0 and Rek>0 the inequality (19) holds true. If z 0,

z¢U and Rek >0 we have

[1-|z|?%| = |1-e2xinizl| = |2kln|z|fle"‘““|"dt| <
]

< l2klnjz|| }|e21nlzl|dt = |2k 1n|z] ) leathekintzlge | a

B 1-e2Reklniz] || ~ |-« |2Rek
| Rek — Rek I=[%5)
and hence
-2 < g a-fape .

By (18) and (20) it results that

o lakl] (1 _ay 2E£/(2) z£/7(z) | _ k .
j2-Ja e (2-3) ZE7LE) }.(1+__fl(z) ) ak| < L 2 |Rek=]ak|

and hence the ineguality (19) holds true.

From Theorem 1 it results that the function f(2) is univalent in

U.
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RESUMAT. - Conditii suficiente de convexitate de ordin a gi de
univalentX care folosesc derivata lui Schwars. Fie f o functie
olomorf¥ pe discul unitate U din planul complex, de forma

f(z) = z+ap,z"l+... , n21

8e noteazk cu K(a), a<l, clasa functiilor de forma de mai sus,

cu n = 1, care sint convexe de ordin a. Atunci K(0) = K este
clasa functiilor convexe. Fie 8 ¢ C. in lucrare se determinX
domenii D,D', care depind de a, A gi n, pentru care au loc

proprietitile
@(f,B;Z)=53%§%1%L+z’{f;z}en, z€U -~ feK(a)
z
2
¢(f,ﬂ:z)=(3§%i%1+1)+Bz’{f;z}eDC zZ€U - feK
z

unde prin {f;z} s-a notat derivata lui Schwarz a lui f in =.
Particularizind apoi pe B gi luind a= -1/2 sint obtinute condig{ii
suficiente de univalenti.

1.Introduction. Let U be the unit disk in the complex plane.
We define A to be the class of all analytic functions f on U
normalized by £(0)=0 and £'(0)=1. An analytic function f on U is
sald to be convex order «a, a<l, if the following inequality is
satisfied

Re [ zf''(z)/f'(z) + 1 ) >a, 2z € U.

We denote by k(a) the class of all such functions f which
belgng to A. Note that K(0)=K is the class of convex functions.
It is well known that a function feK(a) is univalent if a 2 -1/2,.

For an analytic function f on U and for zeU let {f;z)} be the

* University of Cluj, Faculty of Mathematics, 3400 Cluj-Napoca, Romania
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Schwartzian derivative of £ iIn z

{f:z} =

The following theorem was obtained in [1]: if f < A and
p(u,v), u,v £ C is a complex - valued function which satisfies
some given conditions then

Re pzf"™ (2)/f=(@ + 1, z2{f;z>) > 0 * fe K.
> Some particular cases of this result, which were obtained
by particularizing the function p, are also given in [1]. We
insist here on two of them:

Re B i 0, Re [zf" (2)/f=(2)+1+Bz2{f;z>] > 0 * ¥ K (€Y

Re [(zF" (2)/f-(@ + 12 + z2{f;z>] >0 * F K @

The purpose of this paper is to find domains D ¢ C, D" c C,

for which the following statements are true:

9(f.B;z) Bzt " (z2)/fe(2)+z2{f;z> e D * feK(a) (©))

9(f,.ft2) = (A + zF " (2)/F°(2))2 + Bz2{f;z>D" * fcK @
where T e A, 6 € C and a<l. The domains D" obtained for the
assertion (4) are larger than the right half-plane However, for
some casses of the assertion (3), depending on a and 6, it is
necessary to consider f of the special form f(z) « z+an+lzn+l+, ..,
with nEl. This stronger hypothesis assures iIn some casses that
D contains the right half-plane, so () generalizes (1), or in
some other casses even the existence of D. The idea to consider
f of this form for the reasons mentioned above belongs to

professor P.T.Mocanu, to whom the author 1is indebted.
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2. Preliminaries. Let p and q be analytic functions on U,
We say that p is subordinated to q and write p(z) < q(z) if q is
univalent, p(0) = 0 and p(U) € q(U). Let P be the class of all
analytic functions p on U with positive real part normalized by
p(0) = 1. It is obvious that peP if and only if p(z)<(1+2)/(1-2).
The folowing lemma will be repeatedly used:

LEMMA 1 (([2]). Let’p be analytic on U.If p has the form
p(z) = 1+p,z"+..., n21, and p € P then there exists a point zyeU
such that p(zy) = is, 8 € R, zgp'(2y) s - n(1 + s2)/2.

We shall also use the next lemmas.

LEMMA 2. If ¢(f,B;z) is analytic on U, where ¢ is defined
by relation (3) and £ ¢ A, B ¢ C then f'(z) » 0 for all z € U.

Proof. Let us presume that there exists a zero z, of order

m21 for £'. Then 2o » 0 and £''(2)/f'(2) = m/(2-23)+..., 80

zdm(m+2)

(fl H = -
¢(f.piz) (z-2,)2

It follows that m(m+2) = 0, contradiction.

LEMMA 3. Let B be a complex number satisfying # » 2m/(m+2)
for every integer m, m 2 1. If the function ¢(f,B;z) defined by
(4) 1s analytic on U, where £ € A,then t'is a nonvanishing

function on U.

Proof. Presuming again that z, is a zero of order m 2 1 for
f' we obtain
V(E,Biz) =zémm-p- 2By L .
2 (z - z,)2

80 B = 2m/(m+2) which is impossible.
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3. Main results. Let £ ¢ A be a function of the form
£(z) =z + a,,2" + ..., n21,
(5) and let a be real, a <1 and 8 = B8; + 18, ¢ C. Let ¢(f,8;2)
be the function defined by (3). We denote by y(s), 8 € R, the

following curve

y(8) = (1 -a)(y,(s) + iy,(s))
71(9)=—1-2_a52‘529*_——1+;-n‘p1
Y,(8) = (B, -a)s - B,

Consider now the closed set G(a,B,n) defined by

G(a,B,n) = {u+iv ¢ C: 3Is ¢ R such that u < (1-a)y,(s),
v = (1-a)yY,(s)}, under the hypothesis that «a,8,n are such that
G(a,B,n) dcoces not contain the origin. Then we may define the
domain D(a«,B8,n) as being the connected component of the
complement of G(a,8,n) which contains the origin. As is easy tﬁ
see, G(a,B,n) may be a closed set which has a parabola as borderq
or a line, or a half-line, while D(«a,8,n) is the interior or thﬂ
exterior of parabola, or a half-plane, or a plane with a slnf
along a half-line. Under these hypotheses and considerations th¢
following theorem is thrue. ‘

THEOREM 1. If ¢(f,8;2z) belongs to D(a,B,n) for every z eﬁ
then £ € K(a). |

Proof. Let p be defined the relation (1-a)p(z) + a =

= zf*'(z)/£f'(z) + 1. Then

@ (£,P;2) =B (1-a) (p(z) -1) + 2% [22p/(z) -2ap (2) - (6)

e o v e

-(1-a)p?(z) +1+a]}

Since ¢(f,8;2) is analytic it follows from Lemma 2 thatff
}
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is a nonvanishing function, so p is analytic on U. Considering
(5) it is obvious that p has the form p(i) =1+pz"+ ... It is
‘also easy to see that f ¢ K(a) if and only if p ¢ P. Let us
presume that p ¢ P. Applying Lemma 1 we get a point z; € U such
that p(zy) = is and 2zgp'(29) < -n(1 + 8%)/2, s € R. If we let
¢(f£,B;25) = u + iv then relation (6) gives u < (1-a)y,(s), v =
(1~a)y,(e) so @(f,B;zy) P’ G(a,B,n).

But this last assertion contradicts hypothesis and the proot
is finished. We concentrate now on the assertion (4).

THEOREM 2. Let f be in A and let B be real and positive,

B#»2m/ (m+2) for all integers m21. If ¢(f,B;2) 1s defined by (4)

and

v, P;2) < (—i‘t—:-)z

then £ ¢ K.

Proof. From Lemma 3 it follows that f'(z) » 0 for all zeU
8o p(z) = 1 + zf''(z)/f'(2z) is analytic on U and p(0) = 1. We
have £eK 1if and only if p ¢ P. Using p the function ¥ gets the

form
V(. Bi2) =pi(a) + -g[zzp'(z) +1 - pi(z)] (7)

Presuming that p ¢ P we find by Lemma 1 a point z; ¢ U such

that p(zo) = is, 2op'(2g)=t s -(1+82)/2. 8o, by (7),
y(f,Bi12y)) = -8% + %(2'; +1+83% < -8250

which contradicts the subordination from hypothesis and the proof
is finished.
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Remark. I; we state in the hypotheses of Theorem 2 which
concern B only that 8 2 0 the theorem remains valid under the
supplemental assumption that £'(z) » 0 for all z ¢ U. ‘

The next theorem can be obtained in an analogous way as
Theoren 2.

THEOREM 3. Let feA and let B = B,+iB, with 8, 2 0 and B,+0.
If ¥(£,R;z) 1s defined by (4) then the following assertions are
true:

a) If B8, > 0 and ¥(f,8;z) € D, for all z ¢ U then £ € K.

b) If B, < 0 and y(£f,B;2z) € D, for all z ¢ U then £ ¢ K.

Here D; = {u+iv ¢ C: u>0 or v>0}, D, = {u+iv ¢ C: u>0 or v<O0}.

4. Particular cases. In this section we shall point out some
important consequences of Theorem 1.

case I. B = 0. For a » 0 we have

D(«,0,n) = {u + iv: u > 1-n-@&,2, 1_“(1 +a -n)}.
262 (1-a) 2

COROLLARY 1. a) If a < 0, £ € A and zz(f;z} ¢ D(a,0,1) for

all z € U then £ € K(a).
b) If a ¢ (0,1), £ has the form (S5)with n 2 2

and zz{f;z} € D(a,0,n) for all i € U then £ ¢ K(a).

Taking a = =1/2 in the above corollary we obtain the
following sufficient condition of univalence:

THEOREM 4. If f € A and z2{f;z) € D(-1/2,0,1)for all z € U
then £ is univalent on U.

.For a = 0 the following corollary is valiad:

COROLLARY 2. If f has the form (5)with n 2 2 then
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Z
z’(t;z} < 2(“'1)-2-1—.-2—)—2- - f € K.

Case II. B = a + iB,, where a < 1 and B, » 0.
COROLLARY 3. a) If £ ¢ A and B, > 0 then
Im [Bzf''(2)/L'(2) + 22{f;z}] > (a-1)B,, z ¢ U =» £ € K(a).
b) If £ ¢ A and B, < 0 then
Im [Bzf''(2z)/L'(2) + 23{f;2)}] < (a-1)B,, z ¢ U = £ € K(a).
If a = 0 Corollary 3 becomes
COROLLARY 3'. If £ € A and x € R then
Re [zf''(z)/f'(2) + 1] + x Inm zz{t;z} >0, ze U=t € K.
Case III. B = a.
COROLLARY 4. If a < 1 and £ has the form (5) with n + a>1
then
a%)— +23(f;z}<2(1-a)(n + a - 1)-# - f € K(a).
Case 1IV. B > 0, B » a.
COROLLARY 5. a) If £ ¢ A and « < O then
Bzf''(z)/f'(z) + 2z2{f;z} € D(a, B, 1), z € U= £ € K(a).
b) If £ has the form (5) with n 2 1 and a = 0
then Bzf'‘'(z)/f'(z) + 22{(f;z) e D(O, B, n), z € U= £ ¢ K.
c) If a € (0,1) and £ has the form (5) with
1+a-n-28 < 0 then '
pzf'' (z)/f'(z) + zz{f;z} € D(a, B, n), 2 ¢ U= £ ¢ K(a).

In this case we have

- . l-n-« 2 l+a-n _ _
D{(«,f,n) {u+iv: u > 2(1_"‘)("_«‘)zv +( 3 D)(l a)}.

Remark 1. Taking a = ~1/2 in Corollary 3 and in Corollary
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5, a), we can obtain other sufficient conditions of univalence.
Remark 2. Taking n = 1 in Corollary 5,b), we find the result

(1) from {1].
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REZUMAT. - O teoremi de tip Bogolubov pentru inclusiuni
funtional- diferentiale cu derivatdi Hukuhara. Sint studiate
incluziunile functional~diferentiale (1) in care derivata este in
sensul lui Hukuhara. Rezultatele obtinute extind rezultatele mai
multor autori.

0. Introduction. The purpose of the present paper is to give
a basic theorem of the method of averaging for functional-
differential inclusions with Hukuhara's derivative, i.e. for
inclusions of the form
D,X(t) € F(t,X,) (1)
Here D, X denotes the Hukuhara's derivative ([3]) of a
multivalued mapping X, X, : @ -+ X (e) = X(t + e) for e €[-r,0],
r > 0 and F is a map from [0,T) x Cy into cC(R"), where CC(R")
denotes the collection of all nonempty compact subsets of the
compact, convex subsets of Euclidean space R" i.e. with conv R",
and C, is a metric space of all continuous mapping ¥ : (-r,0]) ——
conv R",
In Section 1 we shall give some fundamental definitions and
conventions. Section 2 contains the proof of the existence
theorem for (1). The results obtain in this section generali:ze
the results of Filippov ([5)). Further on, in Section 3 we prove
the Bogolubov's type theorem for inclusions (1). The results of
this section generalize the results of A.W. flotnikov ([7)) and

of M, Kisielewicz ([6]).

* Institute of Mathematics, Technical University, 65-246 Z2lelona Géra, Poland



T. JANIAK and B. LUCtAK - KUMOREK

1. Notations and définitions. Lofs donote toy conv Rn thel
family of all nonempty compact and convex subsets of n-
dimensional Euclidian space Rn endoved with the Hausdorff metric

H defined by

H(A,B) =max /sup infla-b], sup inf|a—bq
a6A  beB bEB a€A

for A,B econv Rn

It is known ([4]) that (conv Rn,H) is a complete metric space.
Let CC(Rn) denote the space of all nonempty compact subsets of
conv Rn. By d we will denote the distance between two collections

A,B e CC(RNn) i.e.

d(A,B) =max tmax min H(a,b), max min H(a,b
( ) \ RCA beB ( ) bEB REA ( )

for a,b e conv Rn.

Let us denote by p a distance between A e CC(Rn) and B «

conv Rn defined by

p (A,B) =max Isup inf H(a,b) , sup inf H(a,b)

Let X : [a,B] —»conv Rn be a given mapping. Using the definition
of the difference in conv Rn the Hukuhara derivative DhX ([3]) of

X may be introduced in the following way:

DX (L) m-

=1i
h-o-

OL+h) X(® ] = lim-i X () -x (£ J, 1)
h-0* «

O i

where X is assumed to belong to the class D (clearly not empty)
of all functions such that both differences in (2) are possible.
The mapping X : (ot,B) —» conv Rn will be called Hukuhara

diferentiable in (@,B) if DhX exists for every t e (0,6).
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A function X : {a,B) -+ conv R" is called absolutely
continuous ([1)) if for every positive number e¢ there is a

positive number & such that

K
;; H(X(P,) . X(a,)) < ¢

whenever a; < B, S a; < 8, S...5 ay < B, and

k

&(pl-ai) <8,

The Aumann's-Hukuhara integral for multifunction F:(a,8] -

CC(R") is the colection G ¢ cC(R") defined by

*

G=(geconviig =f’f(c)dc for f£(t)e F(t))

where f:[{a,B) -~ conv R® and integral of f on a set [a,B] is the
Hukuhara integral defined in the paper ([3)).

Finally, denote by C, the metric space of all continuous
mapping #:[-r,a) -- conv R", where a 2 0, r > 0, with metric p,

defined by

P.(®,¥) = sup H(®(t),P(t)) for &, ¥eC,.

~Istsa

We say that X is a solution of (1) with the initial function @e¢C,
if X is a absolutely continuous function from [-r,T]) into
conv R" with the properties:

(a) ‘x(t) = #(t) for t € [-r,0),

(b) X satisfies (1) for a.e. t € (0,T].
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2. Exisetence theorem. Let F:(0,T] x C; -~ CC(R") satisty
the following conditions:
1° F(-,u) : (0,T) -+ CC(R") is measurable for fixed U € Cq ;
2% F(t,-) : ¢y -» CC(R™) is Lipschitzean with respect to U, i.e.
there exists a Lebesque integrable function K : [0,T} -— R* such
that d(F(t,U), F(t,V)) < K(t)po(U,V);

39 there exists a M > 0 such that d(F(t,U),{0}) s M for (t,U)
€ [0,T) X Cq.

THEOREM 1. Let 6:(0,T] —— R be a nonnegative Lebesque
integrable function and let & ¢ C, be absolutely continuous.
Suppose F : [0,T) x C, - CC(R") satisfies 19 - 3% angd let
Y ¢: [-r,T) -- conv R" by an absolutely continuous mapping such
that:

4% y(t) = #(t) for t € [-r,0);
50 p(D,Y(t), F(t,Y,)) < &(t) for a.e. t € [0,T).

. Then there is a solution X of the initial value problem

(3) {th(t) € F(t,X,) for a.e. t€(0,T]

X(t) = @(t) for t € [-x,0]
such that
H(X(t),¥(t)) s E(t) for t € (0,T) and (4)
H(D,X(t) DY (t)) < §(t)+K(t)E(t) for a.e. t € [0,T) (5)
where
E(t) =_L°o(s)exp[m(t)- m(s)}ds  and m(t) = Ex(c)dc.

Proof. We shall define a Cauchy sequence of successive
approximations (X"), such that their derivatives (thn) form also

a Cauchy sequence on (0,T].
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Let Y : [~-r,T) -- conv R® be a given absolutely continuous
function satisfying conditions 4° and 5°. Since (in general)
Dp¥(t) € F(t,Y,) for a.e. t € (0,T] then there exists a
measurable function V° such that vO(t) e F(t,Y) and
H(VO(t),D¥(t)) = p(D,¥(t),F(t,¥,)) < &(t) for a.e. t € [0,T].

Let us call X! the absolutely continuous function defined by

X1(t) = ®(t) for t € [-x,0]}

X'(e) = @(0) + [*v°(s)ds for t € [0,T]

In this definition we mean the integral in Hukuhara sense.

We have

H(XH(E),Y(£)) = H(®(0)+["Vo(s)de, Y(0)+[ DY (s)ds) <
< H(®(0),Y(0))+ H(Ltv°(s)ds,fochY(s)ds) P
t ° t
< fo H(V®(s),D,¥(8))ds s]; 3(s)dse

for t € (0,T].
We shall define now a sequence of absolutely continuous functions

(x}) in the following way

Xi(t) = ®(v) for te€ [-r,0]

Xi(t) = ®(0) *.Ltviﬂ(a)ds for a.e. t € [0,T) and i21
where Vi~! ig a measurable function such that vi-l(t) € F(t,xéd)

and H(Vil(t),D X1 (t)) = p (DX (t),F(t,X{™))

for a.e. t € [0,T). Hence for a.e. t €[0,T] we obtain
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H(DpX $(t) ,DyX*"2(t)) «H(Vi-2(t),D,X 2 (t)) =p (DX4"2 (L), F (L, x: 1))
wp (VE2(t) ,F(t, X)) sd(F(t, X, Ple,xiY) g

SK(t) p, (X~ .Xg')-K(t)supH(x“(toe) X3 (tera)) g
<K (t) [ sup ( sup H(X“‘(t) x“(t)))]s

~Ts0gt -rgtgtee

sK(t) sup H(X12 (), X3 (1)) <K (t) aupH(X‘ 1(c) ,xXt-3(5)).

e $31 14 [ F{¥i4

By the definition of X2 we have

X?(t) = () for t € [-r,0]}
X3 (t) = ®(0) +j;°v1<s)ds for a.e. t € [0,T)

Therefore

D, X3(t) = Vi(t) € F(t,X;) and H(DX?(t),DX(t)) =

p(F(t,X¢), DX (L)) = p(F(L,X3),VO(t))s d(F(L,Y,) , F(t,X¢))s

wn

K(t)po(Y,.X2) = K(t) sup H(Y(t+e),X(t+e)) <

~14050

K(t) [ sup ( sup H(Y(t),X*(t)))}< K(t) [ sup H(Y(s) ,X*(7))]s

~ $9£0 ~rsest+o g% 3£17

w

$ K(t) [ sup H(Y(x),X*(x))] < K(¢) [“8.(s)ds.
Furtheremore, for t ¢ [(0,T] we have
H(X3(€), X (£)) < H(futvl(s)ds,ﬁtv"(s)ds) < [H(Vi(8) ,Vo(8) ) das
< L‘d(?(s,x,‘),s(a,y,nds p L‘x(s)po(x:,y,)ds.«.
P fo‘x(z) [fotb(s)ds]drs ];‘o(s) [f.'x(:)drldss
s.Ltb(s)[m(t)-m(a)]ds.

Using the induction we can show that for every i 2 2
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H(D,X !(£) DX (£)) < K(t) [ *8(s) 1"‘1‘(’1‘_"‘2‘)’31"’« (6)

for a.e¢. t ¢ (0,T] and

H(X (), X4 (t)) < [o' [““t(’i'_‘“l‘)’l”“a(s)de for te(0,T). (7)

Assume we have defined our functions X! up to i=n. Let us
consider (X"). By measurability of a multivalues mapping F(-,U)

there exists a measurable function V" such that

ve(t) € F(t,X) and H(V™(t),DX"(t))= p(F(t,X>").DX"(t))
for a.e. t € {0,T).
Define now Xx"™! by setting
Xo*l(t) = @ (t) for t € [-x,0]
(8)
X1 (t) = (0) +L‘vn(s)ds for a.e. t € [0,T).

’

We hdve

H(D,X™(t) ,DpX "(t)) = H(VR(t),V™i(t)) < d(P(t, X)), F(t,X{™)) s

< K(E) p (X2, X2 < K(E) [ [““t(’n"_'“l‘)"l’l""us>ds

for a.e. t € [0,T).

We obtain
H(X™1(t),Y(t)) < H(X™'(t),X™(t)) + H(X™(t) X" (t))+...+

+ H(XM (), Y(t)) s j;tb(§)ds+j;tb(s) (m(t) -m(s))ds+...+

+ [Ta (e (m(t) -m(s))® 4, ["8(s) expm(t) -m(s)1ds = E(t)
[ n! 0

for t € (0,T). Similary for a.e. t ¢ [0,T] we have
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H(D,X™(t),D,Y(t)) < d(t) + K(t) L‘G(S)exp[m(t)-m(s)lds-
= 8(t) + K(t)E(t).

The inequality (6) and (7) imply that (X") is a Cauchy sequence
of Cio,r)r Where C(g o, is the metric space of all continuous
mapping of {0,T] into conv R",

-Let X =1lim X".Similary from (6) it follows that (V") converges

nee

pointwise almost everywhere to a measurable function V. Hence,
passing to the limit as n-w in (8) we get

X(t) = ®(t) for t € [-r,0]
{x(t) = ®(0) +[°°V(s)ds for a.e. t € (0,T)

But for a.e. t € [0,T) V™(t) € F(t,X;) and H(V®(t),D,X"(t))s=
= p(D,X™(t),F(t,X)).

Therefore for a.e. t ¢ [0,T] we have

H(V"(t),DX™(t)) = p(DX"(t),F(t, X)) < p(DX"(t),F(L, X)) +
+ d(F(t,X.) . F(t,XM).

Hence we obtain

X(t) = ®(t) for t € [-r,0)
D, X(t) € F(t,X,) for a.e. t € [0,T)

which completes the proof.

3.The Bogolubov's type theoxrem. In this part we will study

differential inclusions of the form

{ D X(t) € eF(t,X,) for a.e. t € {0,%) (9)

X(t) = ®(t) for t € [-r,0]
where F : [0,0)xC, -— CC(R"), @ : (-r,0} -~ conv R" is a given
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absolutely continuous multifunction, e¢ > 0 is a small parameter.

We shall consider (9) together with the middling inclusions

DY (t) € eF,(Y,) for a.e. t 20 (10)
Y(t) = &(t) for t € [-z,0)

where F, : Cy -+ CC(R") and
6° Lim d(lt‘o(U),—;,];TF(t,U)dt) =0
vhere the integral is in Aumann's-Hukuhara's sense.

THEOREM 2. Suppose F:[0,0)xC, -+ CC(R") satisfies the
conditions 1° - 3° and 6°. Then, for each u > 0 and T > 0 thore
exists e° (4,T) > 0 such that for every ¢ ¢ (0,c°] the following
conditions are satisfied:

(1) for each solution Y(*) of (10) there exists a solution X(‘)
of (9) such that:

H(X(t,Y(t)) s u for t € [-r,T/e) (11)
(11) for each solution X(°) of (9) there exists a solution Y(°)
of (10) such that (11) holds.

Proof. In the first step of the proof we show the boundary

of mapping Fg:Cy, -— conv 2". Observe that

d(F,(U), {0}) < d(Fo(U),%LTF(a,U)ds ' d(Trl-j;TF(s,U)da, (0}) <
T T
sd(po(u),_}ffo F(s,U)ds) + %fo d(F(s,U), {0})ds s

1 T
s d(F,(U) 'Tr'fo F(s,U)ds) + M.

Hence, passing to the limit as T - ©» and by virtue of 6° we have
d(Fo(U),{0}) < M.
Furthermore the mapping F, satisfies the Lipschitz condition with

a number k20 because
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d(Fo ) .Fo W) )- d(Lin=i fF(L,V)dt, Jin-i/TF(t,0)dt -
Lin-id(£TF(t,L)dt, FTF(L,L)dt) *

s in-f (FTACFCE,0) LFCE,0) )dt s Lim-ifrPoti.aldt
- kpo (U,U) .

Now we can prove the inequality (11).

Let Y(-) be a solution of (10) on (-r,«). To prove this
theorem we shall consider the solution X(*) in such a way that,
for te[-r,0], X() = Y(©) =*(t), hence HXX(D),Y(t)) « 0O < p.

We will prove inequality (11) on the interval [0,T/e]. To do this

divide the interval [0,T/e] on m-subintervals where t4
= iT/em. i =0,1,2,... ,m-1 and write a solution Y(*) in the
form

Y(B) « #(t) for t € [-r,0]

Y (@® - Y(tl) fejrtv(T)dt for t 6 Itl,tl1]

where V(t) e FOo (Yt). Let us consider a function Y1(*) defined by

Y1(D) = <(b) for t € (-r,0] 13
YI(D -Y(tD) + eUMtji) (t-tj) for t € Ct4,tdu)

where ul(®) is measurable multifunction such that U1 (t) e Po (Ytb)

and

u(lul(t,),f““v(c)dc): min H(-‘—Ul(t), iy () de
em tg } m

U (c) €y (Y, €1

By virtue of (12) for every t e (t4,t4.4) we have

HOY (1) ,YL(ED)) « H [Y(tD) +e |/ (T)dt, YI(tD)I s H(Y (L) , YNt4>) o
+ eMit-tj) i Oi+eM(t-ti) where 6j= H(Y(t4),Y1(tD)), i*l, ... ,m-1
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Furthermore for t e [ti#tl+1], d(Fo (Ye) ,FOo (YA) ) s kp~rYAY*1).

But

po<Yt,YX) S pO< W ¢ Po<** "<> -
» ﬁ%&) H(Y(t+s),Y(t1+s)) + sup H(Y(tA+s),Yi(ti+s) ).
= -r<s*0

By the definition of Y(*) and the properties of multifunction

Fq we have

-ﬁ% H(Y(E+s) ,Y(ti+s) ) ielg-tl i — fc
Furthermore
sup HtYtti+s) ,Yi1(ti+s)) = sup HY(D) ,YI(®) -
-r*s*0

m sup (Y + <<J|;X(s)ds/Y1(t%) + eJtt (ti)ds)js

i sup (IKYtt,),YMt.) ) + eHgtrV(s)ds, f,Ul(tl)ds\ijs

111 + sup sF\i(Fo(,) ,Po( Y t »up e (f
¢ d(Fo(Y®) , {0} i 6= *BMr.

Then for t€[tt,tl+l] we have
d(Fo (Y©),Fo (Ytn)) + 2eMr] . as

By virtue (12),(13) and (14) it follows

HEYUi) ~ (L)) -

Hly (G0 + elecV()dT , Y1(til) + e£d UMEAdEj s

(V2]

H (YQLD# 1 (L)) + e H ~ /% U1 (tl.1)dtjs

*6,., ¢ e h(JEXFO<YDdt , /t“F#(Y~)dt) * Bt.t +
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‘e juwo(y) . Fo(¥d ) )dt s 8, +
tia

+e k(8. + % +2e + 2eMxr) (t, - t,,) =

- kT MT - Tk Tk , MT ,
8., + -y (8., ;—m + 2eMr) =8, ,(1 + - ) ¢+ - (__m + 2eMr)
a
Srall v ) v

Hence

8, <8, 1(1+_) + 2 < (1+_.) (3, 2(;,a,._) + ...] + % =
= (1+—-)3 8. ,+(1+3)— + 2o <(1+2 )‘
b " (15)

(1+32 )11b ter2s E(1+(1+_)+ +(1* )tz),

= —((1+2-)"1) < B(e" 1) = M (T+2emn) (e""'-l)
a m a m
where i = 0,1,2,...,mn-1,

For t € [t,t,,,) we have

H(Y(t),Y(t,)) =H (Y(ti) +eLtV(t)dt,Yc(t1)) £ eH ( ttV(t)dt, {0})5
£ 1

<ef H(V(r), (0h)dr < eMlt-t,| < X and H(YM(E),¥!(ty)) s B
ty m m

Hence, we obtain

H(Y (L), ¥ (L)) < H(Y(t),Y(t,)) + H(Y(t), Y (ty)) +

CHYN (), Y2 (E) < MT o MT L M opoome) (erTo1y . (19
m m m
Now we shall consider the function
Y2(t) = ®(t) for t € [-r,0)
2 2 T (17)
Y2 (t) = Y (t,) + ef U3(t)de  for t € [t,,t,,,)
cy

where t, = -i%, i=0,1,2,...,m-1, U¥t) € F(t,Yt“).

Let us notice that by virtue of condition 6% for each p > 0

there exists a Ly(u4 ) such that for every L > L, we have
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inequalities:
1 ftL 1 1
d( = F(t,YH)dt,Fo(Yc‘)) <

By virtue of the Hausdorff metric condition (see [2], Lemma 1

(1)) we have
d ( foLF(t-,Ytlt)dt. foLFO(Ycﬂ)dt) < Lp.

In particular, for -é% >L, and for every i ¢ {0,1,...,m-1}

4 (18)

T iT
1 - T
d(j;*-f(t,vé,)dt, L"FO(YS‘)dt) < 1_&‘.“

and

{a+4)T (Ae4)T
d(fo =Rt Y)de, [T Fo(Y€.>dt)s (+) Tyu. (19

QDT and 4L «t,.
em em

By virtue of (18),(19) and the Hausdorff matric condition (see

Let us observe that

Lemma 3 (vi), [2)), we have

tina 1 tia 1
d(fq F(t,Y3)dt, j;i Fo(Yh)dt) <
<d ( [Frrtexdyae, [HUr (vl ae ) +
| | 4
+d| [“F(e,¥d)de, L‘Fo(Yt")dt) <

Q
(1+i)T it _ T T
$ DSBS —emp(zid) < (2m+1)—-—-‘mp..

; m LT 1 m Cia 1
Hence H ( T '3 ft* F(t,Yt‘)dt, T ¢ j;‘ FO(YH)dt) < (2m+1)p

T
for —CE > LO(.‘) .
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Moreover e-$ J*I'V( YIDAE,FOW b Mi * (2m+1)n
for T > LO(—§3~ ) then for e <e0(i,m)
em 2m+1 ’ ’
L], (2m+T*
Hence it follows that
Then h | Iy a(t)dT,Jt (X)dt!lct ) emand

HCYD(ti,D) ,Ya(tm )) sH(Y “(tl),Y2¢tD)) +
* e/t*H(U2(D) ,UME))dx s IMYMEN ,Ya(tt)) ¢

HXT :
m i sm JVE
m m

(20)

+ HiT.

where i1«0,1,2, ,m-1

Using the inequality (20) and the fact that for t e [tifti+l]

H(Ya( ,Y2(ti)) s “n and H(YX(® ,Y1(tl)) s Mm we have
H(Y1(E),Y2(L)) iIqY1(t),Y1(tl)) + HY1(ED,Y
. (Y2(t1i)/Y2(t)) 5 m’r?n— + HjT. @@

By assumption 2° it follows that

d(F(L,Y?) ,F(E,YR)) s kpO(Y*,YXD) ik (-M o i) .

e

By virtue of (17) we have

p (DhY 2 () ,eF(t,YL) ) > p(Dhva(t),eF(t,Yk)) +
¢ d<eF(t,Y8) ,eF<t,Y*) ) ske(-" +pt).

Now, on the ground of existence theorem (see Theorem 1) then
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exists the solution X(+) of (1) that for t € [o,%]

H(Y?*(t),X(t)) s.Ltck( 3$T + #,T)exp(ek(t-8))ds <
3:"' + 1,T) (exp (kT) - 1).

s (
Using the inequality (16) and (21) it follows

H(X(E),Y(E)) € H(X(E),¥3(t)) + H(Y?(t),Y(t)) + H(Y(t),¥(E)) ¢
< ;‘—?e“ + u,Te*T + 2eMre*?,

kT
Therefore,. choosing m > __}_Z_M_re___‘ By = _E_wr" and e < —B _
B 3Te 6Mre*T

Qe get the inequality
H(X(t),¥(t)) sp for te€ [o.%].

Adopting now the procedure presented above we get condition (ii).

In this way the proof is completed for t € [—r,%] .
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REZUNAT. -~ Principii’ de maxim pentru sisteme de oecuatii
diferentiale cu argument modificat gi aplicatii. In lucrare se
stabilesc principii de maxim pentru sisteme de ecuatii
diferentiale cu argument modificat. Apoi, oca aplicatie a
acestora, se demonstreazd o teorem¥ de existentd gi unicitate
pentru o problem¥ la limitd relativik la sisteme de ecuatii
diferentiale cu argument modificat, gi se stabilesc principii de
maxim pentru anumite clase de ecuatii diferentiale de ordinul
patru, liniare g¢i neliniare, cu argument modificat.

1.Introduction. Let us consider the following second order

system of differential equations with deviating arguments

L, (y) (0 1 =yy (x) +p, (X) y§ (%) +q, () y, (%) +

m n (1)
' g ;; Iy,3,1(X)Yy(gy,4,4(x)) =0

where xefa,b), k=1,...,n, and the following systems of

differential inequalities

Ly(y)20 , k=1,...,n (2)
Le(y)>0 , k=1,...,n (3)
L,(y)sO , k=1,...,n (4)
Ly(y)<0 , k=1,...,n (5)

where pk,qk,rk’j'l,gk’j'LeC[a,b], k=1,...,n, i=1,...,m, J=1,...,n
and alsgk'jli(x)sbl,-v xe{a,b), aj;<a, bsby, Y=(Yj,+++s¥p)-

The aim of this paper is to establish maximum and minimum
principles for the solutions of the systems above and to give

some applications. Maximum and minimum principles ftor

* University of Cluj, Faculty of Mathematics, 3400 Cluj-Napoca, Romania
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differential equations with deviating arguments are studied in
many papers such as the papers of Rus A.Ioan (6), (7], Bellen and
Zennaro (1], Zennaro {10}, Lasota [4].

‘By definition a solution of one of these systems of
differential inequalities is a function yeC([al,bI],R")n
Nc2([a,b),R") which satisfies the inequalities of the system for

k=1,...,n.

2.Maximum and minimum principles.

DEFINITION 1. If y,zeC([a,b]), R"), y=(Yy,«++s¥p),
z=(2;,...,2,) then y<z if and only if y,<z, for k=1,...,n.
If yeC({a,b), R") and MeR, then y<M if and only if y,<M for
k=1,...,n.

DEFINITION 2. A function yeC([a,,b,],R")Nc?([a,b],R")
satisfies the maximum principle if
(max y,(x) = M>0 and y<M) implies
{xe(a;,b;) ly,(x) = M} c [a;,a) U (b,b;).

DEFINITION 3. A function yeC((a,,b;),R") satisfies the
minimum principles if

(min y, (x) = m<0 and y>m) implies
xe[al,bl]

{x€(a;,by]l y(x) = m}cfa,,ajl(b,b,].

We have

THEOREM 1. (see(6]). Let yeC([al,bl],R“) n Cz([a,b],R“)
be a solution of (1). If rk’j'i(x)zo, xela,b{, k=1,...,n,
i=1,...,m, j=1,...,n and q,(x) + {}Q rk,Ll(x)<0, xela,b{,

1e1j=1
k=1,...,n , then y satisfies the maximum principle and the
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minimum principle.

THEOREM 2. (see(6])). Let y be a solution of the system (2).
If pxs Qxs Yx,3,1 are as in Theorem 1, then y satisfies the
maximum principle.

THEOREM 3. (see(6)). Let y be a solution of the system (4).
If Pxs+ Qxr Ty,j,1 are as in Theorem 1, then y satisfies the
minimum principle. .

The proofs of the Theorems 4,5 may be made similarly to the
proof -of Theorem 1 (see[6]).

THEOREM 4. Let y € C([a;,b;], R") N c?((a,b},R") be a
aolution of the following system of differential inequalities

. Ly(y)(x)>0 , k=1,...,n (3)
If rk,j,i(x)zo for xe)a,b(, k=1,...,n,i=1,...,m,3=1,...,n (6)
and q,(x) + E;E;rk'j'*(x) <0, for xe¢la,b[ , k=1,...,n (7)
then y satisfies the maximum principle.

THEOREM 5. Let yeC([a,,b,]},R") N ¢?({a,b]),R") be a solution
of the system (5). If q, and Ty, 5,1 satisfy (6) and (7), then y
satisfies the minimum priuciple.

THEOREM 6. Let yeC([a,,b,},R") A c?([a,b],R") be a solution
of (1). We assume that q, and rk,jA_satisfy (6) and (7). If there
exists a component y, of y such that max Yy (x)=M20,
ysM, and there exists cela,b{ with yk?;;a;':}]then Y(x) =M
for all xe{a,b].

Proof. Suppose the contrary, there exists de)a,b[ such that
Yx(d) <M. We shall prove that this assumption leads us to a
contradiction,

(1) The case d>c. Let us consider the function
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z2=(2;,22,..+42,), Where

z, (x) = e"™ _ 1, ke1,...,n

with a;,a;,...,ay > 0 to be chosen suitable. k
We have:
Z,(x) <0 , for all xela,c(
Zy(c) =0
zy(x) > 0 , for all xelec,b[ ,

and

Ly (z) (x) = [ai*akpk (x) “'ql(()() (1-e -.'(‘-C)) ] e.l(x"’) +

+1tjtrk'm(x) (e*!93.4079)_3) 5> 0, k=1,...,n
wifel

for a,,ay,...,a, > 0 sufficiently large, from (6) and (7).
Let w=(wy,Wy,...,W,) , Wwhere
Wi (x) = yi(x) + 2;(x) 1k

Wi (X) = yp(x) + e,z (x) ,
M -y, (d)
z, (d)

We have

0 < g« . for we have y, (d)<M.

wi(x) <M , for all xela,c|

wi(c) = M

wi(d) = yy(d) + €2, (d) <y, (d) + M - y,(d) = M,
because z,(d) > 0.

Therefore w, has a maximum larger then M in the interior of
Ja,d{ . But, for all isk, L;(W)(x) = Li(y)(x) + L;(2)(x) = »
= L;(z) (x) > 0, for a; chosen before, and L, (w)(x) = L,(y)(x) +
+ e, L, (2) (x) = eyL, (z)(x) > 0 for a), chosen before.

Hence w is a solution of the system
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LMW > 0, i*l, ...,n
gk#rk~Nj#l satisfy (@) and (7) TfTor Ja,d[c]a,b[, and wk has a
maximum larger then M in the interior of Ja,d[ . This represents
a contradiction with Theorem 4, so Theorem 6 is proved.
D) the case d < c. We make a similary argument for the

function z = (zl#z2,...,zn), where

zk() =e"ak(x o)1 , k=I,...,n

and we obtain a contradiction with Theorem 5.
The fTollowing result generalises the maximum principle and
the minimum principle for systems of linear differential

equations with deviating arguments (Theorem 1).

THEOREM 7. LetyeC( [a”b-J ,Rn) 0O C2([a,b],Rn)
of (1), where rk "fI(X) £ 0, x € Ja,b[ , k~1,...,n, i=1,...,m,
n. IT there exists a function weC(Jax,bl],Rn) O

C2([a,b],Rn) with

w >0 @)
Lk(w)(x) < 0 for all xe]a,b[ (9)
then the function ;:F_ — e satisfies the maximum and
Wil w2 wnj
the minimum principle.
Proof. Denote zk:zi; We have yk = zk*wk, so
W

LKOY) () = wk()=z"k() + [2w k() + pkOOWk (xX)]z k() +
HW'kGY + pkCOWKEG) + gk QWK (x)1zk O +

for k - 1,...,n. Dividing by wk > 0, we obtain

61

tn



IULIU DAN COROIAN

/ /
" wy (x) / o (x) wy (x)
{00 2 Sy 00 200 S 0 Sy
wylgy 4,0(X))
+qk(x))zk(x)+§;Earth(x)—i—;%{;) 2y(gy 4., (x))=0,k=1,...,n

But rk,j'i(x)zo for all xela,b{, k=1,...,n, 1 =1,...,m,
§ =1,...,n and because of (8) and (9), we are in the conditions
of Theorem 1.'Hence, the function
Z = (Z1,25,0+,2,)= (33‘ Yz ...,-Xﬂ) satisfies the maximum and

) w, W, n

the minimum principle.

Remark. This theorem generalises the maximum and the minimum
principle. If we consider the function
w € C([a,,b],R") N c?([a,b],R") , w = (1,1,...,1), from Theorem
7 we get Theorem 1.

EXAMPLE. Let (a,b) < [a,,b;) © R/, and consider
wec([a,,b,]1,R") N c2([a,b],R") , given by
w(x).= (%x,%,...,x) , for all x e[a,b].
Then, we have w(x) > 0 tor all x e¢[a,b] and the condition
Ly(w) (%) < 0, xela,b[from Theorem 7, gives us the following
maximum principle.

THEOREM 7'. If y € C{{a,,b;),R") N c?({a,b],R")

is a solution of (1) and if

ry,5, 1(x)20 , xela,b[ , k = i,...,n,i = 1,...,m,} = 1,...,n
Py (X) +xq, (%) +by 1212 ry,s, ({x) <0, x € Ja,b
then the function %%,-%f,...,-%?)satisfies the maximum and the

minimum principle.

3. Boundary value problem. We consider the following
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boundary value problem for a system of differential equations

with deviated arguments

L, (y) (x) : =y (x) +q, (X) vy, (x) +

10
‘%jgrk,,,i(x)y,(gk,,,i(x)=fk(x) ,x €la,b], k=1,...,n
11)
and feC([alfa], Rn) , [b,~] ,Rn).

The object of this paragraph is to establish an existence
and uniqueness theorem for the problem (10 + (@1)* In this
purpose we shall use the maximum principle (Theorem 1), and the
following surjectivity theorem.

THEOREM 8. (see [9]) - Let X be a Banach and A : X>»X a linear
and compact operator, The operator A - Ix is surjective if and
only if is injective.

We shall prove the following

THEOREM 9. If rkfj~r(x) > 0, xe]a,b[,

(12)
(€5))
then the problem (10) + (11) has exactly one solution.

Proof. Let A»(X1l,=..,Xn)€C( [al,bl]/Rn) given by

k) , x 6 [al#a]
Xk() - = /t\)_g lé(b)+’E)_<ap té(a) ,xe]la,b [
HEO , xelb,”]
where 9 = »n> » & “ (Fl *K) -
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Then the problem (10) + (11) is equivalent to the systenm of

integral equations

¥y (%) =—f_°§(x,s>Lf.(s) “aevi -£ Er, (9090400000 [dse
+ k(x) r X € [al'bll ’ k=1,-..,n

(14)
0, xc¢€ l[a,,al
where G(x,s)=G(x,s8) , x € ]Ja,b{
0, x¢€(b,b)
and G is Green's function
(s-a) (b-x) , 8<%
Glx,s) = (x-ab)u(ab-a
{x-a) (b-s) ., 8>X
b-a

Let us consider the operator A:C([a;,b;},R") -+ C([a;,b;],R

where A = (A,,...,A}),

A, (y) (x) =f:?§(x, 8)[qk(a)yk(s) +£j§rk,,,i(s)y, (Fx.y.1 (é) ) |[ds

for k =1,...,n.

Then the system (14) is equivalent to the system
Vi (X) =A, (y) (x) -f:G(x,s)fk(s)ds+lk(x) , k=1,...,n  (15)
Denote F = (F;,...,F.) , where
F, (x) =Lb§(x,s)fk(s)ds—lk(x) , k=1,...,n

Obviously F € C([a,,b,],R"). Now, the problem (10) + (11) I

equivalent to the system

x
it

Yx = Ax(y) + F ’ 1,...,Nn
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or

© (A-leqiaybg.km)(Y) = F (16)
The operator A is obviously linear. We shall prove that A
is compact. In this purpose is sufficient to show that A(U) is
a relative compact set in C([a,,b;],R"), where
U= {yeC([a,,b;],R") : |yl <1}, and the norm in C(ial,bl],R“)
is the Chebyshev norm, given by

Iyl = _, max = max {Iy(x)! :xefag, by} , ¥y = (¥y,---0¥p).
We shall prove that A(U) is uniormly bounded and equicontinuous
in C((a;,b;],R").

First we show that A(U) is uniformly bounded. We have, for

all xe[a,b)] and for all yeU.

A (y) (x) |=|f:§(x,s)[qk(s)yk(s) +1£:n§rk,j,1(s)y,(g,,,,,(s)) ds |

Let L, M, Mk,j,i be as bellow
L = max {G(x,s8) ¢ (x,8) € [a,b] x [a,b]} 2 O
M, = max {Iq(s)l : s € (a,b)} , k=1,...,n

My, 4,1 = max {Irk,j,t(’)' : 8 €[a,b]} , k=1,...,n, i=1,...,m,

¥=1,...,n
Then
A X) |SL| M, ttu ]ds
|A (v) (x) | 1:1 kly'+'Y|1-u-1 k.3,1|d8
<L (b-a)|M tﬁM y
( )( k+i-1j'1 k.34
Therefore
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IA®) €0 [FIA,-0) € i kol.n) smax{L(b-a) (Mk+E 4 .

k-1,.. .,m

Hence, AQ) 1is uniformly bounded-

We prove now that A(U) is equicontinuous, that is V e > 0,
3 6(e) > 0 such that, if IXjJ - x21 < 6(e), x1,x2 e [a,b], we have
IA(Y) (x2) - A(y) x2)E < e, Vy el

Let ¢ > 0. The mapping G(x,s) [gk(s)yk(s) +

rjitj.i(s)yj ok, j,i(s))) continuous for all x c (a,b).

Therefore 3 6(e) > 0 such that, if IXt - x21 < 6(e)

b-a+1l
Then, for x1,x2 e[a,b] with Ixx - x2I< 6(e) we have

IA(Y (XD - A(Y) (x2)] = max {IAK(y)(X1) - AK®Y) (x2)1 :k=l1,n>s

Hence A(U) 1is equicontinuous.

Now, AQU) is uniformly bounded and equicontinuous in
C([al,bl], Rn), so A(U) 1is relative compact in C([al,bl}, Rn).
That implies that A is a compact operator.

We prove now that the problem (10) + (11) has at most one
solution. This thing happens if and only if the following
implication holds

-0 , k«i,

= 17
e K =0 @n

Now, we prove (17). If y<0, then, by Theorem 1, if there

exists a component yk of y such that max vk =M > 0,
X«C«I»b 1]
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ysmM, then max Y = M.
xe(a,,a)l(b,b,]

But y(x) = 0 for all x € [a,,a] U [b,b,]. Thus we have y <
0. By a similary argument we prove that y > 0. Hence y = 0.

Hence the problem (10) + (11) has at most one solution.
That means that the equivalent equation (16)

(A - Le(ia,.bd.2™ )(y) = F has at most one solution, when F

€ C ((a;,b;], R7), theretd¥e the operator A -1;(, p).rm is
injective.
Theorem 8 implies that A ~ 1, u,).s~ 18 also surjective,

80 A = 1lg((a,.b).em 18 bijective. It results that the equation
(16) has exactly one solution in C((a,,b,], R").

Thus, the problem (10) + (11) has exactly one solution.

4. Yourth order differential equations with deviating
arguments. Let us consider the following fourth order 1linear
differential equation with deviating arguments
YV 4P (0 Y T (X) 4P (X) Y (%) +P3 () y (X) + }‘1 Qi (%) Y (9 (X)) (-;a?
where p,ecl(a,b], P2:P3,4x.9x€C[a,b]), a,<g,(x)<b; ,
x¢fa,b], k=1,...,n, a; <a, b < b,

Let us denote ¢(x) = —e‘%L%”ndt . We shall prove the
following

THEOREM 10. Let y € C(a,,b;] Nl c%fa,b] be a solution of

(18) . We assume that:
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(i) p,(x) <0, for all x € la,bl
(1i) gy (x) 20, for all x€ la,bl , k=1,...,m.

(ii1) pf(x)+2p{(x) +4p,(x) +4p,(X) <O for all x € )a, bl
(iv) p?(x)+2p{(x)+4p,(x)+4 > 0 and
D, (X) =D, (x) +@2 (x) +k£1qk(x) <0 , for all x€ )a,bl.

In these conditions the vector function
X o (Y(x),y"(x) + ¢(x)y(x))
satisfies the maximum principle and the minimum principle.
)
Proof. By the substitution y" + ¢y = - u, with ¢ chosen

before, the equation (18) can be reduced to the following systen

M (x) +py (x)u’(x) + [@ (%) +p, (%) Ju(x) + [2¢(x) +p, (X) @ (x) Jy/(x) +
+[@”(x) +@/ (%) p, (X) +@ (X) P, (X) -p, (x) +@2 (X) )y (x) +

+Ea, 00y x1) =0
T(x) +¢@ (x)y (%) +u (x) =0

But ¢ is a solution of the equation 2¢'(x)+p;(x)e(x) = 0

80, the system becomes
u/(x) «p, (x)u/(x) + [ (x) +D, (x) Ju(x) + (" (x) +¢/(x) p, (X) +
+9 ()P, () -p, (x) +¢? 01y (x) + £ g )y (g 00) = 0
Yy (x) +@ (X)yAx) +u(x) =0

which is a system of second order linear equations with deviating

arguments. We want now to apply the maximum principle from

Theorem 1. If
0" (X)+9* (X) Py (X) +9 (X) Py (X) -P3 (%) +¢2(x) 2 0, x € Ja,b[

qy{x) 20 , x € Ja,b[ , k=1,...,m

e(x) + pa(x) + @"(x) + @' (X)P;(X) + e(X)Pa(X) - Py(x) +
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92 (x)+ E; Qx(x) < 0 ,x € )a,b[

p(x) + 1 <0, x € ]a,b{
then the vector function (y,u) satisfies the maximum and the
minimum principle.

We have

PU(X) + @' (X)py (%) + @(x)Pa(X) - p3(x) + ¢¥(x) 2

2 " (x) + 0'(’()91(*) + o(X)pa(x) - p3(x) =
-3 Tpiwrae
e “°* -P3(x)

= —% (D2 (x) +2p; (x) +4p, (x) ]
--}].'p,(t)dt

But p;(x) < 0, x € Ja,b[ , s0: e > 1
We get

o (X) + @' (X)Py(xX) + 9(X)Pa(X) - p3(x) + e*(x) >

> -3 [pI(x)+2p{(x)  +4p,(x)+4p3(x)] 2 O, ¥ x ¢}a,b[ from
(iii).

Then
9(X) + Pa(X) + @"(xX) + @' (M)p;(X) + @(X)Py(x) = Pa(x) + e3(x) +
+ x%’k(x) = —%[pf(x) +2p{(X)  + 4py(x) + «1]43’%'“'"“)"t

P; (x)+92 (x) + ktl qy(x) <0, V x € Ja,b(

+pg (X) -

from (iv).

-1 (%, (t)ae
IR +1<0, Vx €)a,b[.

Obviously ¢(x) + 1 = - e
Hence, by Theorem 1, the vector function (y,u) satisfies the
maximum and the minimum principle, so, the function (y,y" + ¢y)
satisfies the maximum and the minimum principle. '
We shall prove, using the above theorem, the following

THEOREM 11. Let us consider the boundary value problem:

yIV(x)+p1(x)y4u(x)+p2(x)yu(x)+p3(x)y(x)+};qk(x)y(gk(x))=f (19)
Via, a1 = @ ¢+ Yo,y =¥ (20) .
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where feCla,b) , ¢eC[a;,a), ¥ €C(b,b,]. If the conditions froa
Theorem 10 hold, then the problem (19) + (20) has at most a
solution.

Proof. The problem (19) + (20) has at most one solution |t

and only if the following implication holds:

yIV(x) +p, (x) y 7 (x) +p, (x) ¥ (x) +p, (x) y (x) ‘kf:,“* (x)y (g, (x)) =0
ﬂu;.l’ o, Yhmbg =0

* (y = 0) (21)
Now, we prove (21). If y«0, then, by Theorem 10, if there

exists a component Y,, k = 1,2, of the vector function

Y = (y,Yy" + ¢y) such that max Yy, =M>0, Y <M,
xe€fa;,b,)
then max Y, = M . But Y(x) = 0, for all xe(a,,a)l

xe(a;,a)l (b,b,)
Y {b,b;]. Thus we have Y < 0. By a similary argument we prove Y

20, and we obtain y = 0,

5. Ths norlinear ocase. Consider the foliowing'ﬁonlinem
second order differertial operatcrs with deviating arguments:
Ly {Yy) (x):=yk“(x)+fk(x,yk'(x),yk(x),yl(gk‘l,l(x)),...,

Y1(9x, 1,0 (X))o ¥2(dy,2,1(X)) s e e ¥2(9y, 2,m(X))reee,

Yol ,n,1(X)) e e ¥n (I, n,m(X))), (22)
where x ¢ {(a,b), a; < gk'j'i(x) < by, a;sa<bgb,, k=1,...,n and f,
: {a,b} x R™*2, R,

We have

THEOREM 12. (s20[7]). Let yeC({a,,bl],R“)ﬂc’([a,b),R")
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be a solution of the following system of differential equations
Ly(y)(x) = 0, for all xef{a,b) and k = 1,...,n.
Assume that L,, k = 1,...,n satisfy the conditions:
£y (x,0,r,...,r)<0, for all r>0, xela,b], k = 1,...,n (23)
(t,seR"™, t<s) implies f,(x,0,r,t) s £,(x,0,r,s) (24)
for all x ¢ {a,b), x>0 and Xk = 1,...,n
fy(x,0,r,...,r)>0, for all r>0, xe[a,b]), k =1,...,n (25)
(t,8¢R™, tgs) impliss f,(x,0,r,t) s £,(x,0,r,s) (26)
for all x € [a,b] , r<0, and k = 1,...,n
In these conditions y satisfies the maximum and the minimum
principle.
Now,let us consider the following fourth order nonlinear
diferential equation with deviating arguments
YV () 4Py (X) Y ' ' (X)+po (X) Y (%) +P3 (X) Y (X) +E (X, ¥ (G (X)), -,
Y (9 (x)))=0 (27)
where p,ec! (a,b), p,,p3,9x € Cla,b], a;sg,(x) sb,,
xe{a,b), k=1,...,m , a,sa<bgb, and f:[a,b}xR™! LR.

R R
- e :f.p,(t)dt

Let us denote ¢(x) . We shall prove the

folliowing

THEOREM 13. Let yeC(a,,b,) n C‘[a,b] be a solution of (27).
We assume that:

(1) p;(x) < 0, for all xe{a,b)

(1i) €f(x,r,...,r) < 0, for all r > 0, xe[a,b]

(1ii) Df(x)+2pffx)+4p2(x)+ 4 > 0 and

pPo(X) - p3(x) + ¢2(x) < 0 for all x € {a,b)
(iv) (t,seR™, t<s) Implies f(x,t) < £(x,8), for all xe(a,b]

{v) pf(X)+2p{(x)+4pz(x)+ 4p3(x) S 0 for all x ¢ [a,b].
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In these conditions the vector function (y,y"+e¢'y) satistie
the maximum and the minimum principle.

Proof. By the change of function y"+¢'y = -u, with ¢ choss
before, the equation (27) turns to the following system

u' (x) +py (x)u’ (x) +[@(x) +p (x) Ju(x) +[2¢" (x) +py (X) @ (X) )Y "* (X)

+{0" (x) +8' (X) Py (X) +9 (%) P2 (%) =P3 (x) +#% (%) ¥ (X) +£ (%, ¥ (3 (%))

oo o1 Y(Gp(x)))=0

y" (x) +@ (x)y (x)+u(x)=0

Taking in consideration that 2¢°(x)+p;(x)e(x)=0,
for ¢ chosen before, the system becomes

ut (x) +py (x)u’ (x) +[@ (x) +py (X) Ju(x) +(@" (x) +@ ' (X)p; (X) +

+9 (X) P2 (X) =P3 () +02 (X) 1y (X) +E(%,¥ (91 (X)) , -+ - , Y (G (X) ) ) =0

y" (x)+e (x)y (x)+u(x)=0
which is a system of second order nonlinear equations wit
deviating arguments. We want to apply the maximum principle fre
Theorem 12.

‘Denoting
fl(x,u'(x),u(x),y(x),y(gl(x)),...,y(gm(x)))=p1(x)u'(x)+' _
+[@(X) +Po (X) Ju(X) +[@" (X) +@ (X) Py (X) +@ (X) P, (X) ~P3(x) +9? (X) }-
Y(X)HE(X, Y (G (X)), ..., ¥Y(Gr{x))), and
£,(x,y"' (X),y(x),u(x))=e(x)" y(x)+tu(x),
the system may be written:

ut (x)+£, (x,u’ (x) ,0(x),y(x),¥y(g(x}),.+.,¥Y(Iu(x)))=0

Y*(x)+£5(x,y"* (x),y(x),u(x)))=0.

The conditions (23) - (25) from Theorem 12 become in ou
case

£,(x,0,r,...,r)<0, for all r>0, xeé(a,b]
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(t,8€R™1!, tss) must imply f,(x,o,r,f)stl(x,o,r,a)
for all r>0, xe[a,b)
f,(x,0,r,r)>0, for all r<o0,xe{a,b] and
(t,s€R,t<s) must imply f£,(x,0,r,t)sf,(x,0,r,s)
for all r<0, xe([a,b].

We shall prove that all these conditions are fulfilled in
our case. Let r>0
£,(x,0,r,...,r)=[@(x)+p (%) Jr+[e" (x)+e' (X)P; (X) +o(X)Pa(X) -
-p3(x)+¢2(x)]r+f(x,r,...,r)=
- r {-%[pf(x)+2p{hﬂ +4p, (X) +4) e_%Lwﬂndt+P2(X)‘Pa(x)+02(x)}+
+ f(x,r,...,r) < 0, for all x ¢ [a,b), from (ii) and (iii).
Now, let t,seR™!, tgs. We must prove that f,(x,0,r,t)s
sf,(x,0,r,s) for all r>0, xe(a,b].
We have
£)(%,0,r,t)=£,(x,0,r,8)=[o" (x) +o' (X) Py (X) +o (X) Py (X) ~
~p3(x) +92(x)) (ty=8 ) +[E(X,tp, 00 e, by ) "E(X,8p, .00 . ,8p4,3) ).
But o"(x)+o'(x)pl(x)+o(x)p2(x)-p3(x)+02(x)zo, for all
xefa,b), from (i) and (V), in the same way as in the proof of
Theorem 10. Using (iv) and fact that t,-s,<0 (for tss), we get
f,(x,0,r,t)-£f,(x,0,r,8)<0, xe{a,b], r>o, which is
fy(x,0,r,t)=<f,(x,0,r,s) for all r>o, xe(a,b].

The conditionvfz(x,o,r,r)>0, for ;11 r<0, x€{a,b]
hecomes r(¢ (x)+1}>0,that is ¢ (x)+1<0, which is true for ¢ chosen,
from (1). ‘

For the last condition, let t,seR, t<s. We must prove that
f,(x,0,r,t)sf,(x,0,r,s8), for all r<o, xef[a,b), that is ¢(x) r+tg

S 9(x)'r+s8 which is obviously true.
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Hence, we are in the conditions of Theorem 12, so, the
function (y,u) satisfies the maximum and the minimum principles,

that is, the vector function (y,y"+¢y) satisfies the maximum and

the minimum principle.
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ABSTRACT. - Caracterizations of best approximation element and
cheby - chefian subspacés in Q-inner-product spaces by the use of
continuous linear functionals are given.

‘1. Intreduction. Q-inner product spaces are real vector
spaces X endowed with a Q-inner product, i.e., a positive
definite and symmetric mapping q: X4 - R which is linear in the
first variable and satisfies an inequality of cCauchy-Schwar:z
type. Among these spaces we include the usual inner product
spaces, the real Lebesque spaces L%(u) and LP(u) with p>4 if
p(R)<o, equipped with appropriate Q-inner products generating
their inner products and their norms respectively.

DEFINITION(([3]). Given a real linear space X, a mapping g
: X%4R is called quaternary inner-product or Q-inner product, for
short, if it satisfies the conditions:

(1) é(ax1+a'x'l,xz,x3,x4)=aq(x1,x2,x3,x4)+a'q(x1,x2,x3,x4)
for all a,a'‘in R and all x,,x';,X;,X;3,X, in X;
(1) aX5(1)+%5(2)1Ko(3)+Xg(4)) = DXy, X3, X3,%4) for all x),Xy,X3,%,
. in X and any permutation ¢ of indices (1,2,3,4);
(11i1) q(x;,x,,%3,%,)>0 for all nonzero x; in X;
(Av)  lq(xy,%p,%5,%4)14 5111 q(xy,X;,%;,%) for all x; in X

(i=1,...,4)

Y Univarsity of Timigoara, Department of Mathematics, 1900 Timigoara, Romania
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A pair (X,q) is said to be a Q-inner product space if X i
a real vector space and g is a Q-inner product on it. It is easy
to see that a Q-inner product space (X,q) will be regarded as
normed space (xJ'Iq) with the norm defined by |ﬂq
s={q(x,x,x,x))/4.
If p is an inner product in a real vector space X, then the

function q : X%.R defined by:

A(Xy,x2,X3,%4) 2=372[D (X, %)) P(X3,%g) +P (X1, X3) P(X3,Xg) +
+P(X3,X4) P(X3,%3) ) is a Q-inner product on X generating the inner
product norm |'|p. Let also (N,A,u) be a measure space. If
X,,%Xy,%X3,%, are in Lé(p),

d(Xy,X5,X3,%4) 3= h,xl(s)xz(s)x3(s)x4(s)du(s), (1)
then this defines a Q-inner product in L4(u)generating the nora
|‘|4 in L‘(p). This Q-inner product cannot be recaptured from any
usual inner product in L%*(u). When k(A)<w, then formula (1)
defines a Q-inner product in each space LP(u) with p>4.

THEOREM 1.([3)). Every Q-inner product space (X,q) is
uniformly convex and 1its norm 1s GAteaux differentiable,
Moreover, the GAteaux differential t(x.y) of |~|q at xeX\{0)} in
the direction yeX is given by

Tix,y) = lim (Ixveyl o - 1ad )/t = q(x,x,%,¥) /7 Ixlg.
’ t-0

Given a Q-inner product space (X,qg), we say that an element
X in X is Q-orthogonal to another element y in X if g(x,x,x,y)=0
and we denote this by xlqy. By the use of R.C.James result 54]
we observe that xlqy iff »xtgy, i.e., x is orthogonal over y in

the sense of Birkhoff (1), [3}.
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2. The main results. We start to the following
characterization theorem.

THEOREM 2. Let (X,q) be a Q-inner product space and E be its
nondense linear subspace. If'xoeX\ E, x'€E, then the following
statements are equivalent:

(1)  Pg(xg) = {x'};

(i1) there exists a unique x"e¢Elq such that x, = x'+x"; where
Pz (Xg) denotes the set of best approximation elements refering to
*o and Elq denotes the Q-orthogonal complement of E ( see also
(31).

The proof follows to the fact that x'ePp(xy) iff x - x'ligE
if x, - x'1qE and since x,b -l q) is strictly convex. We omit the
details.

THEOREM 3. Let (X,q) be as above, f be a nonzero continuous
linear functional on it and xgeX\Ker(f), gqpeéKer(f). Then the
following sentences are equivalent:

(1)- p](er(f)(xo) = {gg}}
(i1) g9 is the unique element in Ker (f) such that

£(x)=£(Xg)Q(X, Xy = Do, Xo = Fo: Xo — Fo)/ IX,-9olg (2)

for all x in X.

Proof. ®(i)a(ii)". If gonKer(t)(xo) then the element
Wpi=Xy = gy is Q-orthogonal over Ker(f) and since f(x)wg-f(wy)x
belongs to Ker (f) fo‘r all x in X, hence q(f(x)wy-
~f(wgy) X,wg,Wy, W) =0, what implies the representation (2). If g;
is another element such that (2) holds, then x, -g; ‘gKer(f),

lee., g5 € Pggr(g)(%Xo)
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which implies g, = g; and the implication is proved.

"(ii)a(i)". It's obvious.

COROLLARY. Let (X,q) and E be as in Theorem 2 and
xoeX\ E ,g9q€E,. Then the following statements are equivalent:

(1) Pg(xg) = {9p};

(i) go is the unique element in E such that for all

continuous linear functional f on E @ Sp(xy) with
Ker (f)=E the following representation holds:
£(x) = £(%5)A(X,Xg = dg,Xg = DosXg = Fo)/ IX,-Tol3
for all x€E @ Sp(xg).

Now, we shall give a characterization of chebychefian linear
subspaces E, i.e., the closed linear subspaces E with the
property that @(x) contains a unique element for all x in X.

THEOREM 4. Let (X,q) be a Q-inner product space and E be a
nondense linear subspace in it. Then the following assertions are
equivalent:

(1) E is chebycheflian;

(ii) E 1is closed and the following decomposition holds:

X =E®E" (3)
The proof is obvious from Theorem 2 and we omit the details.
Remark 1. If E is finite-dimensional then (3) holds and if
(x,l-lq) is complete, then for all closed linear subspace E in
X the decomposition (3) is also valid. Note that the 1last
statement improves Theorem 2.4 from [3].
Now, we state the main results of our paper.

THEOREM 5. Let (X,q) be as above and £ be a nonzero
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continuous linear functional on it. Then the following statements
are equivalent:

(1) Ker(f) 1s chebychefian;

(11) there exists a unique element uzeX, l ud =1 such that:

£(x) = | £l q(x,u;,up,u;) for all xex. (4)

Proof. "“(i)=(ii)*. If Ker(f) is chebychefian, then there
exists wpyeX\ {0}, woi-q K'er(f). As in Theorem 3 we have the
representation f(x) = f(wy) q(x,wy,Wy,Wg)/ |Wo|:| for all x in X.
Putting ugz=wy/I wolq Af £(wy)>0 or ug:=-wy/l wolq if f(wgy)<0 cne
gets (4).

On the other hand, f(u;) = led, i.e., u, is a maximal
element of the norm one and since (X,| ~|q) is strictly convex,
then by Krein's theorem (see for example [5), p.102) we conclude
that u; is the unique element with the property (4).

¥(II)=*(1)". It‘s also obvious from Krein's theorem and we
onit the details.

COROLLARY. Let (X,q) be as above and E be its closed linear
subspace. Then the following statements are equivalent:

(1) E is chebychefian in X;

‘(11) for every xqeX\E and for all fe(EeSp(xy))" such that

Ker(f) = E there exists a unique element u, . €

EeSp (Xg) , quwfl =1 with the property that:
£(%) = Ifhe@apx,) A (X, Uy, /Uy, ¢/ Uy, () FOr all x € EDSp(x,) .

Remark 2. If E is a finite-dimensional subspace in (X,q)
then for all £ a nonzero continuous linear functional on E there

exists a unique element ug g€E, luf'El = 1 such that
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£(x) = | €l gq(x,ug, g,ug g,ug,g) for all xeE.

If (X,|~|q) is complete, then for all nonzero continuous linear

functional f in X there exists a unique element ugeX, lud =1

such that the representation (4) holds. Note this fact improves

Theorem 4.3 from (3] and generalizes the clasical theorem of

Riesz which works in Hilbert spaces.
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REZUMAT. -Problemele de bazi ale teoriei metrice a punctului fix
revisitate (II). In anul 1983, In lucrarea [93), am formulat
anumite probleme de bazli ale teoriei metrice a punctului fix, in
cazul operatorilor multivoci. In prezenta lucrare se reanalizeazl
problematica de bazd a acestel teorii, din perspectiva
rezultatelor obtinute In perioada 1980-1990.

1. Introduction. In 1983, in the paper [93], we formulated
some basic problems in the metric fixed point theory for
multivalued mappings. The aim of this paper is to analyse these
problems from the light of the results given in 1980-1990.

Throughout the paper we follow terminologids and notations
in [93] (or see ([91])). For the convenience of the reader, we
recall some of them.

Let (X,d) be a metric space and T: X-°X a m-mapping. Then

P(X) :={AcX| A+ ¢},

P,(X) := {A € P(X) | A bounded},

Poy(X) := (A e P(X) | A=K },

Pep(X) = (A € P(X) | A a compact set},

I(T) := {A ¢ P(X) | T(A) < A},

I,(T) := {A € I(T) | A a bounded set},

§(A) := sup {d(a,b) | a,b ¢ A},

§(A,B) := sup {d(a,b)| a € A, b € B},

D(A,B) := inf {d(a,b) | a € A, b ¢ B},

H(A,B) := max (sup {D(a,B) | a ¢ A}, sup {D(b,A) | beB}).

' University of Cluj, Faculty of Mathematice, 3400 Cluj-Napoca, Romania



IOAN A. RUS

2. Multivalued mappings on metric spaces. Let (X,d) and
(Y,p) be two metric spaces. A mapping T : X-P(Y) is
(a) bounded if A € Pp(X) implies T(A) € P,(Y); °
(b) compact if A € P, (X) implies T(AJe Pep(¥);
(c) upper semicontinuous (u.s.c.) if for each closed subset
Acy, T"1(a) is a closed subset of X;

(d) lower semicontinuous (l.s.c.), if for each open subset
AcY, T'I(A) is an open subset of X;

(e) continuous, if it is u.s.c. and l.s.c.;

(f) closed, if for each x4 € X we have
(Xn - X9, Yo = Yor Yo € T(%x,)) implies (yq € T(xd)).
‘Remark 2.1. For the basic notions in the theory of
multivalued mappings see: (8), [9], (10}, [11].
Let (X,d) be a metric and T : X-P, ) (X) a m-mapping. In the
last thirty years many papers have appeared which establish
various fixed point theorems for such type of mappings. In these
theorems, the mapping T satisfies various conditions. In what
follow we present some of such conditions:
(1) {Markin(1948), Nadler(1969)). There exists a¢ {0,1{ such
that H{T(x),T(y)) < a d(x,y), for all x,y € X;

(2) (Reich(1971)). There exist a,b,c ¢ R,, atb+c<l, such
that
H(T(x),T(y)) < a d(x,y) + b D(x,T(x)) + ¢ D(y,T(y}),
for all x,y € X;

(3) (Iseki(1974)). There exist a,b,c € R,, a+2b+2c<1l, such

that H(T(x),T(y)) < a d{x,y)+b(D(x,T(x))+D(y,T(Y)))

+ c[(D(x,T(y)) + D(y,T(x))], for all x,y € X;
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(4) (Cirié (1972)). There exists a ¢ (0,1[ such that
H(T(x),T(y))s<a max{d(x,y), D(x,T(x)), D(y,T(y)), 1/2{D(x,T(y))+
+ D(y,T(x))}}, for all x,y € X;
(5) (Rus(1972)). There exists a € [0,1[ such that
H(T(x),T(y)) s a d(x,y), for all xeX, yeT(x);
(6) (Rus(1972, 1975, 1979)). There exists ¢ : R, .. R,,
such that
H(T(x),T(y))se(d(x,y),D(x,T(x)),D(y,T(y)),D(x,T(y)),D(y,T(x)))
for all x,y € X;
(7) (Raich(1972)). There exist a,b,c € R,, such that a+b+c<1
and §(T(x),T(y)) s a d(x,y)+b §(x,T(x)) + c §(y,T(y)),
for all x,y € X;
(8) (Avramescu(1972)). There exist a,b,c € R,, a+b+c < 1,
such that
d(y;.,yp)sa d(x;,x;)+b d(x;,y;)+c d(x,,y;), for all
Yi€T(xy);

(9) (Rus(1975,1979)). There exists ¢:R% 4R, su-h that
§(T(x),T(y))se(d(x,y), §(x,T(x)), §(y,T(y)), §(x,T(y)),
§(y,T(x)), VvV x,y € X.

(10) (Bmithson(1971)).

H(T(x),T(y)) < d(x,y), for all x,y € X, x » y;

(11) (Rus(1983,1990)). There éexists ae[0,1[, such that

§(T(A)) < a &§(A), for all A € I, (T);
(12) (Rus(1983,‘1990)).
§(T(A)) < §(A), for all A € I (T), 6(A) » 0;
(13) (éirié (1972)). There exists a € {0,1[, such that

§(T(x))UT(y))<a max{d(x,y) ,H(x,T(x)) , H(Y,T(Y)),
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1/2(D(x,T(y))+D(y,T(x))) for all x,yeX.

Remark 2.2. Some metric conditions are degeneracy
conditions. For example, in (83) the authors use the following
condition:

There exists a € (0,1[, such that

H(T(x),T(y)) s a {D(x,T(x)) D(y,T(y))}}/?, for all x,y € Xx.
This condition implies that if x, € F;, then T(x) = T(x,), for

all x € X.

3.Invariant subsets. let T:X-°X be a m-mapping. By
definition an element x € X is a fixed point of T if x € T(x) and
a strict fixed point of T if T(x) = {x}. We denote by F, the
fixed point set of T and by (SF), the strict fixed point set of
T. By definition a subset AcX is an invariant subset under T if
T(A) < A. The following results are well known.

LEMMA 3.1. Let T : X - P(X) be a m-mapping. Then

(1) ™(X) € I(T), for all n € N;
(ii) (SF), is a fixed set of T.

LEMMA 3.2. (Berge, Martelli; see[97])). Let X be a compact
topological space and T : X-P(X) a m~mapping. Then there exists
a ncnempty closed subset Y c X such that Y =.¥T§3. If T is u.s.c.
with closed value, then Y = Tq{Y).

In general, F, is not an invariant subset for T but we have
F*cT(FT)(see (24])). The following problem arises:

PROBLEM 1. Let (X,d) be a metric space and T : X-» X a
m~mapping. Which are metric conditions, on T, .which imply that

T(Fp)= Fq ?
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References: (2}, (5], ([34), (61}, (62]), (66]), (94), (97].
We have
THEOREM 3.1. Let (X,d) be a metric space and T:X-P, .;(X)
be a m-mapping. If there exists a function ¢ : R‘°+-.R+ such that
(1) 9(o,r',,0,r',) < e (0,r*,,0,r%,), for all r',, r*,, r",
r'y € R, r'y sr", r'y s r".
(ii) r-e¢(0,r,0,r) < O ihplies r = 0.
(i11) H(T(x) ,T(Y)) s ¢ (D(x,T(x)),D(y,T(y)),D(y,T(x)),D(x,T(Y))),
for all x,y € X.
Then T(Fp) = Fp. Moreover x,y € F, implies T(y) = Fy.
Proof. First we remark that
D(x,T(y)) s H(T(x),T(y)), for all x € Fp, ¥y € X,
and
D(y,T(y)) < H(T(x),T(y)), for all x € X, y € T(x).
Now, let x € Fp and y € T(x). We have
H(T(x),T(¥)) < ¢(0,H(T(x),T(Y)),0,H(T(x),T(y))}, and
from (ii), it follows that H(T(x),T(y)) = 0. Thus T(y) = T(x) and

T(Fy) = Fg.

4.Fixed points.

PROBLEM 2a. Let (X,d) be a complete metric space and
T:X~-eX. Which are metric conditions on T which imply that Fp»¢?

References : [1], (2], ([15), (16}, (17}, (20), (21)], [34),
(36), [41), (43}, [4A]r (45), (46), [47), (54), (65), [67], (84],
(85), (861, (901, (91}, (921, (93], [97), [(110]), ([114).

We have

THEOREM 4.1. Let (X,d) be a complete metric space and
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T:X ~ Pp,c1(X) a m-mapping. We suppose that there exists
comparison function ¢ :R,~R, such that
(1) H(T(x),T(y)) s ¢ (d(x,y)), for all xeX, yeT(x).
Ir
(ii) T is a closed m-mapping.
or
(iii) There exists a function w:R5+-.R+ such that
(a) $(0,0,r,r,0)<r, if r>0;
(b) if uy<u,, v,sv,, then
¥(u,uy,v,w,v,) < ¥(u,u,,v,w,v,), for all u;,v,,u,v,wek
(c) H(T(x),T(y)) < w(d(x,y), D(x,T(x)), D(y,T(y))
D(x,T(y)), D(y,T(x))), for all x,yeX.

then, Fq * ¢.

Proof. Let us have (i) + (ii). For (i) + (iii) see (92).
Let g>1 be such that g¢ is a comparison function. Let xy¢X and
X,€T(Xg) . If H(T(Xq),T(x,)) = 0, then T(xy) = T(x,;) 3 x,. Let
H(T (%) ,T(x;)) » 0. Then chere exists (see[84]) or [93]) x,eT(x
such that d(x;,x;) < gqH(T(xy),T(x;)). This implies that -d(x,,Xx)
S ge(d(xg,xy)). If H(T(xy),T(xy)) = 0, then T(x;) = T(X,)3x,.
Let H(T(x;),T(x;)) * 0. Then there exists x;eT(x,) such th
d(x,,%3) < qe(d(x;,X,)). In this way we prove that there existi
a convergent sequence (X,),.o such that x ,,€T(x,). Let
x" ¢ = lim x, . From (ii) we have x"eT(x").

PROBLEM 2b.Let (X,d) be a bounded complete metric space an
T:X-¢X. Which are metric conditions, on T, which imply Fq; » ¢!

References: (17], [22), (61), (78], [89], (93], (96]), ([97)

(110].
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PROBLEM 2¢c. Let (X,d) be a compact metric space and T :
X-eX. Which are metric conditions on T which imply that F,» ¢ ?
. Referencest [17]), (33], [48]), [82]), (93]}, [96), [97), [105],
[110].
PROBLEM 3. To extend the thegrems of Maia's type to the
setting of m-mappings.
References: (78], f93].
We have
THEOREM 4.2. Let X be a nonempty set, d and p two metric on
X and T: X-Py c1(X,p) a m-mapping. We suppose that
(1) a(x,y) < p(x,y), for all x,y € X;
(1i1) (X,d) is a complete metric space,
(iii) T: (X,d)-(X,d) is a closed mapping;
(iv) there exists a comparison function ¢:R.-R,, such that
HP(T(x),T(y))s0(p(x,y)), for all xeX, yeT(x).
Then Fp » ¢.
Proof. From (iv) there exists a fundamental segquence
(%) nzor in (X,p), such that x,,, € T(x,), neN. By (1) this
sequence is fundamental in (X,d). From (ii) it is a convergent
sequence. Let x" be the limit of this sequence. From (iii) we
have x"eT(x").
Remark 4.1. The Theorem 4.2 will remain true if condition
(iv) is replaced by
(iv') H (T(x),T(y)) < a d(x,y)+b D(y,T(y)), x € X, y € T(x);
a,b € R,, atb < 1.
PROBLEM 4. To extend the theorems of Caristi’s type to the

setting of m-mappings.
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References: [19]), [59), [65), (93}, {101}, [121]).
In this connection the following problem may be of interest:
PROBLEM 4a.(J.P.Penot(see(59))). Let (X,d) be a complets

metric space, ¢;X~R+, be a 1l.s.c. function and T:X+Pg,(X)

satisfyng the following condition
L

D(x,T(x))<¢(x) ~ inf {@(y) | yeT(x)}.

Does T have a fixed point in X?

5.8trict fixed points.

PROBLEM 5a. Let (X,d) be a complete metric space and T !
X-°X. Which are metric conditions, on T, which imply (SF)q* ¢ ?

References: (13}, [17], [19], [21]), [22), [24}, (30}, (43],
(661, [(79]), [(84), (86], [87], [89]), [92]), ([93), ([9%94).
PROBLEM 5b. Let (X,d) be a bounded complete metric space and
T:X-°X. Which are metric conditions, on T, which imply (SF).#¢?
References: [17), (33], {54), (93], (94], (%96). (97]}).
One of the main results for this problem is the following:

THEOREM 5.1([97]). Let (X,d) be a bounded complete metric
space and T: X-P(X) a (§,¢)-contraction. Then

(a) (SFjp = {x"}.

{(b) Fp = (8F)q.

PROBLEM 5c. Let (X,d) be a compact metric space and T: X-°X.
Which are metric conditions on T which imply (SF)q, » ¢ ?

References: [17], [33], (54}, (85], [93), [94]), [96], [97),
[105].

We have

THEOREM 5.2((97)). Let (X,d) be a compact metric space and

L4
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T: X-P(X) a §-condensing m-mapping. Then

(SF)q = {x"}.

6.8uccessive approximations. Let (X,d) be a metric space and
T: X+P(X). By definition a sequence of successive approximation
of T at Xy is a sequence (x,),.o such that x,,, € T(x,), for all
n € 2,. The mapping T ‘is asymptotically regular at x, with
respect to a sequence of successive approximations, (x,)..o., if
D(x,,T(x,))-0 as n-ow,

PROBLEM 6. Which metric conditions imply that T is
asymptotically regular?

References: [34), [45], [105), ([109), [88].

PROBLEM 7. Which metric conditions imply that for all xyeX,
there exists a sequence of successive approximations for T, what
converges to a fixed point of T ?

References: {2], [20), (34), [61), [64), [89], [93], [105),
(109), [113], [114]), [117)].

PROBLEM 8. Which metric conditions imply there exists a
successive approximations such that T(x,)-+F; as n4o ?

References: (2], (34], (61], (89), [93}].

PROBLEM 9.Which are metric conditions which imply all the
following statements:

(1) Fp * o.

(ii) There exigts a sequence of successive approximations
for T what converges to a fixed point of T.

(iii) T(y) = Fp, for all y € Fg.

References: [2], [34], (61}, (89), [93], ([113), (114].
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7. 8tability of fixed point set. We begin with some remarks
on comparison function. By definition (see[93)) a function
¢:R,~R, is a comparison function if

(a) ¢ is monoton increasing,

(b) ¢"(t)-0 as n-», for t20.

A comparison function is a strict comparison function if

(c) t-¢(t)a+o as t.+oo,

If ¢ is strict comparison function, then let
t, (¢) : = sup{tlt-e(t) < n}.
We remark that ¢, (¢) -~ 0 as n - 0.

PROBLEM 10a. Let (X,d) be a complete metric space and
T,T,:X-P(X), neN, such that

(i) (T,), converges uniformly to T,

(i1i) Fp and Fp * ¢, neN.

Which are the metric conditions which imply that H( Fp, o Fp)-0
as n o4 © ?

PROBLEM 10b. Let (X,d) be a complete metric space, Y a
topological space and T:XxY-P(X) be a continuous m-mapping. Which
are metric conditions on T(',y), which imply that the mapping

P:Y- (P(X) , H), Y‘°FTv,y)'
is continuous ?

References: ([67), (60},(72),(93),(118),(98).

We have:

THEOREM 7.1.Let (X,d) be a compact metric space and

T,S ¢+ X - P,(X).We suppose that

(1) There exlsts a strict comparison function, such that
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H(T(x),T(Y)) < o(d(x,y)), for all x,yeX,

(i) T(Fg) = Fq,

(i1i) Fg € P, (X) and S(Fg) = Fg,

(iv) there exists >0, such that H(T(x),S(x)) < 9.
Then, H(Fq,Fg) < t,(¢).

Proof. First we remark that

(a) the condition (i) implies, H(T(A),T(B))<¢(H(A),B),for
all A,B €P_y (X);

(b) the condition (iv) implies, H(T(A),S(A))<n , for all
A,B € P, (X);

(¢) the condition (i) implies that Fy » ¢, and F ¢ Pep(X) .
We have

H(Fp,Fg) = H(T(Fy) ,8(Fg)) < H(T(Fy) ,T(Fg)) + H(T(Fg) ,S(Fg))s

< ¢(H(Fp,Fg)) + v . So, H(Fy,Fg) < t,(9).

8. Nonself m-mappings.

PROBLEM 11. To analyse the Problems 2a, 2b, 2¢, 3, 4, 5a,
5b, and 5c¢c in the case of nonself m-mappings.

References: [(6), (7], [17), [48), [103], [116].

Let X be a nonempty set and YeéP(X). A mapping p:X-Y is
called a retraction of X onto Y if p’y =ly. A m-mapping, T:Y-°X,
is retractible onto Y by means of a retraction p:X-Y, if F, o=F;.
We have:

LEMMA 8.1. Let {x,s,u°) be a (strict) fixed point structure
(see [97]). Let yeS and p:X-Y a retraction. Let T:Y-°X be such
that

(1) poT e MO(Y),
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(11) T is retractible onto Y by p.
Then Fqv¢ ((SF)pwe).

Proof. From (i) we have Foor * @ ((SF)pOT * ¢). From (ii) we
have Fq » ¢ ((SF)p%o).
From Lemma 8.1 it follows:

THEOREM 8.1. Let X be a Hilbert space and T:E(O;R)aPcp(XL
We suppose that:

(i) ‘there exists a comparison function ¢:R,+R, such that

H(T(x),T(y)) < ¢(d(x,y)), for all x,y € E(O;R),

(ii) T is retractible onto-E(O;R) by the radial retraction.

Then Fq * ¢.

9.Fixed point set. The following result is well known

THEOREM 9.1(({3)). Let ¢:R5+_.R+ a strict comparison function
and T:R:PCP'CV(R) a ¢-contraction. Then FTePcp'cv(R), i.e., Fyis
nonempty compact convex set.
The following problem arises:

PROBLEM 12. Which are metric conditions on T : Rchpﬂw(m
which imply that Fp € Pcpﬂw(R).

References: (100), (3].

For other proporties of the fixed point set of a m-mapping

T:(X,d)-(X,d) see: (27}, (3], (100}, (70], ([74].

10.Common fixed points. Let (X,d) be a metric space. In the
last twenty five years many papers have appeared which contain
various common fixed point theorems for a pair, T,S:X-°X, of

m-mappings. Here are some of the metric conditions which appear
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(1) (Avram(1975) ). There exists a,b,ceR,, a+2b+4c<1,such that
§(T(x),S(y))sa d(x,y)+b(&(x,T(x))+5(y.S(y)) ]+
+c[6(x,8(y))+8(y,T(x))], x,yeX.
(2) (Fisher (1980)). There exists a€(0,1[, such that
§(T(x),8(y)) s
< a max{d(y),8(x,T(x)),6(y,S(y)),6(x,5(x,y)),6(y,T(x))}
for all x,y in X.
(3) (Papageorgiou(1983)). There exists o:R3+qR* such that
H(T(x),8(y))se(d(x,y),D(x,T(x)),D(y,S(y)),for all x,yeX.
The following probem arises:
PROBLEM 13. Which are metric conditions wich imply (one of,
all of,...)
(1)  FIFg » ¢;
(i1) (SF)p N (S8F)g » ¢;
(iii) Fo=Fg » ¢;

il

(iv) (SF)q = (SF)g * ¢;

(SF)g = {x"};

(v) (SF)p

(vi) Fgp = (8F)p = Fg = (8F)g = {x"};

(vii) Fp UFg » @;

References: [12), [16), [18]), [25], (28], [29), [31], [32],
(35}, (38}, {50), (51), (52), (53), (57), (69), (71]), (73], [76],

(77}, (78}, (80), (99]), (104], ([106), (107].

11. Other problems.
11.1. Metrical fixed point theory for m-mappings on

cartezian product: (17), (23], (14}, {93), [110), [115].'

-
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11.2. Approximation for fixed point of m-mappings: (7],
(17), [64], [93), [102), [110].

11.3. Metrical fixed point theory for generalized metric
spaces: (17], (23), [36), (71}, (81), (93}, (110].

11.4. Nonexpansive m-mappings: [26]), (17), (36), (58], {93],

(103), ([119), ([120].

12. Applioations.

12.1.8urjectivity theorems.

PROBLEM 14. Let X be a Banach space and T : X-P(X) a
m-mapping. Which metric conditions imply that 1y - T : X-°X is
a surjective m-mapping ?

We have

THEOREM 12.1. Let X be a Banach space and TiX-Py, ) (x) @
m-mapping for what there exists a comparison function such that

H(T(x),T(y))<e¢(d(x,y)), for all x,y € X.

Then 1y - T is a surjective m-mapping.
Proof. Let yeY. We have, T(x) + y 3 xe=+ x~-T(x) 3 y.
Let S(x) = T(x) + y. We remark that
H(S(x;),S(Xy)) S ¢(d(x,,x,)), for all x,,x, € X.This implies

that (see &4) S has at least a fixed point.

12.2. Coincidence pointa. Let X and Y be two sets and
T,S:X-P(Y) two m-mappings. By definition xeX is a coincidence
point for the pair T,S if T(x)NS(x)»* ¢.

Let C(T,S) := {xeX IT(x)NS(x) »¢}. We remark that

PROBLEM 15. Let (X,d), (Y,p) be two metric spaces an
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C(T,S) #d = Froga *» ¢,

T7,S:X-o¥. Which are metric conditions which imply that C(T,S) »¢?

References: (93], [37), (75], [88].

12.3. optimization theory (see [22]). Let X be a Banach
space. By definition a con CcX is a subset with the following
property:

(1) AeR,, yeCaly e€C;

(iiy ¢ N (-c) = {o0}.
let A be a set and f : A-X. Let T : X-P(X), x-o{f(a)l aeA,

f(a) € C+x}. We have:

THEOREM 12.2 ({22]). f(ay) is a maximal element of
(E(A), Sc) iff £(ag) €(SF)q.

12.4. Other applications. For other applications of the
fixed point theory see : [8), ([17], ([39], (40]), (68], (98],

(111), (112}, [113), [114).
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REZUMAT - (¢,9) - contractii multivoce locale si aplicatii. Se
introduce notiunea de (e,¢) - contractie locala multivoca si se
demonstreaza doua teoreme de punct fix pentru acest tip de
multifunctie. Se obtin ca si consecinte citeva rezultate mai
generale decit cele date in (1}, (2), [8), {10), iar in final o
aplicatie la o problema Cauchy multivoca este prezentata.

1. Introduction. In (3] M. Edelstein proved that if X is a
complete e~chainable metric space and f:X-X is an (e,A)~-uniformly
locally contractive mapping then there is an xyeX such that
xo=f (%g) .

S.B.Nadler jr. generalizes this rezult to multivalued
mappings. In [4], Nadler defines a multivalued mapping
FiX-Py o3 (X) to be (e,A)-uniformly locally contractive (where £:9
and A€(0,1)) provided that if x,yeX and d(x,y)<e then
H(Fx,Fy)<A-d(x,y). This definition is modeled after Edelstein's
definition for singlevalued mappings (3].

One year latter N. Covitz and S.B. Nadler jr. proved (see
[2]) that if X is a complete generalized metric space, F:X-P., (X)
is a (e,A)-uniformly locally contractive multivalued mappings
(vhere P, (X) is endowed with the generalized Hausdorff metric)
and x,€X, then following alternative holds: either:

(i) for each iterative sequence ({x,} . of F at xg,

d(x,.y,X%,)2¢e, for each n=1,2,... or,
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(ii) there exists an iterative sequence ({x,}. .. Oof F
at x5, such that ({x,} ., converges to a fixed point
of F.

R. Wegrzyk generalizes Covitz-Nadler's result to multivalued
¢-contraction (see [10}).

On the other hand, M. Turinici (see [8] and (9])) using th
notion of normal (strong) multivalued contraction proved tw
fixed point theorems and gives some applications to multivalued
Cauchy problens.

The purpose of this paper is to prove some fixed point

theorems for a class of multivalued mappings, from which we can

obtain some consequences which generalize results given in (1),

(23, (8], (10}.

2. Basic results. Let (X,d) be a complete generalized metric
space, xe€X, YcX and e>0. Throughout this paper we use the

following symbols:

§(Y):= sup{d(a,b)la,beY}
D(Y,x):= inf{d(y,x)|yeY}
S(Y,e)={xeX| D(Y,x)<e}
P(X)={YcX!| Y»¢)

P (X)={YeP(X)| ¥ =Y}
Pb'cl(X)={Y6P(X)| ¥ =Y, 6(Y)<w)

Let H:P_;(X) x P, (X)- K, be a mapping defined by:
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inf{e>0|YcS(Z,¢),2cS(Y,e)},
H(Y,Z):= if{e>0|YcS(Z,€),2cS(Y,e) ) *o

+o0 ,otherwise

The following lemmas are very useful in the fixed point theory:

LEMMA 2.1.((2]). (P.;(X),H) is a complete generalized metric
space.

LEMMA 2.2.(([8)). Let Y,Z be two nonempty, closed subsets of
X such that H(Y,2)<e. Then, for every ueY(resp 2) there is a
veZ(resp Y) with d(u,v)<e.

LEMMA 2.3.((8)). Let Y,Z be two nonempty, closed subsets of
X and e>0 such that, for every ueY (resp 2Z) there is‘a veZ
(respY) with d(u,v)se. Then, necessarily H(Y,2)<e.

DEFINITION 2.1.([5)). Let ¢,¥:R, 4R, two mappings. We say
that ¢ is ¢-summable if:

(i) for each teR,
the sequence {¢"(t)} .\ converges to zero, as n-» and (2.1)

L (vog)n () < (2.2)

(ii) ¢ is a monoton increasing function on R,

DEFINITION 2.2.((7]). A function ¢:R 4R, is a comparison
function if it satisfies:

¢is monotone increasing (2.3)

(@“(t))neN converges to 0, for all t2>0. (2.4)

Remark 2.1.((7)). If ¢:R,-K, is a comparison function then
¢9(0) = 0 and ¢(t) < t, for every t>0.

DEFINITION 2.3. A function ¥ :R, R, is an expansion function

if it satisfies the following conditions:
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v(0) =0 (2.9)
y(t) > t, for all t>0. (2.6}
DEFINITION 2.4. Let ¢,¥ : R,+R, be two functions. We sy

that ¢ is strong ¢-summable if:

¥ is ¢-summable (2.7
¥ is an expansion function (2.8
Yogp is a comparison function. (2.9)

DEFINITION 2.5. Let F:X-P.;(X) be a multivalued mappin
(briefly m-mapping)

F is said to be (e,¢)-locally contractive mapping (where e>0 ani
¢:R -R,) if it satisfies:

X,yeX, O<ase d(x,y)<a* H(Fx,Fy)se(a) (2.10)
The main result for (e,¢)-locally contractive m-mapping is th
following:

THEOREM 2.1. Let (X,d) be a complete generalized metric
space, F:X-P_,(X) a m-mapping and ¥ a strong ¢-summable function.
We suppose that:

F 1s a(e,¢)-locally contractive m-mapping (2.11)

there is an xy€X such that D(xg,Fxg)<e. (2.12)
Then Fp * ¢. (i.e. there 1s a fixed point of F).

Proof. Let xyeX be such that D(x,,Fxg)<e. If XyeFx, the
Xo€Fp. We suppose x,¢Fx,. From (2.12) there is an element Xx,eFy
such d(xg,x,)<e.

For Xgo,X,€X and a=e s d(Xg,Xy)<a 3 H(Fxy,Fx;)se¢(a) -
¢(e)<(vop) (e).
From Lemma 2.2. there is an x,eFx; with d(x,,x;)<(yo¢) (e).

Using (2.11) for x;,%,€X and a =(yo¢) (e)<(e):
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d(xy,%,) <(¥O®) (&) = H(Fx;,Fx,)<e(¥op) (¢)<(¥op)?(e).
Again invoking Lemma 2.2., then is a x3€Fx, with d@,,x,) <
< (yop)2(e), etc.

By induction, we get an interative sequence {x,},.N satisfying:

X,.1€Fx,, for every neN ' (2.13)
A(X,, Xpey) <(V0@)"(e), for every neN (2.14)
H(FX,, FX,,,) <(¥09)"*1(e), for every neN (2.15)

From (2.14) and definition 2.2.{x,},,y is a Cauchy sequence, so
{xn}n;N converges to an element x"€X, as n.o. We now prove thLat
x" is the required fixed point for F. By (2.11) F is a continuous
mapping, so l"xn-.l"x", as n.w and since x,, €Fx,, for every neN
conclusion follows if we take the limit as n-e, Q.E.D.

Remark 2.2. From theorem 2.1., it follows that d(x,,x")<

sén('llmp)“(z) ,for every neN.

Remark 2.3. As an important particular case, let the mapping
¢:BR+R, defined by ¢(t)=at, for every teR, and some ac¢(0,1). Then,
the mapping ¢:R <R, defined by ¥(t)=bt, for every t:R, and some
be(1,1/a) is strong ¢ —-summable.

In this way, the above theorem generalizes theorem 1 of /2/.

Remark 2.4. A m-mapping Fi:X-P,,(X) is said to be a normal
miltivalued contraction with respect to a ¢:R, R, (see /8/) if it
satisfies:

X,YeX, a>0 d(x,y)<a = H(Fx,Fy) < ¢(a)

{or equivalent F is.a multivalued ¢ -contraction, see /7/ and
/10/) .

1f F is a normal multivalued contraction with respect to ¢, then

Fis a (e,9) -locally contractive m-mapping. Theorem 2.1 of /8/
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is a consequence of the above theorem (see also /9/ and /10/).

DEFINITION 2.6. F:X-+P.;(X) is said to be a strong (e,¢)-
locally contractive m-mapping (where e>0 and ¢:R,-R,) 1if |t
satisfies the following condition:

if x,yeX, O<a<e satisfy d(x,y)<a (2.16)
then, for every ueFx (resp. Fy) there is a veFy (resp. Fx) with
d(u,v)<¢(a). (2.16)

Remark 2.5. From Lemma 2.3. every strong (e¢,¢)-locally
contractive m-mapping is, necesarily, a(e,¢)-locally contractive
m-mapping.

Now, the second main result of this note is:

THEOREM 2.2. Let (X,d) be a complete generalized metric
space, F:X-+P.,(X) a m-mapping and ¢ a comparison function. We
suppose that:

F is a strong (e,¢)-locally contractive m-mapping (2.17)
there is xy€X such that D(xg,Fxg)<e. (2.18)
Then, we have Fp#¢.

Proof:Let x,eX be such that D(X,,Fxg)<e. If xyeFx; then
Xo€Fp.

We suppose x,¢Fx,. From (2.18) there is an element x;eFx, with
d(xg,%x;)<e. For xg5,x,€X and a=e : d(Xy,X;)<a implies (taking into
account (2.17)) that there 1is an element x,€¢Fx; with
d(x,,X)<¢p(a)=¢(e).

Now, for x,;,X,€X, x,€Fx; and a=¢(e)<e:

d(x,,x,)<¢(e) implies again that there is a x3€Fx, with
d(xz,x3)<¢2(e), etc.

By induction, we get an interative sequence {x_},4
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satisfying d(xn,xn+1)<¢“(e), for every neN.

The last part of the proof is the same as in theorem 2.1.
Q.E.D.

Remark 2.6. From Theorem 2.2. it follows that:
d(xn,x‘)<§n¢‘(e), for every neN, where x" is a fixed point of F.

THEOREM 2.3. Let (X,d) be a complete e-chainable generalized
metric space (e>0), F:xqécl(X) a strong (e,¢)-locally contract:ive
m-mapping (¢ is a comparison function of R, into itself). Then
Fp *9.

Proof. Conclusion follows from Theorem 2.2. (see also [2]).

Remark 2.7. The above theorems might be compared with those .

of {1], which contain more restrictive assumptions.

3. An application. In this section we use terminologies and
notations from [8] or ([9].

In what follows (R®,l '|‘) is the euclidean n-dimensional
space endowed with a given norm.

We use the following symbols:

X={ x:R-R" | x~continuous )}

A={ a:R R, | a-continuous }

A,={ aeAla(t)se, (V)teR, } (e>0)
For every xeX define | ea by i (t) = | x(t)l , for every teR, and

for every geA, let | -l 1X-R, be defined, for an arbitrary xeX by:

inf {A€R, |Ix)sAg),if (A€R |IxisAig) #¢
4+ ,otherwise

ixly ={

It is simple to verify that (x,! | q) is a generalized Banach

space (respectively, a complete generalized metric space, by the

107



ADRIAN PETRUSEL

standard construction of its metric).

For every geéA denote also

Xy = {xexl |x|g<w} and

Cg(X) = {¥ex! ¥ is |1, -closed)
Now, let k:X-P(X), x-k(x) be a m-mapping and xyeR" a fixed
element.

We consider the multivalued Cauchy problem:

x/(t) €k (x) (t) . for every teR,

(c.py { X0

The following existence result concerning the solutions of (C.P.)
may be stated:
THEOREM 3.1. Suppose that there exists a mapping h:A-A, a
real number A21, geéA,, ¢ a comparison map and ¢>0 such that:
for every xeX the set K(x) of all y € X with y (t) =
x°tL‘y(s)ds : V teR, ( for some y € k(x)) 1is a |-|g ~closed
set. (3.1)
If %,y € X, a ¢ A, satisfy | x-yl <a, then for any u e k(x)

(resp.k(y)) there is a vek(y) (resp.k(x)) with |u-v|sh(a). (3.2)
Lth(gf)(s)d8<¢(t)g(t), (V)©>0, (V) teR, (3.3)

'there 1s an element yoex such that
Iy°(c)—x°-[°°u(s)ds|<eg(t) , (V) teR, (3.4)

(for some uek(yo)).

Then, there exists an element zey® + Xg solution for (C.P.).

Proof. Let F:X+Cy(X) be a m-mapping defined by:
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F(x) = K(x), for every xeX (3.5).
From (3.4) it follows that there is an element ﬁcF(y°) such
that 1y® - u |g < ¢ and so we have Dq(yo,Fyo) <e.
Let a € R be such that O<ase/A<e, and let X,yeX be such that
I x-yl j<ase.
From the definition of |~|q we have | x-yl <a g
Let U €Fx (resp Fy). From (3.5): ﬁ(t)-x°ﬁLtu(s)ds,
()t ¢ R,, for some u € k’x) (resp. k(y)).
Let a :R, R, denote a mapping defined by a(t)=ag(t).Because
geA,, it follows that a(t)se/A A=e, for every telk,.
So, for x,y€X, a€h, : |x-y|<a and uek(x) (resp k(y)) there is an
element veky (resp. k(x)) with |l u-vl sh(a)=h(ga).
Let V €X be defined by WV(t) = x° + fotv(s)ds, for every teR,
Clearly, V €Fy (resp Fx).
We hava:

|ii<c)—v<t>|<jo‘|u<s) -v(s)ldasL‘h(ga) (s)ds<e (a)g(t),

)
for every teR,, i.e. Iﬁ-VL(¢(a), showing that F is a atrong
{¢,¢)-locally contractive m-mapping. Thus, theorem 2.2 applied,
and the conclusion follows. Q.E.D.

Remark 3.1. A m-mapping FiX- P_,(X) is said to be weak
{e,9)-locally contractive if:

x,yeX, A(x,y)<esH(Fx,Fy)<e¢(e)

open problem: 'Givo some sufficient metric conditions
implying exiastence of fixed points (or e-fixed points, see (6))

of a weak (e,¢)-locally contractive m-mapping.
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REZUMAT. -Conexiuni afine cu torsiune birecurentd generalizatk.
in lucrare ee studiaz¥ epatii cu conexiune afinX cu toreiune
birecurentd generalizatd, definite prin (2), ce apar ca o
generalizare naturalld a “ul (1) stabilindu-se propozigiile 1,2,
gi 3. Pentru cazul conexiunilor semi-simetrice gi a E-
conexjiunilor semi-simetrice ee atabilesc relagiile (}2), (13),
(1), (16) 21 {(20), pe care le verificld tensorii Qjxrs 94 L I
precum g¢i sistemul (21).

Let Anlbe a space with affine connection I'. In a coordinate
system, we denote by Iﬁk, the components of the affine
connection, by Tgi the components of the torsion tensor of the
connection I' and by T, -Thithe components of the torsion vector
(the Vranceanu's vector).

The space A, 1is called space with birecurrent torsion or
T-birecurrent space, [4] 1f there exists a covariant tensor of

second order o 80 that:

re

Tji'u =W, 'l‘ji (1)
where comma denotes the covariant derivation with respect to T.
A natural generalization of the relation (1) is obtained in
the following way:
DEFINITION 1. The space A, is called space with

generalized birecurrent torsion, if we have:

'Unjversity of Cluj, Faculty of Mathematics, 3400 Cluj-Napoca, Romania
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Tskore = @10 Tok * Qsirs (2)
where ¢,., 1is a covariant tensor of second order and Qﬁx,
a skew-symmetric tensor in j and k.
Remark 1. Here too, one observes that being given the
tensor ¢.,, the tensor Qﬁla is completely determined by (2).
Remark 2. The fact that (2) is a natural generalization of
the relation (1) results easily. Indeed, relation (1) can be

written immediately

i 1
Tjk,ra = P, Tjk + Wy = Pyp ) Tii 3)
and the space is with generalized birecurrent torsion, with an

arbitrary ¢,., and

Qsics = ( Oy - @, ) Tsi (4)
We have therefore:
PROPOSITION 1. The A, T-birecurrent spaces are also with
generalized birecurrent torsion, with an arbitrary ¢, and 0
given by (4).

Remark 3. If in (2)

jSxs T apg Tj%( (5)
then, from () and (2) it follows (1) and the space is
T-birecurrent with Opg = Ppg + apg.

If in (2) we apply a contraction in i and J we have:
Tk,re = ‘pxs Tk + ris (6)

where Oxrs = Qit,, and it follows.
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DEFINITION 2. Th; A, spaces which satfsfy (6) are called
spaces with generalized birecurrent torsion vector.

From the way (6) was obtained with (2) as it follows:

PROPOSITION 2. The A, spaces with generalized birecurrent
tosion are also with generalized birecurrent torsion vector.

Remark 4. The converse of the assertion 2 is generally not
true. In this paper we will give also a case in which the
converse takes place.

The A, spaces for which exists a convector o, and a

tensor jS, so that:

.4 i
Tik,e = @ Ty + jS: (7)
vere called spaces with generalized recurrent torsion [3].

Derivating covariantly (7) with respect to, T we have:

i i i i
Tix,xs = W, , Ty + W, Tyi,s * Qikr.e

and taking count of (7) it follows:

i i i i
Tikre * ( @ 4 + @0, ) Tyx + © Qjke * Qur.6 (8}

and the space is with generalized birecurrent torsion with

‘pll = w!.! + utwa (9)

and

Oikre = @Otk *+ Q.o (10)

therefore:
PROPOSITION 3. The A, spaces with generalized recurrent
torsion are also with generalized birecurrent torsion with ¢,

and Q.. given by (9), (10).
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¥

We consider now the space A, endowed with a semi-symmetr|
affine connection I (n>1) therefore [2]:
i 1 1 i
Tjk = _n-l (6j Tk - bk Tj) (13)
Derivating covariantly (11) twice and taking (2) and (¢

into account, we have:

Qj%cza = n_il (6; Qrs ~ blit qu) (12)

relation of the same kind as (11), therefore:

PROPOSITION 4. In a generalized birecurrent torsion |
space, n > 1, with semi-symmetric connection, the tensor Qﬁ"
and his contracted Q,, = Qﬁu, satisfy the relation (12).

For the fixed indexes r,s transvecting (12) by Q; ¥

have:

Qj%u:o Qe = 0 (1)
and terefore:

PROPOSITION 5. In the generalized birecurrent torsion |
spaces with semi-symmetric connection, (13) takes place.

The relations (11) and (12) give for these spaces, th
answer to the remark 4. Indeed, from (11), derivating covariantl
twice, and taking (6) and (11) into acéount, it follows (2) wit

Qjics given by (12).
We have therefore the converse assertion:

PROPOSITION 6. The A spaces with semi-symmetr]

n

connection and with generalized birecurrent torsion vector 1

also with generalized recurrent torsion with the same ., &
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with Q,i,, given by (12).

From the relation of S.Golab [5] for semi-symmetric

connections:
14
Tej Tin *+ Tok Thj *+ Ten Ty = O (14)

derivating covariantly twice, and taking count of (2) and (14)

we have:
i i i ]
Qajrp Tk:: * Qk:up le + Qakzp Thj +
i i i
+ Qh;zp Tok + Qshxp Tj; + Qj:tzp Tlh + (15)
i i i
+ le,tTk:\,D + Tsk,xTh;,p + Toh,sz;.p +
i i i
+ Tsj,ka;,t + Tok,xTh.j,x + Tlh,ij.k,! =0
Therefore:

PROPOSITION 7. In the semi-symmetric A, spaces with
generaliged birecurrent torsion, (15) takes place.

‘From (14) by contraction in i and J one gets the well-

known (5] relation:

T, Tyn = O (16}
rom which, derivating it covariantly twice with respect to T

and taking (2), (6) and (16) into account, it follows:

Qskne Ty *+ Tik Qura + Tykor Tio + Tikoo T,y = O (17)
PROPOSITION 8. In the semi-symmetric connection A, spaces
with generalized bire;::urrent torsion, (17) take place between the
torsion tensor and the generalized recurrency tensor.
If the semi-symmetric connection of the A, space is an

E-connection, therefore (2]
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Tiy- Tyy = O (18)

from [5)

Tir * Tieg *+ Trgox = O (19)

by covariant derivation and taking count of (2) we have:

i i i
‘ptsTjk + ‘pngkt + ‘pkthj + thu + Qk‘tjl + Qtijkn =0 (20)

In (20) applying a contraction in i and r and taking‘

count of (6) and (18) it follows:

®1 Tk *+ Ogkis = O (21)
we have therefore:

PROPOSITION 9. In the semi-symmetric E-connection A,
spaces and with generalized birecurrent torsion, the tensor ¢,
is a solution of the n linear systems (21) and verifies (20).

Remark 5. The systems (21) can also be obtained from the
vanishing of the divergence by covariant derivation and taking
count of (2).

Remark 6. In remark (i) w2 emphasized the fact that (7}

completely determines the tensor Qﬁx. if ¢, is given.
Now, for the semi-symmetric E-connection we can outline the fact
that being given the tensor Qﬁxs , the problem of the
determination of a tensor ¢,., that verifies (2) one reduces to
the compatibility and soiving of the systems (21) with the
conditions (20).

Remark 7. From the relations (4) and (9), naturally appears

the case in which the tensor Qﬁr, is degenerate. Therefore one
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should impose a detailed study of the case in which Qﬁt, is

degenerate of various kind of degeneration.
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Rezumat. Noi suprafete acoperis generate de tehnica interpolirii
blending. Scopul lucrdrii este de a prezenta noi suprafete
acoperig obtinute cu ajutorul interpollrii blending, folosind
operatori de interpolare de tip Birkoff.

In some previous papers {(3,4,5,6,8] there were studied app-
lications of blending interpolation in generating roof-surfaces
for large halls.

The goal of this paper is to construct some new such sur-
faces using as the start points the blending interpolation on the
rectangular respectively the triangular domains.

Let D=({-a,a]x[-b,b]) be a rectangular domain in the xOy
plane. The problem is to construct a function F, F:D-->R that
satisfies the natural conditions: f1aD = 0 (the roof is staying
on its support - the border of D) and F(0,0)=h (the height of
the roof in the center of D). To control the position of the
tangent planes or the inflaction lines of the surface, can be
used some supplementary conditions.

Also, the parabolic points of the surface must be taken inte

attention, that are the maximum stress points of the surface [6].

1. For the beginning we take as supplementary conditions the

. University of Cluj, Faculty of Mathematics, 3400 Cluj-Napoca, Romania
Polytechnical Institute of Cluj, Department of Mathematics,
319 Cluj-Napoca, Romania
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following:
r(1.0 (4, y) = r(1.0) (g, y) =0, for yel-b, b}, aclo0,a],
and
r®1) (x, -p) = {1 (x, p) =0, for xcl-a, al, Pelo, bl,

To interpolate the corresponding data, there are used the

Birkhoff's interpolation operators Bf and B{ defined by

(xz_az) (x2+a2_2a2)
a?(2a2-a?)

"

(BAF) (x, y) = ¢1(X)F(0, y) with ¢ (x)

(BZF) (x, y) = ‘l’]_(y)F(X: 0) with "’1(}’) = (_Yz-bz) (y2+bz-2Q2)

b2 (2p2-b?)
respectively
As,it is well known, the Boolean sum F = Bf$BX is a

blending interpolation operator that interpolates all the

required data. So, we get the family of surfaces

Fi(x, y) = ¢, (X)F(0, y) + ¥, (¥) F(x, 0) - @, (X)¥,(»)h

that depends on the univariate functions F(0,.) and F(.,0). By
a suitable selection of these functions we can obtain various

kinds of surfaces.

1.1. First, one approximates the functions F(.,0) and F(0, .)

by the same Birkhoff's polynomials
F(x,0) := (ByF)(x, 0) = ¢,(X)F(0, 0)

respectively
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F(0, y) := (B)) (0, y) = ¢, (y) F(0, 0).

One obtains

F,(x,y,a,B) = ¢,(x,a)¥,(y,B)h.

The parabolic points of this surface are given by the solu-

tions of the equation

G, (x,y,«,B) =0, (x,y)e€D,

with .
Gy = F2 O E0.2)_(p(1.1))2,
or
(9,010, %1 - (919,49,¥1)%) (x,y,a,8) =0,
where

0, (x,a) = ax(x*-a?), (v, B) = 0. (y.B).
¢1(x, @) = 4(3x%-a), Vi(y,B) = @1(y.B).

Particularly, we have
F,(x,y,0,0) = —8_(x*-a%) (y*-b*%),
a‘bt

with the parabolic points given by the equations

Xy = 0,

and/or
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x4 ¥ 7 xty*
? + b‘ + '; a‘b‘ - 11 (X:_V)GD'

a b, _ h 2_22) (D243 2_p2 2,52
Fll(x,y,a'-?) —a‘_b‘(x a)(&x "’a)(y b)(zy *b)c
and
Fo(x,y,a,b) = — (x?-a%)2(y?-b?)2,
a‘b"
Remark 1. The last surface was also obtained in [6]).
1.2. The second case is obtained for
F(x,0) := {xiza%) (xirat-6a’)
a2(6a2-a?)
and
2_p?) (y2+b?-6p2)
F(o,y) 1= ¥
bZ(GBZ_bZ)
We have
252 2_p2)  x%+a2-2q2 y2+b?-6p?
F. (X, 0, ) = (X a )(y [ P4 +
1 (xy.e,p a3b? 2a3-a2 6p2-b?
x?+a2-6a° y2+b*-2p2  x*+a?-2a? y2+bz~zpzlh ‘
6a’-a? 2p%-b? 2a?-a? 2p2-b?
Hence

F,(x,y,0,0) = F,(x,y,0,0),

a b x%-a? 2-p2) { 45 p
F(x,y, 3 —5') -4 a)‘l(a{ ) (~2—§x2y2+b‘x‘+a’y*+a3b')h,

2_o2 2_p2
F;g(x,y,g,g) = Ax aa)lj(aj‘, b%) (a2b*-2b2x3-2a%y?-12x2y?)h,

and
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2_a2 2_Hp2
Fy,(x,y,a,b) = (x7-a’) (¥°-b%) (522p2-ph2x2-a%y?-3x2y?)h,
5a‘b?

1.3. Finally, we take:

. a2_x2 . . b2_y2
F(x,0) := ~a h; F(0,y) := i h.

One obtains:

(x2-42%) (y2-b?) [ x2+a?-2a® y?+b%-6p2 _

Fu(X'Y:a;ﬁ) =

ap? a*-242  b?-22
x*+a®-2q? y2+b2—292]h
a%-2a? b?-2p2 o
So,
Fia(%,7,0,0) = —R_(x3-2%) (y3-b?) (a?b?-x?y?),
a‘b!
F .(x y 4a _‘9) = (xz_aZ)( z_bz) (a2b2_4x2 2)
13 ’ ’ 2‘ 2 a‘b‘ y y ]
and
F,(x,y,a,b) = Fi,(x,y,0,0).
2. A second starting point is to construct the surface F
in the conditions
2F #F
F(an) =hl Flap=ol —-—(‘a,y) = (a,y) =0,y€["b,b] and a€[0,a] '
ox? Ix?
3#?F *F
(x,-p) = (x,p)=0, xe€l-a,al and Pe€(0,b].
dy? dy?

To satisfy all these conditions is sufficient to take
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F2-B~© E~F , where and defined by

% — - (x-a2) (x2+a2-6a2)
(B%F(x,y) =if3MF(0,y), R0 a2 (6a2-a2)

respectively

BAE(X.Y) = iR GOF(x .0) . = ile) = (Y2-N2) (y2+f22-6P2)
(BF(X,Y) = iR&)IF(x,0) il2 0 b2(602.b2)
are the Birkhoff"s operators that interpolate the data:

azF(—oz.y). F(0,y), ﬂ(az.y) and F(a,y)

F(- ’ ’
(-a,y) I’ Fwe

respectively

F(x,-b), al (x,-Bp), F(x,0), &F (x,p) and F(x,b).
Ay 2 dy?

So, we have
F2(x,y)= 2 OF(0,y) + i) F(X, 0) - y2()i/2()h
where

F(0,0) = h1 F (as O) = F(a’! O) :01 F(Oy_b)

2.1. First, we choose
F(X/0) =~ 1 h and =

One obtains
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Fpx,y,a,B) =—_ (x2-a2) (y2-p2) (Xral-6a® | y?+b?-6p7

a3p? az-6a? b*-6p?
2 2_ 2 2 2_ 2
_Xx*+a%-6a® y2+bi-6p ]
al-6a? b?-6p2

So, we have:

F21(XIYI0:0) = Flj(xlylolo)l

a by__h 2_42 2_ _ - a b
F"(x'y'_i'?)_a‘b‘ (x%-a%) (y?-b*) (a?b*-ax?y?) =F, (x,y. . 3) .
and
h . .
F(x,y,a,b)=—=—_ (x*-a?) (y?-b?) (25a2b?-x2y?).
nlxy 25a4b* yi-po) o)
2.2. For F(.,0)=¢, and F(0,.)=¢, one obtains:
Z2_52 2_b2) (x2+a2_6a2) (y2+b2_6p'¢)
F. (-xlylal )= (x a )<y h.
- P a?b?(a’-6a?) (b?-6p?)
Hence
Fpa(X,¥,0,0) = Fy,(x,y,0,0) = —8_(x4-a%) (y*-b*),
atbt
Fo(x,y, 2,2y B _(ya_a2) (y2-p2) (2x2-a2) (2y2-b?)
22 2' 2 a‘b‘ ¢
_ h 2. _ - _
Fz;(X,y,a,b)—m(x a?) (y%-b?) (x*-5a?) (y‘ sb?),
and
Fn(x,y,—%,%) = F,,(x,y,a,b).
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2.3. If F(0,.) and F(.,0) are taken as in the case 1.2, we

have:

2 2_ 2 2 2_ 2
Fyy(x,y,a,p)= (x2-a2) (y2-p2) (X tai-2a? y?+bi-6p%

a2b? 2a%-a? 6p2-b?
. X*+ra?-6a? y2+b2-2p8%2 x?+a’-6a? y2+b%-6f?
6a2-a? 2p2%-b2 6a%-a? 6p2-b?

Two particular cases are:

2 -§)= h (x%-a?) (y2?-b?) (a2b?+2b3x?+2a%y?-12x3%y?)

Fgg(X:}’: 21 a‘b‘
and

h

Fy(x,y,a,b)=
B 25a‘bt

(x%2-a2) (y2-b?) (9x2y2-25b3x2-25a2y2+25a?b?)

Next, one considers some surfaces over a triangular domain,

T, = {(x,y)eR? | x20, y20, x+y<a}.
If T,is taken as a quarter of the support, the roof surface F
must satisfy the conditions: F(0,0)=h and F(x,a-x)=0, xe€(0,a).
In {6] there were given some surfaces generated by the blending
interpolation procedure on a triangular domain.
Here we give some more such surfaces using also the deriva-

tives in the starting conditions.

3. First, we are going to construct a surface F ‘such that:

F(0,0)=h, F(x,a-x) =0, E;(a—y,y)=0, E;(x,a-x)=0, x,y€elo0,a)l.
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To this end, we use the Hermite's interpolatory operators h‘g

and Hg defined by

Kl

(H)) (x,y) = (—(L—‘;—:—F(o y)+ "(2(" 2)2") Fla-y,y)+
a-y
x(x+ -a)
+——alyLFx(a—y.y),

and

(H) (x,) = ‘—(-)&)F(x,on ‘2(" o L Fix, a-x) +
a-xX
+_(Lx__)_F (x’ —x)_
a-x y

Taking into account (1), we have:

(HSF) (x,y) = ‘L(*{;-,ﬁ:—zﬂo.y)

(HYF) (x,y) = ‘L(*-)&:F(x,m

Since, H%‘$H§ F satisfies all the conditions (1), we
consider F, = H'%@H%’F, i.e.
Fy (%, y)~-—-—-"(‘*y ‘)"” F(o, y)+———Y—-——‘( ‘;’ F(x,0)- —L‘ 2 F(0,0),
a—
or
Fa(x,y)—“(_ﬁla_)_f( ) + Ax+y-a)? £, - ..(X_"ta_)_z_h,, (2)
(a-x)? (a-y)? a?
where [f;, and [, are defined on (0,a) and [f;(0)=f,(0)=h,
respectively r,(a)=f,(a)=0..
This way, we get a family of surfaces F=F(f,,f,,h) all of

them satisfying the conditions (1). For an fixed h, each
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selection of the functions f; and f, gives a surface from the

family.

3.1. Let f; and f, be given by f;: —HXF and f£,: ‘”2 . From

(2), one obtains

(x+y-a)?,
a2

Fgl(le) =

3.2. If f1:=LfFand f§:=L{F, where Lf and L{ are the

Lagrange's polynomials which interpolate the data £,(0)=h,
f,(a)=0, respectively f,(0)=h, f,(a)=0, one obtains:

(a-x-y)®(a®-xy) ,

Fo(x,y) =
2y = e (ay)

3.3. For a€[0,a), let Bg be the Birkhoff's operator that

interpolate the data: f£,(0)=h, f,(a)=f,(a)=0 and f; (a)=0,i.e.

(BXE,) (x) - {xza) (x:2a-30)
a?(2a-3a)

’

and (Bgfg)(y) = (Bgfl)(y). From (2), one obtains:

(a-x-y)? x+y+2a-3a

F. /Y. &) =
33 (x, v, @) a® 2a-3a

Some particular cases are:

(a-x-y)?{x+y+2a) h,

F33(x:}'10) = 2a3

—_— e 3
F33(x'yla) = _(g_ﬁ.ﬂ_.h'
a3
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2 a3

Finally, we consider the graphs of two such surfaces for

20, b>20 .

The surface F22(x,y,-S

The surface F23(x, Y, -S,
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REZUMAT. - Asupra functiilor slab continue II. In lucrare sint
corectate unele rezultate din lucrarea [6)..

The family of all feebly open (resp. semi-open, preopen)
sets of a topological spéce X is denoted .by a(X) (resp.
50(X) ,PO(X)). The affirmation "If U, ¢ SO(X) and U, € PO(X), then
(u,/U,) € @ (X)" didn't result from (3, Lemma 3.1} as is said in
the proots of the Theorems 2 and 5 of [6].

LEMMA 1 (4). Let A be a subset of a topological space X. If
either AeSO(X) or AePO(X) then (AV) € a(A) for every V € a(X).

LEMMA 2.[1]. Let AcYcX, Yea(X) and Aca(Y), then Rea(X).

From [5, Ex.5.4) follows that quasicontinuity and weak
feebly continuity are independent notions. Also precontinuity and
wveak feebly continuity are independent notions.

The following Theorems are corrections of the Theorems 2,3,5
and 6 of [6].

THEOREM 1. A function f:X-Y is feebly continuous if and only
if is weakly feebly continuous and precontinuous.

Proof. Let G be any open set of Y and x&éX such that f(x)eG.
As f is weakly feebly continuous at x there is U,ea(X) containing
x such that f£(U;)cCe(G). As f is precontinuous by [2, Theorem 1)
there is U,ePO(X) containing x such that f(U,)cG. By Lemma 1

(U,NU,) ea(U;) . By Lemma 2 U=(U,NU,)ea(X). Thus xeU, Uea(X) and

'Univeraity of Bacdu, Department of Mathematics, 5500 Bacdu, Romania
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f(U)cG and by (1, Theorem 1.1} £ is feebly continuous.

Conversely;, if is feebly continuous by (3, Theorem 3.2] f
is precontinuous. As f is feebly continuous, f is weakly feebly
continuous.

COROLLARY 1. (Noiri ([5)]). If f£f:X-Y is weakly feebly
continuous and precontinuous, then f is weakly continuous.

THEOREM 2. A function f:X.Y is feebly continuous if and only
if it is weakly feebly continuous and gquasicontinuous.

Proof. It is similar to the proof of Theorem 1.

THEOREM 3. A function £:X-Y is feebly continuous if and only
if is weakly feebly continuous and £ 1(Fr(G)) is preclosed in X
for every open set GcY.

Proof.1f f is feebly continuous by (3, Theorem 3.2} f is
precontinuous and by (2, Theorem 1} the inverse image of each
closed set of Y is preclosed in X, thus f 1 (Fr(G)) is preclosed
in X for every open set G of Y. If f is feebly continuous, then
f is weakly feebly continuous.

Conversely, let G be any open set of Y and xeéX such that
f(x)eG. Then, f being weakly feebly continuous there is Vea(X)
centaining x such that £(V)cCe(G). Let us consider the set
U=v-£~1(Fr(¢)) = v (X-£"Y(Fr(G))). As £~ (Fr(G)) is preclosed in
X,x-f'l(Fr(G)) is preopen. By Lemma 1, Uea(V) and by Lemma 2,
Uea(X). As xeV and f(x)eG it folloys that xeU. Let yeU. Then yeV
and y € £ 1(Fr(G)), thus f(y)eCe(G) and f(y) € Fr(G), thus
f(y)eG. As U is feebly open, xeU and f(U)c<G it follows by (1,
Theorem 1,1) that f is feebly continuous.

THEOREM 4. A function f:X-Y is feebly continuous if and only
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it  is weakly feebly continuous and £~} (Fr(G)) is semiclosed in

X for every open set GcY.

Proof. 1t is similar to the proof of Theorem 3.
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PROFESSOR IOAN MUNTEAN AT HIS 60'" ANNIVERSARY

Muntean Iocan wae born in Mai 27, 1931, in Sintimbru, district Alba,
Romania. He studied mathematics at the universities of Cluj (1950-1952) and
Moscow (1952-1955), and he joined the Faculty of Mathematics of the Cluj
University where he became professor in 1976. He gave cources and seminarse in
classical analysis, qualitative theory of differential equations, optimal
control, operational calculus and functional analysis.

Professor Muntean obtained results in the following domains (the numbers
in the brackets indicate the works in the enclosed list, where the
corresponding results are presented):

Qualitative theory of differential equations: bounded, periodic and
almost periodic solutions, limit cycles (1-6, 10-15, 22, 23, 44), stability
and exponential convergence (18, 19, 24-26), asymptotic behavior (16, 8}.

Optimal control theory: controllability [33, 34, 39, 73, 82), optimal
control of thermodynamic systems [38, 40}, optimal machine maintenance ({53,
57].

Approximation theory amnd numerical analysis: condensation of
singularities for interpolation, Fourier series and quadrature formulas (35,
49, 92, 93, 100}, numerical methods for solving equations {41, 43, 104]).

Topology, optimization theory and functional analysis: compact mappings
and guasiuniform convergence [7-9], Dini convergence theorem (84, 85), fixed
point theorems (20, 21, 29, 30, 60), inner product sepaces (31, 32, 76]),
convexity and optimization {17, 37, 42, 62, 66, 80, 91}, functional analysis
{27, 47, 48, 61, 70, 99, 100, 104}.

Real analysis: derivatives and approximate derivatives (45, 50-52, 54,
9, 69, 72, 74, 87, 94}, arctangent functional equation {55, 56), elementary
functione (81, 102, 103}, classification of some sets of real functions [58,
67, 71, 75, 77, 79, 83, 89), teaching calculus (28, 36, 46, 63-65, 68, 78,
86,90, 95, 101].

Some of these results are cited, improved or developed by about 80
mathematiciane. S8ince 1976 Professor Muntean has been a guide of doctorands.

SCIENTIFIC WORKS OF MUNTEAN IOAN

Below we adopt the following abbreviations for name of some publications

and expressions:

AIM = Analele $tiintifice ale Universit¥{ii "Al. I. Cuza" Iagi, Sectia X,
Matematicd,

GMP = Gazeta Matematic¥, Perfectionare Metodicd gi Metodologic¥ in Matematici
¢i Informatici,

ISE = Itinerant Seminar on Functional Equations, Approximation and Convexity,
MC = Mathematica (Cluj),

SDM = Lucr3rile Seminaruluil de Didactica Matematicii,

SMA = Seminar on Mathematical Analysais,

$UM = Studia Universitatis Babeg-Bolyai, Series Mathematica-Mechanica,

UCM = "Babeg-Bolyai" University of Cluj, Faculty of Mathematics,

H = Hungarian,

R = Romanian.

Mathematical papers:

1. Bounded solutions and periodic solutions for some systeme of differential
equations (R). Studii g§i Cercet. Matem. (Cluj) 8(1957), 125-131.

2. A boundedness criterion for the solutions of & nonlinear system of
differential equations (R). Studii @i Cercet. Matem.(Cluj) 9(1958),
237-243. ’

3. On an existence theorem of periodic solutions (Russian). MC 1(1959),
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287-296.

Solutions bornées et solutions périodiques pour certains systémes
d'équations différentielles. Lucririle celui de al IV-lea Congres al
Matematicienilor RomAni (Bucharest, 27 Mai - 4 Juip 1956), pp. 156-157.
Editura Academiei, Bucharest, 1960.

On a limit cycle (R). Studii gl Cercet. §tiint. Matematicd (lagl)
14(1963), 243-256.

Evaluation des cycles limites de certains systdmes d'équations
différentielles. Revue Frangaise de Traitement de 1'Information 6(1964),
255-274 (with B.Lemaire).

Applications complétement continues dans les espaces vectoriels
topologiques. MC 7(1965), 297-303.

Applications Q-complétement compactes dans les espaces uniformes. MC
8(1966), 309-314.

Sur la convergence quasiuniforme. MC 9(1967), 321-324.

Contributions & 1°'étude qualitative des oscillations non linéaires.
Oscillations libres. C. R. Acad. Sci. Paris, Sér. A, 264(1967), 397-399;
Erratum, Ibid. 266(1968), 107.

Contributions & 1'étude qualitative des oscillations non linéaires.
Oscillations harmoniques. C. R. Acad. Sci. Paris, 86r. A, 264(1967),
437-439.

Contributions to qualitative study of nonlxnear oscillations (R).
Doctorate Thesis. UCM, 1966. Authorreview of the thesis, 1967.
Contributions to gqualitative study of nonlinear oscillations. SUM
13(1968), 145-146.

Harmonic oscillations for some systems of two differential equations.
J. Math. Anal. Appl. 24(1968), 474-48S5.

Solutions bounded in the future for some systems of differential
equations. MC 11(1969), 299-305.

On asymtotical -stability of the solutions for the forced Rayleigh-
Liénard system (R). Lucririle §tiint. Inst. Pedagogic din Oradea, Ser.
A., 2(1969), 39-42.

Best approximation in strictly convex spaces and uniformly convex spaces
(R). The Cluj Branch of the Romanian Academy, Institute of Computation,
Preprint No.22, 12 pages, Cluj, 1969.

A note on the convergence of solutions of a system of differential
equations. Short communication. Aequationes Math. 4(1970), 265-266.

A note on the convergence of solutions of a system of differential
equations. Reguationes Math. 4(1970), 329-331.

Fixed point theorems (R). Probleme actuale de matematicl, pp.187-201.
Editura Didacticd gi PedagogicX¥, Bucharest, 1970.

The degree of a transformation and its applications in analysis (R).
Analele Univ. Timigoara, Ser. §t. Matem. 8(1970), 57-71.

On the convergence of solutions of the nonlinear differential equatxons
SUM 15(1970), 9-1€.

Boundedness of solutions for certain systems of differential
equations. Bull. Math. Soc. Sci. Roumanie 14(1970), 61-68.

Sur la convergence d‘'un systéme différentiel. Actes du Congrés
International des Mathématiciens (Nice, Septembre 1970),p.235. Editions
Gauthier-Villars, Paris, 1970. ]

Exponential convergence of solutions of differential equations. Revue
Roumaine Math. Puree Appi. 17(1972), 1411-1417.

Almost periodic solutions by exponential convergence. AIM 18(1972),
319-323.

Sur la non-trivialité du dual des groupes vectoriels topologiquees. MC
14(1972), 259-262.

Axiomatic definition of real numbers (R). Gazeta Matem. Ser. A, 78(1973),
161-169.

A fixed point theorem for the sum of two mappings. Analele Univ.
Timigoara, Ser. §tiint. Matem. 11(1973), 71-74.

On a fixed point theorem in locally convex spaces (Russian).

Revue Roumaine Math. Pures Appl. 19(1974), 1105-1109.

Note sur les ensembles H-lisses. SUM 19(1974), 59-62.

On H-smooth sets in inear spaces. AIM 20(1974), 311-316 (with T.
Precupanu).

Comment.s on "On the controllability of a class o nonlinear systemsa™. IEEE
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Trans. Automat. Control 19(1974), 459-460.

On the controllability &f certain nonlinear equations., SUM 20(1975),
41-49.

The Lagrange interpolation operators are densely divergent.SUM 21(1976),
28-30.

An elementary proof of the fundamental theorem of algebra (R).Matematica
in liceu, Vol.1I, pp.148-151, Bucharest, 1976.

Continuous and locally Lipaschitz convex functions. MC 18(1976), 41-51
(with §t. Cobzag).

optimal control of thermodynamic systeme. Bull. Acad. Polon. Sci., Sér.
Sci. Techn. 25(1977), 611-617.

An introduction to optimal control theory (R). Bul. Informare gi Docum.
a Cadrelor Did., Satu Mare 42(1978), 1-24.

Optimal control of thermodynamic systems. Proc. Third Colloq. Operation
Research (UCM, October 1978), pp.184-187, 1979.

A unification of Newton's methods for solving equations. MC 21(1979),
117-122 (with M. Bal&zs).

Sur le théoréme de convexité de Liapounoff. SUM 24(1979), 67- 70.
Applied mathematics in secondary school (R). Matematica in invdgdmintul
gimnazial gi liceal, Vol.VI, pp.333-339, Baia-Mare, 1979.

Sur l'associativité de la convolution des fonctions presque-périodiques.
SUM 25(1980), 45-51.

Oon teaching the derivate function (H). Matematikai Lapok 85(1980),
406-412.

On the Cesaro integral mean (R). Gazeta Matem. 85(1980), 483~484.

The spectrum of the Cesadro operator. MC 22(1980), 97-10S.

The spectra of some generalized Cesdro operators. MC 23(1981), 231-238.
Condensation of singularities and divergenca results in approximation
theory. J. Approx. Theory 31(1981), 138-153 (with §t. Cobzag).

On the primitivability and integrability of continuous functions, I (R).
GMP 2(1981), 60-67.

On the quotient of derivate functione (R). ISE, UCM, pp.267-272, 1981.
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P e t e r W e 8 ¢,
Introduction to Supersymmetry and
Bupergravity,

World Scientific Publ. Co. Pte. Ltd.,
1990, 425 p.

This is the extended second
edition of the book published by the
same Company in 1986. The Contents
presents the plane of the work,
fragmented in 27 chapters, Iits
origine and motivations.

After the two prefaces, the
supersymmetry algebra is introduced
going from the "No go Theorem" of
Coleman-Mandula. Other approaches of
the supersymmetry is related with the
existence of the Fermi-Bose symmetry,
which is linear. On the other side
the supersymmetry is a symmetry
mixing the particles of different
epin, that ie the fermions and
bosoms. This kind of symmetry was
linearly realized in a four-
dimensional model for Wess-Zumino.
This construction is typical for a
general supersymmetric theory.

An essential step in defining
the supersymmetry a%qebra is given by
the generators Q (i=1,2,...,N)
carrying out a representation of the
Lorentz group and being interpreted
as supercharges. The case N=1 |is
ilustrating by considering an Abelian
gauge group, the supersymmetric gauge
theory, the Yang-Mill's theory and
Noether technique. The irreducible
Representations of the supersymmetric
group of the states at rest are
considered, together with their
interpretations. The procedure can be
generalized to any semi-direct
product S8T with T an Abelian group.
The simple supergravity is presented
as ite invariance. Then are treated
also the Theories of extended rigid
supergravity (for N=l1, N=4), the
local teneor calculus concerning the
coupling of the supergravity to
Matter, the superspaces (for N=1,
N=2), the superspace formulation for
rigid supersymmetric theory and
supergravity.

The seupersymmetric theories
allow to calculate the guantum
effecte. Super-Feynman rules are
constructed for Wess-Zumino model and
N=1. The general formaliem is
presented as well ae some related
applications. The finiteness of a
large class of extended rigid
supe csymmetric theories is a

RECENSII

significative renormalization
property.
Spontaneocus breaking of

supersymmetry and comments of the
Realistic Models are given. The
currente in supersymmetric theories
are presented in the Wess-Zumino
model and in the Super Yang-Mills
Theories. A short introduction in the
2-dimensional aupersymmetric models
and superstring actions are
presented. Two-dimensional
Supersymmetry Algebras for Minkowski
and Euclidean spaces are considered
as well as their irreductible
representations from a physical point
of view, and some models for these
spacee are constructed. In a
geometrical framework the euperspace
formulations of two-dimensional
supergravities, the superconformal
group, -*the Green function and
operator product expansions in some
superconformal modele are given. The
Gauge covariant formulation of
strings at different levels concludes
the general presentation.

It follows three Appendixes
containing (A) "Explanations of the
Conventions", (B) "List of Reviews
and Booke" and (C) "Problems on
afferent Chapters”. The references
includes 260 books, papers and
proceedings.

The book is aimed mainly to the
theoretical physiciste but by its
exposure furnishes a good didactical
introduction in the subject. For that
reason it was also translated in
Ruesian and commented by P.P. Kulysh,
being published by the "Mir" Co.,
Moscow in 1989. By the way, the work
excludes the extended supergravity
theories, the superstring theories,
the extensive disscussions and other
phenomenological implicationsa.
However it is of great interest even
for the mathematicians working in the
fields of Algebra, Diferentlial
Geometry and Topology, for the
applicat'ions of the new techniques in
the physical theories.

M. TARINK
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Qualitative Theory of
Differential Equations. Colloquia
Mathematica Societatia JAnoa Bolyai,
53. North-Hoiland Company Amsterdam,
1990, 683 pages, ed. B. Sz.-Nagy and
L. Hatvani.

This volume contains expounded
versions of 60 lectures given at the
Third Colloquium on the Qualitative
Theory of Differential Equations held
at Szeged (Hungary), August 22-26,
1988. Most papers contain complete
proofs, except some survey articles
pf invited lecturers.

The topics convered by the
papers can be summarized as:
asymptotic properties of ordinary,
functional and partial differential

equations, stability problems of the
solutions of the ordinary and
functional differential equations and
stability of the discretization
methods, methods of abstract
dynamical systems as well as
applications in mechanics, physics,
biology and control. #

In what follows we shall
briefly review some papers. The

choice of the papers reflects, with
no *doubt, the reviewer's interests,
and this does not mean any value
judgement concerning the others.
When an existence problem for
solutions of a differential inclusion
is approached, it is possible to take
rnto.accunt the approximation of the
given multifunction by means of a

continuous single-valued mapping.
Usually, it is assumed that x-.F(x) is
upper semicontinuous with compact and
convex values. In the last years many
attempts have been made to avoid the
convexity assumption- In G.Anichinl'a
paper *Approximate Selection and
peanian-valued multifunctions” is

proved that a necessary condition for
an upper semicontinuous and compact

valued multifunction to admit a
continuous sigle-valued approximation
is the connectedness as well as

locally connectedness of the 3ets
F(x)
Another paper on differential

inclusions is "Boundary value
problems for second order nonlinear
differential inclusions"” by L.Erbe
and W .Kracewlcz. The authors
investigate the existence of
solutions of a differential inclusion

of the forjp y'«F{t,y,y*), yeB,
F: IXRnxRn-» , 1=[0,1]1,B being

boundary condition, which may be
nonlinear, periodic or extensions of
these. The results apply to

142

continuous functions as well ai
Caractheodory multifunctions.

The w-limit set is tha
collection of the cluster points of i
trajectory and plays an important

role in the study of the local and
global behaviour and of the etability

of dynamical systems. In zvl
Artstein’'s paper "On collective Ilimit
sets” are shown some advantages of
tracking the evolution of a set of
points in the state space. The
collective seta are analogs of the
omega limit sets, when sets, rather
than points, are tracked.

Various counterexamples are
constructed in order to enlighten
some bad features of the structure o
the solution set of ordinary
differential equations in infinite-
dimensional Banach spaces. B.M.Garay
in "Sections of solutions, funnele
and continuous dependence on initial
conditions™” shows that the croaa-

section needs not be closed and it
may happen that the <closure of an
invariant set is no loger invariant
in case of solutions which do not
depend continuously on initial data,
These results together with the
failure of Peano property (Godunov's
theorem) makes a quite different
picture in respect to the ordinary
differential equations in finite-
dimensional spaces.

A short survey paper "Recent
advances in the stability theory of
nonlinear systems"” by
L.Lakshmikanthan, based on Lyapunov
function tehniques, presents a
systematic account of the recent
trends, describes the current stats
of the theory and provides a unified

generali structure applicable to a
variety of nonlinear systems.
T.A.Burton in "Lyapunov

functionals and periodic solutions1
based on Lyapunov's direct method,
introduces qualitative results on
ordinary differential equations,
finite and infinite delay -equations

and Volterra equations. In a strong
connection with the problem of
existence of a periodic splution nay
be considered A .Pelczar's paper
"Generalized periodic problems for
ordinary and partial differential

equations” .

MARIAN  MURESAN
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SOME IMPROVED INEQUALITIES

J. 5. PECARIE’ and I. RAgA"™
Dedicated to Professor P. T. Mocenu on his 60"' anniversesry

Received: September 15, 1991
AMS subject classification: 26015

RESUMAT. -~ Citeva inegalitiiti Sintlirite. Citeva inegalititi
cunoscute sint intlrite folosind o metod¥ din lucrarea (9).

1. Let 0O<a<b and let n be an integer, n22. Let
x=(Xy,+..,X,) € [a,b]?. We shall use the following notation:
A=(Xyte . 4x,) /N, Gp=(Xy...Xp)Y", S, (%) =; (xy-x,)2
log(x)=(log(x1),...,log(xn)), JRB(VGE,...,jEZ)

Then:

1 1
-E—b;;sn(X) SAn-GnSESn (X) (1)

For the long history of (1) see {3])-[5]), (8]-[10], [12]). Let
us remark that the counterexample to (1), given in [12], is
inconclusive.

We have also (see[6]):

1 -g.s L
-m)—sn(\/i) SAn GnS nSn(f)-:) (2)

2. Let tecz[a,b]; let 2m and 2M be the minimum, respectively
the maximum of £ on [a,b]. Then f(t)-mt? and Mt?-f(t) are convex
functions on (a,b]. ’

This elementary remark, combined with an appropriate choice

* Faculty of Technology, Baruna Filipoviéa 126, 41000 Zagreb, Croatia

o Polytechnic Institute, Department of Mathematics, 3400 Cluj-Napoca,

Romania
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of f, leads to results comparable with (@) and (2). Namely (see

[°b:
exp .2_n2b§*jGS*eXp_2 ®
-5_5,,(10g(x)) SAn-Gns - A1 51(10g() ) @
oh 5 N(*)SAN-Gns~ g ., (A) ®

Other results obtained by the same method are to be found

in [1] and [2]e

3. We shall apply the above method In order to improve some
results of A.O.Pittenger [8].

Let < be a real-valued function defined on an interval 1,
possibly unbounded. Let tOel. Y will denote a random variable
whose range is almost surely in J.

THEOREM ([8]1)- Suppose Y has finite mean m and variance 02,
and <£(30 finite expectation. If fmt0, set a0O~t0 and pO=V
otherwise set aO=i1i+o2/ (ii~t0) and p0“ (M-t0)2/(az2+ (ii-tQ)2) . Then if
3f£t0 a.s., and i/ the /unction (<E(D)-<E(t0))/ (t-t0) is concave on
(—«e,t0)/?1, we have

po0(ao) + (I-pO)<E(LO)EE(<E(Y)) ©)
Eguaiity is attained /or the random variable YO which equals a0
with probability p0 and tO with probability 1-p0. 1/ in addition
0 is convex, the 1ie/t side o/ (6) dominates Ail  the
/oregoing hold for YZtO, provided that the function ((t)—<€(t0))/
/ (0—00) is convex on (t0,00)/7r.

4
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Remark 1. If I is bounded, the inequality (6) is equivalent
to the inequalities given (with different proofs) for n=2 in
(11,p.279].

Remark 2. 1t is easy to verify that if ¢ is 3-convex (in
particular, if ¢(3)20), then (¢(t)-¢(to))/(t-to) is convex on
(to,@)NI.

Using Remark 2 it is easy to check the convexity of
(#(t)-p(ty))/(t-ty) in all examples considered in (8): it
suffices to verify that ¢(3)>0. Moreover, the inequalities given
in those examples can be improved.

For example, let Y be a random variable, 0<Y<l, with mean

4 and variance o2

. Using the above theorem for t; = 0 and ¢(t) =
=t log(t), #(0) = 0 (note that ¢(3) < 0), Pittenger obtains in
(8]
E(Y log(Y))su log(u+o?/u) (7)
Using the Jensen inequality for ¢ (note that ¢{2)>0) he
obtains ulog(u) < E(Ylog(Y)) and, finally, the following elegant
result
0 < E(Y log(Y)) - plog(u) s plog(l+o?/u?) (8)
Now, in the spirit of Section 2, let us consider the
functions ¢, (t) = @(t) + t3/6 and ¢,(t) = ¢(t) - t?/2.
then ¢{*' <0 and ¢:%'20 for 0<tsi. By using Pittenger's technique
with ¢, and ¢, instead of ¢, we obtain
0%/2 s E(Y log(Y)) - plog(k) s mlog(1+o?/u?) - 6/6 (9)
vhere § = E(Y3) - n¥3(1+0?/4?)? is positive by virtue of the last
inequality in (8]}.

A similar treatment can be applied to the other examples
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discussed in (8).

7.
8.
9.
10.
11.
12.
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RESUMAT. - Punctii cu ocoeficienti negativi n-stelate de un ordin
complex. In lucrare se pun in evidentl unele relatii intre clasa T, 1 8
funcgiilor cu coeficienti negativi n-stelate gi clase T, , de functif cu
coeficienti negativi n-stelate de un ordin complex b. '

1. Introduction. Let A denote the class of functions
f(z) = z +§:akz“which is analytic in U = {(z € C; |z| < 1}.
We denote ;:y N the set of nonnegative integers (N =
{0,1,2,...}).

DEFINITION 1 ([3])). We define the operator D" : A - A,
neN, by : a) D%f(z) = £(z); b) Df(s) = Df(s) = zf'(2);

c) D°r(z) = D(D"*r(2)), z € U.

DEFINITION 2 ([3)). A function f € A is said to be n-
starlike it Re{D"*!f(z) / D'f(z)] > 0, z € U, n € N. We denote
by S, the class of n-starlike functions.

We remark that s, = S* is the class of starlike functions
and §; = S° is the class of convex functions. In (3] it is proved
that all n-starlike functions (neN) are univalent and S, > S,,,;.

DEFINITION 3. We say that f € A is n-starlike of complex

order b (b is a complex number and b»0, neN) if D?f(z) / 2 » O,

¢ "A.Vlaicu” University, Department of Mathematics, 2900 Arad, Romania

Faculty of Science, Department of Mathematics, Damiatta, Egypt
»
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(2 € U) and

Re| 1 +

1( DM1£(z2)

- 1|l > 0, zeU.
b\ D2f(z) )] z

We denote by S, ;, the class of n-starlike functions of complex
order b.

M.A.Nasr and M.K.Aouf introduced and studied the class S, ,
of starlike functions of complex order b ((1]). We also note that

S

n,1 = S

n‘
DEFINITION 4. Let neN and let b he complex and b » 0; we

define the class T, , by

T, , = (f€S, ,; £(2) =z - Z:'akz", a,20, k=2,3,...}.
-

A function f € Th,b is said to be a function with negative
coefficients n-starlike of complex order b.

The classes Ty ;_, and Ty ;.,, @ € [0,1) were introduced and
studied by H.Silverman [4) and the classes Tp,1-ar @ € [0,1),
neN, were defined in [2].

In this paper we give some relaﬁionships between the classes
T,,p (b complex) and T, ;.

We will dse the fbllowing lemma

LEMMA A. Let n € N and let a« € [0,1); a function

£(z) = z - ;akz“ is in T, ;., 1if and only if
-3
;k”(k -a)a, <1 - a.
=

The proof of a more general form of this lemma may be found in
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2. Main rasult. He denote by £ the set {z t C, \z - 1/2]

S1/2 and z # 0> » {z e C; Re > £ 1}.
THEOREM 1. Let n e N and letbe in B;

*>

Proof. Let / be in Tn bnd

*Z N

@&i0, Jc-2,3Then, by Definition 3, we have
Re 1 +1i- fetdf @ >0

or

letie [4

This last inequality is equivalent to

Y kn(k - 1)akzkx
1+Re [T — Kk i] > o.

By letting z a1 , 2z real, we obtain

and this inequality can be rewritten as
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;k"(k -1)a,

1 - ;k”a,

By using the condition b € B which is equivalent to Re(1/b) 2z 1,

Re

<1. (1)

from (1) we deduce

z:k"(k -1)a,
$1. (2)
1 - Z:k"ak

But we have 1 - ;k"ak >0 because D'f(z) [ 2z

- -2
-1 - pk”akz“" » 0 (Definition 3) and 1lim([D"f(z) / z] =1,

=2 - -0
from (2) we obtain ;k""ak <1 which, by Lemma A, implies

2

LeT, ;.

COROLLARY 1. If f is a function with negative coefrficients
starlike of complex order b and b ¢ B, then f is starlike (fes").
COROLLARY 2. If f is a function with negative coefficients
convex of complex order b and beB, then f 1s a convex function

(res®).

3. Remarks. 1). If b ¢ B and b # 1, then we can find
functions f in T, ,1 such that f are not in T, ,b (1.e. T,,1%T,,p) -
Indeed, let f(2z) = z - 22/2"; then f is in T,,;. but for b ¢ B,
1/b = p + iq, we have

i(D”“f(z) -1) - p+r1+igz -2

1 +
b pnf(z) z -2

and

10
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1 Dmlf(zo)

-1) =0
b prf(z,) )

for zo = 2/(p+1+iq) € U, because p>1, and this implies f ¢ T, ,.
2). Let b be a complex number with |b| = r > 1 and for neN

ve consider the functions

f(z) =z- —-L 20
n 2°(r + 1)
then £, € T, », but £, € T, ;, (f, is not a n-starlike function).

Proof. By using Lemma A we have

;k""ak = 2nola2 = L > 1
=2 r+1
and this implies r ¢ Tp,1-
Let denote by U(c;jp) the disc {2€C;|z - c| < p}. We prove
that

i D""fn(z)

-1 U(1;1), = H . 3
b o0E (2) ) € U( ), z€eU = U(0;1) (3)

1+

ut (3) is equivalent to (D"”fn(z)/D"t‘n(z)-l)/b € U and we also

have .
1y Df . (z) 1) = 1 z-2rz3/(r+1) _ 1) = -Z__¢
r p°f,(z) r z-rz /(r+i) r+l-rz
_ r ., r+1 . -
€ U( TRk 21w1)<:£l(o,1) u.

If we denote by 6 the argument of b (b = r em), then we also

have

11
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nel
(D fn(Z) -1) 4

1 : -10
= ——t e
b Dof,(2) "TTvi-rz® €V

and we obtain that (3) holds.

From (3) we have f ¢ T, ,.

g

3). For b real the last result (Remark 2) can be extended.
- 80, by a simple calculation, we also can obtain the next result;
if -1/2 < b < -1/3 and 172 < B < -b/(1+b) or if b g -1/2

and 1/2 < B <1, then fy(z) =2 -832 ¢ Ty, and I, € Ty ;.
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Rezumat. - Rasa de stelaritate a functiei eroare. In lucrare se
determin¥ razele de stelaritate pentru functiile £ definite prin
relatia de mai joe. Acestea se exprimid cu ajutBrul r8dicinii
ecuatiei (3) din intervalul (n/2,m).

The purpose of this note is to find the radii of

starlikeness for the functions
z
£,(2) =f exp(-t")ydt , zeC, neN* .
(1]

Particularly, for n=1, the result obtained by P.T.Mocanu in
{2) which gives the radius of starlikeness for the exponential
function will be refind and, for n=2, the radius of starlikeness
for the error function Erf(z)=f,(z) will be obtained.

Let £ be an analytic function around the origin, with £(0)=0
and £’ (0)»0. The radius of starlikeness for f is defined as being
the radius of the largest disk centered at 0 in which f is
starlike. According to [1), this radius equals min|z| where z is
a root of following system:

Re [z £'(z)/f(2)])=0
Re [z f"(z)/f’'(2)])+1=0

For the function f, this system becomes

* University of Cluj-Napoca, Faculty of Mathematics, 3400 Cluj-Napoca,
Romania -
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Re(];'exp[z"(l—u")ldu) “1a0 (1)

Re z"=1/n. (2)
Denoting by r=r*(f,) the radius of starlikeness of I,
relation (2) gives (Im 27)2=r2" -1/n?, so, it follows by (1) that

r is the smallest positive root of the equation
.Llexp[(l-u“)/n]cos[(1-u")(r’"—l/n’)”’]duso

Consider the egquation
F;(x)=L1exp(-u"/n)cos[x(1-u")]du=0 (3)

Then r2"=(xn)2+1/n2, where x, is the smallest positive root
of the equation (3).
Let now n=1. Then repeated integration by parts in (3) gives
the following equation for x,:
x sin(x)+cos(x) = 1/e ,
so,as in (2], we obtain r*(r,)=2.83...

For n>1 we have
Fﬁ(x)=iL1(1-u")exp(-u"/n)sin[x(l-u")]du=0

#o F, is a decreasing function on [0,n]). It is obvious that
F,(w/2)>0. We shall show now that F,(w)<0.
Let
g,(u)=exp(-u?/n) cos{n(1-u")]}. '
Using the sign of g, and the inequality exp(-u”/n) <

S exp(-1/(2n)) valid for u” 2 1/2 we obtain

14
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1 -1
F,(x) < L’gn(u)du+exp[-1/(2n)] (1-2 ")

But for u€[0,1/2] the following inequalities hold
exp(-u”/n) 2 exp(-u),
cos[n(1-u")] < cos(m(l~u)} < O,
80
gp(u) s exp(-u) cos[m(1-u")] s g,(u).

Integrating by parts it is easy to obtain the next relation

(o wau-Lize1/z) (1
Finally we get the following inequality
F (m) < -1/4 + exp[-1/(2n)] (1-271/n),
If n23 using exp(-1/(2n)])<1 it follows that 4 F, (m) <
< 3-4x27Y/7 < 0. If n=2 we have exp(-1/4)x(1-2"1/2) < 15/64 so
F,(m) < 0 for every n22.
We can conclude riow that x, is the unique root of the
equation F,(x)=0 situated in (m/2,7) and
r'(t,) = ((x,)% + 1/n?)¥/(2m
By computation the following value is obtained for the
radius of starlikeness of the error function:
r*(f,) = r*(Erf) = 1.504...
Solving again equation (3) for n € {3,4,5) we obtain
r*(fy) = 1.268...
r'(f,) = 1.178...
r'(fg) = 1.131...
Remark. Since the numbers r"(fn) are greater than 1, every

function £, is starlike in the unit disk.

15
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RESUMAT. - Asupra unai subordonari prin functii convexe. Tn
lucrare elnt determinate conditii pentru ca g<f, unde / este o
functie analitica convexa, iar g este data de (2).

1. Introduction. Let A be class of all analytic functions
/ in the unit disc U normalized by /(0)*=0, /°(0)-!. A function

feA is said to be convex in U if

Re Lﬂ(i)_ﬂ])o . Z€U a)
£'(z)
Let feAbe convex in U and let
g(z) =lglfo’f<c>cv-1dc (2)

where y>“i and *>(2) is analytic in with $(z)*0.
In this paper we determine conditions on @) so that g<f.
For $(z)*X real or complex number, this problem was solved in [7]

for X real and y=0/ in [6] for A real and all y->.1 and in

[4] for A complex.

2, Preliminaries. We will need the following lemmas to prove
our results.

LEMMA 1. ([2]) Let p be analytic in U, let q be analytic and
univalent in U, with p(0)=g(0). If p is not subordinate to q,
then there exists points zOel and COedU and an m>1 for wich

* Polytechnic Institute, Department of Mathematics, 3400 Cluj-Napoca,
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p(lz|<|zo|) < q(U),
(1)  p(z5) = q({p) and
(11)  2op' (2g) = m{oq’ ({y)
LEMMA 2. ((1) and (8)) If feA satisfies (1), then

zf'(z)

Re (2)

1
>LX 3
> ZEeU (3)

LEMMA 3. ([3)) If feA satisfies (3), then the function

_ 1= .
g,<z>-7[° £ (4)
satisfies
/
Re 29, (2) >8(y) ., zeU (5)
g,(2)
where
3(y)= ¥+l Y (6)

2F(1,y+1,y+2,-1)

and F(a,B,y,2) is the hypergeometric function:

=. a({a+l)...(a+n-1)p(P+1)...(Pp+n-1) _,
Fla,B.v.2) 32 nty(y+1) ... (y+n-1) z

3. Main results.
THEOREM. Let feA be convex and let g be defined by (2). If

¢(2) 1s analytic in U with ¢(2) » 0 and satisfies:

Re-'ﬁg%%izo , Z€U (7)

18



ON A SUBORDINATION BY CONVEX FUNCTIONS

(y+28 (y) ) Re—L_ e 2€(2)__| y ___z¢'(2) | ;.4

v (2 (0(2))? |@(2 (¢(2))? (8)

Z€U

where §(y) is given by (6), then g(z)<f(z), zeU.

Proof. Without loss of generality we can assume that f and
¢ satisfies the condition of the theorem of the closed disc 0.
If not, then we can replacé f(z) by f.(g) = f(rs), e(z) by
¢(2)=p(rz) and honqe g(s) by g.(z) = g(rg), where O<r<1. f (3) is
convex on U. We would then prove g,(g)<f.(8) for all O<r<l. By
letting r-1~ we obtain g¢g(3)<f(2), zZeU.

From (2) we deduce:

Yy __ze'(s) | zg'(e) | °
(’(z) (0(8))3) g(z)*—;L(z)— r(z) (9)

If g is not subordinate to f, then by Lemma 1. there exists
points soeU and {,edU and an m21 such that:

g(my) = £({o) and 2,9’ (8y) = m{or' (o) (10)
From (9) and (10) we obtain:

! /
£z -( ERRNTY = ]f(co)+m——-——c°f (Lo}

¢ (z,) (9p(2))? ¢ (z,)
hence
,f(zo)‘f((o)x Y _zotp’(zo) 1 £({,) e m
CQfI(Co) "(zo) (@(zo))’ cof/((o) ?‘zo)
i) e o — X - Za@(2) Y AL
o(z) | o(2) (9(2))? ") 2z,9'(2,)

8ince g(z) = ¢(2)g,(8), where g,(z) is defined by (4), if we
g(z,)

note W
2,9'(2,)

from (5) and (7) we deduce

19
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1 1 1
Rej;>b(7) or Iw zb(y)ls 35 (y)

Using this result combined with (8) and m21, we obtain:

¢ (2 ¢ (z,) (p(z,))?

- 1 1 Y 2,9’ (2,) -

ReQ=mRe "S5 Re( 1.+
Yy  _Ze'(z) ) 1 1

+M[[‘Nzo) CIPAIE W TN il Tea

$o £ (L) 2

1 Y 2,9’ (2,) 1 | Y zo@"zo)
R - -1}- - -if120 ,
"I e iz ez ) BB [9lz) ez |
which is equivalent to
Iaz £(2,) -£({) | = (11)

Since ({yr'({y) is the outward normal to the boundary of the
convex domain f(U) at f({y), (11) implies that f(2z,) €¢r(U). This
contradiction shows that g-<r.
If we let ¢(z)=i, complex number, in the Theorem, we cbtain the
result of [4]: '

COROLLARY. Let f¢A be convex and let g(z)=-£%ﬁ'f(()('*dt

If A 18 a complex number which satisfies:

1y 4]
(v+28 (Y))Re |1. 1| 120

where §(y) 1s given by (6), then g~f.
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RESUNAT. Subclase de functii analitice. Scopul acestei lucriri
este de a obyine citeva proprietdt{i interesante ale unor subclase
de functii analitice. -

1. Introduction. Let A be the class of analytic functions
f in the unit disc U, normalized by r(0) = £'(0) - 1=o0.

Deftinition [2]. Let 0 be a set in C and let q be analytic
and univalent on U except for those {¢dU for which lim q(z)=cw,
We define y(N,q) to be the class of functions y:c3i:ir-~u for
wvhich ¢¥(r,s,t;z)en whep r = g(f) is finite, s = m{q'({),
Re (1 +»-§)zm Re (1+ ﬁg%%%l) and zeU, for m21 and 1| = 1.

In the special case when 1 is a simply connected domain and
h is a conformal mapping of U onto 1 we denote the class by
¥(h(U),q) or ¥(h,q).

If h(z) = gq(2) =

1+
1

=, then
(1) q(U) = 0 =h(U) = {w; Re w>0}.

LEMMA A(2) Let the function wey(l,q), where O and q are
defined by (1). If p 1is analytic in U, with p(0)=1 and if p
satisfies

Re ¥(p(2), zp'(3), a°p''(2);2)>0, zeU,

then Re p(z)>0 for all zeU.

' University of Cluj-Napoca, Department of Mathematics, 3400 Cluj-Napoca,
Romania
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2. Main results
THEOREM 1. Let M(z)=az" + a,,,z2"** + ..., N(z) = bz" + ...

be analytic in the unit disc U, a.b+0, n,kzl. Suppose

M(z) « _N(z)
rT AR )

])6, where 0<8<Re—% ,
un

u>0 and aeC with Re a>0. If .

Cay [ M(Z)\P M (Z) | M(Z) \p? a 2
el (1 a)(N(z) ‘a N’(z)(N(J) ]>p , p<(b) , (2)

then

ajk,
M(z) 2“*5(‘5) k
N(z) 2+8'k

M(z)\#
N(z)| '

for zeU .

Proof. Let p(z) =
- (2}

po)= (3)
From (2) we deduce that

then p is analytic in J and

Re[p(z)+“ “’ff’) zp’(z)])ﬂ’ (3)

We will obtain the real number ¢, for which (3) implies
Re p(z)>¢, for zeU.

Let q(z)._:;%——{p(z)—¢], then q is analytip in U and
(5 -
g(3) = 1 + Cpa* + .

If we define the function :C2 x U - C

o 3] o 3 e

then from (3) we deduce Re y(q(2), 2q'(2); z) > 0 and

24
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fe 9(1,0; Z) = (%)’- ¢ > 0, for all zeU.

For ss -%(lﬂ'z), reR, we obtain

{ . = g._ﬂ(_Z)__ a ¥ +© -
S TR P

s-b§(1+t’)[(%)"—q>]+¢—ﬂ , If (ps(%)" .

Since max{«p:«p'-ﬂ-b-g-(1+r’)[(-f—))“-«p]so; reR} =
2p-8i{-2)" '
FT8k— %o Ve have 9o §)" and

he §(ir,s; z)<0, for zeU, s8s -§(1+r2) and ¢<¢g.

From Lemma A we deduce that Re g(z)>0, for zeU and W'SOQ-

. Hence Re p(z)>¢y, ZeU.

If we let pu=1 in Theorem 1, we obtain
COROLLARY 1. Let M(2) = az” + a,,2z"** + ..., N(3) = bz" +...
be analytic in U, a.b » 0, n, k21.

N(z)

Su se that Re
ppo zN'(2)

>, where 0 5 § < Re-% and

oy M(2) M (2)
Re[(l «) N(2) +0 N (2) ])ﬂ , where a€C, Rea>0 , B<

oin

then

2B+5k.§
M(z) b
Re N(z) > 518Kk . for zeU.

This result was recently obtained by T. Bulboac3 [1].

If we let a = b = 1, u = 1/2, N(g) = 2, M(2) = f(2),
t=k = 1 in Theorem 1, then we deduce

COROLLARY 2. Let fea, L{2)

—z—o-O Z€U, Rea>0, P<1 and suppose
that

25
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re T P
then
ReJ- 1>
X Q% 2+Rea
Proofe From (4) we have
@,
By using Theorem 1 we obtain ReNJ >uf® , where
u(fo) = , A6(0,Rea]
= = = NXR_ <
But sup(u(®) ;Ft€[0,Rea])=u(Re«) 2 +ROTL hence Re»\ . >—2+ I

The case ot>0, O£ p <l in Corollary 2 improves the result of

Shigeyoshi Owa and C.Y.Shen [3].

If we take M(2) - QR N(2) « a>0,
Of p<1 in Theorem 1, then we deduce the result of Shigeyoshi Owma
C.Y.Shen [3].-

THEOREM 2. Let 2+ , Jtil  be analytic in U,

————— *0 in U and suppose that

Rej (1-a) +af (@ p1>P ,z€U , ®

where O£ P <1, an0, jix0.

Then RoON | /or zet/, where
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(6)

Proof. Let p(2) = then p is analytic in U and
m

p(@ “ I+CjjZ*+...

He will obtain the real number y for which Re p(z)>y

If we aet q(2) =="~"\p(@) ¥, then g is analytic in

T(0)-1.

A simple calculation yields:

Re t(9(2), zg"(z); 2z)>0, where

twl,w2} 2) - (I-y)2*! + 2y(l-y)wl + 2 £(i-n)w2.

and

A-YW1 + y) + y2 - P e

He have

Re +(ir,s;z)z -r2[(1-y)2 + (1-y)yA] +

+ [y2 - P - Jey(l-y)] s 0, if osysi
(1-y)2 + = (I-y)yJt2:0
y2(l+ = k)li—— Ay . P £0.

These inequalities imply ycfOrYjJ where yx is deined by (6) .

For y=yi<l we deduce Re ) 5,

by Lemma A we obtain Re g(z)>0, hence Re p(z)>yIf for zeU.

For p-1/2, A*1 from Theorem 2 we obtain.
COROLLARY 3. Let f(2) - z + a2z2 +... be analytic In U.

Suppose that

where 0S P <1, aiO.
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4 [aZ+aB (1ea)
Theanle(zy >aretedfliva) ¢ sey . for zeu.
z 2(1+a)
This result was recently obtained by Shigeoyshi Owa and

Zhworen Wu [4].
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REZUMAT. - Conditii suficiente de univaleati obtinute cu metoda
subordonlirii. S8int gleite mai multe conditii de univalent¥ cu ajutorul
metodei subordon¥rii.

i. DEFINITION 1., Let f(2), g(2) be two regular functions in
U= {2:]|2] < 1}. We say that f(z) is subordinate to g(z), written
f(z)<g(2), if there exists a function ¢(z) regular in U which

satisfies ¢(0) = 0, |¢(2)| < 1 and

£(z) = gle(z)) |z| <1 (1)
DEFINITION 2. Let f(z) be a regular function in U and
f'(z) » 0 for z € U. The function f(z) is said to be convex if

2tz 4,0, zeu. (2)
£(z)

Re
Let S& denote the class of functions f(2) regular and
univalent in the unit disk U, for which £(0) = 0, £’(0) = 1.
F.G. Avhadiev and L.A. Aksentiev (1) have proved the
following theorem:

THEOREM A. Let f(2) = 2z + ... and g(z) = z + ... be two

reqular functions in U. If

'wuversity of Bragov, Department of Mathematics, 2200 Bragov, Romania
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| zg” (2) < 1 ()
| g’(2) 1 - |z

for all z € U and Log f'(2) < Log g'(2), Log t'(O)'- Log g’ (0)
= 0, then the function f(z) is univalent in U.

A generalization of this theorem was obtained in (3):
THEOREM B. Let f(z), g(z) be regular functions in U,
£f(2) =z + ..., g(2) =z + ..., and let a be a complex number,
0 < Rea < ;. If Log £'(2) < Log g‘'(2z), Log r£’'(0) = Log g’(0) =

0 and

(1 - |z 29"(z2) | ( pe «, (4)
g'(z)

for any =z € U, then the function

t 4
F(2) = la [ u*tf(u)du) /e
[}

is regular and univalent in U.
In (2] it is proved the following theorem:
THEOREM C. Let 8 and y be complex numbers and let

h(s) = c + 2z + ... be convex (univalent) in U with

Re [Ph(z) +¥)] > 0. (5)

If p(2) = ¢ + py)g + ... is analytic 1in U then

/
plz) + :(z)‘zi s <h(2) = p(2) <hz). (6)

In (5) it is proved the next univalence criterion:

THEOREM D. Let a and ¢ be complex numbers for which

a -1
+1

la] <1, |e} €1, ¢ » -1, € [1,).
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If g2 «z + ... is a regular function in Vv, and

W SIQI #0 in U when e N#» {1/2 }

a el

D) il forall z in U,

then the function g(z) is univalent in U.

2* In this note we obtain by subordination method new
conditions for univalence. First we will prove a consequence of
Theorem D.

THEOREM 1. Let g(z) - z + ... be a regular function in U
with Si?\g {HD #o0o Ffor all z € U, and let a, y be complex

numbers. If the regular function

F(@) /[/\ /9" (W1Y/.Y du ™
is univalent in 17,

2y +1

M < i* (2/_'_ 1 « U.»),
and
m lal< IWT if 11
1 *|ls TT7mn% If |T|<!

then the function g(z) is also univalent.

Proof. We will show that the differential equation

zg"tz) zg/(2) -=a eay zF™N(2) (8)
ff(z) F @

has a regular solution F(z), F(O) - 0, F*(@) = 1 in U.

Integrating (8 from O to z we obtain:
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Fl(z) - [ g e ()

The function (—9—(-25)—)‘/' is reqular because ﬁ%‘-—)- * 0
(we choose the branch which is eqﬁal to 1 at the origin)
We have also g’'(z) » 0. Then F'(z) from (9) is regular and the

differential equétion (8) has the regular solution

F(z) = [ [l‘—;"—]“’ (g’(2)1*du, (10)
0

for which F(0) = 0, F’'(0) = 1.
For ¢ = -2ay the relation (ii) from Theorem D becomes:

' Sl ()
ay [-2]|z]* + (1 - |z|) -ﬁl—(f)—] + a1 - |z]®)

1.
F/(z) €

Because F(z) = 2z + ... is univalent, we have
zF"(z)

-2 .12 1 - 2
1z + ( |z|?) (2)

< 4|z|, therefore:

ay [-2|zf? + (1 - |z ZEA2 ) L g1 - |z <

F/(z)
s Jayla|z] + Ja(1 - |z]*) = |a|(-]|z|* + 4]y]lz| + 1].

Calculating the maximum value of expression
E=|a|l |z + 4ly||z] + 1} for lz| <1 we obtain:
4fay] it |yl 3

E <
|} (1 + 4]y]?) ifly] < %

From Theorem D and conditions (i) and, respectively (ii) of
Theorem ‘1 we conclude that g(z) belongs to S.

THEOREM 2. Let g(2) =z + ..., h(z) = z + ... be regular
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SUFFICIENT CONDITIONS FOR UNIVALENCE

functions in U, and let aty complex numbers. IFf iiiSI;tlSi # o,

N OE —L-—-— for an
g®@ 1 1-|z]J2

1 < 1% f(1.,~), (12)

1 .
1*1*7m if oyl

a3
1 .
"1 < if Iyl <\
1+4ly b
L°g JYOV (D 11KT] = Log g"(@) , s
then the function h(z) belongs to the class S.
(for (- qwy 1h* (2} fie choose the branch whi

to 1 at the origin, and for logarithmic functions the branches

agual to O at the origin).

Proof. Let f(z) m [ , h(zw DIVAS
Fron (11), (@4), Log /*(@©) » Log g*(@ - 0, and Theorem A we
deduce that f(z) e S. Now, applying Theorem 1 with ) » f(2)

we have:
Fr'(@ = , il i/Zi[h"(

that is (©) with g(@) - h(@) -
Then Theorem 1 shows that h(z) belongs to the class S.
THEOREM 3. Let g(2) - z + ..., Log F9(@) - axz + ... be
regular functions Ln U, let Log G9(®@ - bx + ... be convex

(univalent) in U, und let a, B, y, 6 complex numbers.
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r 9(2g'tz) 0,
z

" :
(1 _ 2 'ZG (2) < 1 (15)
S e R |
(Fl(z))* = [--q%:i]‘l g'(z) for all ze€ U, (16)
and
Rey > 0, RelLog e' G'*?] > 0,|a| <1, ¢% ¢ (1,=),
P ' 1
|ad| < 1 . ir |8 zlz )
|a] < TP if |8 < 5
Log F/(z) + zF7(z) < Log G/(z) (18)

F/(z) Log(e'F})
( for logarithmic functions we choose the branches egual to 0 at
the origin), then the function g(z) belongs to S.
Proof. Let p(z) = Log F'(g), which is regular, and

h(8) = Log G’'(z) which is convex (univalent) in U. Then

zp'(z) _ zF"(z)
p(z) + TL—__p(z) e = LogF/(z) + (2 Log (67F B)

By (18) and Theorem C we obtain

Log F'(2) < Log G’ (%) (19)
From (15), (19) and Theorem A it follows that F(z) € S.
Because all the conditions of Theorem 1 are satisfied, w

conclude that g(z) belongs to the class S.
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RESUNAT: - O noull generalisare a criteriului de univalentd al 1lui
Nehari. In aceastd notk se obgine o generalizare a unui bine cunoscut
rezultat de univalentld al lui Nehari.

We denote by U the unit disk { 2:|z] < 1 }. The aim of
this paper is to obtain a generalization of the following well-
known result due to Nehari.

THEOREM A (1). If f(z) = z + a2z2 + ... 1s a regular

tunction in U, and

2
I{f;l}l‘m. Vze€eU (1)
vhere
(£12) = A)_) ] 1(&.).) (2)
£/(z) 2\ £/(z)

then the function £(z) 1is univalent in U.

In the following demonstrations, we shall use the result due
to Pommerenke.

THEOREM B [2]. Let r, be a real number, o € (0,1],
U, = {z:]z] < 1) and let f(z,t) = aj(t)z + ..., a(t) » 0, be
analytic in U, , for all t 2 0 and locally absolutely

continuous in I = [0,o), locally uniformly with respect to U,

* University of Bragov, Department of Mathematice, 2200 Bragov, Romania
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Supposing that for almost all t ¢ I, f(z,t) satisfies the

equation
2 212 (azz' £ . D(z,t)afﬁ%;ﬂ' z €U, )

where p(z,t) is analytic in U and Re p(z,t) > O for allt
€I, zeU. If |a(t)] o for t - o and if { £(z,t)/a,(t)}
forms a normal family in U, ,» then for all t € I, f(z,t) bhas
an analytic and univalent extension to the whole disk U.
THEOREM 1. ILet a be & real number, ¢ be a complex
number, |c| <1and £(z) =z + a,z2 + ... a regular function in

the unit disk U. If

' I <1 (4)

and

l1-a + 2 ce-zg.' + 1 E(e-r"Z) za(l - e-zu)a <1 (5)
1+a 1l+a l+a 1+C
for all z € U, t 2 0, where
o(z) = (_f_ﬂ)’ A(M) (6)
£/(z) 2 £/(z) ) '

then the function f£(z) 1is univalent in U.
Proof. 1If the function f(z) is regular in U, then

£, (z)

l =
£'(z) £, (2)

(7

where the functions f,(z) and f£,(z) verifies the relatjons
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£/(z) + J’%fx(z) =0 (K=1,2) (8)
and

£,(0) =0, f£/(0) =1
(9)
£,(0) =1, £](0) =o0.

Let's consider L(z,t) a regular function L: U, x [0,») - C,
r, € (0,1), defined by
£,(e%*z) + —1_ (e - e*)zf](e *z)

L(z.t) = 1Ic : -
£a(e72) + = (et - ™) zf;(e™"2) (10)

=a,(t)z + ...
vhere

1

= a-t®
a(t) =e * T

(et* - o°%%). (11)

Let’s prove that a,;(t) » 0 for all t 2 0. We observe that
it a;(t) = 0,then from (11) results that ¢ = - e 2ta ¢ (-w,-1].
Because from hypothesis c ¢ (-»,-1), it results that a,(t) » 0,
for all t 2 0.

From (10) we obtain

a—Lfaz-zz-t-’- = ((t{(e™"z) £, (e tez) - £, (e toz)f](etez)]-

.[ et._.,ce-tc . 1 (1-0'"') Az’ p(e-tcz) ]}.
1+¢c (1,'0)2 (etc_e-tl)-l 2

(12)

s {[£, (et5z) + lic (e% - e t*)zf](e t*z)]3};
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aL(azc.t) = {z[f{(et"2) f, (e **z) - f, (e *z)f;(e **2)]"
qeleier L (oer)gaplefzlyy.
c (1+c)? (e™ - et%)? 2

: {[£,(e"t2) + lic (e%® - e~t)zf!(et%2) )3} .

Let's prove that L(z,t) is a Loewner chain in U. It is eas
to prove that the function L(z,t) is locally absolutely
continuous in I and locally uniformly with respect to U, . Th
family of the functions {L(z,t)/a;(t)} forms a normal family o
fgguiar,functions in U, = {z:|z] <1y}, 0 <1 <. From (11
we obtain a,(t) -+ », for t - «. Let we consider the function

Q:0U, xI-C, by

dL(z,t) / dL(z,t)

zZ €U (14)
From (12), (13) and (14) it results that

(et*+ce te) + 2::‘“2)) z2(1-e"3ts) (gt4-g "ta)
Q(z,t)= 21 +© (15)

(et®-cet*) - le(i_e.-zu) (et%—g ~t®)
' 2(1.+0¢)

In order to prove that L(z,t) is a Loewner chain it is
sufficient to prove that, there exists a real number r € (0,1),
such that L(z,t) is a regular function in U, = {z:|z| < r}, for
all t > O, the fuﬁction Q(z,t) defined from (15) to be regular

in U for all t > 0 and

Re Q(z,t) > 0, (16)
for all z ¢ U and t 2> 0.
Let's consider the function
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K(z,t) = f,(e %*z) +-E—%7;(e“ - e t*)zf] (e %z) (17)

We shall prove that the function K(z,t) » 0. Because f,(0)
= 1 and f,(z) is regular in U, it results that there exists a
number re(0,1) such that K(z,t) » o for any z ¢ U, and hence the
function L(z,t) is regular in U for all t 2 O.

In order to prove that the function Q(z,t) is regular in U

and with positive real part in U, for all t ¢ I, it is sufficient
to prove that
IR(z,t)| <1 (18)

for all z ¢e U and t 2 0, where

= Q(zlt) -1
R(z,t) oo 1 (19)

From (15) and (19) we obtain

< l-a 2¢c_ _ -2ta p(e=**z) 2(1_g-2t€y2 (20
R(z,t) T e Tra® + (1+¢)(1+c)z (1-e )2, (20)

By (5) and (20) it results that the inequality (18, holds true
for all z ¢ U and t 2 O.

Using Theorem B, it results that the function L(z,t) is
regular and univalence in U for all z € U and t 2 0.

It results that L(z,t) is a Loewner chain, and hence the
function
L(z,0) = £,(2)/£f,(2) = £(2)
is univalent in U,

THEOREM 2. Let a be a real number, ¢ a complex number,

lec] <1 and £(2) = z + a222 + ... a regular function in U.
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It
11 -« 2c
T+« + T . <1 (21)
and
|-« , _2¢c |z|? + p(z) o210y _ lzZ2 <1 (22

11 +«a 1+a 1 +ta 1+a

for all 2 ¢ U and © a real number, p(z) = {f£;z), then the
function f(z) is univalent in‘U.

Proof. Using the notations from the Theorem 1 it results
that the function R(z,t) defined by the relation (20) is regular

in U for all t > 0. It results that for all t > 0, we have

max | R(z,t) | = | R(ef%,t) | =

|z]=
(23)
li :: . 12+Cae-2t¢ + < ia P(:—:.:O) @210 (1 . g-itayz

where 0 cR. If [ = e ta+il , then |[{| = et < 1 and hence

applying the maximum principle to the function R(z,t) we have

IR(z,t)] < max [R(z,t)| =
jz{=2

(24)
l1-a 2¢ 2 g § 216 2)2
B |—— — e -
l+a 1+a'c| * 1+a +C ( |(|)
Because { € U, from (22) and (24) we obtain
| R(z,t) | <1 (25)
for all z ¢ U and t > O.
From hypothesis we observe that for t = 0
| R(z,0) | = |22 ., _2¢ | (26)

The inequality (25) holds true for all z € U and for all
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t 2 0, and, hence by Theorem 1 it results that the function £(z)

is univalent in U.

Remark 1. For a =1 and ¢ = 0 we obtain Nehari's

criterion of univalence.
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REZUMAT. - Asupra unor functii analitice cu partea reall positivi. Fic
a un numir real gi n un numdr intreg pozitiv. Fie P @i QO functii
analitice in discul unitate U, cu P“:) + 0, care verificl inegalitatea
(3). Se arat¥ cX dacld p(z) =1 + ... este o functie analiticl in
U, care verificE ecuatia diferen;iall (4), atunci Re p(zx) > 0 in U.
Acest rezultat este imbundtdtit in cazul cind functia Q este o
constantd reall.

1. Introductioﬂ. In this paper we shall show that under
certain conditions on a, P and Q the solution p(2) = 1 + p,z” +
...0f the differential equation (4) has positive real part. This
result is improved when Q is a real constant and we obtain an
extension of the "open door" Theorem in (3).

As a simple application we obtain a sufficient condition of
starlikeness. The results are obtained by applying the theory of
differential subordination. A survey of this theory and

spplications may be found in (4].

2. Preliminaries. Let A, be the class of analytic functions
f in the unit disc U={z; |z|<1} of the form f(z)=z+anﬂz"”+...,
vhere n21.
Denote A = A, - A function f ¢ A is said to be starlike if
Re { z £*(2) / £(2)] > 0 in U. Denote by $" the class of the
starlike functions.

Let F and G be analytic functions in U. If G is univalent,

University "Babeg-Bolyai®, Faculty of Mathematics, 3400 Cluj-Napoca,
Romania

** Thassos-Thassos Kavala, Greece



P.T.MOCANU and XANTHOPOULOS I. XANTHOPOULOS

then we say that F is subordinate to G, written F < G or
F(z) < G(z) Lf F(0) =G(0) and F(U) < G(U).

We will need the following lemma to prove our results.

LEMMA A. Let 0 be a set in the complex plane C and ld
n be a positive integer. Suppose that the function ¥P: C? x U+
C satisfies the condition

P (is, t; z2)'¢ N ()

for all real s, t < - (n/2)(1 + s ) and z € U.

In the function p(z) = 1 + p,z2" + ... is analytic in U an

¥ (p(z), z p(2) ; 2) €, (2
for £ € U, then Re p(z) > 0 in U.

More general forms of this lemma can be found in (1},[2)] an

[4).

3. Main results.
THEOREM 1. Let a be real and let n be a positive integer,
Let P and Q be analytic functions in U, with Re P(z) + 0

and suppose that

ImQ(z)1? _ ,Re [P(2) D (2)) , .5 ¢ (3)

(2 + n) Re P(2z2) Re P(2z)

for z € U.
If p(2) =1+ p,2”" + ... is analytic in U and satisfia
the differential equation
z p'(z) + ap?(z) + P(z) p(z) + Q(2) =0 )
then Re p(z) > 0 in U.
Proof. Let ¥ (w,, w, ; 2 ) = w, + aw,? + P(z)w; + Q(2)

If we let 1 = {0}, then equation (4) can be written as
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F(p(2) , z2p'(2) ; 2) e (5)
In order to apply Lemma A we show that ¥ satisfies condition
(1), i.e.
t - as? + is P(2) + Q(z) » O (6)
for all real s, t < -(n/2)(1+s?) and zeU.

If for some s,t and z satisfying the above conditions the

equality

t - as®? + is P(3) + Q(z) = 0 holds, then

t-as? +sImP+Q=0 (7)
and

S ReP+ImQ=0 (8)

From (7) we deduce
t =as? + s ImP-Re Q < -(n/2)(1 + s?)

hence s satisfies the inequality

2“—;£s’+sImP—ReQ+iz’-so (9)
s8ince Re P(z) *» 0, from (8) we deduce
- Im Q
s Re P
and from (8) we obtain the inequality
ImQ\* . RePD '
2 =My L AL A
( 2 + n )(Re B 2 Fo P +ng<o0

vhich contradicts (3). Hence condition (6) is satisfied and by
Lemma A we deduce Re p(z) > 0 in U.

If the function Q is a real constant then Theorem 1 can be
improved by the following result.

THEOREM 2. Let n be a positive integer and let a and 8
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be real numbers, with 2a + n > 0 and 2B + n > 0. Let H be th

function

H(z) - B-e+2(arpemz + (B-a)2? (10)
1 - z?

Let P be analytic function in U satisfying P < H.
If p(z) =1+ p,2" + ... 1is analytic in U and satisfies the

differential equation

z p'(z) + ap?(z) + P(z)p(z) =P (11)

then Re p(z) > 0 in U.
Proof. As in the proof of Theorem 1 we have to check the

condition (1) of Lemma A, i.e.

t - ag® + isP(z) » B (12)
for all real s, t < -(n/2)(1 + s%) and 2z € U.
If for some s, t and z satisfying the above conditions the
equality
t - as? + is P(z) = B
holds, then
t-as? -sImP=258 (13)
and
S Re P =0 (14)
If Re P(z) » 0, then form (14) we deduce s = 0 and usin
(13) we obtain t = 38 > - n/2 which contradicts
t s - (n/2)(1 + 8% s - n/2.
Therefore, in this case condition (12) is satisfied.
Suppose now that Re P(z) = 0.

If s > 0, from (13) we deduce
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ImP(z)=-£—as—-Es——9-(1+s’)-as—-E=
8 8 2s s

- -—;—[(Zam)s + (?.Bm)-l;]- ¢ (3)

It is easy to show that the maximum value of ¢(s) is given

by

- Y@« +n) (2P + n).
Hence Im P(z) s - (2« + n) (2P + n) .

Similarly, for s < 0 we deduce

Im P(z) 2 (2« + n) (2B + n) .
Therefore condition (12) holds if either

Re P(2) » O or Re P(3) = 0 and |Im P(z)| < {2a + n) (2P + n).

If we let
C = o +n +n and
G(z) =2¢c —F%
- z2
then H(z) = G(—Ei) , where 2C —2_ = p-a.
l+az 1-a?

We deduce that H(U) = G(U) is the complex plane slit along
the half-lines Re w = 0 and |Im w| 2 C and H(0) = B-a.
From the above analyisis we deduce that condition (12) holds

it P < H. By applying Lemma A we deduce Re p(z) > O.

4. A starlikeness condition
1.
THEOREM 3. Let f € A,, with ﬂil-zf-‘—‘l»-o in U and
suppose that

z£z) | _f(z) 22+mz (15)

1 +
£f'(z) z f'(z) 1 - z?

Then £ € S".
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Proof. 1f we let a = B = 1 then in (10) we have

H(z) = 2(2+Dz
1 - 232
If we denote p(z) =-£?§%f2~ then (15) becomes
. zpl(tz) 1
pla) + p(z) p(2) < Hiz)
and if we take P(2) L - p(2) - zpia)

p(z) p(z)

then
P(z) < H(z) = H(-2)

and from Theorem 2 we deduce Re p(z)>0, which shows that f ¢ ¢

/
COROLLARY. If f € A, _ﬂﬁ)zf_(Z) »0
and
IIm[1+ zf”(z) - f(z) ”<2+n
£'(2) z f/(2)

then f € s".
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REZUMAT. - Daforaarat liniilor do nivol ala functiilor capacitate
prin transformari K-qc. Fie rR si RrR* doua suprafete Riemann
deschise cu frontierele ideale f si 7, iar pr si p=,, functiile
capacitate ale celor doua frontiere. Tn lucrare se studiaza
imaginea printr-o functie f a liniilor de nivel ale Iu® pr{,zQ)
™ raport cu cele ale lui pr/( ,z0)und® fx R-*R9,f( Z0)»Z0 este o
transformare k-qc (omeomorfism K-cvasiconform).

0. Introduction. The capacity functions have introduced by
L.Sario [7]. Let R be an open Riemann surface, f its ideal
boundary, z0 a point in R and D an arbitrary but fixed parametric
disc containing zO0. The capacity function of the ideal boundary
f of R with respect to z0 and D [7], [8,p-179] is a function
P /70) “ Pp(* ’z0) the following properties:

1D pj- is harmonic on R\zO,

2 pf(z,z0) » log(z-z0|+h(z) , Z€D, where h(z) is a harmonic
function with h(zo)«0, and

3) pjl- minimizes the integral

in the family of the functions <p:R\z0 + R which verify 1) and 2) ,
where fn is the boundary of a regular region [1, p-26] nn from a
countable exhaustion of R with zOenO.

One knows that
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-1 - .
=g J Predpr=sup pr(z. o) s+

is the Robin constant of R with respect to z, and D, while
c,--e""r is the capacity of [ with respect to z, and b, the Riemam

surface R being hyperbolic or parabolic according as k[<«nm

k/'-M.

In the hyperbolic case,
pT(‘ 1Z3g) + GT(- 1Zg) = k[, . (0.1)
where Gr(- ,3p) = Gp(* ,3g) is the Green funotion on R with the
logarithmic pole 2z,, (8, pp.180-181}, (10,IX,I}, which i
characterized by the following properties:

1) Gp(- ,2p) is harmonic on R\zg,,

2) Gg(z,25) = 109155%5T + v(z), 2zeD, where v is a harmonic
function, and

3) GR&- +2¢) = Inf{P:P is positive and satisfies to 1) and
2)).

In what follows we consider two open Riemann surfaces R and
R' with the ideal boundaries [ and [*' respectively, tw
arbitrarily fixed points z,eR and z! er', two parametric discs
D3z, and D'> z{ and the corresponding capacity functions
pT(' ,Zg) and pph,zé). We denote by z and z' points in R and K
as well as parameters on these surfaces.

Suppose that there are K-gqc mappings (K-quasiconformal
homeomorphisms) r:R-R' with f(z,) = zsand denote by ¥ their
family and z'=f(z).

If £ would be a conformal mapping pp(zﬂzé)=qiz,zg (by a

convenient choice of the parameter of D’), hence level lines of
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pr(c +20) will be mapped by f in level lines of pp(uzé) .
Generally this property does not hold for K-gc mappings.

Our aim is to study the image under f of the level lines of
pl—(~ +2g) by means of the level lines of pp(’,zé) . For hyperbolic
surfaces we first treat this problem by working with the Green
functions Gg(* ,324) and Gu(-, z)) and taking into account (0.1).
This way enlarges the possibilities of application in as much as
the form of the results for the Green function is more adequate.

In the proofs we use the following

LEMMA [3]). Let R and R' be arbitrary Riemman surfaces which
are not conformally equivaient to Cand C. If Zy€R and zleRr,
the family & of the K-qc mappings f:R-R' with f(z,)= z is
normal and closed.

Compacity property will play a main role in the paper. Thus

ve consider only Riemann surfaces of c¢lass R i.e. Riemann

pl
surfaces on which there exists a capacity function with compact
level lines (8, p.30], (6, p-231)]. As it was proved by M.Nakai,
this class contains all parabolic Riemann surfaces [8,1V,§1}. The

interior of a compact bordered Riemann surface gives an example

of a hyperbolic Riemann surface of class R,.

1. Level lines of the Green function.
1.1. Let be R and R' two hyperbolic‘Riemann surfaces of class
Ry, 2o and zo/ two points in R and R’‘, Ggj(* ,2,) and GR/(',zé)
the corresponding Green functions and & the family defined above.
We designate by C; the level line Ggi(z,z3) = A where

le(0,+), by II, the regular region {zeR:Gg(z,2zy)>A} and for
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Ay<Ay by G ,, the curve family {C, : Ae€(A,,1,])) and
O, ,,=0, \I, . Further we introduce on R’ the notations CJ, - the
level line G,/(z',z5)=A’ , A'€(0,+»), and similary o, , C":‘; and
n;m , A<at.

The modulus of ﬁma defined as the modulus of the curve
family separating G, from C, inll,, is given by the modulus of
Gy, (2], namely

Aflz

Mod Cl‘ A, = i

(1.1)

Since ReR,, we can define for every fe¢# the functions:

Ao (A, £) =min{A/=Gy (2/, 2J) : 2'€£C,)

and
Ay (A, £) smin(A/=Gy(2/, 23) : 2'€£C,) .

PROPOSITION 1.1. The functions AQ(A,I)- and AL (A,r) are

strictly increasing with vrespect to A, and verify the

inequalities:

AL (A, L) S A < AS(A,1) (1.2)
and

KL A (A, f) < A <K AL, (1.3)

1) Proof that AQ (A,f) 1s a strictly increasing function of A.
We remark that fC, descomposes R' in fI, and R‘\fl,=:Q), that

max (Gy ( 2/, zg) : z'€fd|} =Aj (A, £) and C'L cfll,. Further if A;>A,,

MAL £)

then fCAICOQ‘. Suppose that CL

ty. 0) does not intersect fC, ;

since it has at least a common point with f£C,, hence with Q).
it follows that Aj(A,,f) < max{GR/(z’,z,’,):z’eﬁi‘}xl\é(ll,f). If

c/,

ALy, ) intersects £C,, then A (A, 1) < Ay (A,,f); however,
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equality cannot occur, since otherwise there would exist a point

in £, ncy,

o =
ALg,.n ¢ hence in Q) £, =o.

2) Proof of (1.3). According to (1.1) and to the Grétzsch
inequalities

(Zn)“Aﬁ(A,f)-ModC&u no~ the modulus of the curve family

/ . .
separating C,,, , from [’ on R/\my, , . 2Mod £G, 2K"*ModC, = (2rK) *A.
similary,

-11/ = / =Yy
(2m) 25 (A, ) MOGC,;(L,)O‘KMOdf Cx;,u,no‘K the modulus of the

curve family separating C, from [ on R\, = K Mod C, = (2m) !KA.
PROPOSITION 1.2. If 11 > 12, then

KU Ao (Ay, £)= Al (g, )] S Aj=hy <

S K[ Ag (Ay,£)= Af (A, 1)), (1.4)
The inequalities (1.3) are a particular case of the

inequalities (1.4). They can be obtained from (1.4) by taking

ly=A and A,=0, since Al (0,f)= AL (0,f)=0. However the proof of

(1.4) is also similar to that of (1.3):

(2%) 2 [(AQ (Ay, £) ~Ao(Ay, £)1 =MOdCyy \ iy 2

xModfC) , 2K™*ModC, , = (2rK) "' (A,-1,)

and, if Ao (A;,f) > Af(Ag, 1),

(2%) 2[5 (A, £) -As(A,, £)) =ModC" <

AL BAL (A, 0
- : = -1 -
<KModf CA‘(MJM‘“’J)sKModCM‘ (2%) 1K(A, -A,) .

Remark 1.1 The image fC, of a level line of Gp( ,z,) is
included in I—IA./,“',) Ma,n SO that its distorsion from the level
lines of Gg/( ,2d) could be measured by

/ .

MOdCy ) i g = (2%) T IAG(A, £) -Ag (A, £)) .

In the family ¥ there are K-gc mappings with the property:
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fc,=Cyy, for A'=A'(A,f). For such a function, if we write
l; = 1'(1j,f), j=1,2, the inequalities (1.3) and (1.4) beconme

KA < A < KA'and (1.3Y)
K1 (A1-A)) s Aj-h, s K (A-AD) . (1.4")
This case implies the equality in some of the inequalities used
to prove (1.3) or (1.4). The results in [2] show that equality
in the right- (left-) hand side of (1.3) and (1.4) is assured if
we add to this property of rf the conditions: the dilatation
guotient of f is the constant K and the major axes of the
characteristic ellipses are orthogonal (or respectively tangent)
to the curves C; a.e. in R. Then we have e.g.

Art=k"1a (or A'=KA, respectively). (1.3")
If K=1, the equality holds in both sides, A'=A, and expresses the
conformal invariance of the Green function as in the Lindeldf
principle.

Remark 1.2. If we denote by lo(l',f’l) = min{Gg(z,2,y): z¢
€ f*f{& and by Agy¢( Aé,t‘l)nmax{GR(z,zo): ze‘fdcﬁ} .
then we obtain

Aol As (A, £),£71)=R=Ag( A5 (M) ].

1.2. Till now we studied the functions AL(A,r) and AL(A,f)
which correspond to a K-gqc mapping fe¥. We now introduce two
functions which delinit the distorsion of the Green level lines
with respect to the whole family of mappings ¥. Namely we define

AL (L) = inf{ AL (A, L) : fe
and
Ay (L) = sup{ AL(A, L) : fe).

PROPOSITION 1.3. If R and R' are hyperbolic Riemann surfaces
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of class R,, there exist extremal mappings f, , and F, ;e such
that A (A)= A5 (A, f5,3) and Ag (A)= Ag(X,Fg ;) -

Proof. Let A be an arbitrary but fixed positive number and
{f,} be a sequence in ¥ such that Ab (A, £,)- AL (A). According to
the Lemma quoted in Introduction the family ¥ is normal and
closed, such that (rf,} contains a subsequence again denoted by
{f,} which uniformly converges in the compact subsets of R to a
mapping fo','e.?. Let us choose for any n a point z, € C; such that
Gul£,(2,) ,20) =Ao(A, £,) . Rs ReR,, the sequence {z,) contains a
convergent subsequence with a limit z*ecl. By a new change of
notations we may suppose that {fn}C.? uniformly converges on the
compact subsets of R to f; ,, that Gp (£, (2,),23) =ho (A, £,) and
that z,~z". Since fn(zn)-ofoll(z‘),lf,(k)=lni.1.nGR;(fn(z,,),zé):
=Gy £y, 3 (2*) , 29) 2Mg(A, £, ,) . It follows thus by the definition
that AQ(M=A.’,,(A,fOlA) . The proof for A;(A) is similar.

PROPOSITION 1.4. The functions AL(L) and A,(\) are strictly

increasing. They verify the inequalities

AL sa’sAL (), (1.5)

vhere A'= Gp(z/, z)for z' = f(z) and zeC,,
KAL (M) sA<KAG(A), and if A>A, (1.6)
KV{AG(Ay) =AS (X)) <A, -A < KIAS () A5 (A,) T . (1.7)

Proof that A;(A)1is strictly increasing. Suppose that A;>1,.
From the definition of the function A,(A) and since A(A,f),

fed, is strictly increasing, we deduce:

AG (X)) 2A0 Ay, Fy , ) >80 0y, Fy ) =Ag(Ay) .
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The proof for As(A) is similar.

Proof of the inequalities. From (1.2) and (1.3) it follow
directly (1.5) and (1.6) respectively, by passing to %2;‘?3)
in the left-(right-) hand side. Starting from (1.4) one obtain

(1.7) by means of the inequalities

Ao (A, B) =25 (A,, £) sAG (X)) -A5(X;) and
Ao(hy, £) -AG(X,, £) 2A (X)) -Af(X;) respectively.
Remark 1.31. Proposition 1.3 shows that the functions A}()
and Aé(l)are finite and Proposition 1.4. permits us to obtaina

uniform majorant. If A,, A, € [m,M), A, > A,, then

A (M) A5 (Ay) <AL (M) -Ag (m) .

2. Level lines of the capacity function.
2.1. We now consider two arbitrary Riemann surfaces R and R' of
class Ry, and - as in Introduction - the capacity functions
pr( ,35) and pp ,z!) of the ideal boundaries [ of Rand [*' of I

with respect to z,€R, the parametric disc D and zie R',D!

respectively.

We denote by c, the level line pr (z,25) = 1, where
fe(-n,kf) and by II. the regular region {ze€R: pT(z,zo)<f). For
1,<1; let c,, ={c, : t€lt,,t,]} and I, =N \Il, . The modulus of I,

is now given by
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L T 4
Modc, , = ;u‘. (2.1)

Further we introduce similar notations c&,c&d Ay Oy on R,
we consider the family # and we define as in 1.1. the functions
th (%, ) =min{t/=pp(2z’, z3) : z'efc,)
and
To (x, £) =max (tv'=pp(z',z3) : z'efc,).

By the same device as in 1.1 which is now applied to the
capacity function instead of the Green function (in the
hyperbolic case by using (0.1)) we prove the following results.

PROPOSITION 2.1. The functions <4(x,f) and T, (x, ) are
strictly increasing with respect to 1. They verify the

inequalities

th(t, £) se/sTh (v, £), (2.2)

and in the hyperbolic case

Klky - To(s, £)) s k- s Klky - t6(x, £) | . (2.3)

PROPOSITION 2.2. If 1, < 1,, then

K (%5 (%,, £) -To (%, D)V s1,-1,<K[ To(t,, £) -to(z,, £)]. (2.4)

Remark 2.1. Once again equality in the right-(left-) hand
side of (2.4) takes place for a mapping fe# with the properties:
fc,=c", , for a function t'=r'(r,f) (then t)(x,f)=T,(x, f)=1)),
the dilatation quotient of f is the constant K and the major axes
of the characteristic ellipses are orthogonal (tangent) to the
curves ¢, a.e. in R. Then (2.4) becomes r;-r{ = K‘l(rz—fl), ( or
aK(Ty=1,) respectively). Inequalities similar to (1.3') and
{1.4'), and equalities as in Remark 1.2. are valid.
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2.2. As in 1.2. if we introduce the functions

to(t) =inf {5 (%, F) : fe€F)
and
Ty (t) =sup (T5 (v, £) : feF)
we obtain
PROPOSITION 2.3. Let R and R' be Riemann surfaces of class
R, not conformally equivalent to C. There exist mappings £y, . ard
Fo,r €% such that to(t) =to(t, £ ) and To(x)=To(t,F, ).
PROPOSITION 2.4. The functions th(t) and T,(t)are strictly

lncreasing and verify the inequalities +

15 () <t/s Th(v) (2.5)

where t'=py(z’/,z;), z'=£(z) and zec, ,

Kty (t,) -Th (%) 1 st,-t, s K[ To(t,) ~t4(%,) ) (2.6)

for v, < 7, , and

K [ky - To () Y s kg - % <K [kp - 16(%) ) (2.7)
in the hyperbolic case.

Remark 2.2. 1f 7,,7, € (mM}, 7,<7,, then

Th(t,) - To(%,) <To(M) - tf(m)
so that we have again a uniform majorant.

Remark 2.3. The compact Riemann surfaces can be also studied
with this method - as parabolic surfaces hence surfaces of class
Rp - namely if S and S'are two such surfaces (for Propositions
2.3 and 2.4 not conformally equivalent to C), one deals with R

= S\z, and R' = S' \ z. for two arbitrary points z,eS, 2. € S'.

The family ¥ consists now of all the K-gc mappings f:S.S' with
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f(z,) = zﬁ,

h=0,0,2,5€R and z{ € R'.

Remark 2.4. These results have been applied in (4) in order
to generalize a Gehring's theorem. The paper (4] contains also
proofs of Propositions 2.1.-2.4. Let us mention that our main
tools - the functions Aé(l,f), Ab(A,F) and <i(x,f), Ti(s,£) -
generalize classical functions considered in the plane by
different authors and which have various applications. As an
example we guote [9].where for the level lines of the capacity
function in the plane (the Evans-Selberg potential) with respect
to 0, c.3|z] = r, the function M(r,f) = max{|{f(2)}| : 2zec.} is
used to thoroughly study the growth of the entire quasiregular
functions.
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REZUMAT. - Aplicatii Jlocal biLipachitliana ca o aubclaaX da
homeomorfisaa cvaaiconforaa in spatii normate. Tn lucrare se dau
dou& caracterizari ale clasei aplicatiilor local biLipschitziane.

In this paper, 1 show iIn a normed space X, the locally
biLipschitz mappings f:D*D* (D,D“ domains in X), the local quasi-
isometries and a certain subclass of quasiconformal mappings
(considered in my paper [2]) and characterized by the quasi-
invariance of a certain kind of module mod«f of an arc family
[, coincide. 1 show also that the distance dD(EO,Ex) between two
sets EO,EX relatively to a domain D coincide to the extremal
length \Z(EO,EKD) of the family fEO,EX,D) of the arcs y joining
EO and Ex in D and defined as the inverse of the module
mod*[-(£0,EX,D) .This allows us to give another characterization
of the subclass from above by means of the quasi-invariance of
the relative distance.

Now let ¥ be a family of arcs ywD (by abuse and for
simplicity sake,l shall denote it by foe) and let

Fe(fF) * {p/p "t0,p|®=0, bounded and continuous in D and such that

Y

be the corresponding class of admissible functions.Then, we

define the module of f as

University of lasi, Faculty of Mathematics, 6600 lasi, Romania
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modff * inf supp(X) - inf |p|,
Mre(m X pfpD<n
We recall that the origin of this concept of nodule (cf our paper
[1]) is the n-dimensional module

1
mod[ = inf ([ p"dm) ® ,
perP (D R°

taking into account that, for p continuous

Y
lim( xp"dm) = sup,p(x) = lpl. .

N

In this paper, a map / means a homeomorphism f:D+D#, where
D,D* domains of the normed space X.

Let us denote by (EO,EItD) the family of open arcs ycD - an
open arc being the homeomorphic image of the linear open interval
(0,1) - such that the closure y of y is a homeomorphic image of
the closed linear interval [0,1], the endpoints of y belonging
to EO and Ex, respectively.

A homeomorphism F is X-quasiconformal if V EO,El<)), the
double inequality

mod2(E,, E,, D)

2 s mod2 [(E), E,D") s KmodZ[(E,, E,, D) (1)

holds, where Ejr f(X*) (Jc-0,1). A quasioonformal mapping is a X
quasiconformal one with non specified K. In this paper, by K-
quasioonformal mapping, we understand only the mappings of the
subclass characterized by ().

We recall that the relative distance dE(EQtEi) (with respect

to a set E) between two sets EOtE1 is
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dg(Eg, Ey) = int  HYNy),
ve[ (Eq, Ey, E)
vhere Hl is linear Hausdorff measure. If r(Eo,El,E)=¢, then, we
consider dg(Eq,E,;)=».

PROPOSITION 1. Eg,EycD =

1

D B ettt —————
mod.[ (E,, E,, D) TN

(P.Caraman {2], lemma 5)-.

Taking into account that the extremal length Afl’= T:l” ,the
preceding proposition yields the following il
COROLLARY. dp(E,,E,)= A[(E,, E,,D).
PROPOSITION 2. f 1is K-quasiconformal iff V Ey,E <D,
d,(Ey, E,)
K

s dy/(Es, E]) s Kdp(E,, E,) . (2)
(p.Caraman {2}, lemma 7).
COROLLARY. f is K-quasiconformal 1ff V Ey, E,cD,

A[(E,, E,, D)

-~ < A2T(El,El,D") s KAZ[(E,,E,,D) .

A mapping f is said to be a local C-isometry with 0<C<wo if

Vx € D, there exists a neighbourhood U,cD such that
1’%1 s IE(y) -£(2) ) s Cly-z)

Vy,zeU,.

THEOREM 1. f i.s K~quasiconformal iff it is a local K-
isometry.

Proof. Suppose f 1is K-quasiconformal and consider an
srbitrary point x ¢ D. Next, let U, = B(x,r)cD. Then, on account

of the preceding proposition in the particular case Ey={y},
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E\={2},

1£(y)-£(2)l < dp.(f(y),f(3)] S Kdp(y,2) = Kly-2] (3
V y,z € U,. But also the converse is true. Indeed, let x’'€¢ D' In
an arbitrary point and V,. = B(x’,r') c D'. Then, on account of
the preceding proposition, in the particular case E°={y},El-(zL

Vy-21<dp(y,3)sKdp.(y',2')=Kly'-z' 1=K} £(y)-£(2)]

V y,3ev, = £73(v,,). This relation, together with (3), yields
-!Y;(—zl < If(y)-£(2)) < Kly-z|

VyzeUNtiwv,.).

Now, let us prove also the opposite implication. Assume f is a

local K-isometry (1sX<w), x,€D, U,=B(xy,rg)<D. Then,
dp(x,y)=lx-yl<KI £ (x)=£(y)ksKdp.(x',y") (4)

V x,y € U,. But, also conversely,if xpeD and V, is a

neighbourhood of x, such that f(Vy)cB[f(Xy), Iy } < D’, then
dp.(x',y')=L1(x)-£(y) | sKix-ylsKdy(x,y)

V x,y € Vo, hence and on account of (4), we obtain
dy(x,y)

K

V x,y € WocU\V,.

sdp.(x',y’')<Kdp(x,y) (3)

Next, we observe that there exist two sequences
(x))cEj, {y)}<E{ 'such that
dy (B), B]) =inf dyu(x/, y') =1imd, (X}, y1) =
x’eB} n-e ’
y’cl{ (6)
<lim inf  H'(y}).
ne= ol el (x4, v, 0%

And now, V e>0 and V neN, there is an arc yhe[(y..z)., D)) such

that
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dy(xh, yly > H (yh) -¢ ; (7)
but y,=f1 () is compact, hence d(Y,,dD) =d,>0. Then, let x,€y,
such that x,,-x =f£1(x)), x} Pay =f- Yyl and dix)F, xX") <d, (k=0,m-1).

But, on account of (5) and (7),

dp(X,. ¥, s; dixy,xs3™) sz?: dpr (X5, %51 <

sxg H‘ (v:F) =KH* (y,) <Kdp(x',y') +Ke,

where y;,“ is the subarc of y;, joining x,'.“ and x,'.*‘l, hence,

letting e—+0, it follows that

dp(X,, ¥,) < Kdp(Xn, ¥2) .
vhence and since x,e¢E,,y,¢E;, we obtain
dp(Eg,Ey)sdp(X,,¥Y,)S Kd,,z(x,,,y,,) V neN,

so that, taking into account (6), we obtain

d,(E,, E,)) < Klimdy(x,,y,) = Kdy(Es, E]) . (8)

nee

In order to establish the opposite inequality, we use a similar
argument. We observe first that there exist two sequences

{x,},{y,} such that

dy(E,, E,) =1imd,(x,,y,) =1im inf H(y,) . (9)
nee R~ Yner(xn'yn' )

hence, V neN, and ¢>0, there exist y.ef (x,, ¥, D) such that
dD(xn,yn)>H1(yn)-e. Since 7,’;-1’17,,5 is compact, d(ﬂ,&D’) -d,',>0
80 that we may choose x,',"ey',, (k=0,1,...,p) so that x,',°-x,',,x,',’-y,',

and d(x;, . X k")(d . But then, taking into account (5), we get
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+ ’ p . ’ p
dpi (X, V) s; dix), x5 <KY dplx, x5t) =
-0 k=0

P
=Kp HY (y)) =KH (y,) <Kdp(x,,y,) +eK
0
and, letting ¢ - 0, we deduce that

dp(Xh, ¥8) < Kdp(X,,¥,) .

which, taking into account (9), yields

dp(Ed, E{) slnimd,,;(x,’,,y,’,) sklimdy(x,, y,) =Kd,(E,, E,) ,

nee

which, together with (8), yields (2), implying (by the preceding
proposition) the K-quasiconformality of f, as desired.
Arguing as in the preceding theorem, we obtain the

COROLLARRY. f is K-quasiconformal iff V x,yeD,

dy(x,y)
K

<dpy(x’, y'y skdp(x,y) .

A mapping f is said to be uniformly locally Lipschits with
the constant M>0 if V xe¢D, there exists a neighbourhood U,cD such
that V y,zeU,, If(y)-f(z)lsMly-zlf 1is said uniormly 1locally
biLipschits with the constant M>0 if f and £~} are uniforinly
locally Lipschitz with the constant M. .

THEOREM 2. f is K-quasiconformal iff it is uniformly locally
bilipschitz with the constant K.

Proof. If f is K-quasiconformal, then, according to the
preceding theorem, f is K-isometry, hence f and f~! are uniformly
locally Lipschitz with the constant K. The converse follows by

a similar argument.

COROLLARY. A K-quasiconformal mapping f:B(xg,R)=D' s
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Lipschitz with constant K.
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REIUMAT. - Asupra unei oonjecturi a <lui Horm in teoria
coincidentei. Conjectura lui Horn afirmd c¥ doi operatori
continui gi comutativi ce invariazd un compact convex dintr-un
spatiu Banach, au cel putin un punct de coincidentli. In preszenta
lucrare se dau mai multe propozigii echivalente cu conjectura lui
Horn. In finalul lucririi se introduce notiunea de structurl de
coincidentd gi se stabilegte o teoremd generalk de coincidentii.

1. Introduction. Horn's conjecture ((1]}) states that if two
commutative mappings, onto a compact convex subset of a Banach
space into it self are continuous, .then this pair of mappings has
at least a coincidence point. In this paper we present some

equivalent statoments_with the Horn's conjecture.

3. Measures of noncompactness. Let X be a Banach space. By
a weak measure of noncompactness on X we mean a mapping,
atP,(X)-R,, which satisfies the following conditions:

(1) a(A)=0 implies X ¢ Pop(X),

(i1) « (COA) =a (A) , for all A € Pp(X).

By definition a weak measure of noncompactness is a measure
of noncompactness if satisfies the condition

A e P, (X) implies a(A)=0.

For example, ak.(Kuratowski's maasure of nonc?ppactnesa) and
ay; (Hausdorff's measure of noncompactness) are measure of

noncompactness and § is a weak measure of noncompactness.

'Univor-ity of Cluj-Napoca, Department of Mathematics, 3400 Cluj-Napoca,
komania
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3. Invariant subsets. lLet X be a nonempty set and let
f,g:X-~X be two mappings. We denote

I(f):={AcX| Awp, f(A)cA},

I(£,9):=1(£)N1(g),

Fpi=(xex| £ (x)=x},

c(f,g):={xex| £(x)=g(x)}.

We have

LEMMA 1. Let X be a nonempty set, u:P(X) - €(X) a clasure
operator, YeF, and f,g:Y-Y such that fegmgef. Let A,cY, A;+%.
Then there exists A,cY such that

(i) AgoA,,

(ii) Ag€F,,

(1ii1) AqjeI(f,9),

(1v)  u(£(A)Vg(Ag)Ua,)=a,.

Proof. Let B8:={BcYlB satisfies (i)+(ii)+(iii)}. We have
N8e8. Let A,:=18. We remark that u(f(Ag)Ug(Ay)UA;) € 8 and
B(L£(Ag)VUg(Ag)UA;) c A,. This implies (iv).

4. a~-condensing pnir: Let X be a Banach space, Y c X and
£,g:Y-Y. Let 0:P,(x)-R,. The pair (f,g) is 6-condensing if

(1) AeP,(Y) implies f(A), g(A) € Py(Y)

(i1) o6(r(a)lg(a) < 6(A), YV AeI,(f,g), O(A)»0.

Example 1. Let Y € P,(X) and let f,g:Y - Y be two compact
mapping. Then the pair (f,g) is ajp-condensing.

Example 2. Let Y € Py(X) and let f,g:Y —~ Y be two

é-condensing mapping. In general, the pair (f,g) is not

§-condensing.
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Now we consider

Statement S(0). Let Y be a bounded closed convex subset of
a Banach space X and let f,g:Y -+ Y be commuting continuous
mappihgs; If the pair is O0-condensing, then C(f,g) » ¢.

The main results of this paper is the following:

THEOREM 1. The following statements are equivalent:

(1) (Horn) Let Y be a compact convex subset of X and let
f,9:Y - Y be commuting continuous mappings. Then C(f,g) * ¢.

(ii) statement S(ay).

(iii) statement S(a), for an a - a measure of noncompactness
on X.

(iv) Statement S(a) for all a - measures of noncompactness
on X (i.e., {S(a)la € the set of all measure of noncompactness
on X}

(v) Statement S(a) for all a - weak measures of
noncompactness on X (i.e., {S(a)l ae the set of all weak measures
of noncompactness on X}.

Proof. The proof follows from the following implications:

s (1ii) ~
(V) = (iv) (1) » (v).
~ (ii) »

We will prove (i) = (v). Let A, = F, and u(A) = Co A. By
Schauder's fixed point theorem, F, » ¢. We have f(F,) = F, and
g(Fg) © Fe. By Lemma 1, there exists A, < Y such that

TO(f(Ag) U g(Aag) U Fp > = A,.

Since, Fsef(Ay)Ug(Ay), hence <Co(f(Ay)Ug(Agy))=A,. We have

a( Co(f(Ag)Ug(Ay)) = a(f(Ag)Ug(Aag)) = a(Ay)
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Thus implies that AjeP., ., (X).

From (i), we have that, C(f,g)»¢.

S. Coincidence property. Let X be a nonempty set and YeP(X).
We denote by M(Y) the set of all mappings, ;:Y~Y. A triple
(X,8,M) is a coincidence structure if

(1) ScP(X), S»¢,

(i1) M:P(X) -o U M(Y), Y +o M(Y)cM(Y), is a mapping

YeP(X)
such that, if ZcY, Zw»p, then M(2Z) >{rl ,:feM(Y) and f(Z)<Z},

(ii1) (Yes, f,geM(Y), fog=gef) imply C(f,g)+o¢.

For example (see [1]), if X=R, S-{[a,b]la,beR} and
M(Y)=C(Y) t={f:Y~Y| f-continuous}, then the triple (X,S,M) is a
coincidence structure.

Let (X,S,M) be a coincidence structure. A pair (8,u) is
compatible with (X,S,M) if

(1) 0:2-R,, Sc3c<P(X),

(11) p:P(X)-+P(X) 18 a clasure operator, Scu(z)cz, and
O(up(Y))=0(Y), for all Yez,

(i11) F“nz,cs.

The Theorem 1 suggests us the following very general results

THEOREM 2. Let (X,S,M) be a coincidence structure and (0,u)
a compatible pair with (X,S,M). Let Yeu(Z) and £,geM(Y) such that
Log=gof.

We suppose that

(1) 0(r(A)Vg(a))<O(A), for all AeI(f,g), a(A)»0;

(11) Fge=e.

Then
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C(f,g)»¢.

Proof. Let A,=F,. From the Lemma 1 there exists AjcY such
that

(£ (Ag)Ug(Ag)UFs)=A,.

since (0,u) is a compatible pair with (X,s,M), it follows

8 (k(£(29)Vg(Ag)UF,))=0(A,) .

This implies 6(Ag)=0. Thus, AyeFf1Z,.

SoiAg € S, i.e., C(L,9)%¢.

Remark 1. In the Theorem 2, insted of the condition (ii),
we can take the following

(i1') xeY Ae¢z implies AU {x}eZ and 0 (AU {x})=0(A).

Remark 2. For the f-condensing mappings see: (2] (3].

Remark 3. For the coincidence theory, see [4].
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REZUMAT. Interpolare Birkhoff bidimensionald pentru date
arbitrare. Se etudiazd formule de interpolare de tip Birkhoff
pentru functii de doul variabile definite pe un domeniu plan
oarecare, obtinute prin generalizarea cazului rectangular.

)

0. In a previous paper (1] there was considered the
following general scattered data interpolation problem (SDIP):
let £ be a real valued function defined on a given domain DCRz,
n={Dy<D|k=1,...,N} a given partition of D and L,f some given
informations on the function f at Dy, k=1,...,N. Find a function
g, from a given set of functions, say A, such that L,g=L.f,
k=1,...,N.

Remark 1. The usual informgtions are the values or sonme
nedium values of the function £ and of certain of its derivatives
£HY) (s, v) €N?,

Remark 2. If r={D;,...,Dy} is a set of discret points then
the (SDIP) is a punctual interpolation problem and it is a
transfinite interpolation problem otherwise.

Particularly, if L,f are the Lagrange informations (L,f =
= f(xy,¥Yyx)) then the (SDIP) take the clasical fashion (the
scattered data-fitting problem).

Remark 3. The (SDIP) can be also a deterministic or a non-

deterministic problem if L, f are deterministic or non-

* University of Cluj-Napoca, Faculty of Mathematics, 3400 Cluj-Napoca,
Romania
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deterministic informations.

DEFINITION 1. The degree of exactness of the interpolation
formula defined by the informations L,f, k=1,...,N, will be
called the exactness degree of these informations.

Remark 4. For the bivariate case we cane have the total
degree of exactnees and ﬁhe degree of exactness on régard with
each variable.

We remark two ways for solving a (SDIP):

1) to generalize the tensor product or the Boolean sum techniques
from a regular domain D (rectangle or triangle) to a unusual
shape on.

2) to generalize or to modify the Shepard's method.

The goal of this note is to derive some scattered data
interpolation formulas using first way and the Birkhoft
informations of the function fr.

1. For the begining, one supposes that L,f = f(x.,y,),
k=1,...,N.

Now, if the partition I is
M={(x,,y,)eD} i=0,1,...,m; j=0,1,...,n}

then the solution of the corresponding (SDIP) is given by the
tensor product of the univariate Lagrange operators L, and L)
corresponding to the nodes x;, 1i=0,1,...,m respectively

Yj'j-ollpont,n, i.e.
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m n

y ) o= _ulx) viy)
(L."@Ln) (x,y) g g (X'Xi)U' (xi) (}"}'1) v (yj) f(Xj'y_j)

where u(x) = (x=xp)...(x~x,); v(y) = (Y=Yo)++-(Y=Y,)-
In [5), J.F.Steffensen had given a first generalization of

the Lagrange interpolation problem for the partition
N=((x,,y,)eD|i=0,1,...,m; j=0,1,...,n, and neN}

One obtains

- ¥ u(x) vily)
(P, £) (x,y) 1{; § o) ut () (y-y,)v;(yj) £(xy,yy)

where v,(y) =(y-y,) ... (y-y,) .
In 1957, D.D.Stancu (3] had given a new extension of the
Lagrange interpolation problem, that is also a generalization of

the Steffensen problem, taking

nﬂ{(xi,yij)EDl.i‘O,l,...,m; j=0,1,...,n1 w.ith HICN}
i.e.
m Ny (y)
(P,£) (x,y) = u{x) L4 £(xy,¥,,)
g g (X‘Xi)u (xl) (y-ij) V_i (yij)

with v, (¥)=(y-y; o) ... (¥-¥;,).

We note that in both generalization are given expressions
for the error functions (f-P;f,i=1,2) in terms of divided
differences.

We, also, remark that P,f is a solution for the clasical
(SDIP), 1i.e. a Lagrange's scattered data interpolation

polynomial.
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Next, we consider the (SDIP) with the punctual Birkhoff's

type informations on f.

2. Let M={(xy,yy), k=1,...,N} be a given set of points in D.

Following (1), on considers the partition M; i=0,1,...,p of
the set M, where M; is the set $f all points (x;,yy)eM with
X)=X;, k=0,1,...,9; and  x;*xy for i»j, i.e.
M1={(xi,yij)|j=0,1,...,q1} for i=0,1,...,p.

Let L}?};=f‘m"(xihyﬁ),j=0,1,..., 43 i=0,1,...,p and
(u,v)eIixJij with Ii,JijCN, be informations of the Birkhoff type
of the function f, while L{f=f%(x,,.) respectively

Ljf=£f£°" (.,y,) will be considered as partial informations of the
function f on regard to x and y.

2.1. For the begining one considers the rectangular case,
i.e. D=[Xq,Xp)%(Y0:Yqls M={Xg,-.c/Xp}%{¥Ygs++-1¥gq} and Ii,chN,
with |Ig|+...+|I |=m+1, |Jo|+...+|Tg|=n+1. If B,'andB; are the
Birkhoff's interpolation operators corresponding to the partial
informations L}{f=f®*%(x,,.), i=0,1,...,p; pel, respectively

Lif=f%v(.,y,),j=0,1,...,q; veJ; then the well known bivariate

interpolation formula is

£=B,®B) f+R; DS , (1)
where R,and RJare the corresponding remainder operators. More

precisely n

P q
(B,®B) ) (x,y) = gf‘-‘a..); Y by (x) by, (y) £*¥) (x,,y,)

1 vedy

and for fec™!.n*l(p),
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xp
(RMXQRnyf) (x,y) = fd’_,,,(x, 8) f'™1.9 (g,y)ds +
X0

Yq
[y, O £020 (x, 01 dE - [[8,(x, )W, (y, ) £727 (3, £) dsdt
Yo D

where b;, and ij are the fundamental interpolation polinomials,
while ¢,and ¥, are the Peano's kernels.

Remarks 5. It is ob&iously that the degree of exactness of
the formula (1) is (m,n) (m on regard to x and n on regard to y).

2.2, One considers now the general case.

So, M=Mgu...uM, with M;={(x;,y;5)|j=0,1,...,9;}. Let B, be
the same operator that interpolate the data f£®*%(x,,.) for
i=0,1,...,p and peI; with ]Io|+...+|1p|=m+1. Using this operator

we obtain, in a first level of interpolation, the formula

f=B)f +RSf (2)

where

P
(BXE) (x,y) = ;j Y by, (x) £4:9 (x,,y)

=0 pely

Now, let‘H{ be the Birkhoff's operators which interpolate,
respectively the data f“:V (x,,y;;),j=0,1,...,q;,and veJ;; with

IJL°|+...+|JL0J=H1+1 and K, the corresponding remainder
operators, for all i=0,1,...,p and ueI;. Applying these operator, ,
from (2) one obtain§, in a second level of interpolation, the

final scattered data interpolation formula
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p U i
f(x,y)= by (X) b, (¥) £ (x,,y,) +(RE) (x,y) (3)
» J b
=0 J=0 pel, veJ,,

with

p
(RE) (x,y) = (R3 ) (x,y) + by, (x) (Ry£) (x,,¥) .
. '

=0 yel,

PROPOSITION 1. The degree of exactness of the formula (3)
is (m,r), where r=min{n,,... 'Dp}.
The proof is a consequence of the theorem 1 from (1].
From the Peano's kernel theorem we also have:
PROPOSITION 2. If f(.,Y) eH"'”[xo,xp] and~

£ (x,, Ve y, ,y,,) for all i=0,1,...,p, then

Xp
(RE) (x,y) -f¢,.,<x. 8) £ 1.9 (g, y) dg+
Xo

y
p f.8q

; 2 b,, (x) f b, (v, t) £ (i, £) de
=0 pel,

Yio

where
(x-3)7 & (x-9)3*
¢, (x, 3) - ;;“ZI:, b,“(x)—“i_—““—
and
(y-6)3 & (yy -0 "
¢n,(}’. t) T ;Q“Zhjbijv(y) n,-v) 1

Remark 6. From the first proposition it follows that the
best case, from the degree of exactness point of view, is

obtained for n,=n,=...=n

- In this case (3) is a homogeneous

interpolation formula on regard to the variable y (1). But, the
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structure of the interpolation formula depend on the given
informations. So, if the initial informations do not permit to
construct a homogeneous formula (there exists 1i,je{0,1,...,p},
i#j such that n;»n;) then there exist two posibilities: to
generate new informations on f or to try to interpolate the
function f first on regard with the variable y and than on regarad
with x. Anyhow, an interpolation formula as closed as possible

of a homogeneous one is recomandable.

Summarizing the given procedure we have:

1. Input data:

Mi={(x;,y,;) | 7=0,1,...,q;} ,i=0,1,...,p;
IjIJjjl, jgolll-"Iq_il'iaolll"'lp;
f(”'v) (XI,YU), "eIi'VCJlj' jgolll'"Iql;igoll""’p'

2. One determines the fundamental interpolation polynomials by,

and b,,. solving the lihear algebraic systems:

b}j’) (x,) =0, vek, reIl,,
bij' (x,) = b,,, rel,,

for jel, and k,p=0,1,...,p,

respectively

b (y,) =0, r»k, seI,,

C b (v = 8,, sel,
for pelI,; k,r=0,1,...,q;;
for all i=0,1,...,p.
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3. Compute F(x,Y);

44

P
Flx,y) = ; ; E E b“. (X)buv (y) £®" (X,.YU) (4)
=0 j=0 pel, veJ,,

EXAMPLE. The test function is

1

f(x,y) = —=——r,
y) PRI

with the graph in fig.1. The input data are:

My={(-1,-1);(-1,0);(-1,1)};
M={(-1/2,0)};
M,={(0,-1);(0,0);(0,1)};
My={(1/2,0)};
M={(1,-1):(1,0);(1,1)}.

I,=I,=I,=I,=I,={0};
Joo={1}; Jg,={0}; Jy,={1};
J0=(0,1,2};
Jpo={1}; Jp,={0}; J,,=(1};
Jye={0,1,2};
Jeo={1}; J,=(0}; J,=(1}.
So, it is used a Lagrange's interpolation with regard to x
and a Birkhoff's interpolation with regard to y.
The graph of the interpolating surfaces computed by (4) is

in fig.2.



BIVARIATE BIRKHOFF INTERPOLATION OF SCATTERED DATA

Fig.2.
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REZUMAT. -~ Asupra migclrii circulare fn jurul unui elipsoid de rotatie.
Se studiaz¥ migcarea init{ial circular¥ a unei particule test in cimpul
gravitational necentral al unui elipsoid de rotatie. Se stabilegte o
formul¥ analiticH pentru perioada migclrii, cu o precizie de ordinul al
doilea in raport cu parametrul caracterizind turtire elipsoidului,
generalizindu-se astfel rezultate anteriocare (ale altor autori g¢i
proprii).

1. Introduction. Consider a point mass -orbiting an
attracting body (under the only gravitational influence of this
one) at a distance r. We shall describe the relative motion of
the point mass with respect to a Cartesian right-handed frame
originated in the mass centre of the attracting body by means of
the Keplerian orbital elements { y ¢ Y ; u }, all time-dependent,
vhere:

Y = {p, g =6 cosw, k = e s8inw, 01, 1}, (1)
and p = semilatus rectum, e = eccentricity, © = argument of
pericentre, f1 = longitude of the ascending node, i = inclination,
u = argument of latitude.

Many authors studied such a motion (for a brief survey see
e.g. [2]) with very various hypotheses. First and (sometimes)
second order pertufbations of. the orbital parameters were
analytically estimated, as well as first order perturbations of

’
the nodal or anomalistic period (1,2,6,7). We must emphasize the

* Astronomical Observatory, 3400 Cluj-Napoca, Romania
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fact that the anomalistic period cannot be used to the case of
very low eccentric (and especially circular) orbits; that is why
we use in this paper the nodal period. Also, as far as we know,
nobody determined second order perturbations of the nodal period
for a specified perturbing factor.

We shall estimate analytically the nodal period, with a
second order accuracy in respect of a small parameter ¢ on which
the perturbing factor is depending, in the following hypotheses:

(1) The attracting body is a rotation ellipsoid with a
corresponding mass distribution.

(ii) The initial orbit of the point mass is circular.

(iii) The initial orbital elements are considered in the

ascending node of the orbit.

2. Equations of motion. Considering hypothesis (i), let us
choose the Cartesian right-handed frame mentioned in Section 1
as follows: The basic plane is the equatorial plane of the
ellipsoid, while the third axis (normal to this plane) 1is the
rotation axis. Since we study the nodal period, we describe the
perturbed motion with respect to this frame by means of the
Newton- Euler system written in the form (e.g. (3,5)):

ap/du = 2(Z/p)r’T,

dg/du = (Z/p) (r°kBCW/(pD) + r’T(r(q + A)/p + A) + r’BS),

dk/du = (Z/u) (-r’>qBCW/(pD) + r’T(r(k + B)/p + B) - r?AS),

an/du = (2/s)r’sW/(pD), (2)

di/du = (z/p)r3m/p,

at/du = (3rl(up)~i/2,
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where u=gravitational parameter of the dynamic system, A=cos u,
B=sinu, C=cos i, D = sin i, 2= (1 - r2CQ/(pp)*/*)"!, while
S, T, W stand respectively for the radial, transverse, and
binormal components of the perturbing acceleration.

For the needs of Section 4, it is to be specified that we
consider, as usually, that the elements (1) have small variations
over one revolution, such that they may be taken as constant and
equal to y, = y(ug) = y(u(ty)), y € Y, in the right-hand side of
equations (2), and these ones can be separately considered. So,

we can write y = y, + Ay, where, according to hypothesis (iii):

Ay = f(dy/du) du, ye€yvY. (3)
]

These integrals are estimated from (2) by successive
approximations, with 2 =1, limiting the process to the first
order abproximation.

In what follows, for simplicity, we shall no longer use the
subscript "O" to mark the initial values of elements (1) and of
functions of them. In fact, every quantity which does not depend
onu (explicitly or through A,B) will be considered constant over

one revolution.

3.Perturbing accaelsration. Since the gravitational field

generated by the attraci:ing body is not Newtonian, the point mass

will undergo a perturbing acceleration. Having in view the

hypothesis (i), the components of this acceleration are (2,7]:
S = - (3/2)c,ouR*r* (30?82 - 1),

T = 3c,ouR%r"402aB, (4)
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W = 3c,ouR?r™4cDB,
where R = equatorial radius of the ellipsoid, while c¢,, 1isa

small parameter featuring the oblateness.

4. Variations of orbital elements. Firstly remind the orbit
equation in polar coordinates: r = p / (1 + e cos v), where v
= true anomaly, or:

r=p/ (1 +qgA+ kB). (5)
Replacing (4) and (5) in (2), taking into account hypothesis
(1i), in other words q(0) = k(0) = 0, then performing integrals
(3) as we showed in Section 2, we obtain:

Ap = 3¢y, (R/p)?pD?B?,

Aq = (cz0/2) (R/p)?(7D%AB? + (2¢% + 1) (1 - A)),

Ak = (cz0/2) (R/pP)%(7D%B® - 3B), (6)
AQ = (3cy0/2) (R/P)3C(u - AB), ’

A1 = (3cy9/2) (R/p)3CcDB2.

5. Nodal period. As we showed in [4), the nodal period can

be written as:
Ty = To + &,Ty + A,Ty, (7
where T, is the Keplerian period for u = 0; with hypothesis (ii):
T, = 2np®/3u~1/2, (8)

The first order ( in o ) perturbation is ([4]:
2%

AT, = p’“u"/’f[ - 2(J, + Jp) + (3/2)p'J, + P*uNJ,) du, (9)
[}

where, with hypothesis (ii):
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J, = Ap, J, = AAq, J, = BAk, J, = Bo(CW/D),. (10)

As to the second order ( in o ) perturbation, this one has the

expression, according to [4]:

2%

AzTN = p3/2u-1/2f (3 (Jqq + Jkk + 2qu) - 3p-1(Jm + ka) +
]

+ (3/8)p=2J,, + (1/2)putJ,, + (11)
+ P’ll'l y ('San - SJko + Jﬂo + Jio) +

+ (1/2)p*p2J,,] du,

vhere, with hypothesis (ii): '

Ixy = Iy, x € {p,q,k}, y € {p,q,k,0}, (12)

Jao = 8T q, JTio = AL(TL) 4, JTge = B202(C?W2/D?),,.  (13)

We must emphasize the fkct that the subscript ¢ in the
right-hand side of the last formula (10), and the subscripts 1,
i, and oo in the right-hand sides of (13) mark the respective
partial derivatives. As to the subscripts added to J in (9) -

(13), they are simple identifying notations.

6.Results. Substituting W from (4) in the last formula
{(10) and calculating the required partial derivative (the part
of 0 is played by c,3), then substituting (6} in (10) and the
results in (9), and finally performing the integral (9), we
obtain:
ATy = 3mcy, R*pY/2,71/2(3 - s5p%)2). (14)
Analogously, replacing W in the last formula (13) and
calculating the partial derivative (o0 = cy 5, too), then

introducing (6) and the previously calculated (10) in (12) -
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(13), substituting the results in (11) and performing the

integral, we obtain:

A,T, = (r/32)c2R*D™*/n-1/3(1527D* - 3180D% + 1620). (15)

We must mention that (14) confirms the results of (2,7],

while the result (15) is entirely new. Moreover, this result

constitutes a first application of our formulae given in (4] to
the case of a concrete perturbation.

with (8), (14), and (15), the nodal perioda (7) can be

written as:
1}

Ty = To(1 + Kf,(D) + K2f,(D)), (16)

where K = czo(R/p)z, and:
£,(D) = (18-15D?) /4, f,(D)'a (1527D%-3180D%+1620) /64. (17)
This new, bettgr approximation for the real (perturbed)
nodal period could be very useful in the case in which the
ellipsoid is strongly oblate and the point mass orbits in its
immediate neighbourhood. According to X and to the orbital
inclination, the contribution of r,; ( which can act as f; or

inversely) in altering the period could be sensible.
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REZUMAT. - Asupra unei metode de element pe frontierX cu valori
compexe pentru "efectul de perete". Prima parte a lucririi
congine o trecere in revietd a unor consideratii matematice
legate de migcaroa fluidXd generatd de deplasarea unui profil in
prezenta unui perete nelimitat, rezultate ale autorului care au
fost deja prezentate pe larg in [2]. Partea a doua dezvoltX o
metodd de element pe frontierX cu valori complexe (CVBEM), pentru
care se stabilesc o echemi de utilizare in problema propusi ca gi
un rezultat final de convergentl.

1. Let us consider as given a plane incompressible,
potential, inviscid fluid "basic"” flow of complex velocity wy(z).
This fluid flow could have some singularities, too, takes place
in the presence of an unlimited fixed wall 6.

Let now the plane fluid flow, produced by a general
displacement (rototranslation) in the mass of an arbitrary
profile (C), in the presence of the same wall § and which
superposes over the basic flow. We assume that during its
displacement the profile (C) doesn't cross the singularities of
the given basic flow.

A general method to determine the fluid flow which results
from the mentioned superposition, method establishing also the
existence and the uniqueness of the solution of the joined
mathematical model, has been already developed by us (2). In what
follows we intend to make a sketch of a complex variable boundary

element. method (CVBEM) which could easily be used for the studied

' University of Cluj-Napoca, Department of Mathematics, 3400 Cluj-Napoca,
Romania
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problem and whose convergence has been already established in the
case of the unbounded flow (3, 4).

Concerning the unlimited wall § and the contour C, we
suppose that their parametrical equations z=a(¢) and respectively
z=B(¥), defined for ¢;¢6E1 versus a fixed, rectangular, Cartesian
system of axes, are 2m periodical functions on the interval
(0,27), with a(0) = o and B(0) taking a finite value, which
define Jordan positively oriented curves with continuous
curvaturel.

In what concerns the given function wgz(z), it belongs to a
class (a) of functions having the properties (2]:

l1a) They are holomorphic functions in the domain D, bounded
by the wall §, except a finite number of points {z.,.r; placed
at a finite distance, and which represent singular points of
these functions; let D/=D\{z,}, 15

2a) They are continuous bounded functions in V(w); let
lim wg(3) = wg(®);
| 2|0

3a) They are hdllderian functions in the points of §\{w}
satisfying also the following boundary condition:

3 vp:(0,2n) — R so that w,(a{@))=Vy(@)a(e)/|&(e)]| , Vpe(0,2m)

With regard to the unknown function w(g), the complex
velocity of the fluid resulting by the considered superposition,

must be determined among the functions of class (b), i.e.:

1b) They are holomorphic functions in the domain D=D\{Int7

1 This last condition is equivalent to the assumption that
the functions 1/(a(¢)-z;) (where 2z, is a point placed on the
"right" side of §) and B(y) are from c?(0,2n) having also a
nonvanishing first derivative.
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except the same points ({z,}, r which are singular points of the
same nature as for wg(2);
2b) They are continuous bounded functions in V(») where they
have an identical behaviour with wyz(z) and consequently
lim w(z) = w, = wg(®);
| 2|0
3b) They are holomorphic functions in the points of C U§\{»}

vhere these functions 'also satisfy the following boundary

conditions:
3v,:(0,2m) - R so that wlal(@)) =V, (@) &(9)/|&(e)]| , Vee(0,2m);
3 Vv,:[0,21) = R so that W{P(¥) )=V, (W) B (¢)/|B (@) |+1+imriw (B (¥)-2,)

Yye({0,2m) ,
vhere (1,m,w) are the given functions of time corresponding to
the components of the rototranslation of the profile (C)
evaluated in the point g, ¢ {Int C};

4b) They satisfy the equality:
dz =,
fcw(z) z = [

where [ is an "a priori" given constant (circulation).

2, As a consequence of the requirements imposed on the
functions wp(2z) and w(z) we remark that the function g(z)=w(z)-
-Wz(z), Known together with w{z), is:

- holomorphic in the fluid flow domain D which also contains
the points (z,}, . i

- continuous and bounded in D (the point of infinity
included, where lim g(2) = 0);

2z |0

- h3lderian on c U 6\{w};

917
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- satisfying the condition |zTg(z)]|6 < A, where (@A,r) isa
suitable pair of real numbers.
The last condition will ensure the existence (in the Cauchy
sense) of the integral taken on the unlimited curve 6 [2].
Let us consider now Cauchy"s formula for the function g@®@)
and the domain D. According to the behaviour at far field of this

function, we can write (l]s

=._1 g{) 1 rg(s)
g9(z) 2nilec {-z d Yoxihiz de .

This formula, which is in fact the integral representation
associated with the proposed boundary problem, allows us
determine g(z) (i.e. w(z2)) once found out its values on te
boundary C U 6. But the determination of these valueﬁs through a
classical BEM requires the construction and, obviously, te
solution of an integral equation on boundary, which could bke
obtained, for instance, making z->eC and z-*r0e6, respectively,

In what follows we shall succeed to avoid the construction
and solution of the boundary integral equations mentioned above,
which means a serious and essential step in simplifying all
algorithms. The technique used and described by us in the cse
of the unbounded fluid [3, 4] represents a so-called "improved”
CVBEM.

Let d and d* be two divisions of the curves c and 6§

consisting of the nodes z0,z1,...,zn (z0«zn) on ¢
(counterclockwise oriented) and, respectively, Zz[,zR,...,zn o
6 (clockwise oriented). We denote by Cj (-I,--.,n) te

corresponding boundary elements (arcs) on C, and by cL ,g 1
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(7=1,...,n), ¢! the boundary elements on §. Let us consider now
the approximations ¢&,({) in the points of C, and, respectively,
Fis(t) 1in the points of §\({ c’JUcl) of the function g(z), where
g,({) and g;(t) are suitable interpolating spline functions
related to the divisions d and d’ accordingly.

‘ At once, for every z € D, we have the approximation g"(z)

of g(z), 1i.e.

g°(z) =~

g(t
211t.ifc gdfcz) dC+ 211ti (5.5 g:fz) de .
where the right side could be calculated explicitly sometimes
even precisely ({3, 4). Accepting then the existence of

limg*(z) (=g*(z,)) and limg*(2) (2g*(zi)) ,

Z~2) 2]
by separating the real and imaginary parts of the approximate
equalities

gx=g (2) =g" (2x) and gi=g(zi) =g"(2)) ,

we finally get an agebraic system in the unknowns u,,v,, u‘, vi,
i.e. the real and imaginary parts of g, and gﬁ.obviousli, while
solving this system we should take into account the data
connected with the values of g(z) on ¢ U & (in fact it is a
boundary value problem of Hilbert type for g(z)) and, of course,
the circulation given "a griori"z. Once solved this system, via
the already written Cauchy formula, one gets the approximate

solution g*(z) valid in all the points of the flow domain.

2 In the particular case of a "piecewise" Lagrange
interpolating system, which is essentially an approximation by
spline functions of first order, the algebraic system becomes
linear and it has a unique solution, due to the "a priori" given
circulation.
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In respect of the convergence of the method, if we admit the
“acceptability" of the divisions d and d’ (i.e. for every tec,
or t € Cj there exists max{]t-zjl,|t—zj~1|}<|zj-zj_l|,j=1,...,n),
the uniform continuousness of the approximation ¢ in the
points of CU[z{,zﬂ allows to prove, like in the case of the
unbounded flow [3, 4], the following final result:

THEOREM. For every point z € D,

lim  g¢"(z) = g(2) ,
n-+o
(6,6'-0)
where § and §' are the norms of the acceptable divisions d and

d', respectively.
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A BINARY TREE CLASIFIER BASED ON FUZ2ZY SETS

IOANA MARIA BOIER"
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Resumat. Arbore binar de clasificare bazat pe mulgimi fussy. In
aceast¥ lucrare eete descris un algoritm de proiectare gi
implementare a unui clasificator binar. Acest algoritm 1igi
propune imbuni¥tifirea algoritmului propus de Fu gi Mui (3). O
multime de date de test eoste utilizatd 1in constructia
clasificatorului. In abordarsa acestei probleme, Fu g§i Mui
folosesc proiectia datelor in plan gi inspectia vizuald ca metode
de separare a clusterilor. Abordarea de fatd propune o separare
automatX, bazatd pe multimi fuzzy.

The design of the binary tree olassifier.

A method to design 2 binary ‘tree classifier has been
proposed in [3). According to Fu and Mul, there are three major
tasks to be implemented, to design a binary tree classifier:

a) a tree skeleton or hierarchical ordering of class labels

b) the choice of features at each nonterminal node

¢) the decision rule to be used at each nonterminal node.
These tasks involve the specification of the £following
parameters:

a) the number of descendant nodes at each nonterminal node

b) the number of features used at each nonterminal node

c) an appropriate decision rule to be considered at each

nonterminal node.
since any conventional single stage classification scheme can be
represented by a binary tree classifier which has exactly two

immediat descendant nodes for each nonterminal node {3]), we

* University of Cluj-Napoca, Faculty of Mathematics, 3400 Cluj-Napoca,
Romania
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consider the number of descendant nodes at each nonterminal node
to be two. The next parameter to be specified is the maximum
number of features used at each nonterminal node. This number
depends on the specific classificat:!.-. rroblem and it is a
constant for the problem. Let us denote it by K. To determine K,
the number of all features, the size of test sample and the
average number of samples per class are to be considered. The
decision rule chosen at each nonterminal node is:

if d(x,L') < d(x,L?) then X is classified into calss A; (1)

otherwise X is classified into class A,,
where X 1is the feature vector of the unknown sample to be
classified, Li is the prototype of the class A; (i=1,2) [1) anc
d is a norm induced by distance in RP:

a(x,y)=kx-yl.
The next steps we have to perform are to design the tree skeleton
or hierarchical ordering of class labels and to establish the
actual features used at each nonterminal node. The fundamental
problem which appears when the tree skeleton is built is the
separation of the two groups of classes in each nonterminal node
and the choice of features which are effective in separating
these groups of classes. But, generally, the choise of the most
effective features depends on the classes to be separated and the
separation of the classes depends on what features are used. A
method to break this deadlock is proposed in what follows. Using
General Fuzzy Isodata algorithm [1) a fuzzy class is divided into
two groups. Then, a method similar to the one presented by Fu and

Mui [3] is used to chose the features which are "most effective"
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in separating the two groups of classes.

Let us assume that the predetermined number of classes is
n and that the classes are labeled 1, 2,...,n. We also assume
that the dimension of the features space is p. Suppose we have
reached with the construction of the tree skeleton to a
nonterminal node. Let C be the fuzzy set describing the
nembership degrees of class label i to this node, for all i from
1 to n. For example, at the beginning, when the nonterminal node
is the root, the membership degrees are C(i)=1.0 for all i from
1 to n. Further, using the General Fuzzy Isodata algorithm, a
fuzzy partition [1] P = {A;, A,} of C is detected. According to

the definition of a fuzzy partition, we have:

C(i) = A (1) + A,(i) , i=1,n

For the classification accuracy, the following correction rule

is used:

if A;(i) < 0.1 then A, ,,,(i)=C(i) and A,(1)=0.0 , i=1,n, j=1,2

In determining the partition P, we use n feature vectors,
representing the mean values of the features for each of the n
classes. However, it is possible that not all the p features are
needed to split the class C into A; and A,. Using the set of test
samples, we shall find the "best" up to K features in separating
the two groups of classes. First, the best single feature is
selected an this feafure is used to perform classification based
on the decision rule [1]. The result of the classification is
computed and represents the number of test samples well

classified. The "best 2" up to the "best K" feature subsets are

5
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obtained. The feature subset which give the best classification
result of the K "best"™ feature subsets is chosen as the feature
subset for the node considered. When an unknown sample to €
classified reaches this node and we the decision rule to @)
further, only those features from the feature vector of the
unknown sample which correspond to the feature subset associated
with the current node will be considered in order to compute tH
distances to the prototypes of the descendants.

The flowchart which describes the binary tree classifies

design process 1is given below:

1. Start

2. Find the mean values of the
features for each of the n
classes

3. Obtain separable clusters
using General Fuzzy lIsodata
algorithm

4. If needed, use the
correction rule

5. 1 * 1

6. Find the "best 1” features

7. Perform classification
using these 2 features

8. 1 =1+ 1

9. Is 1 >k ?

10. Find the best
classification result froi
the result corresponding
each of the K "best" feature
subsets

11. Use the best result
obtained to build up the
decision tree

12. No new nonterminal node?

13. Get a new nonterminal noke

14. Stop
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Results. The method described above has been used to design
a binary tree classifier for the classification of 147 samples
of Iris spread over 3 classes (2J: Iris Setosa, Iris Virginica
and Iris Versicolor. There are 4 characteristics taken into
consideration: petal width (PW) , petal length (PL), sepal width
(SW), sepal length (SL). Considering for each of the 3 classes
the mean values of the 4 characteristics listed below and the set
of test samples as consisting of the first 20 samples from each
class listed in Anex A, the following tree classifier is obtained

Gc-2):

Although all the lass labels (1,2,3) appear in each node,
only those which have the membership degree to thé node i
(i*l,...,5) greater than have been represented for the node i in
the figure above. Beside each nonterminal node is the set of

features used.



IOANA MARIA BOIER

Setosa Versicolor Vvirginica
PwW 0.2 1.4 2.5
PL 1.4 4.7 6.0
SwW 3.5 3.2 3.3
SL 5.1 7.0 6.3

mean values

The classification results

of the 4 characteristics

are as follows:

samples no. well classified percent
Setosa 49 49 100%
Virginica 49 26 51.02%
Versicolor 49 49 100%
Total 147 127 85.03%
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Anexa A
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Rezumat. - Asupra seturilor independente de grafe.Lucrarea trece
in revistd unii algoritmi de determinare a multimilor
independente (mul{imi interior stabile) referitocare la un graf.
In prima parte se prezintd citiva algoritmi care au la bazX
expresii gi/sau ecuatii booleene precum gi un algoritm recursiv
gi anume algoritmul dat de Taulbee gi Bednarek. in final autorii
dau un algoritm recursiv inspirat din acest ultim algoritm.

1. Definition, properties. Let G = (V,T) be an undirected
graph where:

~ V is the set of vertices and |V| = n;

- T :V -V is the aplication which defines the graph.

DEFINITION : Let S < V., S is an independent set (IS) iff
YVves, T,NS =o.

(where we denote T(v) by T,).

In other words the vertices of S don't have any edges
between each other.

Obgervations:
19 We may define G = (V,E) where E is the set of edges, E c
cV xV, an edge is (x,y], x,y € V and (x,x] € E.
20 Let S be an IS. S is called maximal if S is maximal by

sets inclusion.
3  We denote by 8 the set of all maximal IS of G.

We remember that:

a) a(G) is the number of internal stability:

* University of Cluj-Napoca, Department of Computer Science, 3400 Cluj-
Napoca, Romania
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a (G) =max|s]|
Ses

b) ¥(G) is the chromatic number of G, y(G) is the

smallest number of IS, <i.jo.nts, which cover 4.

4° Moon and Moser have proved that:

n
33 ,if n=3k
81y
@€(G)$) 44377 ' ,if n=3k+1
n-2
2#3 3 ,i1f n=3k+2

2. Algorithms for determining IS. In many problems it is
important to find the IS family.

There are some algebraic or combinatorial algorithms to find
IS.

2.1. Maghout and Weissman'S algorithm based on boolean
expression.

2.2. Malgrange algorithm's which finds every squared matrix

containing only 0 (zero) of the adjacent matrix where:
A= (a;,) ; i=1,n; j=1,n with

a.={t if [vi,v)€E
37 1o ,othérwise

2.3. The Rudeanu's method, using the boolean equations which
caracterize the IS family.

Let G = (V,E), where V = {v;,...,V,}.

If S ¢ V is an IS then we associate to each v; € V an

boolean variable b; define by :

12
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Tl ,IF VIES
10 ,if vt$sS

We have the following result:

If * 1 then it results atj*£>+*bj “ O (€))

(because vi € 5 and v C S, see the diagram).

So from (@) it results that Y bi*bj”™0 iff ~ by*
iff _ _ (E7V5;)-1 iff VAN * /N - eein ] *
«jri

So, for each factor *BAL LAY » 1 we have an IS :

S =K. x* ,...,xK).
2*4_ Bednarek and Taulbee"s recursiv algorithm
Let ¢ » (V,E) be an undirected graph:
-Vknml,.,.,n we denoted by Vk - {vx,...,v*};
for each subgraph with Vk - {vX,--- v} ; we
denoted by Lk the maximal IS family;

- we also denote Yk » {y € Vk /7 [x*,y] € £}.

The steps of the algorithm are:

13
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SI. Let Yxm {vx}, L1= {Vx}, k=1.

82. One finds the next family: Ik={S/S=MCiYk+1, MelLk}.

S3. One finds = {1/ J I maximal with respect to
sets inclusion).

84. One finds family, for each M e Lk :

a) ifMe YK -Mu {vk+l} e L"x

b) ifM* 3B+1L - M e ;¥ and {v*+1} u (M O y*+1) € Z;1
iffFmny*+l e 1K

The L*#1 family contains only these sets of $4.

85. One finds the maximal family Lk+X from L*+lwich respect
to sets inclusion.

86. Repeat S2,S3,54,S5 for k~2,...,n-1. Finally we have Ln
which contains the maximal 1S of G.

Example
Let G - (V,E) be an undirected graph with

{1,2,3,4,5), {I1.2]1.[2.3].13.4]1.[3.51}

O —d>

In the next table we have:

k r*+i 1k 4 LU L=+1 U

1 (2} 0 0 Uus, <2> {11»{2} 1

14
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{1,3) o, {1} {1} (1,3}, {2}, {2},
{3} {1,3)
{1,2,4} e,{1},{2} | (13,42} | {1,3},{1,4}, | (2,3},
(2,4}, {4} {1,4},
(2,4}
{1,2,4,5} |e,{1},{1,4} {1,4} | (1,31,
{1,4,5},

{2,4,5},{5}

- L = {{1,3}, {(1,4,5}, {2,4,5})

2.5. In what follows we suggest the next algorithm:

The notations used:

Let G = {V,E} be an undirected graphs and:

Ve ™ {Vy,eee,vi}, |V = n,1 s k < n;

L, = the sets family of IS associated with Vier 1 £ k 5 n.
The steps of the algorithm are:

81. L, = {v;}, k=2.

B2. One finds I, :

a) if M€ L., =MelL.

b) if M e L, and Vy € M with [y,x;) € E = M U {X3} € L.
c) {vi} € L.

Repeat S2 for k=2,3,...,n.

83. Reducing L, with respect to sets inclusion:
VMNeL,and Mc N ~L, =1L, \ M.

For the previous graph we have:

L, : {1}.



[
)

{1}, {2}.

Ly = {1}, {2}, {1,3}, {3}.
Ly = {1}, {2}, (1,3}, {3}, {1,4}, (2,4}, {4}.
Ls : {1}, {2}, {1.3}, {3}, {1,¢*, 2.4}, {4}, (1,5}, (2,5)

{1.4,5), {2,4,5}, {4,5}, {5}.
Applying S3 we obtain:
L : { {1,3}, {(1,4,5}, {2,4,5} }.
The algorithm is very simple and it works only with a single

sets family.
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REZUMAT. - Asupra unor metode paralele in algebra liniari. Sint
etudiate din punct de vedere al complexitdtii mai multe metode
numerice de inversare a matricelor gi de rezolvare a sistemelor
algebrice liniare.

The barallel computation had became an actual problem in
many application fields.

Of course, not each mathematical method can be efficientely
projected in a parallel version.

To characterize the depth of the parallelism of a given
method there exists specificaily criterions. Such criterions are
the speed and the efficiency. The goal of this paper is to discus
some methods in linear ilqebra from the parallelism point of
view,

Let X be a linear space, X, a subset of X, (Y,|.l) a normed
linear space and S,S1 X, ~ Y, a given operator. The problem: for
given ¢>0 and x ¢ X, find an y ¢ Y such that |S(x) - yl<s ¢ is
called a § - problem, x is the problem element, S is the solutien
operator and s = S(x) is the solution element. 3 e¢ Y for which
! s -8 < e is called an ¢ - approximation'of the solution s.

In order to solve a § - problem there are necessary some
informations on the‘problem element x. 8o, let 3 be a set (the
set of informations). The operator J: X -~ Z is called the

informational operator and ¥(x) , x € X,, is the information on

* University of Cluj-Napoca, Faculty of Mathematics, 3600 Cluj-Napoca,
Romania
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e

x. To compute a solution of a S -~ problem for a given information
J(x) we need an algorithm, which is defined as an application a:
$(Xg)~Y. So, for a given x € X;, a(J(x)) s the approximation of
the solution S(x) given by the algorit!*a a with the in{ormation
J(x) as the input data. If a (J(x)) is an £ - approximation o/
S(x) then § and a are called e - admissible. So, to solve a § -
problem means to find an ¢ - admissible informational operator
and an ¢ - admissible algorithm for it.

DEFINITION 1. A couple (J¥,a) with $:X-2 and a : § (Xy)~V is
‘called a method associated to a S -~ problem.

If 3 and a are ¢ - admissible then the corresponding method
is called also e - admissible.

Next, one denotes by M(S) the set of all admissible methods
for the problem S. A method peM(S), u = (J,a), is called a serial
methqd if all the computations are deecribed as a single
instructions stream (a is a serial algorithm). If the
computations are described as a multiple instructions streans
then u is called a parallel method (a is a parallel algorithm).

To distinguish the two kind of methods one denotes by M,(S)
the set of all serial methods for the problem § and by MP(S) the
set of all parallel methods for S.

For a method ueM(S) one denotes by CP(u;x), X € Xo, its
computational complexity for the element x or the local

complexity, while

CP(p) = sup CP(u;x)

X€X,y

is the complexity of the method u for the problem S(global

18
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complexity) (3].

DEFINITION 2. The method p € M, (S) for which
CP(R) = inf CP(p)
pEM(S)

is called the optimal method with regard to the complexity.

Now, let u be a serial method, u ¢ Mg, (S).

Generally speaking, by a parallel method bp € My (s),
associated to u we understand a method in which all the
operations, independent to each others, are performed in parallel
(in the same time). So, we can image the serial method divided
in many parts (segments - streams of instructions) independently
or partial independently from the computation point of view, say

Biseeesbbp. Then

cpP = max CP
(“D) uis)i (“4)

is the complexity of tho'corresponding parallel method HBp-
DEFINITION 3. Let & be a given problem, By € MP(S) a
parallei method and j, ¢ M, (S) the optimal serial method with
regard to the complexity.
Then

CP(@,)

S(PP) = W“—p)—

is called the speed of the parallel method Hp-
Remark 1. The speed is also denoted by S(up;r), where r is
the number of the instructions streams of the method Bp.
Obviously, S(up; r) sr.

19
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Remark 2. A more practical value to judge the parallel
version bp of a serial method u, is

CP(p,)

S“‘pl'r) = —ém';—)"

We also have s (up;r) 2 S(pp;r).

DEFINITION 4. The value

S(py,i
E(p,) = J‘f_i

is called the efficiency of the parallel method Bp-

As 0 < S(uP;r) £ r it follows that 0 < E(pp) S 1.

Next, we consider first some examples.

B.1. Let & be the following 2xpression :

E=t, p t; p ... pt,
where p is an associative operation.

The serial computational complexity of & is

CP(&) = (n - 1) CP(p) ,
where CP(p) , is the complexity of the operation p .

A parallel version 8’p of the expression & is obtained as
follows: in the first step we compute, say ¢t;: = tyi-1p tyy, for
all possible i. To do it more clear, let meN be such that 2™ <
< n s 2™ If n < 2™ then vwe supplement the expression & by

thep = +-- = typ = 0, i.e.

E=t,ptyp ...ptpt,,p ... p Lo
80,

€} 1 =ty Pty 1 =1,...,2™
In the second st;ap we have

€2 ixtd i p 3, i=1,...,2m2

20
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and so on
tf =t p e, i=1,...,2mk
for k = 3,...,m. Finally, we have & = t,” .Hence, the necessary
steps'to compute & is m. Taking into account that 2™! < np ¢ 27,
one obtains m = [log,n), where [x] , x ¢ R is the integer with
the property x s [x] < x + 1.
It follows that
CP (8;) = [log,n} CP (p) .
So, we have
s(&;(n/2] ) = T;’#:n]
and

n -1 2
B (n/2] (log,n) [1og,n]

where (x] is the integer part of x.

Remark 3. If we consider the binary tree associated to the
expression & then the cohplexity of the parallel computation of
€ is the depth of the tree [5].

E.2. Let be X = M, (R), Xo =X , Y=Rand § : X - ¥,

A-det A. Hence, S is the problem to compute the determinant detA
of the matrix A. The method used consists in the transformation

of the determinant

a, a,... a

det A = a;, a,;... 4y,

a, a... a,



in the form

1 af, af,

\ 3

det A:= aj,*...*sam~|0 1 ... az,
0 A

using the operations :

aj; : = a;; » 1,3 =1,...,n

af;

1

afy :=——f ,i=p+1,...,n
app

afj' i=afi-afxaly’ ., i, =p+1,....n
for p=1,...,n-1.
So, we have
det A = aj,*a}»...*a) .
Remark 4. Next we suppose that CP(+) = 1 ( a unit time) and
CP(*) = CP(/) = 3.
If one denotes by u, the serial method to compute det A,
one obtains
CP(p,) = {é(n—l)(8n3+5n+18)
A parallel version of the considered method using n parallel

instructions strems (n processors) is :
begin
det A: = 1;
for p: = 1 step 1 until n -1 do
begin
ab
(det A: = det A * aj,; (p+ 1< j s n) aﬁf:=rig) ;
a

((p+1 £ ] < n) for i:=p+1 step 1 until n do

22
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afr-_-afj-afrafr)
end
det A = det A * an
end
Remark 5. @@, (A £ £ £ m) 1Ik) means that the instructions
I, JI# ..., Jm are performed in parallel.
For a better illustration of the parallel method, say /4p,

we give the next diagram &= det A) :

WPH = 2P _ aP . pPH

p 1= p+l)

The complexity of the parallel method np, as it can be easy
seen, iS:

CP(Mp/n) * n(2n - 1).

and

23
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E(n,) = % .

B.3. For X = M, (R), Xo= {A | det A » 0, A€ X} ,
Y = M, (R) and sS(4) = A"l , s is the problem to compute the
inverse of a matrix.

We use the method based on the succesive transformations of

the matrix [A | I,) in the matrix (I, | A), where I, is the unit

matrix of order n. The transformations are : first one denctes
the elements of the matrix (A | I,] by tj;, i=1,...,n;
j=1,...,2n. Now,

o _ tp
t},’jl:s-zf;l , J=p+1,...,2n

PP
efti=tf-efxtlt . i=1,...,n, ivp ; F=p+1,...,2n
o ,
thyt= n . j=n+1,...,2n,
n
ton

for all p =1,...,n-1.
So,
Ala=(tf)) i=T,n; J=n+1,2n

If u, is the corresponding serial method then

CP(u,) = —3— n (4n® - 50 + 3).

A parallel method, Bp, can be projected as follows :

.

begin
t11
for p:=1 step 1 until n - 1 do

begin for j:=p+l1l step 1 until 2n do

24
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. o 3o . ) .
tR) b= :11 ; (1sisn, iep) tf5' :=tf-tfatf)?
PP
end;
n
[(n+1sj52n) tny 1= t"’]
Ean
end
We have
CP(pP;n) = 6(n2 -n+1)
and
1
s(p,in) = n - Y
respectively

E(up) ~ 1.

Remark 6. From these three examples we can see that the
matrix inversion permites a very good parallelism (E(up) s 1),
while for the determinant computation E(up) % 2/3 and in the
first example

E(S}) = 2/[log,n] .

Linear algebraic systems.

If X = {[A|b]| A€M (R), beM, ; (R)}, Xo={[A|b)eX | det As0}
S([A|b])=A“1b then S is the problem to solve the system As=b.

Next, there are discused serial and parallel versions for
some well known numerical methods for the solution of 1linear
algebraic systems.

I. Cramer's method. Taking into account that the solution
is given by s; = D;/D,i=1,...,n, where D=det A and D; is the

determinant obtained by D changing the i-th column vector by b.
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-y

So, we have to compute n + 1 determinants of order n, with the
complexity CP(u,) from the example E,, and n divisions. It
follows that the serial complexity of Cramer's method u. is

CP( Wpg) =(n+1)CP(p,) + nCP(/), i.e.

CP(ps) = =(8n* + 5n° + lon* + 13n - 18). (1)

-y

A natural parallel method here is to compute in parallel the

(n+1) determinants and than to perform the n divisions. So,
CP(u?) = -Gl-usn3 - 3n? + 13n) (2)

where pg is the mentioned parallel method.

Hence, one obtains

s(pz; n+l) = (n+1) - 18 . n+l

8n3-3n%+13n

and

E(np) = 1. (3)
As a conclusion we can remark the very good parallelism of
Cramer's method (E(up) =1).
1I. Gaussian elimination method. As, it is well known first
the given matrix [A|b] € X, is transformed in the matrix ‘
(T, | b), where T, is an upper triungular matrix (T, = (ady)

i=1,...,n; j=i+1,...,n; aé=1) using the relations
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ay:=ag, / af, j=p+1,...,n; bY / aj
1 s
af; :=afyj-af,*ajy, i,j=p+1,...,n

byt i =bf -af,+bf , i=p+,...,n

by

for p=1,...,n-1, and b := , where for the begining

1 1 Gnn
ajyi=ayy, by:=b;, i,j=1,...,n.

The complexity of this computation is n(n2-1)/3*%[CP(+)+CP(*)] +
+ n(n+l)/2 * CP(/). Now the triangular system T,s = b is solved

Ly back substitution method:

S,:=b,

n
s;:=b' - z: ajy * x;, di=n-1,...,1,
1*Th

with the computational complexity n(n-1)/2 * (CP(+) + CP( * )].

It follows that
cP(pd) = % (8n° + 21n? - 11n) . (4)

A parallel version pg of the Gauss method is :
begin

for p:=1 step 1 until n-1 do

begin
aP
(p+1sjs<n+1) afj: =—-—‘:l :
pp

for i:=p+1 step 1 until n do
begin ((p+1<jsn+1) afj':=af-afxaf); bi':=bf-af,+b] end
end;
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n

an,nd
n
ann

for k:=1 step 1 until n - 1 do

n
an,nnt=

((k‘i‘n"l) ant:i,ml ¢ =an?i,n~1 ‘an-i,n-kq‘an‘:ku,ml)
end

where af,..=b}.

So, s;:=a,., , 1=1,...,n.

It follows that

CP(pg;n) =2n? + s5n - 11 (5)

and

respectively

Ew) ~ 2. (6)

III. Total elimination methed. The matrix [A|b] € X, is

transformed in the matrix ([ I, | b") .

First,
1 1 .
agji=a;;, &j,a=b;, i,j=1,....,n.
Now, one applies the succesive transformations
o, Ay
af':="2l, ja=p+1,...,n+1;
a’
af*: '-ag‘:a{},tafjl; i=1,...,n; diep; j=p+l,...,n+l

for all p=1,...,n.
So, the solution is s,:=af’},,, i=1,...,n.
The computational complexity of this method in the serial

version (p) is
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cP(pl) = %(m’ +30% - n). (7)

As a parallel version (p.f,) of the total elimination method

is the following :

begin
1
a
2 12
a3, z_—.;-. H
a

for pt=1 step 1 until n - 1 do
begin
for j:=p+1 step 1 until n do

p
a { *
(aj‘:’;ﬂ”—%}l‘l (1sisn iwsp) aft: aﬁ_aﬁ.agjl)

PP
FY 9y
a +1, p+ad . 1 +1
agfx,pnh—%;-L; (1<isn, isp) aff.,:=af...-af*al'l.,
ap*l.pb?
end
an
o no1 b -"L?" (1gi$n-1) a’pt=ain1-am*as
nn
end
We have
CP(pp) =2n* +2n + 3. (8)
8o,
splim) »n- 1
4
and

E(pp) = 1. (9)
IV. Iterative methods. One considers two iterative methods.
IV.1. Jacobi iteration. For a given x{® = (x,(®, .. . x,(0)T, the

sequence of the succesive approximation x{™1) jg given by
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(me1) 1 : (m) - ,
x4 =-a—-(b1—; a;x™ 9, i=1,...,n
i I

If CPI(p]) is the computational cémplexity of one iteration then

the serial complexity of the Jacowi wevaod is

CP(p}) =m,(e) CPI(u}),
where m; (e¢) is the iterations number for which x (oo is an

e~approximation of the solution. So, we have

CP(pJ) = (4n? - n) my(e) . (10}
A parallel version of the method ui is to compute, in
parallel, each x/™ , i=1,...,n.
Henca,
CP(pp 1n) = (4n-1) m, (e) . (11)

It follows that

o{u3i n)-n

and

E (up)=1

IV.2. Gauss - 8Siedel iteration. Starting with x{9), the

iterations are given by

i-1 n

xfm0 . L (b, - agx ™y - axf™),i=1,...,n.
ay -1 Pr ¢8

The serial complexity of the Gauss-Siedel method is
CP(puS®) = (4n® - n) mg(e) , (13)

where mgg(e) is the iterations number.
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It is obviously that the parallelism of the Gauss-Siedel

method is more less than of the Jacobi iteration. Certainly we

solve for x;™"using already the "new" value x,™V, for x/™V it

is used the "new" values x'™! x™%and so on. Hence, x;™'tan be

(m+1)

computed only when the computation of x; is finished and the

(m+1) (m+1)

computation of x,™'hust wait for x, and x, and so on. It
follows that a parallel version pg‘ is to do the computation
begining with the first line ( x{”45 than the second one

( x,™) and so on. One obtains

CP(u3’)=n([log,n] +6) mys(e)

. 401 -1/n)
E(" ) [log,n] +6 °

conclunibnl. Taking into account the serial and parallei

and

complexity of the above methods for linear algebraic systems it
follows:

PROPOSITION 1. CP(pd ) <CP(pg) <CP(ng), Vm2.

The proof follows directly by (1), (4) and (7).

Remark 7. Of the Gauss - Siedel procedure may be viewed as
an acceleration of Jacobl method, so we generally have mgg(s)s
my(e) i.e.

CP(pS%) <cP(pl) .
Now, from (2) and (10), it follows :
PROPOSITION 2. If mgg(e) < tn/s] then
cP(p@)<cp(pd .
Remark 8. For the systems with a lagre number of egquation

(such that ((n/3) + 1} iterations are sufficient to get a good

31



GHEORGHE COMAN

approximation the Gauss - Siedel iteration is better than of the
Gauss elimination method.

The following two propositions give some informations
regarding with the parallel methods.

PROPOSITION 3. CP(p}) <CP(uJ) <CP(p5) Vm>2.
The proof is based on the relations (2), (5) and (8).

Remark 9. For the parallel version pj and p; we have
CP( Wg)>CP( p;) just if in the serial case the relation is
CP( pf)<CP(uf). So, generally a good serial method does not
conduct to a good parallel version.

PROPOSITION 4. If mp(e)<{n/2) then CP( p;)<CP( pJ).

Remark 10. In the parallel case it can be done just [n/2]
iterations without passing the complexity of the best parallel
method pj

. Finally, from (3), (6), (9) and (12) it follows that the

best parallelism is possessed by the Jacobi iteration method
(E( u:)-l). Also, a good parallelism has the total elimination
method (E(u)»1-—-)and the Cramer's method  (E(hj)=1). But the
complexity of the Cramer method is, in both serial and parallel
versions, a polynomial function on degree with a unity greater
than the other ones. So, the Cramer's method is never recommended

from the computational complexity point of view.
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REZUNAT. - Asupra convergentei metodelor de ordinul trei Sn

spatii Préchet. In 1lucrare se demonstreazd existenta

gl

unicitatea existentei ecuagiei (1) precum gi convergenta metodei

iterative (2), renuntind la uniform m¥rginirea operatorului
A= [x*,x";P]7),

1. It is known that the rapidity of convergence for the

sequence of approximates (x,) of solution of the operatorial

equation

P(x) =8

(1)

given by an iterative method, can be improved if the first and

the second order divided differences, which enter
algorithm exprimation, are taken on special nodes.
In the case of opafatorial equation
P(x) = x~F(x) = 0
using the metod
Xpe1 ™= Xp~A,(I-|Xp,u,,v,;PY A, P(uy,) An)'l P(xp)
where
A, = [X,,uy;PY Y K = (u,v,/P)?
and

u, = F(x,;); v,=F(u,) = (F(x,))

in the

(2)

(3)

this property is proved in the paper [1}. The following theorem
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are proved:

THEOREM A. If for x,eX, there exist’ uy,B, M>1 and N so that
the following conditions:

1) )l P(xg) |( < Wgi

2) For any x',x'',x''' x'V

€ S(xq,R), R remaining to be
defined, we have
a. A = [x',x'";P])"! exists and Y1 A |( < B;
b. )| [x',x*';F] |( < M;
c. )| f[x',x**',x""";P) |( < K;
d. )| (x*,x*', xV;P] - [(x',x*",x*"*"";P) |( <
< N)| xV =~ xrre |

3) Gohg < 1 where hy:=B2MKp, < 1/2 and

Gg:

_ M(1+BKpo) [1+BKpy (1+M) ) (1+ N )
(1+hy)2(1-2h,) BK?

hold, then thé equation (2) has the solution.x'eS(xo,R), where

n .
B“o E (Goho) 3"_1

R=(1+M) p,+M?Q and Q=
¢ 1 "ho m=0

solution which 1s the limit of the sequence genereted by (3), the

rapidity of convergence being given by
) |x*-x,|C . (G,hy) ¥ 0.

THEOREM B. In the conditions of Theorem A, the solution of

equation (2) is unique.
In the following, we will change the condition 2a of Theorem

A, removing the uniform bounded of the operator A.
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2. Let us consider the equation
P(x) = x-F(x) = 0 .

where P:X-X is a continuous operator considered with its
generalised divided difference (2] nwp to the second order,
inclusively, X is a Fréchet space with a quasinorm induced by a
distance invariant to translation, i.e )| x |( = d(x,0), x,8 ¢
€ X [(3]).

To solve the equation (2) we consider the algoritm (3).

Concerning the convergence of the method (3) ., we prove

THEOREM. If for x, ¢ X exists @, M>1, X and N such
that the following conditions:

1° For any x',x'',x''' ,x*V c S, where S = {x |)|x-xu| ( <R},

R=(1+R p,+ND; D= 3‘—‘;3-2; (BE,) ™
0 Ml

we have:
a. A= [x',x'"";P)"! exists;
b. )| Afx*,x**;F) |( < N
c. )| Alx',x"',x'"*"";P} (< K
d. )| A ([x',x*,x¥V;P) - [x',x"',x*""";P)) |( <
< N)|x™V - x|
2° )| APGRO) 1( < Fos

39 T,H, <1 where W, :=M'Rp,<1/2 and

(-]

R(1+Xp,) (1+Ry, (1+8) N
m- 1e—
(1+h,)*(1-2h,) K?

hold, then the equation (2) has the unique x"CS(xo,R), which is
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the limit of the sequence genereted by (3), the rapidity of
.
convergence being given by

)| x*-x, | ( < (G By) 3™ -p.

Proof. We consider the equation

P(x)=0 (6)
where

P(x)= AP(x)= A(x-F(x)), A=[x',x";P]?

equation which is equivalent to (2).
Indeed, if x" is a solution of equation (2), i.e. P(x")=0,

du; to liniarity of A, it results
AP(x*) =P(x*)=0. (7)
Reciprocal, if x" is a solution of equation (6), i.e.
B(x*) =AP(x*) =0

from the existence of operator A, it results A"l-[x',x";P]
which, applied to the left of the equation (6), leads to P(x")=6.

For solving this equation, we have the iterative method

Xy =X -K (I-[%,,0,, v, ;PIK P(u,) ;{'n) 1P(x,) . (8)
Using the induction, one can prove that for X;=X,, U,=U,, V.=,

a8
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the sequence given by (8) is identical with the sequence (3).
For the operator P, the conditions of Theorem A and B are
true. Indeed
12 )] B (%) | ( = ) |AP(Xo) | ( < Wyi
2% For any x',x'',x''* ,x ¢ S(x,,R), we have
a) A= [x',x''; P17} = (A[x',x'"';P]"} =I, then
X exists and )| X |(=1= B ;
by )|(x*,xt; P (=AM ,x"F)| (< M
) )lx*,xtr,x't 'y P (= )|Alx',x'x P} (< K
aQ ) ftxtxt XV Py - et xttx G P( =
= ) JA(x',x' xTV5P) - [x0x0,x G PY) | (<
< RB)|xWV- x| ;

3% BH, <1, where K, i=F R X, < % and

Cn.n(l"PIFa) [1+BRE0(1+N)] (1+ b )

(1+hy) 2 (1-2hy) BK?

It results that the hypotesis of Theorem A are satisfied by
P, hence the equation (6) has a solution x*eS, which is the limit
of sequence gesnerated by the algoritm (3) or (8), the rapidity
of convergente being given by (4).

Because (6) is equivalente to (2), the statement results.
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Resumat. Software pentru clasificare. Articolul prezintd un
sistem de programe destinat clasificirii automate a unei colectili
de obiaecte caracteriszate prin valorile mai multor parametri.
Programele au fost elaborate de autor gi ge bazeazd pe o serie de
algoritmi din literaturd, precum gi pe unii originali.
Principalele componente ale sistemului eint: extractorul de
caracteristici, clasificatorul ierarhic diviziv, clasificatorul
nelerarhic, clasificatorul bazat pe arborescenta de acoperire
minimald gi componenta destinatd interpretirii ocalitative a
partitiilor obtinute. Pentru fiecare componentd se prezintd
structura gi functiile ei, algoritmii implementati, datele ds
intrare gi iegire.

0. Introduction. The aim of this paper is to describe a
program system designed for pattern preprocessing, classification
and interpretation of data sampled from a non-homogeneous
population. The programs, which belong to the author of the
paper, implement classical algorithms as well as some original
ones. The main components of the system are: the pattern
preprocolior, the divisive hierarchical classifier, the single-
level classifier, the minimum forest classifier and the component
which enables a qualitative interpretation of the obtained
partitions. The input of the eystem is the collection of objects
to be classified, characterized by the values of d variables

recorded within a usual text file.

1. The pattern preprossssor. This component performs the
transformation of data from the original pattern space to the

feature space. The output is also a text file in which s features

* “BABE$-BOLYAI" University, Faculty of Nathematics, 3400 Cluj~Napoca,
Romania
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(s € d) for each object are recorded.

This program has several processing options: normalization
of the original patterns, Mahalanobi's distance, principal
component analysis and combinations .. the above options. The
first processing type is a simple scaling of the original
variables by the overall mean and standard deviation such that
they become comparable. The second option implements the
Mahalanobis distance by an appropriate coordinate transformation.
The principal component analysis projects the original patterns
onto the eigenvectors of the covariance matrix of parameters
corresponding to the first s eigenvalues in their decreasing

order. A given threshold indicates what percentags of the

original information should be preserved after data compression.

2. The divisive hierarchical oclassifier. This component
implements the fuzzy divisive hierarchical algorithm [2], and its
corresponding hard version. These algorithms perform a
hierarchical descendant classification, iteratively splitting the
current fuzzy (hard) cluster into two fuzzy (hard) subclusters
until the clustering degree of this binary partition (3] becomes
less than a given threshold; in this case, the cluster is
considered homogeneous.

The input of this classifier is the file containing the
features of the objects to be classified. There are three output
files: one containing the hard partition (in the fuzzy case, it
is obtained by defuzzification), another containing the fuzzy

partition (in the fuzzy case) and the last one containing the
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prototypes of the partition clusters.

The structure of the classifier is presented in fig. 1.
Module HIER performs the hierarchical classification. Module
SPLIT implements the generalized Fuzzy ~-Means algorithm with two
clusters, which is used to split the current cluster. It consists

of the reiteration of modules: CENTRE (computation of

the sub-clusters centres), PART (computation of a new partition -
fuzzy or hard) and COMP (comparison of the last two partitions) .
Module DEGREE computes the clustering degree of the current
cluster binary partition. Module CLUSTER displays the clusters
from the hierarchy and records within an output file Tfinal

clusters (which are no longer, splitted).

3. The single-level olaasifier. This classifier implements
the following algorithms: Fuzzy c-Means, Fuzzy c-Lines, fTuzzy

clustering algorithms with linear manifold prototypes,
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combinations of them [1] and hyperellipsoid prototypes [8], as
well ae their hard versions* This classifier performs a non-
hierarchical classification, hence the number of clusters must
be given by the user.

The input files of the classifier are: the file containing
the features of the objects to be classified and a file
containing an initial partition (fuzzy or hard) or an initial set
of prototypes. Thus, the output of the divisive hierarchical
classifier may become the input of this classifier, in order to
obtain an improved partition. Moreover, if the input is a set of
prototypes, this classifier may be used as a trainable
classifier: the prototypes are computed from a training set act*
then unknown samples are classified according to the
dissimilarities with respect to these prototypes. The output
files are the same as those of the divisive hierarchical
classifier.

The structure of this classifier is presented in Fig.2.

Module CLASIF performs the single-level classification. It

consists of the reiteration of modules: CENTRE (computation of
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the centres of the clusters), DIRECTION (computation of the
directions of prototypes), PART (computation of a new partition -

fuzzy or hard) and COMP (comparison of the last two partitions)
until the last twe partitions coincid2 (in the hard case) or the
maximum difference of corresponding membership degrees does not

exceed a given error level (in the fuzzy case).

4. The minimum spanning forest (M8F) classifier. From
numerical experiments we noticed that Fuzzy c-Means and other
related algorithms often misclassify samples situated at the
border of the clusters. One way to prevent this situation, if the
distribution of the cluster samples is close to a normal one, is
to use hyperellipsoid prototypes. If the distribution is
arbitrary, we propose Prim's MSF clustering algorithm [9]) which
is based on a graph-theoretical approach.

The MSF classifier first detects the subclusters containing
samples which were surely correctly classified by a Fuzzy o-ieans
type algorithm and states them as “centres"; this operation,
implemented in module SSZLECT (fig. 3), is done by selecting thos.
samples which have the membership degree in the corresponding
fuzzy cluster higher than a given threshold. The remaining
samples represent the "objects" (according to the terminology
used in [(9]) and will be reclassified. Module DISSIM computes
object-to"oentredis;imilaritiesaspoint-to-sotdissimilarities,
i.e. the least dissimilarities between the objects and the
samples in the centres. Module MSF, implementing Prim's MSF

clustering algorithm, associates the objects one by one with the
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centres. Thus, misclassified samples are reclassified and will

probably get into the correct cluster.

As input data we need the features of the samples, the fuzzy

and the defuzzified partitions. The output is a hard partition.

5. Interpretation of the obtained partitions. We first give
a theoretical model of partition qualitative interpretation. Let
X be the set of samples partitioned into the clusters A1 M ., ,AC.
Consider a qualitative feature (or a combination of qualitative
features) F defined on X and taking a finite number of values
{f# such that k £ c¢. We are lookink for the onto

function
-, ... ka-il,.._,ad

which maximizes the cardinality of overlapping clusters from the

initial partition of X and the one induced by the feature F:

s, -£1

This problem can be formulated as a maximum matching problem for

which we apply the Hungarian algorithm. Thus the cluster Aj may
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be interpreted as a mixture of the qualitative values from the

set
(£ le (1) = 7
We also define the matching degree as

S

il

which is a sub~-unitary value and characterizes the proportion in
which the qualitative feature can explain the partition of X.
The component of our program system which enables the
qualitative interpretation of obtained partitions enters
gquantitative and qualitative features of the classified samples
fulfilling certain criteria concerning their features. Then a
second module classifies the selected samples into groups as it
was done by previous clustering procedures or according to the
values of grouping features. Groups are identified as codes (for
qualitative features) or intervals (for quantitative features).
Quantitative features transformations can be performed. If two
partitions are thus obtained, they can be compared as it was
shown above. Selections, groups and tranaformed features can be
stored in output files. Scatter plots of one quantitative feature
against another can also be obtained and are useful in examining
the performances of the clustering algorithms we used, the
discrimination power of the two features and the regions

delimited in the plane by the clusters.

6. Facilities of the software. This software gathers in a
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unitary conception various aspects of classification:
hierarchical and single-level classification, fuzzy and hard
partitioning, pattern preprocessing and postprocessing, qraph-
theoretical methods and methods kased = the minimization of =
certain functional, supervised and unsupervised classification.
Here are now some of the implementation facilities of this
system:

- portability, as being written in Pascal language;

- simple text file structure of input and output data, which
enables its use in a sequence of processing stages;

- independence of the system components, which pernits
interchanging their order during processing, omitting or
reiterating them in order to obtain improved partitions;

- possibility of modifying the memory 1limits for data
according to the capacity of the computer (this is done simply
by modifying some constants and recompiling the programs);

- listing file option for obtaining a list with intermediate
or final results;

- supplementary possibilities to 1limit the execution of
iterative procedures by setting time, number of steps and maximunm
level in the classification hierarchy limits;

-~ other options which enable a flexible execution of
programs.

This software was applied in geology, to the determination
of certain types of mineralizations and to the parallelization
of tuff horizons [5], in geography, to the regionalization of

hydroenergetical potentials (6] and water resources (7] and in
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biology, to the determination of plants associations specific to

certain environment conditions [4].

7.
8.

9.
10.
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Resumat. - Sistem de gestiune a datelor topografice. Articolul
prezintd un sistem original de gestiune a datelor topografice
implementat sub sistemele de operare RSX gi PC DOS. Informagia
preluatd de pe hirti o constituie coordonatele punctelor de
observatie (puncte iIn care s-au efectuat anumite determiniri
calitative sau cantitative), precum gi entitdtile grafice curbe,
regiuni, semne conventionale, texte). Culegerea datelor se
realizeazd prin digitizare, sub controlul unui editor grafic.
Exploatarea bazei de date presupune extragerea §li reprezentarea
datelor situate in fereastra de lucru, definirea de noi entititi
grafice, calcule simple (arii, medii ale unor func{ii de
parametri cantitativi).

0. Introduotion. The aim of this paper is to present an
original topographical data management system for the acguisition
and processing of data taken from maps. We may also consider,
instead of maps, any kind of drawing consisting of curves,
regions, conventional signs and texts. This system was

implemented under the operating systems RS8X and PC DOS.

1.Map entities. An item (data elament) on a map will be
called topographical entity. Two kinds of topographical entities
are considered: observation points and graphical entitles.
Observation points are those points on a map where certain
qualitative or quantitative parameters were determined. For
instance, on a geological map, mineral resources and
petrographical types are qualitative parameters while percentages
of certain chemical elements are quantitative parameters.

Graphical entities are curves (opened or closed), regions (areas

- -
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delimited by a closed curve and filled with a certain colour),
conventional signs (circles, triangles, cross-marks, etc.) and
texts. Graphical entities are characterized by three features:
their type, the plotting mode (for «i.unre the typs nd the
colour of line for curves, the filling colour for regions, the
character set for texts) and the user code. This last feature is
an integer associated by the user with each graphical entity in
order to handle it easier. The position on the map of a graphical
entity is defined by a variable number of pdints in a given order
in the case of curves and regions and by a fixed number of points
for the other two entities; thus, one point is needed to indicate
the position of a standard conventional sign or text, while two
points are needed for variable radius circles or inclined texts.

Observation pointe are numbered; their gqualitative and
quantitative parameters as well as the coordinates of their
positions on the map are stored in separate files. A group of
graphical entities is formed by a single entity with variable
number of points or by several entities with fixed number of
points and the same features. Three files are used to store
graphical entities: an entity file, a coordinate file and a text
file. The firet one contains a record for each group of graphical
entities; this record consists of three features of the graphical
entities from the group (entity type ET, plotting mode PM, user's
code UC) and two pointers FP, LP to the first and the last point
in the coordinate file which define the position of entities. The
coordinate file contains sequences of (x, y, 2Z) - coordinates

corresponding to the groups or graphical entities from the entity
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file. Points indicating the position of a text have instead of
the z - coordinate a pointer to the corresponding text in the
text file. This file contains all the texts from the map; the end
of each text and the letter of which position was indicated in
the coordinate file ((if not the first one) are marked. The

described structure of graphical entities is given in fig. 1.

Entity file

Coordinate
file

Text Pile

2. Data acquisition. We are now concerned only with the
acquisition of coordinates which indicate the position of
topographical entities. This is done by means of a digitizer. The
map may be fastened to its plane table in any position since the
acquisition programs make a corrective rotation. The absolute
coordinates are then computed according to the map scale and the
coordinates of its origin. Thus, maps of adjacent zones can be
assembled to form the general map.

Observation points can be digitized consecutively, 1in the
order specified by the user, examining only not yet digitized

points from a given interval or a certains group of points at a
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time. In this latter case, we have to provide a file with the
number of group to which each observation point belongs.

The acquisition of graphical entities is performed by a
graphical editor which plots the entitizs ¢n the display as theyv
are stored into computer. A graphical cursor may be moved in the
current window represented on the display (corresponding to a
rectangular area from the map) by means of the arrow keys of the
keyboard or a mouse and its coordinates are indicated. The
position of the digitizer cursor on the display can also be
indicated.

Graphical entities which are edited at a time are stored in
the computer memory hierarchically, on four levels. This
structure enables a quick performing of editing operations.
Graphical entities are divided into fragments which are portions
of curves or groups of conventional signs or texts placed or not
in the current window. Fragment points are divided into sequences
which are stored in certain memory locations called pages. We are
now able to describe the tree structure of edited data (fig. 2).
The first level is a two-way list of data groups referring to
groups of graphical entities. Curves which do not intersect the
current window at all do not appear in this list. A data group
consists of the three features of the corresponding graphical
entities (entity type ET, plotting mode, user's code UC) and two
pointers FF, LF to their first and last fragments. On the second
level are placed the two-way lists of data groups referring to
fragments. Chaining of curve fragments observes the order in

which they are placed on the curve. A data group contains the
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fragment type FT (inside or outside the current window), a
pointer GE to the group of graphical entities to which it belongs
and two pointers FP, LP to the first and last point of the
fragment. Only points of fragments inside the current window are
stored in the internal memory; thus, for fragments outside the
window, pointers FP and LP point directly to the coordinate file.
on the third level are placed the two-way lists of pages, each
one containing a pointer PF to the fragment to which it belongs
and the sequence of data groups referring to points. Such a data
group consists of the (x, y, z) - coordinates and two pointers
P1, P2, thch chain in a two-way list the points placed in the
same square on the map. The number of squares into which the
current window is divided is given by the user. This chaining
enables a quick retrieval of points given a certain neighbourhood
of them. For instance, when digitizing a point which has already
been digitized, we can search for this point in a neighbourhood
of the curently digitized point and replace the coordinates of
the latter by those of the former. Connection of curves can thus
be carried out without errors.

The following editing operations can be performed:

- acquisition of a graphical entity (coordinates from the
digitizer, features and texts from the keyboard);

- prolongation of an open curve (the corresponding extremity
of the curves is in&icated using the graphical cursor);

~ connection of two open curves or of the extremities of an
open curve to form a closed one (the extremities of the

curves/curve are indicated using the graphical cursor and then
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the new curve fragment is digitized);

- modification of a curve fragment (a certain curve fragment
is deleted and then its extremities are connected by a new
fragment) ;

- deletion of a curve fragment, of a curve entirely, of a
conventional sign or text (the corresponding graphical entities
are indicated using the graphical cursor);

- change of the features of a graphical entity;

- hardcopy of the current window;

- asking for help on the editing menu;

Deletion and feature change operations can be performed on
several graphical entities at a time without viewing their
effects. These entities are also selected by indicating their
features fwild cards are permitted for some of the features).

3. Data base enquiry. Observation points retrieval is
carried out. in terms of the following criteria: point number,
qualitgtive and quantitative parameters. Qualitative parameters
are specified as codea while quantitative ones as intervais.
Selected observation points can be classified according to the
value of a grouping parameter; hence cluster identifier is a
supplementary retrieval criterion. Retrieval criteria for
graphical entities are their three features. Accessing of a map
entity is followed by plotting it on the display. A curve can be
plotted by joining its points with straight-line segments or by
smoothing it. Smoothing can be carried out using a cubic spline

interpolation or an original method which iteratively halves the
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angle between two neighbour straight-line segments until these
segments become sufficiently small. Thus, the user can construct
a map of an area he desires and containing only the information
he indicates. Moreover, he can add qirapt.ical entities, perform
some elementary computations and blow up a rectangular area.

Once the map is thus constructed, certain entities on it can
be identified using the graphical cursor. A temporary selection
of observation points is considered. We now explain how entities
are identified and what kind of operations can we perform on
identified entities.

a) Operations involving a single observation point:

- viewing the observation point with a given number;

- finding the number of an observation point;

- inserting/removing an observation point in/from the
temporary selection;

- displaying the guantitative parameters of an observation
point or elementary functions of them.

b) Operations on groups of observation points. A group of
observation points is formed by the points of a cluster, by the
temporary selected points or by the points placed in a
rectangular or arbitrary region indicated by the user. The
following operations can be performed on such groups:

- displaying the numbers of obseryation points from the
group;

- 1inserting/removing the points of the group from the
temporary selection;

- means computation of the group points quantitative
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parameters or functions of them.

c) Operations on graphical entities.

- adding/deleting a graphical entity on/from the display (we
indicate its position using the graphical cursor};

- storing/removing a graphical entity in/from the data base;

- modification of graphical entity features;

- displaying the area of a region and the number of
cbservation points placed in it (these parameters can be used
together with the quantitative parameters of the observation
points to compute the value of certain elementary functions
depending on them); .

- displaying the coordinates of the graphical cursor.

We conclude by mentioning that the system developed in this
paper is a useful tool for the management of a data base
containing .topographical data which can be then used by other
software to construct 3D plottings. Referring to the parameters
of observation points, the system is also useful for a primary
data analysis and for the interpretation of statistical

proceésing or clustering results.
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Resumat. Un model teoretic privind programarea paralel gi
orientati-ebiect. Lucrarea prezint¥ unele aspecte principale ale
unui model algebric pentru specificarea unor concepte de bazi din
limbajele de programare. Legitura cu alte lucriri din domeniul
specificlrii algebrice este prezentat¥ in partea introductivX.
Sectiunea 2 prezintd pe scurt conceptul algebric de ierarhie HAS.
Conceptele de obiect, metoda gi clasa, specifice programirii
orientate-obiect sint expuse in sect{iunea 3. Sectiunea 4 este
destinatd conceptelor de algoritm secvengial, algoritm paralel,
proces secvential gi proces paralel.

1. Introduotion. Generally, the specification of a
programming language has two purposes. The first purpose is the
specification of the data types proper to the language to ke
specified, which include the primitive (predefined) data types
and the composed data types. The second purpose involves the
specification of the operations (statements) which act on the
data types. The algabraic approach of a language specification
constitutes the topics of a great number of papers. We shall
mention further down some such works directly related to the
present paper.

In [3) and (4] T. Rus presents a hierarchical and algebraic
specification model. A context-free algebra is associated to a
context-free grammar. The specification aiming at such a model
involves a cascade ét heterogeneous algebras. The last algebra
from the cascade (hierarchy) corresponds to the complete

specification of the language. In this model, the hierarchical

* University of Cuj-Napoca, Department of Economicse, 3400 Cluj-Napoca.
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order (hierarchy depth) depends on the context-free grammar which
specifies the syntax of the language. My paper, which uses an
algebraic model (2], starts from the algebraic definition of
certain primitive data types (defined in the form of homogeneous
algebras). These will be organized into a specification base
(signature) for the whole hierarchy of heterogeneous algebras
which will constitute the specification levels of the programming
language to be specified. This time the hierarchical order (the
number of levels of the hierarchy) depends on the complexity of
the elements of the language to be specified. The proposed model
defines in a personal manner the concepts of object, method and
class, proper to the object-oriented programming.

An algebraic approach of a language specification for
abstract data types specification can be found in [(61. Unlike
this paper, in my paper the concepts of object and method are
defined on complexity levels (corresponding to the hierarchical
levels), allowing in this way a relatively easy implementation
of the model. The final result of a language specification will
look like a multi-level tree, unlike {1] where the specification
appears as a tree with a single level. At each level the data
types and their corresponding operations are defined.

Lastly, on the basis of the algebraic definition of the
concepts of parallel algorithm and parallel process [S) implanted
on the specification levels of the proposed model, the algebraiu

specification becomes concurrent algebraic specification.
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2. HAS hierarchy concept. The concept of HAS hierarchy was
presented in detail by T. Rus in (3] and (4]). This concept is
based on the following two principles:

pl. Every homogeneous algebraic structure is a HAS of zerc

hierarchical level in a HAS hierarchy;

p2. Every l1-level HAS can be chosen as a base for an (i+1)-

level HAS.

Let HASI be the i-level HAS given in the form of the pair:

HASt = < a1 |, i >,
where A! is the support, while n! is the collection of operations
defined on the support Ai. The support of the HASL is used as
index set for the specification of the HASI*l, consider the n-ary
operation ueni, and a = o (a,,a,,...,48,), where a,a,,a,;,...,48, ¢
€ Al. The set of operation schemes £, is defined as follows:
T, = {0 =<n,0,8,8;...8,8> [/ a=o(a;,a85,...,8,> }.

Since the operations specified by means of the operation schemes
o are heterogeneous operations, we consider the symbol of the
operation ¢ to be distributed upon its operands. In other words,
the operation scheme ¢ becomes 0=<n,$,8,...8,,a8,8,...a,a>. For a
compiete specification of the HAS!*! by the HAS! , consider a
function F which associates to each operation scheme g€xL,, ueni,
a heterogeneous operation specific to HASI*l, 1f o=<n,8q..-8,,
a;...a,a>, then F, is a specific operation in HAS;,;, that is ,

the function:
F, t Alxatx...xal --al .

In these conditions HAS!*! is gpecified on the basis of HAasi
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and has the form:

HASI*l = ¢Ails (A:u) .GA'il L= (20)0601' .

Oon the basis of the concept of HA® hisrarchy, in Secticn 2

we shall present schematically a model for the specification cof

a programming language. The terms of object, method, and class,

specific to the object-oriented languages, are found again in our

model. Section 4 presents briefly the algebraic formalization of

the concepts of parallel algorithm and parallel process (5]

adapted to our model.

3. Object~oriented hierarchical specification. An abstract

object is defined as heterogeneus algebra as follows:

Object name :
Supports :
Operation schemes H

Variables

23

Axioms

end NAME.

NAME;
NAME, ,NAME,, . . .,NAME,;
01102, +4+,0p;

LIST, : NAMEi,
LIST, : NAMEI,
LIST, : NAMEi,
W11"¥12-
W21%W22:

Wp1=Wp2i

We choose as zero level of the HAS hierarchy (HASO) the

following partial homogeneous algebra:
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Has® = <a%,a%, H%:2° - 1>,

where:

A = support of the algebra, consisting of a set of
predefined abstract obiects (A}’) e specified
as homogeneous algebras;

n® = the set of operations defined on the objects

(a3) « Jeas

H° = function which associates a measure to every
aea?;

I = the set of the measures printed out by the
function H°.

The level one of the HAS hierarchy (HAS!) is defined on the
basis of HAS? and has the form:

HAS' = < A'=(a}) , E=X) H* : A* -~ I,F* >,

)161' weQ®’

where:

Ai = g family of subsets with the property that the
same measure H°(a), a€A} , ieI, is associated to
all elements of such a subset;

£ = the set of operation schemes specified by the
operations corresponding to the zero level;

H! = the same definition as in the case of HY;

F! = symbol of a function (Flz (0 gege = oP(aY)),
where OP(al) is the set of all operations defined
on Al,

For wen®, aier, i=1,2,...,n, a=w(a,,a,,...,a,), an operation

scheme
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a=<n,sosl...sn,HO(gl)Ho(az)...Ho(an)Ho(a)>
is associated.
If o¢X is an operation scheme, thern F! ,, defined as

follows:

1, 1 1 1 -al
Fo : Aﬂ“(u,)x‘q}l”a,)x‘ ° 'XAH"(A.) AH‘(:)

is a heterogeneous operation in HASY.

The function H® associates to every aeAl a characteristic
called measure. Another characteristic associated to an aeal is
the interpretation mode. For a given measure H%(a) associated to
an element aeAl there can exist several interpretation modes
(integer, real, boolean, character, etc.). Hence the
interpretation mode for an .acAl is the significance (integer,
real, boolean, character, etc.) assigned to the representation
(encoding) of a. We particularize the function H® as follows: for
every acAl, Ho(a)-l(a), where 1(a) is the representation length,
representing a in the computer storage. The conection between the
interpretation mode and the measure (representation length) of
the unstructured type data can be performed by a bi-dimensional
matrix. One conniders*aijsl if for the representation length 1
there exists the interpretation mode.j, and a;;=0 in the opposite
case. The row index of the matrix (i=1,2,...,n) signifies the
possible representation length of the data from Al, while the
column index (j=1,2,...,m) is the index associated to the
elements of the set of the interpretation modes. Having'thase
eleme..ts, we define the level two of the HAS hierarchy (HASz) on

the basis of the preceding level:
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HAS?=<A%=(A])) jey senr 2= (L) weopiar) « H2 1 AL XM~NXM, F?>

where:
Af, = the support of the data type i interpreted in
the mode j;
T = the set of the operation schemes generated by

“the operation weop(al);

N = a set containing all possible representation
length;

M = a saet containing all possible interpretation
modes;

H? = function which establishes by its values the
index set for the family of sets A?;
V (a,))ealxM, B3 (a,j)=(H'(a) , J)ayl ,);
F?2 = the symbol of a function which associates to an
operatlon séheme
U’<n,8031...Bn,Hz(al,jl)H2(32,j2)---Hz(anljn)Hz(blju+1)>
a heterogeneous operation on the data set A2,
The zero level HAS? points out tha primitive (predefined) data
types together with the operations defined on them. The level one
HAS' points out the data divieion in subsets, the criterion of
differentiation being the representation length. The level two
HAS® differentiates the data according to a characteristic
supplementary to the preceding level, that is, the interpretation
mode. This allows the specification of data types (short integer,

long integer, real on different length, character, etc.). The
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composed data types are specified at this level, too.

Let us denote by OP(HASi)i,ohhz the set of the heterogeneous
operations defined on the three hierarchical levels. An
eguivalence relation, denoted HAS?, is defined on this set. Twu
operations ;, w, 5(3351)1-0,1,2 are, by definition, called
equivalent if they have the same definition domain. Consider u,:

AyxAyX... A, = Ap,q,0, 3 ByXBoX...XB, -~ B,,,, @ HAS®e,, where

(A, if w,en®
Ay + 1f ©,=F5,0€L,0=(n,5,5,...5,
Ay =4 H°(a,)...H%(a,) H®(a)>
A;’(lpj‘)' if W= :v 062,0‘( n,s8,8,...s,,
L Hz(allj]_) "'Hz(anljn) Hz(aljn¢1)>

i=1,2,...n+1, and B; is obtained in a similar manner. Follows
that A;=B,,A;=B,,...,A,=B, (equality of sets). Let E =

- OP(HASi)i_O'l,z/HAS‘ be the set of the egquivalence classes. An
equivalence class ec¢F consists of all operations with the same
definition domain. Let C;xCyx...xC, be the common definition
domain for the operations belonging to the equivalence class e.
We call object an n-uple (¢;,Cz,...,C,) €C1XCyX...XC,, while the
set of all objects of this form will be called the class of
objects associated to the equivalence class e. Let us denote by
K the set of all classes of objects. We add to each class of
objects kéKX the object nil, which constitutes the nil object of
the class k. An object of the class k is either the object nil,
or an instance of the claas k. The specification of a class k
consists firstly of the specification of the form of the objects

belonging to the class k. The form of a class k specifies the n-
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uples which can appear as values of the instances of the objects
belonging to the class k. On the other hand, the specification
of the class k consists of the specification of a colection of
methods belonging to the class k, too. An operation wee acts on
the class of objects k according to a law well defined during the
stage of hierarchical level construction. Such an operation on
a class of objects k will be ca;ied method. The set of methods
is classified on hierarchical levels, but there also exists
hybrid methods whose definition domains originate in several
hierarchical levels.

The number of levels in the HAS hierarchy is arbitrary. It
depends on the needs of defining certain objects of high
conmplexity degree. We stopped at the level two of the hierarchy,
considering it to be sufficient for a concise exposition of the

model.

4, Conourrent hierarchioal specification. Let <3,0pP> a
homogeneous algebra, where A is the support and OP is the set of
the operations defined on A. If the set OP also contains
relations, then <A,0P> will be called algebraic system. Ths
concept of heterogeneous algebraic system is obtained
analogously.

L.et us consider the heterogeneous algebra HA=<KL, ME>, where
KL is the set of the classes of objects, while ME is the set of
the methods specified in Section 3. We define the concept of
algorithm over the given heterogeneous algebra HA as being the

heterogeneous algebraic system AL=<K1l,Me,R>, where: -
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K1 = a finite set of classes belonging to the support HA;
Me = a finite set of methods belonging to the set Me;
R = a relation indicating the order of execution of the

methods from Me on the objecrts of Ki1.

If the ordering relation R is linear (or total) on Me, then
the algorithm is called sequential algorithm.

If the ordering relation R is partial on Me, then the
algorithm is called parallel (or concurrent) algorithm.

Since the set Me of the methods specifying an algorithm is
finite, this ;ne can always be decomposed into the subsets Me,,
Me,,...,Me,, such that every Me;, i=1,2,...,k, is linearly
ordered by the execution of the methods. Let us denote by R; the
linear relation defined by the order of execution of the methods
in Me;. If for every i,j,1+j,i,j=1,2,...,k, thé subset K1,cKl on
which the methods from Me; are acting and the subset K1,cK1 on
which the methods from Me; are acting are disjoint each other,
then the algorithm <K1,Me,R> gives rise to a family of sequential
algorithms <K1,,Me;, R;>, i=1,2,...,k. These sequential algorithms
can be parallelly executed and keep the consistence of the
computations specified by the original algorithm.

In this context a processor is identified with an abstract
agent able to execute any method featuring the HA specification.
The concept of process over the HA specification is defined
through the couple Process (HA)=<Processor,b AL>.

A process P=<Processor,AL> will be called sequential if the
defined algorithm AL is sequential.

A process P=<Processcr,AL> will be called parallel (or
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concurrent) if the defined algorithm AL is a parallel algorithm.

S. Cconclusions. The basic theoretical concepts (belonging

to the programming languages) specified by means of the proposed

model constitutes a theoretical nucleus for the simultaneous

approach of parallel programming and object-oriented programming.

The nucleus, semantically and syntactically defined, could

constitute a reference basis for any other semantic construction

reductible to one of the semantic forms from the nucleus by

established transformation rules.

5.
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REZUMAT. -~ Integrarea formall a unor clase de functii. Lucrarea
prezintd¥ o metodd de determinare analitic¥ a primitivei unei
functil ragionale. Legat de aceasta, sint expugi gi algoritmi de
manipulare simbolic¥% a polinoamelor precum gi de factorizare a
polinoamelor peste Z(X]. Este descris¥ de asemenea determinarea
substitutiilor prin care problema integririi func{iilor din
anumite clase se poate reduce la cazul ragional.

1. Introduction. The symbolic computation represents the
entrance in a new computer usage era, in which the computer
becomes smarter and powerful enough to do complex scientific
computation, for example the formal integration. We can notice
here the software packages for scientific computation MACSYM2,
REDUCE, MATHCAD and MATHEMATICA.

In this paper we present the formal integration of ratiocnal
functions with integer coefficients {R(x)) and related to this,
the formal integration of functions from the classes R(exp) and
R(sin, cos, tan) where the arguments of the exp, sin, cos and tan
functions have the form kx with keZ.

With these algorithms I realized a Pascal program for IBM
PC compatible computers running MS-DOS, which can be easily

*

extended for larger classes of functions.

2. Substitutions. 8Since the problem of the formal
integration of rational functions is simpler than the same

problem for another function types, we try to reduce the given

* University of Cluj-Napoca, Department of Mathematics and Computer
Science, 3400 Cluj-Napoca, Romania
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function to a rational one by using suitable substitutions. For
this reason the determination and the effectuation of ¢the
suitable substitution represents one of the most important part
of a formal integration program.

In our case, we can apply the classical substitutions.

If the function belongs to the R(exp) class, the suitable
substitution is exp(x)—t and all the terms exp™(nx) become t™°,

' If the function belongs to the R(sin, cos, tan) class we can
transform the function to a equivalent function f from the R(sin,
cos) class. We have three cases:

f(-s8in, -cos) = f(sin, cos)

f(~8in, cos) = -f(sin, cos)

f(sin, -cos) = -f(sin, cos)

The corresponding substitutions are tan(x)-t, cos(t)~t and
sin(x)~t. If our function doesn't verify any of these conditions,
the suitable substitution is tan(x/2)-t.

Through these substitutions we transform our function in a

R(x) class function.

3. The formal integration of a R(x) class function. Suppose
we have to integrate the function f(x)=p(x)/q(x) where p,qeZ[x)
are primitive polynomials, deg p(x)<deg g(x) and .gcd(p(x),
(g(x))=1.

Obviously, every polynomial geéZ(x] has a unique squarefree
decomposition:

g (x)=q; (%) (@2 (X)) 2. (@e(x)) ¥

where q,€Z[x) are squarefree polynomials (some of them can be
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constants 1) and gcdfg™fx), gJ(x))=1 for 1si, j~k and

This decomposition can be obtained with Yun®s algorithm
described in section 4.

Using the simple fraction decomposition method, described

in section 5, we obtain the polynomials px(X) so that

Certainly, if gi(x)*l then pi(x)=0.

In order to reduce the numerator®s degree and to extract the
rational part of the result we use the Hermite-Ostrogradsky
method (described in section 6) and we determine the polynomials

st(X) and r+£(x) for which:

r Pj( dx sAx? r .
———-——— [ + |- mmmdx KIik
R CION @ >IT 73 a0
- n s -
In this moment, —_— = represents the rational part of
T Qi )

the result. The remainder integrals will give us logarithmic or
arctangent terms.

We need now the Tactorization of the polynomials g+ over

Z[X]-
QA QMmN ) = QM)

where g£j(X) are irreducible polynomials over Z[Xx].

This problem cian be solved by using the Berlekamp-Hensel
algorithm described iIn section 7.

Using again the simple fraction decomposition algorithm, we

determine the polynomials rzj{x) for which:
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q;(x) £ gqy(x) -
Iiy(x) . s ;
Now we have to compute f (x)d inigk,  1<Fisng.
dy;

If zuj(x)-avguj(x) (a€Q) then the result is the logarithmic term
a ln(qij(x)). However, if deg rij(x)=deg qij(x)-l we can extract
a logarithmic term ln(qij(x)) in order to reduce the degree of
the numerator at the highest deg sij(x)-z.

If deg g,,(x)=2 then we have an arctangent or a logarithmic
term depending on the sign 6f the discriminant.

If deg qij(x)c{3,4} the equation qij(x) can be solved
through radicals and therefore we can factorize qij(x) in a
product-of two polynomials of degree 1 or 2, over a radical
extension of Q(x].

If deg ¢;;(x)>4 we shall search for a substitution in order
to reduce the denominator's degree. Let's suppose we have to

determine:
fu(x)dx
v(x)
with veZ(x] a irreducible polynomial over Z(x}, deg v(x)>4 and

that we can effectuatelthe substitution g(x)—+t. In this situation

there exist the polynomials f,heQ{x] so that:

u(x) _ g/(x) £(g(x))
v{(x) h(g(x))

If deg g(x) = a then follows:
deg u(x) = a-l1l+a deg f(x)

deg v(x) = a deg h(x)
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u(x) = g'(x) £(g(x))
v'(x) = g'(x) h'(g(x))
This relations shows that we can search g'(x) (the
derivative of the possible substitution ¢g(x)) among the divisors
of gcd(u(x), v'(x)) with the property that l+deg g'(x) = deg g(x)

divides gcd(l+deg u(x), deg v(x)).

4. The squarefree decomposition Yun's algorithm. It is
fairly easy to show that if gqeZ[x) and g;(x) is a polynomial such
that it's roots are the i order roots of g, then qieZ[x],. all the
roots of g,(x) have the order 1 and (qi(x))i divides gq(x).

Let's suppose that all the roots of g(x) have the order less
or egqual to keN. In this case:

q(X) =gy (x) (g2(x))%. .. (Ge(x)) k.
Furthermore, since for i*j q;(x) and g;(x) haven't common
roots
ged(q;(x), g4{x)) = 1.
We can now see that: .
@) () . oo (@ (X)) e vk () ... @R (X) (g (x)) &2
“c(x) =gcd(g(x), @’ () =g, (x) (g (X)) 2. .. (g (x))*?
r(x) =%§—E;—=q1(x) @ (xX) .. @ (x)

s(x)=gcd(c(x), r(x))=q;(x)...q,(x)

I (x)
s(x):

c(x) and repeating the above operations untjil g(x) become

In this moment @, (x)-= and ve see that making g(x)<-

constant, we obtain the polynomials g;(x),...,gx(x). We also
remark that r,c,zeZ([x]).

The above relations represent the mathematical basis of the
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Yun's algorithm. The complete description can be found in [2].

-

5. 8imple fraction decomposition algorithm. Assune
p,u,teZ({x) and gcd(u(x),t(x)) = 1. This algorithm will compute

the polynomial reQ(X) so that:

p(x) _r{x) s(x)
u(x) t(x) u(x) t(x)

s€Q[x] can be computed analogously.

and deqg r(x) < deg u(x), where

From the above relation we obtain that:
p(x) = r(x)t(x) + u(x)s(x)
and
r(x) = r(x) mod u(x).
This implies that:
p(x) mod u(x) = r(x)t(x) mod u(x)
= (r(x) mod u(x)) (t(x) mod u(x)) mod u(x)
= r(x) (t(x) mod u(x)) mod u(x).
since gcd(u(x), t(x)) = 1, there exist the polynomials
v,weQ{x) such that:
u(x)vix) + wix)t(x) = 1.
(The polynomials v and w can be computed using the Extended
GCD Algorithm).
By dividing this relation by u(x) we can see that:
w(x) = t(x)"! mod u(x)
and this tells us that

r(x) = (p(x) mod u(x)) w(x) mod u(x).

6. The Hermite~Ostrogradski algorithm. This algorithm

computes the polynomials a,b € Q[x) so that:
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plx) 4. __ax)  bix) ;4
(g(x))” (g(x))? q(x)

where p,q € Z(x) and g is squarefree.

It is easy to show that gcd(g(x),q'(x)) = 1 since q is
squarefree. Therefore we can use the Extended GCD algorithm in
order to determine the polynomials v,w € Q[x] so that:

vix)gq'(x) + w(x)q(x) = 1.

If we multiply this relation with -p(x)/(n-1) and:

s(x) = - (’2_"1("‘) . (X)) = -p(x)w(x)

we obtain that s(x)g'(x) + el glx) _ _pix) and
n-1 n-1

-(n-1)s(x)q'(x) = p(x) + t(x)q(x).

Consequently,

[ 8(x) -]’_ s/ (x) _ (n-1) s(x) q'(x)
(@(x))a? (g(x))t (g(x))”

- _ S0, px)+tx)gix) | _px) , 8(x)+t(x)
(g(x))a? (g(x))" (g(x))" (glx))o?

This means that if r(x) = s'(x) + t(x) then

P(X) gy - 8(x) _f r(x)
{g(x))” (g(x))n? (g{x))n?

It is now clear that using this algorithm for n-1 times, we

will obtain

f p(x) . 85X . e Sp_y (X) . [bix)
(g(x))2 ~ (gx))2r 77 (g(x)) q(x)

and thus a(x) = 8,(x) + 8,(X)g(x) + ... + 8,_1(x) (g(x))*"2.

7. The Berlekamp-Hensel algorithm. Let f(x) = anx"+. ..+ a)x+
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+ a, be a squarefree and primitive polynomial with integer
coefficients.

Also let

S =al+...+a?

M(r) = 2%s (1)

q 2 M(f), gez

The algorithm presented here computes reN and the
polynomials u,, ..., u, € 3[x) irreducible over fZ(x), such that

f(x) = uy(X)...up(x).

It can be prove that if beZ[x]}, b(x) = by+b;x+...+byx? and
b divides f then |b;| < M(f) i=0,s5. (see (4))

This means that if b;>0 then
b, = b, modqe(o,-zg) ;
and if b; < 0 then

b, mod ¢ = ¢q-b, e(‘—g,q) (2)

These observations 1lead us to the idea that the
factorization of f over Z,(x) could be fairly closed to the
factorization of f over Z(x)], since if

£{x) = p(x)t(x) with p, te2(x)
then

f(x) = p(x)t(x) mod gq
and according to (2) we can determine the coefficients of p(x)
mod ¢ which correspond to negative coefficients of p(x).

The Berlekamp-Hensel algorithm is based on these conclusions

and it has the following steps:
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Determnine a prime number p, the least possible, for which
deg f(x) = n (g doesn't divide the leading coefficient of
f) and f remain sguarefree in Zp(x].
Use the Berlekamp's algorithm (see [3]) for the
factorization of f(x) over zp[x]

I'(x) = u,(x)...u (x) mod p
Compute M(f) given by (1).
Pass from the factorization of f over 3,(x) to the
factorization of f over Z.{x],...,Z,(x] using the formula
given by the Hensel's lema (see [3)), until qspk 2 2M(f).
This step computes the polynomials Ujge ooy Ugp € zq[x]
such that

£(x) = u;,(x)...us(x) mod g

U;(x) = u,(x) mod p, 1i=1,s.
Compute the product of each possible combhination of

1,2,...,8 uy,(x) polynomials in Zq(x].

Normalise the coeficients of the product according Lo (2}

by subtracting g from the coefficients greater than %?.

If this normalised product divides f then it represents a
factor of f and the u,,(x) polynomials which compose the
product will be excluded from further combinations since
is squarefree.

Note that this is a polynomial time algorithm. There also

exists the Kronecker's algorithm which is simpler and more

intuitive but it requires exponential time and it become very

inefficient for polynomials of degree greater than 5.
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Resumat. In lucrare se prezintX un sistem formal de demonstrare
prin respingere a teoremelor. Conditia necesar¥ gi suficientd
impusd acestui sistem ee bazeaz¥ pe metoda 1lui J.Hsiang de
demonstrare a teoremelor cu ajutorul sistemelor de rescriere a
termenilor.

1. Introduction. Let T be a set of linguistic, algebraic or
symbolic objects (as, for instance, first-order terms, programs)
and let ~ be an egquivalence relation on T.

DEFINITION ([2]. A computable function S:T - T is called a
canonical simplifier for the equivalence relation ~ on T iff for
all s, t e T:

S(t) ~ t

sS(t) s t
(for some ordering < on T)
t ~8 = S(t) = S(8)

For computer algebra, the problem of constructing canonical
simplifiers is basic, because of the following theorem:

THEOREM (2)}. Let T be a set of linguistic objects and ~ an
equivalence relation on T. Then ~ 1s decidable iff there exists
a canonical simplifier § for ~ .

Let T = T(F,V) be the algebra free generated by the set of
variables V with thé set of functions F; that is T is the minimal
set of words on the alphabet F u V u {(,)} such that:

1.vgT

* University of Cluj-Napoca, Faculty of Mathematics, 3400 Cluj-Napoca,
Romania
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2, If f € F, a(f) is its arity, and if t1'°°'rta(t) € T, then
f(ty,eoustyyy) €T .
Let £E ¢ T(F,V) x T(F,V) Be a set of equations. By the
Birkhoff theorem (1935) s and t are _:rantically egual in th-
equational theory E(E = 8 = t) iff s and t are provably equal in
the theory E(E + s = t).
Let s ~ t be the egquivalence relation defined by E + s = £,

Then ~ ia decidable iff there exists a canonical simplifier & for

-~
.

2. Associated term rewriting system and the completion. Let
E be a set of equations E c T x T and let Ry a term rewriting
system (TRS) obtained such that
£t ~r e Rg =t =1r ¢ E and
v(r) < v(¢), where v(t) is the set of variables in the term
(object) t € T. This system will be called TRS associated with
E. The rewriting relation E} has the inverse relation,
transitive closure, the reflexive-symmetric-transitive closure
denoted by R,, R, and K, respectively. Also, we have:
ERy
For a TRS denoted R let be the following definition (3],
(73, (8]):
DEFINITION. R is noetherian (R has the finite termination
property) iff there is noc infinite chain
t ﬁs t, ﬁs t3 ﬁs"'
DEFINITION. R is confluent iff V x, y, z ¢ T J u € T such
X

that if x R.Z and x é;y then z é;u, Y é;u.
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DEFINITION. If x ¢ T, X € T, Xxg x i and it does not
exist t such that x { Bt then x | is normal form for x in TRS
R (denoted x | R).

If Ry which is associated with a system of equation E is
noetherian and confluent (i.e. complete) then, for V x € T, the
application S(x) = x { Ry is a canonical simplifier. Then ~ is
decidable, and we have :

s ~ t irt $  Rg = t | Rg

Stated in the context of confluence, the idea of completion
is straightforward:

Given a set of equations E we try to find a set of equations
F such that: g and the relation R, is confluent.

If this set of equations do not exists, then the completion
must terminate with failure or the completion is impossible.

The first completion algorithm for rewrite rules is that of
Knuth~Bendix (1967). For a general formulation of this algorithm
some additional notion for describing the replacement of teims
in terms are needed.

DEFINITION [1]},{2},(5]). Let 0(t) be the set of occurrences
of a term t. If 8, t € T(F,V) and v € O(t) then t{u « a) 1is the
term that derives from t if the term occurring at u in t is
replaced by the term s (t/u becomes s).

DEFINITION. s - t iff there is a rule a - b ¢ Ry (or an
equation ((a,b) € E), a substitution r and an occurrence u ¢ 0(s)
such that

8/u =1 (a) and t = g [u « 7 (b))
DEFINITION. The terms p and q form a critical pair in E iff
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there are equations (a,,b;) ¢ E and (a;,by) € E, an occurrence u
in 0(a;) and the substitution 7,, 7, such that:

1. a;/u is not a variable

2. 13(a;/u) = 1,5(a,)

3. p=15(a;) [u- 15(by)]

q = 1,(by)

The algorithm Knuth-Bendix is based on the

THEOREM: A TRS noetherian Ry, is confluent 1ff for all
critical pairs (p,q) of E: p | Rg = g | Ry.

Then it suggests to augment Ry by the rule p { Rg ~ q | R;
or ¢ § Rg - p + Ry. This process may be iterated until,
hopefully, all critical pairs have a unique normal form or it may
never stops: the algorithm is at least a semidecision procedure
for ~ .

The completion algorithm for rewrite rules (Knuth-Bendix,
.1967) is therefore (2]:

Input: A finite set of equations E such that R, is
noetherian.

Output: 1. A finite set of equations F such that

* *
- WD = =

Ry Ry

and relation ﬁ; (theretfore system R,) is confluent (therefore

is decidable) or
2. the procedure stops with failure or
3. the procedure never stops
Algorithm (2]:
1. F: = E ;
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2. C: = set of critical pairs of F;
3. while ¢ » 0 do
3.1. if (p,q) e Cand (p | Rp * @ 4 Ry ) then
3.1.1.if pIRy - qiRy, leaves R, noetherian then Rp:=Ry u
{piRy »qiRy} else if giRy - piRy leaves Ry noetherian
then Ry : = Ry U { g | Rp = p { Rp}
else STOP (FAILURE)
3.1.2. ¢=C v { critical pairs in Fu {(p { Rp , g ¢ Rp )}}
3.1.3. FaF U {(p ¢ Ry = g { Ry )}
3.2. Ci=C \ {(p, 9)}
4. STOP(R,).
The above crude form of the algorithm can be refined in many
ways. The sequence of critical pairs chosen by the procedure in
3.1. may have a crucial influence on the efficiency of the

algorithm.

3. The J. Nsiang's ocompletion procedure. It is well known
that a formula in first-order predicate calculus is valid, iff
the closed S8kolemized version of its negation is false under
Herbrand interpretation. Equivalentely, a formula is valid if the
set of the clauses in its clausal form is insatisfiable. Hslang
(7] first suggested using a complete rewrite system in a
resolution-like theorem-proving strategy.

Let ¢ = {Cl,..;,cn} the set of clauses of a formula in
first-order predicate calculus.

Let ¢, =L, V L,V...VL, be a clause where Lj is a literal,

and let H be a mapping transforming terms of a Boolean algebra
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into terms of a Boolean ring:

i if ¢, is empty :lause
HC) x+1 if C;isx
EL ™ ifc, isx

H(L,) »H(L,V...VL,) otherwise

THEOREM (Hsiang([7]: Given a set of c¢lauses € in first-order
predicate Calculus, € is inconsistent iff the system
H(C;) =0, C; ¢ €, i =1,n
has not a solution.
Now, let BR be the complete TRS ([7]:
X+ 0-0
X +x -0
X * 1 -x
x*0->0
X * x -~ x
X *(y+z) - xXx * Yy + x * z
For each equation H(C;) = 0 let us consider the equation
a;,~b;, where a; is the biggest monomial of boolean polynomial
H(C;) and let E be the system corresponding in this fashion to

the system of equations:

H(Cj) = O,i = I,n

The TRS Ry having all the rules of the form a; ~ b; is noetherian

(7). In the TRS formed by Ry U BR we have:

*
8 ~ t -5 ~te~s - t
H(C;)=0 E RgUBR
because a; = b; is equivalent with a; + b; = H(C;) = 0

a8
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A critical pair (p,q) may be added to system Ry not only in
the form piRy = q!Rg or in the form g!R; —#plRy , but also in the
form p'iRgy —q'iR; where p' is the biggest monomial of Boolean
polynomial P + q. Hence, the polynomial p + ¢ is an intermediate
form to study for critical pair.

Then, the previous theorem becomes:

THEOREM (7). A set of clauses €,in first-order predicate
calculus is inconsistent iff by Knuth-Bendix completion algorithm
applied to the TRS formed by R v BR, where E is the set of
equations a;=b;, 1 = 1,...,n (a; is the biggest monomial of
H(C;)), the critical pair 1-0 is obtained. Let us observe that

KB algorithm of completion is allways terminating by STOP.

4. A nev method for proving a formula. Let S = (X, F, A, R)
be a formal system, where £ is the alphabet for the term in a
boolean ring (inclu&ing + and *), F 1is the set of boolean
polynomials, A = ¢ and R is the single deductive rule denoted
“res" or :

£, £; v £, iff

£y, £,
the substitution r; and r, such that:

f) € F and there exist the monomials a, 8 € F and

(@ * 7,(f;)) + BR= (8 % 1,(f)) + £;) ¢ BR
where the equality ;s modulo associativity and commutativity.
For this formal system the following theorem is true:
THEOREM : Given a set of clauses € = {C),...,C,} in first-
order predicate calculus, € is inconsistent if in formal system
S
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H(CX),...,H(Cn) h 1.

The proof of theorem in propositional calculus consists of
the following three propositions (the proof of theorem in
predicate calculus is analogous).

PROPOSITION 1. IFf fzt, h fk and f+, fj, fk are the clause
polynomials then HT1 (fx) A ) =M (k).

Proof. By the assumption:

fimrK*»e_eaik , where
a{+1
i or , s-T7K
and .. *bji  , where
A | )
V -or, ti.e
bn
If a-a + 1, a, u€ {ix,...,ik}, v e {gx, ... ,JmH

by the commutativity of operation * we can write:

ft « @+ 1) *y

fj-a~>y

In boolean ring the following identity is obvious:

$*(a+t)*Y * §*a * y+& *y
By the comparison with the relation:

a+fxmo* fj + fk
(because rx - t2 * the identic substitution in propositional
calculus), we observe that fk -6 * vy, and that H~x (fk) « H~x (5)
VITL vy .

In the propositional calculus the following implications are
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true:
(aVag"V...Vas Y A(@Vb,"V. . .Vb; ') = (a; V. . .Vbs")

where i, » u, j, » v,

a, ,a, €0,1) ,s=Tk , ¢t=T/e

and

if ai‘.l

if ¢1.=0

and analogously for kﬁf.
The above implication is therefore:
HY(£) NH 'l(fj) - B l(1£,)
PROPOSITION 2. If € = {C;,...,C,} is a set of clauses, and
ir:
H(Cy),...,H(Cy) + U
U is clause polinomial, then
G Ao Ac, ~ BV
Proof: To prove this proposition we proceed by induction
after the length i of the deduction of U from H(Cy) ,...,H(Cy)
in formal system S.
If 1 = 0, then exists j such that U = H(C;) and
HY(H(Ccy)) = ¢ .
The following 1ﬁplication is true:
Ct Ao ACp=»Cy , J=1,..0,n
We suppose that the proposition 2 is true for the length g

i - 1 of deduction, and let f,,...,f, = U a deduction of U with

g1
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the length 1i.

For the three last polynomials f, ,, f,,, [, in the system
S there is the relation:

a*f,,=8B*f , + [,

Moreover, if f, is a clause polynomial, f, , and f,_, ars
too, and f, , and £, ; are obtained by the deduction of length <
i-1.

From the induction hypothesis we have:

C; N oo Ac, » BN, )

Cy AN oo Ac, - H YL, )

By the formula:

+ (A~-B) - ((A-C) - (A-BAC))
results by modus poneus:

FCy A oo ACp = Hoy (£ 3) N H_y (fpy)

From proposition 1 we have:

r HY (f,,) A HY (f,,) - B! (f,) and by the rule of

syllogism
FCy A oo ANC, = HY (£,)
or
FC A ... Acy » B (U) q.e.d.
PROPOSITION 3. If H(Cy),...,H(C,) + 1 then € = {C;,...,Ch}

is inconsistent.
Proof. From the proposition 2 we have:
FC A oo Ac, = HT (1)
but H"! (1) is the empty clause. gq.e.d.
But the condition (x) "H(C;),...,H(C,) + 1 iff € =

= {Cy,...,Cp} is inconsistent" is also true hence the implication
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"H(Cy),+++,H(Cyp) v+ 1 = € = {Cy,...,C,} is inconsistent® is true
even through not all the polynomials f£,, tj, £, in the
propositions are the clause polynomials.

Exemple: (In propositional calculul 7, = 71, = identic
substitution) € = {(PVDPVR, PVOVER PVB,0VPPVE}

H(C;) = POR + QR + PQ + Q

H(C;) = POR + PR
PQ
H(C,) =QR+Q +R +1

H(C3)

H(Cg) = PR + R

H(Cy), H(Cq) + PR + PQ + RQ + Q
(due to the fact that PQR + PQ + RQ + Q = (PQR + PR) + (PR + PQ
+ QR + Q)

PQ + PR+ RQ + Q, H(C3) » PR + RQ + Q

PR + RO + Q , H(Cg) + RQ + Q + R

(PR + RQ + Q = H(Cg) + QR + Q + R)

H(Cy), RQ+Q + R+ 1

This set of clauses is inconsistent, and the triplet f,, fj,
f;, is not in each step the clause polynomiales (like in
proposition 1).

In fact the following observation is true: if A; is the set
of all the clauses with I positive variables (nonnegative):
C) € A; and C; € A; are two clauses, |i-j| 2 2, and H(C,), H(C,)
+ £, then £, is not a clause polynomial. Moreover, if C, ¢ A; and
C, € A;,, differ by a number n of variables, with n 2 2, and
H(C,), H(C;) » £, then f, is not a clause polynomial.

The condition (*} results from Hsiang's theorem (§ 3) by
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following observations:

Let us observe that the deductive rule “"res": f;, f; + f, «
3 a,8 (monomials) such that (a * 7(f;))iBR = (B*1,(f;) + £ }IBR
is a ‘special fashion to calculate ¢ ci.tical pair. Indeed, tho
biggest monomial in a*r,(f;) (i.e. MP [f;) ard the biggest
monomial in B*rz(tj) (i.e. MP fj) are egnal and:
(£x) 4BR = (a*T,(f;) + B*7,(f;))4BR = (MP f; + MP f; + REST f; +
REST fj )} {BR = (REST f; + REST fj)lBR
This is the case r1,(a;) = 7,(a,) and (p,q) = (1;(by), 75(by) is .
critical pair. The intermediate form p + q of critical pair (in
our case f,) is studied.

THEOREM: The set of clauses € = {C,,...,C,} is inconsistent
irr

H(Cy) oo  H(Cy)r 1

Proof: I1f € = {Cy,...,C,} is inconsistent, by Hsiang's
theorem the system H(C,;) = 0, l=1,...,n has not a solution, or,
equivalentaly, by completion in Rp; the rule 1 - 0 is obtained.
Therefore, a critical pair (1,0) or (r,, 0) is obtained. We have:

(fy) + BR=1m=(1+ P+ P) 4 BR

In formal system S we can write 1 + P, P r f,( = 1)
where P is a boolean polynomial.

Conversely, if H(C,),...,H(C,) + 1 then there exists a
deduction f,,...,fy = 1 from H(Cy),...,H(C,).

Therefore, there exists f; and f, such that f;, f, » f,(=1).
But f, is a critical pair corresponding to a rule 1-0, and by

Hsiang's theorem € is inconsistent.
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REZUMAT. - Convexitatea metricX in grafuri. in aceastX lucrare se
prezintd o sintezd a unor rezultate recente in domeniul
convexitdtii metrice 1in grafuri. Sint analizate diferite
proprietdti ale mul{imilor gi functiilor convexe in grafuri,
caracterizdrile unor clase de grafuri cu ajutorul convexitXtii.
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8. Characterization of hypercubes and Hamming graphe by means of

convexity

1. Introduction. It is well-known that the ideas and results
of convex analysis are of high importance for many mathematical
disciplines. Convex analysis has shown itself as a powerful
instrument usefut for applications. Therefore the development of
mathematical structures and the enlargement of their
applications lead to the creation of distinct analogies and
generalizations of the notions of convex sets and convex
functions (see, for instance, {[31), [47], [73]).

Among them the notion of metric convexity introduced by

K.Menger [52] is one of the most developed. Recall that a set A

'Academy of Sciences, Institute of Mathematics, Kishinev, Moldova
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in a metric space (X,d) is called convex provided for every pair
* of points x,y € A, the metric interval
[(x,y) = {z ¢ X : d(x,2z) + d(z,y) = d(x,y)}

is contained in A. For any set B < X, its convex hull cqan is
defined in a standard way to be the intersection of all convex
sets in X containing B. Since the intersection of any family of
convex sets is again a convex set, convB is the least convex set
in X containing B.

The notions of metric convex set and covex hull became
fruitful in general topology, differential geometry and
functional analysis. (A sufficiently complete list of results and
references on metric convexity in metric spaces and linear normed
spaces can be found in (13], [73].)

Later the notion of a convex function on a metric space
(X,d) was defined (see [70], {71)): a real-valued function f on

X is callied convex provided

X d(z,y) . d(x, z) .
f(z) < a(zy) F(x) + _d(x,y) £{y)

for all points x,y € X (x » y) and z € (x,y).

The actual period in the development of metric convexity is
connected with investigations of discrete structures and of some
extreme problems on them (see, for instance, [61], {62]). At the
same time, a considerable part of the results on convexity in
discrete spaces 1is concentrated around metric convexity in
gﬁﬁphs; It is interesting to mention that the notions of convex
th and convex function in graphs appeared previously in

connection with some location problems (see [25]), [66], [68],
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[69], [82]). And only later, due to the development of
generalized convexi&y theory, some properties of metric convexity
and related metriésbehaviour of graphs where studied by distinct
authors.

In this article, we deal with metric convexity in ordinary
(may be, infinite) graphs. Since this topic became too wide to
be described compact, we will be concentrated below on some
results closely connected with the author's interests in this
field. Some additional information on metric convexity in graphs
can be found in the literature placed at the end of the paper.

For the convenience, we mention here some necessary
definitions connected with graphs.

Everywhere below G = (X,U) denotes a graph with vertex-set .
X and edge-set U. A graph G is called finite if the set X is
finite. If cardX = n, then G will be denoted by G,. By a subgraph
H of G we mean the induced one, i.e., two vertices x,y are
adjacent in H if and only if they are adjacent in G. For any set
Y < X, the subgraph in G induced by Y is denoted by G(Y).

A graph G is connected if for any two vertices u, v in G,
there exists a finite chain containing u, v. We assume that all
the considered below graphs are connected.

In order to consider metric convexity in G, we assume that
G is equipped with standard metric: for any vertices x, y € X,
denote by d(x,y) éhe'least number of edges in a chain connecting
X, Y. Is easily seen that d indeed is a metric on X, i.e., d(x,y)
satisfies the following conditions:

1) d(x,y) 2 0, with d(x,y) = 0 if and only if x = y,
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2) d(x,y)

3) d(x,y) s d(x,z) + d(z,Y).

d(y,x).

If vertices x, y belong to a connected subgraph H of G, then
dy(x,y) denotes the distance between x, y in the graph H. A
connected subgraph H is called an isometrie subgraph of G if
dy(x,y) = dg(x,y) for every pair of vertices x, y in H.

A clique in G is a vertex-set having every two distinct
vertices adjacent. If X is a clique, then G is called a complete
graph. K, denotes a complete graph with n vertices. The supremum
of the cardinality of a clique in G is called the density of G,
and is denoted by ¢.

A vertex z in G is called simplicial provided the set 0(z)
of all vertices in G adjacent with z form a clique. The degree
deg(g) of z is the number of all vertices neighbor to z. Put
£(z) = o(z) v {z}.

A sequence 1 = (..., V; -,V;, V;,,. ..-} of vertices in G such
that every two consecutive vertices are adjacent is called a
chain. A chain 1 is finite if it is of the form 1 = (v;, ...,Vv,);
it is one-side i:finite provided it has one of the forms
1 = (vy,vyy, «+.), 1 = (..., vp,vy); 1 is infinite if it has no
end-vertex. A chain is simple if all its vertices are distinct.
A circuit of 1length n in G is a chain of the form
(Vi/Va,e++,Vpy,Vy). A circuit is simple if all its vertices
Vis +++, V, are distinct. Let C, denote the simple circuit of
length n.

A simple chain I = (..., V;3,V;,Viys ...) of vertices in

G is called geodesic if any two vertices of the form v;_;, Vv;,,
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are not adjacent in G. A segment (a ray, a line) is a finite
(respectively, one-side infinite, both-side infinite) geodesic
chain in G.

A disconnecting vertex-set in a graph G is a set 'Y c X such
that the induced graph G(X \ Y) is disconnected. A graph without
disconnecting vertices is called a block. A tree is a connected
graph without circuits.

A bipartite graph is a graph containing no circuit of odd
length. The vertex-set of a bipartite graph X can be partitioned
into two disjoint sets Y, Z such that every edge in G joins a
vertex in Y and a vertex in 2.

Also recall that G is named a chord graph provided it
contains no simple circuit of the length greater than three as
an induced subgraph. A Husimi tree is a graph such that each its
block is a complete subgraph.

A graph G is called planar if it can be placed in the plane
such that every vertex of G is a point and every edge of G is a
rectifiable arc with end-points in X satisfying the properties:
1) every vertex x of G is an end of each arc incident with x, 2)

a common point of two arcs is a vertex for both of them.

2. Extremal structure of convex sets. In this section some
analogies of Krein-Mil'man's theorem about extremal points of
convex sets in linear space are studied. Kkecall that Krein-
Mil'man's theorem f50] states that every compact convex set in
Hausdorff linear topoloéical space is the closed convex hull df

its extremal points.
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Since every vertex-set in G is closed, the closed convex
hull in G 1is identical with the convex hull, and a set of
vertices in G is compact if and only if it is finite. Therefore
we will discuss below the following problem. To determine
necessary and sufficient conditions for the implementation of the
assertion: for every finite set A of vertices in G, its convex
hull coincides with the convex hull of extremal vertices of A.

By analogy with the linear space, we introduce the following
definition. A vertex z of a set A ¢ X is called extremal in A if
z ¢ (x,y] for all x, y € A \ {2z}, where [x,y] is the metric
interval with the ends x, y. By extA the set of all extremal
vertices in A will be denoted.

It ﬁiil be shown below that extremal vertices are closely
related with simplicial vertices. The following well-known result
(see [27], ([51]) gives a sufficient condition for the existence
of simplicial vertices in a graph.

LEMMA 2.1. Any nonempty finite chord graph G contains at
least one simplicial vertex; if G 1is not complete, then it
contains at least two nonadjacent simplicial vertices.

The following theorem strengths this assertion.

THEOREM 2.2. (74)}. For a graph G = (X,U) the following
conditions are equivalent:

1) every nonempty finite set in X contains at least one
extremal vertex,

2) every nonempty finite subgraph in G contains at least one
simplicial vertex,

3) G is a chord graph.
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The relation between extremal and simplicial vertices is
shown in the following lemma.

LEMMA 2.3. Every extremal vertex of a set A c¢c X 1is
simplicial in the subgraph G@® . IT A is convex, then every
simplicial vertex of G() is extremal in A.

Now we can formulate an assertion analogous to Krein-
Millmanls theorem.

THEOREM 2.4. [74]- For a graph G - &,U) the following
conditions are equivalent:

1) convA = conv(extA) for every finite set A c X,

2) convA * u {[x,y]: X, y e extA} for every finite set
A c X,

3) G is a chord graph containing no subgraph

Note that for Ffinite graphs, the equivalence of items 1) and
3 in Theorem 2.4 was established independently in [37], [47],
and [72], [73]-

In connection with Theorem 2.4, we mention two interesting
lemmas. We say that a segment (vi,...,vn) is a shortest path
provided d(vlrvn) « n - 1.

LEMMA 2.5. [47]. Let G be a finite chord graph. Then every
its vertex belongs to a segment whose ends are simplicial
vertices in G.

LEMMA 2.6. [45]. For a graph G the following conditions are
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equivalent:

1) every segment in G is a shortest path,

2) G is a chord containing no subgraph ().

The following result shows some conditions for a graph G to
satisty conditions 2) and 3) of Theorem 2.4 for subgraphs and
sets of any (may be, infinite) cardinality. These conditions are
sufficiently cumbersome in the general case. Therefore, for the
compactness of the description, we will restrict our attention
on the class of graphs which contain no infinite complete
subgraphs. Denote this class of graphs by I.

THEOREM 2.7. [74]. For a graph G = (X,U) e K the following
conditions are equivalent:

1) every nonempty set in X contains at least one extremal
vertex,

2) every nonempty subgraph of G contains at least one
simplicial vertex,

3 G is a chord graph containing no line and no subgraph

THEOREM 2.8. [74]. For a graph G - (X,U) € K the following
conditions are equivalent:

1) convA - conv(extA) for every set A c X,

2) convA » u {[x,y]li X, y e extA} for every set A c X,

3 A “ conv(extA) for every convex set A c xt

10
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4) A = v {[x,y]): x, y € extA} for every convex set A c X,

5) G is a chord graph containing no ray and no subgraph (1).

Another well-known result on extremal structure of convex
sets in linear space belongs to S.Straszewicz [81]: every compact
convex set in finite-dimensional linear topological space is the
closed convex hull of its exposed points. Recall that a boundary
point x of a convex set A in a linear space is called exposed if
there exists a hyperplane H such that A N H = {x}.

In order to formulate the respective analogous result for
graphs, we need some definitions. A vertex-set H in G = (X,U) is
called a half-space provided both H and X \ H are convex. A
vertex z of a set A ¢ X is called exposed in A provided {2z} =
= AN H for some half~space H ¢ X. Denote by expA the set of all
exposed vertices of A. It is easily seen that any exposed vertex
of a set is also extremal for the set, i.e., expA < extA for
every set A c X.

The following result is analogous to Straszewicz's theoren.

THEOREM 2.9, For a graph G = (X,U) the following conditions
are equivalent:

1) convA = conv(expA) for every finite set A c X,

2) convA = u{[x,y]: X,y € expA} for every finite set A c X,

3) G is a chord graph containing no subgraph (1) and none

of

i1
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THEOREM 2.10. For a graph G = (X,U) e K the Tfollowing
conditions are equivalent:

1) convA « conv(expA) for every set A c X,

2) convA = u {[x,y]l: X, y e expA} for every set A c X,

3) A « conv(expA) for every convex set A & X,

DH A * u {[x,y]l: X, y e expA} /or every convex set A c X,

5 G is a chord graph containing no ray and none of (1) or
2).

At the end of this section we formulate two open problems.

PROBLEMS 2.11. To describe the family of graphs G * X,U)
satisfying at least one of the conditions:

1) expA + ¢ for every nonempty convex set A c X,

2) extA “ expA for every convex set A c X.

3.Convexity of balls, ball neighborhoods, and dianetrally
maximal sets. It is well-know that some classes of convex sets
are of special interest in the convexity theory. These are balls,
ball neighborhoods, diametrally maximal sets, etc. Below we
establish conditions under which these sets are convex 1iIn a
graph. Recall that a set of the form
Er@@ « {x cX :d®,2) £ r}

is called the ball with center x and radius r. A set of the form

12
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Ir(d = {x eX :dXA) <r}

is called the r-neighborhood of a set A ¢ X. A set A in X is
called diametrally maximal if diam(z u A) > diamA for every
vertex z e X \ A, where diamK denotes the diameter of a set
K c x.

Let M be a connected set in X. (M is called connected if the
subgraph G(M) is a connected component in G.) For any vertex
x € M, put

QM) = {y €w : diamM - d(x,y) “ dM(X,y)}.

A pair {x,y} is called diametral in M provided y e ON(X) (or
x e OM(y), which is the same),

THEOREM 3.1. [76]. Every diametrally maximal set in G is
convex if and only if the following conditions are fulfilled:

1) G contains no simple circuit isometric to C6 or Cn, n£8,

2) G contains no subgraph isometric to one of

3) if QTQY) » {x} for some vertices x, y in a simple circuit
T + C4, then x is simpllcial in the subgraph G(T).

THEOREM 3.2. [76]- Every ball in G is convex if and only if
the following conditions are fulfilled:

1) G contains no simple circuit isometric to C4 or Cn, nt6,

2) if QT(y) « {x} for some vertices X, y in a simple circuit

13
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T in G, then x is simplicial in the subgraph G(T).

THEOREM 3.3. [76]. For a graph G the following conditions
are equivalent:

1) for any convex set A ¢ X and r 2 0, the r-neighborhood
L. (A) is convex,

2) for any vertices a, b € X, the 1-neighborhood
L,(conv{a,b}) is convex,

3) G contains no simple circuit isometric to C,, n 2 4.

Note that Theorems 3.2 and 3.3 are repeated in [37) in an
equivalent form.

COROLLARY 3.4. If a graph G contains no simple circuit
isometric to C,, n 2 4, then the following conditions are
equivalent:

1) every diametrally maximal set in G is convex,

2) every ball in G is convex,

3) every ngighborhood of a convex set in G 1is convex,

4) G is a tre=.

4. Convex t.-ctions. Recall that a real-valued function f

on X is called convex provided

d(z,y) . d(x, z) .
fiz) < d(x,y) £ix) + d{x,y) £ty

for all vertices x, y € X (x » y) and z € [x,y]. One can state
the following simple properties of convex fuﬁctions on X.

THEOREM 4.1. 1) For any convex functions f, g and real
number A 2 0, the functions f + g and Af are convex,

2) the least upper bound of any family of convex functions

14
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is a convex function,

3) the limit of any pointwise convergent sequence of convex
functions is a convex function,

4) for any convex function f and real number A, the sets

{z € X : £(2) s A}, {Zz € X : £(2) < A}

are convex.

Similarly to the case of linear space, we can define an
affine function f on X as a real-valued function such that both

functions f and ~f are convex. In other words, f is affine if

- d(z,y) . d(x, z) ,
£(2) ax.y) £(x) + __—d(x,y) £(y)

for all vertices x, y € X (x » y) and z € (x,y). From this
definition follows immediately

COROLLARY 4.2. 1) For any affine functions f,, f, and real
numbers A,, A,, the function A,f, + A,f, is affine,

2) the l1limit of any pointwise convergent segquence of affine
functions is an affine function,

3) for any affine function f and real number A, the sets

{z € X : £(2) s A}, {2 € X : £(2) < A}
are half-spaces.

A function f : X » R is called quasiconvex if for every real
number A, the set {z ¢ X : f(2) < A} is convex. Equivalently, f
is guasiconvex if

f(z) < max{f(x),f(y)}
for all vertices x, y ¢ X and =z € {x,y].
THEOREM 4.3. 1) For any quasiconvex function f and real

numbers ) 2 0, u € R, the function Af + u is quasiconvex,

15
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2) the least upper bound of any family of quasiconvex
functions is a quasiconvex function,

3) the 1limit of any pointwise convergent sequence of
quasiconvex functions is a qﬁasiconvex function.

Similarly, a function f : X -+ R is called quasiaffine if
both functions f and -f are quasiconvex, i.e., f is quasiaffine
if

min{f(x),f(y)} < £(2) < max{f(x),f(y)}
for all vertices x, y € X and z € [x,y].

COROLLARY 4.4. 1) For any quasiaffine functions f,, f, and
any real numbers A,, A,, the function A,f, + A,f, is quasiaffine,

2) the 1limit of every pointwise convergent sequence of
quasiaffine functions is a quasiaffine function,

3) a function f is quasiaffine if and only if for every real
number A, the sets

{z € X : £(2) s A}, {2 € X : £(2) < 1}
are half-spaces.

Below we study some properties of the classes of convex,
affine, quasiconvex, and quasiaffine functions on X. Let A, D,
CA, and CD denoye, respectively, the collection of all affine,
convex, quasiaf}ine, and quasiconvex functions on X, and let F
(respectively, I) denote the family of all real (constant)
functions on X. Trivially,

CAcCDcF
v v
IcA <D
THEOREM 4.5. [65), [75]. 1) The following conditions are

equivalent: A= F, D=F, CA=F, CA=CD, CD =F, A = CD,

16
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D = CcD, G is a complete graph,

2) any two of the classes A, D, CA coincide if and only if
the two classes are trivial, i.e., are equal to I or to F.

THEOREM 4.6. (65], (75]. 1) A » I if and only if the graph
G = (X,U) can be decomposed into at most countable family of
pairwise disjoint complete subgraphs G; such that every vertex
z in G; is adjacent to all the vertices in G;,_, v G;,, and only
to then,

2) for a finite graph G, one has D + I if and only if X
contains a convex set Y with connected complement X \ Y such that
every vertex z € Y adjacent in X \ Y is adjacent to all the
vertices in X \ Y,

3) CA + I if and only if X contains at least one half-space,

4) CD » I (provided cardXx > 1).

For any family H of functions on X, let H, denote the
collection of all functions which are the sums of finite
subfamilies of H. We haQe the relations

D=D, cCDcCD, =F
U v U v
I cA=A < CAcCA

THEOREM 4.7. [65], [75]. The following implications hold:

1) CA, = A ~= CA = A,

2) CA, = D == CA = D,

3) ¢D, = CD holds if and only if G is a complete graph,

4) CA, = CA holds if and only if the intersection of every
collection of half-spaces in G is either empty or a half-space.

The supremum properties of convex functions play an

important role in convex analysis. For example, at the base of
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the finite dimensional theory of duality of convex functions lies
the famous theorem by Minkowski: every convex function is a
pointwise supremum of affine functions. Below we investigate an
analogous assertion for convex functions on a graph.

For any family H of functions on X, let H, denote the
collection of all finite functions which are pointwise supreme
of subfamilies of H. It is easily seen that the following
relations are valid:

CA cCA, cCD=CD, cF

v U v v}
Ic Ac A, ¢ D= D

8

In our notations, the analogous assertion to Minkowski's
theorem for convex functions on graphs looks as in item 4) of
Theorem 4.8.

THEOREM 4.8. (65], [75]. 1) The following conditions are

equivalent: A = CA, A =CA,, A

s = CA, A, = CA

g/

2) A= A, -~ either A= I or A=F,

3) CA = CA, holds if and only if the intersection of every
collection of half-spaces in G is either empty or a half-space,

4) A, = D kolds if and only 1f G is elther a complete graph
or a simple chain,

5) A, = CD holds if and only if G is a complete graph,

6) CA, = D =~ CA = D,

7) if G is a finite graph, then CA, = CD holds if and only
if the intersection of every collection of half-spaces in G is
either empty or a half-space.

As a logical consequence of this circle of questions, we

will consider the family H, which is the smallest collection of

18
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functions on X containing a family H of functions and is closed
with respect to taking finite sums and finite supreme. We have
the relations
D=D,c CDcCD, c¢F
U v v v
I cAcA, CA < CA,

THEOREM 4.9. (75). The following implications hold:

1) A, = A «= A, = A,

2) A, =D =~ A, =D,

3) CA, = A -~ CA = A,

4) CA, = CA =~ CA_, = CA,

5) A, = CA =~ A, = CA, -~ A = CA,

6) A. = CD holds if and only 1f G is a complete graph,

7) the rfollowing conditions are equivalent: A = cD,, D = CD,
CA = CD,, G is a complete graph.

In connection with the above results, we formulate some open
problems.

PROBLEMS 4.10. 1) To determine conditions for the
feasibility of any of the relations:

a) D» I, CA, = CA, CA, =CD, CA, =CD,, CA, = F, CD, = F,

b) A, = CD,, CA, = CD, CA, = CD,, CD, = CD, CD, = F,

2) to determine conditions for the feasibility of the
following property: the intersection of every collection of half-
spaces 1In G is elther empty or is a half-space.

The remained part of this section is devoted to the study
of separation properties of convex functions on X. Below we
consider a graph G to be finite. A family H of functions on X

will be said to have separation property if for any disjoint
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convex sets Y, Z c X there exists a function f ¢ H such that
inf {f(x): x € Y} > sup {f(x): x € Z}.

I1 the set Y (respectively, 2Z) is a singleton, then we will
speak about upper (lower) separation property. 1If both sets Y and
Z are singletons, we will say that H separates vertices.

THEOREM 4.11. [75). 1) For the family A, separation
property, upper separation property, lower separation property,
and separation property for vertices are equivalent and hold if
and only if the graph G 1s either complete or a simple chain,

2) the following properties are equivalent:

a) D separates vertices,
b) D has lower separation property,
c) G is a chord graph,
3) the following conditions are equivalent:
a) D has separation property,
b) D has upper separation property,
c) G is a chord graph containing no subgraph (1).

4) a) CA separates vertices if and only if any two vertices
of G can be separated by some complementary half-
spaces,

b) CA has lower separation property +=- CA has upper
separation property ~= convexity in G is regular,

c) CA has separation property if and only if convexity
in G is normal,

5) CD has separation property.

Sometimes it is necessary to know about the existence in a

given class of a function satisfying the respective separation
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condition. We say that a real-valued function f on X satisfies
separation condition if for any disjoint convex sets Y, Z in X
one of the inequalities

inf {/(X): x e Y} >sup {/(X): x ¢ Z},

inf {/(X): x eZ} > sup {/(X): x e Y}
holds. If one of the sets Y, Z is a singleton, we speak about
weak separation condition.

THEOREM 4.12. [75]. 1) There exists a function f c A
separating vertices in X if and only if G is either a complete
graph or a simple chain,

2) there exists a function f c CA separating vertices in X
if and only if G is a chord graph containing none of the

subgraphs

3) the following conditions are equivalent:
a) there is a function f c D separating vertices in X,
b) there is a function f c CD separating vertices in X,
¢) G is a chord graph,
4) the following conditions are equivalent:
a) each of the classes A, D, CA and CD contains a
function satisfying separation condition,
b) each of the classes A, D, CA and CD contains a
function satisfying weak separation condition,
c) graph G is a simple chain*
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5. convexity of S8teiner functiomns. As we know, Steiner's
problem (or Weber's problem, in a different terminology) on a
graph consists in finding a minimum of a function

£(2z) = Lp(x)-d(z,x), (3)
where u(x) 2 0 and the sum is taken over the set of all verces
x € X. Unlike to the case of Euclidean space, functions (3) have
no "good" properties like convexity, which guarantee the absence
of local minima different from the global one. Therefore it is
reasonable to find the class of all graphs for which Steiner's
problem is confined to the scheme of convex analysis. An
analogous problem will be studied below for functions

F(z) = Lu(A)-d(z,A), (4)
where u(A) 2 0 and the sum is taken over the family of all convex
sets A in X.

THEOREM 5.1. [72], [79]). For a graph G = (X,U) the following
conditions are equivalent:

1) every function (3) is convex,

2) for every vertex x € X, the function p(z) = d(s,x) is
convex,

3) every function (3) is quasiconvex,

4) for any vertices x,, x, € X, the function

p(2) = pyd(s,x1) + ud(2z,x3), Hy,by 2 0
is quasiconvex,

5) G 1s a chord graph containing no subgraph of the form
(1).

From ?heorem 3.2 follows
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COROLLARY 5.2. Every function p(z) = d(z,x), x € X is
quasiconvex 1if and only if the following conditions are
fulfilled:

1) G contains no simple circuit isometric to C, or C,,
nzxze6,

2) if Qp(y) = {x} for some vertices x,y in a simple circuit
T ¢ G, then x is simplicial in the subgraph G(T).

THEOREM 5.3. (79]. For a graph G = (X,U) the following
conditions are equivalent:

1) every function (4) is convex,

2) for every convex set A c X with cardA < 2, the function
p(z) = d(z,A) is convex,

3) every function (4) is quasiconvex,

4) for any convex set A;, A, c X, with cardA; < 2 and
cardA, < 2, the function p(z) = d(z,A,) + d(2,A;) is quasiconvex,

5) G is a Husimi tree.

From Theorem 3.3 follows

COROLLARY 5.4. For a graph G = (X,U) the following
conditions are egquivalent:

1) for every convex set A < X, the function p(z) = d(z,A)
is quasiconvex,

2) for every convex set A < X with cardA < 2, the function
p(8) = d(z,A) is quasiconvex,

3) G contains no simple circuit isometric to C,, n z 4.

A function r : X - R 1is called strictly convex
(respectively, strictly quasiconvex) provided it is convex

(respectively, quasiconvex) and
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d(z,y) . d(x, z) .
£(z) < ?ﬂjzjﬁ-f(X) +-37;7;T £(y)

respectively, f;z) < max{f(x),f(y)}
for all vertices x, y € X (x'¢ y) and z € [x,y} \ {x,y} in case
£(x) » £(y).

THEOREM 5.5. For a graph G = (X,U) the following conditions
are equivalent:

1) for every vertex x € X, the function p(z) = d(z,x) is
strictly convex,

2) for any vertices x,, x,€X, the function p(z) = d(z,x,) +
+ d(z,x;) 1s strictly convex,

3) for every convex set A < X with cardA < 3, the function
p(z) = d(z,A) is strictly quasiconvex,

4) G is a complete graph.

THEOREM 5.6. For a graph G = (X,U) the following conditions
are equivalent:

1) for every vertex x € X, the function p(z) = d(z,x) is
strictly quasiconvex,

3) for every convex set A c X with cardA < 2, the function
p(8) = d(z,A) is strictly quasiconvex,

4) G is a Husimi tree.

THEOREM 5.7. [79). For a graph G with at most countable
number of vertices, the folloving conditions are equivalent:

1) every finite function (3) with p(x) > 0 for all x € X is
strictly convex,

2) G is a chord graph containing no subgraph (1).

THEOREM 5.8. The following conditions are equivalent:
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1) every finite function (4) with u(A) > 0 for all convex
sets A in X strictly convex,

2) G is a Husimi tree.

At the end of this section we put the following problem.

PROBLEM 5.9. For a graph G = (X,U), to determine conditions
for the feasibility of the following property: the function

f(z) =L {d(z,x) : x € Y} is convex for every finite set Y c X.

6.Convex sets in chord graphs. It was shown above that chord
graphs play a special role for metric convexity. In this
connection, we collect here different properties of convex sets
in chord graphs.

We say that convexity in a graph G = (X,U) has join property
provided

conv(A U B) = u {[a,b] : a € A, b ¢ B}
for any convex sets A,B in X, and that it has cone property it
conv(a v B) = u {[a,b]) ¢t b € B}

for every vertex a and every convex set B in X.

For any set A c X, put P(A) = v {[(x,Y] ¢ X, Yy € A}.

THEOREM 6.1. [7?]. For a chord graph G = (X,U) the following
conditions are equivalent:

1) convexity in G has join property,

2) convexity in G has cone property,

3) conv{x,y,2} = u {[(X,y] ¢ Vv € [y,2]} for any vertices
X, ¥, ¢ € X such that diam{x,y,z} < 2,

4) convA = P(A) for every set A c X,

5) convA = P(A) for every set A < X with cardA < 3 and
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diamA £ 2,

6) G contains none of the subgraphs

(6)

The following results complete Theorem 6.1.

THEOREM 6.2. [64]. For a chord graph G * (X,U) the following
conditions are equivalent:

1) conv(a u B) * u {[a,b] : b c B> for every vertex a € X
and every set B c X of diameter one,

2) conv{a,b,c} = [a,b] u [a,c] for every vertex a € X and
every edge (b,c) e U such that diara{a,Jb,c> £ 2,

3) G contains no subgraph (5).

THEOREM 6.3. [77]-. For a chord graph G - (X,u) the following
conditions are equivalent:

1) for any vertices x, y e X, the interval [x,y] is convex,

2) G contains no isometric subgraph
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AN

(7)
LEMMA 6*4, [64], Lot G * (X,U) be a chord graph. For any
pair of vertices X, y e X such that d(x,y) £ 2, the interval

[x,y] is convex.

For any sets A, B in X, the sets

A/B « {scXiBOFfu [z,a] : acA] * $},
A//B « {z € X B 0 conv(z uA) * 0}

are called, respectivelyweak and strong shadows of A relative
to B.

THEOREM 6.5. [64]. For a chord graph G = (X,U) the following
conditions are equivalent:

1) for any vertices a, b c X, the set a/b is convex,

2) for any adjacent vertices a, b € X, the set ar/b is

convex,

3) G contains no isometric subgraph (7) and none

®



V. SOLTAN

THEOREM 6.6. [64]. For a chord graph G = (X,U) the following
conditions are equivalent:

1) for every convex set B ¢ X and every vertex a e X \ B,
the set a/B is convex,

2) for any pairwise adjacent vertices a, b, ¢ c X, the set
a/{b,c} is convex,

3) G contains no isometric subgraphs (7)), (8), and no

subgraph

THEOREM 6.7 [64]- For a chord graph G « (X,C7) the following
conditions are equivalent:

1) for any disjoint convex sets A, B <X, the set A/B is
convex,

2) for every convex set A c X and every vertex b € X \ A,
the set A/b is convex,

3) for every edge (@,c) c U and every vertex b e X \ {a,c}
such that max{d(a,b), d(b,c)} £ 2, the set {a,c}/b is convex,

4) for any pairwise adjacent vertices a,b,c c X, the sets
a/b and {a,c}/b are convex,

5) G contains none of the subgraph (8) and
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(9)

THEOREM 6.8. [64]. For a chord graph G « (X,U) the following
conditions are equivalent:

1) for any pairwise adjacent vertices a, b, c¢c € X, the set
{a,c}/b is convex,

2) G contains none of the subgraph (6), (@), and

THEOREM 6.9. [64]-. For a chord graph G - X,U) the following
conditions are equivalent:

1) for any convex sets A, B <X, the set A/B is convex,

2) for every convex set A c x and every vertex b € X, the
set A/b is convex,

3) for every convex set A c¢c X of diameter two and every
vertex b € X, the set A/b is convex,

4) for every vertex a c X and every convex set B <X, the
set a/B is convex,

5) for every edge (a,b) c U, the set af{a,b} is convex,

6) G contains no subgraph
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Now we will discuss some separation properties of convex
sets. A half-space in X is any convex set A ¢ X with convex
complement X \ A. We say that two complementary half-spaces P,Q
separate sets A, B if A ¢ p and B ¢ (§, Convexity in X is called:

i) separating,

ii) regular,

iii) normal,
provided it is possible to separate by complementary half-spaces,
respectively:

i) any two distinct points,

ii) any convex set and any its exterior point,

iii) any two disjoint convex sets.

THEOREM 6.10. [64]- For a chord graph G the following
conditions are equivalent:

1) every semispace in G is a half-space,

2) G contains none of the subgraphs (2).

THEOREM 6.11. [77] - For a finite chord graph G the following
conditions are equivalent:

1) every half-space in G is a semispace,

2) G is a tree.

COROLLARY 6.12. For a chord graph G the following conditions
are equivalent:

1) convexity in G is regular,
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2) for every set B c X of diameter one and every vertex
a € B, the sets {a} and B \ {a} are separated by complementary
half-spaces,

3) for every set B c X of diameter one with at most four
vertices and for every vertex a ¢ B, the sets {a} and B \ {a} are
separated by complementary half-spaces,

4) G contains no subgraph (2).

THEOREM 6.13. [77]). For a chord graph G = (X,U) the
following conditions are equivalent:

1) convexity in G is normal,

2) any two disjoint edges (a,b),(c,d) € U such that the set
{a,b,c,d} has at most one pair of nonadjacent vortlcos, are
separated by complementary half-spaces,

3) any two disjoint parts of a set with at most four
vertices in X are separated by complementary half-spaces,

4) G contains none of the subgraphs (8), (9).

Note that some sufficient conditions for the separability
of vertices in a chord graph by complementary half-spaces are
studied in [63].

We continue with some combinatorial problems on convex sets
in chord grapha. Further S denotes the family of all convex sets
in G. Put

8, = {A ¢S5 : carddA =k}, k=0,1,...

THEOREM 6;14. [77). For a chord graph G, with n vertices,
one has cardsS, 2 n - k + 1.

1) cardS, = n - 1 if and only if G, is a tree,

2) for 3 < k < n -1, the equality cardS, = n - k + 1 holds
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if and only if G, 1s a simple chain.

For any vertex z ¢ X, call by a semispace corresponding to
£ any convex set in X \ {2} maximal with respect to inclusion.
It 1s known that the family of sets consisting of X and of all
semispaces in X forms the least base B of convexity; i.e., every
convex set in X can be represented as the intersection of some
elements from B, and every proper subfamily of B does not satisfy
this property.

THEOREM 6.15. (77). If B is the least base of convexity in
a chord graph G,, then cardB 2 n + 1. The equality cardB = n +1
holds if and only if G, is a complete graph.

Denote by P the family of all half-spaces in a graph G.

THEOREM 6.16. For a chord graph G,, n 2 4, one has
cardP > 6, For n = 4, the equality cardP = 6 holds if and only
if G, is either a chain or a star, and for nz5, one has cardP =
= 6 If and only if G, contains a complete subgraph K, , such that
every vertex in G, - K,_, is adjacent to all vertices in K,_, and
only to thenm.

For a set A c X, put

Po(A) = P(A), Py, (A) = P(Py(A)), k = 0,1,...
It is easy to prove that
A c Pj(A) € Pa(A) € ... c convA = u {P,(A) : k 2 0}.

This method of convex hull construction gives us the
following characteristic number for convex hulls: for any set
A © X, denote by B8(A) the least natural number k such that
convA = P,(A).

THEOREM 6.17. [77). For any vertex-set A in a chord graph
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Gn, n i Bne has 6(A) En-

Classical Helly [43], Caratheodory [15], and Radon [59]
theorems about convex sets in linear space became a starting
point for the following definitions. The Helly number of X is
the least natural number h satisfying the property: any finite
family of convex sets in X has a common point if and only if each
its h-membered subfamily has a common point. The Radon number of
X is the least natural number r such that every set A e
containing at least r vertices can be divided in two disjoint
subsets whose convex hulls have a common point. The Caratheodory
number in X is the least natural number c such that for every set
A cX

convA - u {oonvfl B c A, o8

THEOREM 6.18. [21]- The Helly number of convexity In a chord
graph G equals the density of G.

THEOREM 6.19. [21], [72]- it a is a chord graph with density
s, then for the Radon number r in G, one hast

D) 3 E£r£4 if £fm 2andr - 3 if and only it G is a
simple chain,

2) 4 £r £5 iffm 3, and - 4 if and only if G contains

no subgraph

THEOREM 6.20. [77]- Tor a chord graph G the following
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conditions are equivalent:
1) the Caratheodory number of convexity In is at most two,

2) G contains none of the subgraphs (), (6).

7. team siapl* and quasisimple plana.? graphs. From the
point of view of generalized convexity theory, graphs with the
most poor collection of convex sets are of certain interest.
Since any vertex, any pair of end vertices of an edge, and the
whole vertex-set X in a graph are convex, it is interesting to
study those graphs which contain no other convex set. In [59] the
following definition is introduced. A graph G & (X,U) is called
convex simple if every proper convex set in (i.e., a set
different from empty set and the whole X) has at most two

vertices. For example, the graph shown below is convex simple.

The class of all convex simple graphs is too large to have
a suitable description. Therefore we concentrate our attention
on planar convex simple graphs. The following theorem was first
proved in [60] for finite graphs.

THEOREM 7.1. [20]- A planar graph G different from the graph
of cube 0j is convex simple if and only if it contains no convex
set of three vertices.

The following theorem gives an interesting characterization

of convex simple planar graphs. Recall that means the
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family of all (respectively, all k-membered) convex sets in G.
THEOREM 7.2. [20}, (72), (78j. For a finite graph G,,
cardS 2 3n - 2, cardS, + cardS; 2 2n - 4.

The following conditions are equivalent:

1) cards = 3n - 2,

2) G, is different from the graph of cube Q; and cardS, +
+ cardSy = 2n - 4,

3) G, is planar and convex simple.

THEOREM 7.3. [19]). A planar graph G = (X,U) with cardX 2 5
different from the graph of octahedron F; is convex simple if and
only if it contains at least one vertex of degree 2z 2, and every
such a vertex has a unique dual vertex in G (a vertex z is dual
for x provided O(z3) = 0O(x)).

Now we are going to describe convex simple planar graphs.
Denote by T any tree with at least three vertices, and let T, be
a copy of a subtree formed by all the interior vertices in T.
Denote by L(T,Ty;) the graph containing T u T, with the following
additional edges: any vertex 2z in T, is adjacent to all the
vertices in 0(Z) and only to them (here ZeT is a copy of z and
o(z) = {v €T : v is adjacent to z }).

THEOREM 7.4. ([18). For any planar convex simple graph G
there is a tree T such that G = L(T,T,).

In connection with the previous theorem, there appears the
problem to describe those trees T for which th: graph L(T,T,) is
planar and convex simple.

THEOREM 7.5. (19]. For any tree T with at least three

vertices, the graph L(T,T,) 1s convex simple.

as
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The class of all trees T for which the graph is
planar is not described. We know only one particular result.

THEOREM 7.6. [19]. IT atree T has at nost
of vertices, then the graph L(T,T0) is planar.

We are interested to know about the uniqueness of the
representation of a planar convex simple graph in the form
L(T,Tq) for a suitable tree T.

THEOREM 7.7. [19]. For any trees S and T, the graphs L(S,S0)
and L(T,TO) are isomorphic if and only if S and T are isomorphic.

The obtained results permit a description of a more wide
class of graphs. By definition (see [11]), a graph is called
convex quasisimple if every proper convex set in generates a
complete subgraph. In other words, a graph is convex quasisimple
if the diameter of every proper convex vertex-set in G is at most
one.

THEOREM 7.8. [19]. A planar graph G is convex quasisimple
if and only iIf it contains no convex vertex-set inducing one of

the following subgraphs:

THEOREM 7.9. [17]- Any planar convex quasisimple graph G

contains a convexly simple subgraph.
Let Tb a tree with at least three vertices. Denote by J
the family "of graphs Rbtained from by the addi
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new edges in correspondence with the following rules:

1) the distance (in T) between the ends of any new edge
(x,y) is equal to two,

2) any new edge is incident to at least one end-vertex
of T,

3) for any end-vertex of T, its degree in R is at most
threé,

4) if one of the vertices of a new edge (x,y) is interior
for T and a vertex z lies between x and y in T, then deg,z = 2,

5) if T is not a star, then R contains no simple circuit
containing the snd-vertices of T only,

6) if T is a star and R contains a simple circuit containing
the end-vertices of T only, then this circuit contains all the
end vertices of T.

Let T, be a subtree, consisting of all the interior vertices
of a tree T. For any graph R ¢ R(T), denote by L(R,T,;) the graph
containing R, T, and tho.followinq edges: every vertex s ¢ T, is
adjacent to all the vertices in O(%) , where Z ¢ T means the
copy of £ and O(Z)= (v ¢ T : v is adjacent to Z}).

THEOREM 7.10. [{19]). For any planar convex quasisimple graph
G with cardX x 4 different from complete graph K,, there is a
tree T and a graph R ¢ R(T) such that G = L(R,T,).

THEOREM 7.11. (19). For any tree T with at least three
vertices and for any graph R € R(T), the graph L(R,T,) is convex
quasisimple.

THEOREM 7.12. (19]). If a tree T has at most countable number

of vertices, then for any graph R ¢ R(T) the graph L(R,T;) 1s
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planar.
THEOREM 7.13. {19]). Let S and T be some trees, Q € R(S) and
R € R(T). The graphs L(Q,S,) and L(R,T,) are isomorphic if and

only if S and T are isomorphic.

8. Characterisation of hyparcubss and Hamaing graphs by
means of convexity. Let S be any set. The graph of hypercube H(S)
is defined as follows (see [28)): the vertex-set of H(S) consists
of all finite subsets in S (the empty set inclusively); two
vertices A, B in H(S) are adjacent if and only if the symmetric
difference (A \ B) u (B \ A) of the sets A, B is a one-point set.

Below we assume that any graph isomorphic to a graph of
hypercube also is called a graph of hypercube. Observe, that for
a finite set 8§ with cards = k, H(S) is the graph of k-dimensional
cube.

It is not hard to prove that the function

d(A,B) = card[(A \ B) u (B \ A))
is the induced metric on N(S); i.e., d(A,B) is equal to the
number of edges in a shortest path in H(S) with the ends A,B.

A graph G is called median if for any vertices x, y, & € X
their *"median® [(x,y] N [y,8) N [x,2] conasists of a vertex.

THEOREM 8.1. [80). For a graph G the following conditions
are equivalent:

| 1) G is a hypercube,

2) G contains no three-vertex convex set, and any two

disjoint convex sets in G are separated by complementary half-

spaces,
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3) G contains no three-vertex convex set, and any two
vertices in G are separated by complementary half-spaces,

4) G contains no three-vertex convex set and convexity in
G satisfies cone condition,

5) G is a median graph and contains no three-vertex convex
sat.

For proof of Theorem 8.1 we use the following lemmas.

LEMMA 8.2. [4]. For a bipartite graph G the following
conditions are equivalent:

1) G is a hypercube,

2) every interval (x,y) in G generates a hypercube.

LEMMA 8.3. [54]. Any median graph G is bipartite. Every
interval {x,y) in a median graph G is a convex set.

The relation between hypercubes and median graphs is shown
in the following lemma. ‘

LEMMA 8.4. [4). A graph G is a hypercube if and only if it
ig median and any two.Vbrticaa in G have either two common
adjacent vertices or have no common adjacqq; VQFQiQOI,‘

Let {S,}, ¢ € I be a family of pairwise disjoint sets. The
Hamming graph H is defined as follows: the family of‘y,rtipos in
H coﬁsists of all finite subsets A cu S, such that card (A N S,)
< 1 for each ¢ € I; two distinct vertices A, B in H are adjacent
if and only if the symmetric difference (A \B) u (B \ A) of the
sets A, B is contained in one of the sets 5,, v ¢ I. If (8,} is
a finite familv of finite sets, then H is the Cartesian product
of complete graphs.

It is easily seen that for any vertices A, B in the Hamming
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graph H, the induced distance d(A,B) lcoks as

d(A,B) = Esign card([{(A\ B) u (B\ A)) nsS,).

Recall that for any vertex x € X and for any set M c X, the value

d(x,M) = min{d(x,u) : u € M} is called the distance from x tc M,

and the set

N (M) = {z €¢ M : d(x,2) = d(x,M)}

is named the metric projection of x on M. For 2 € M, put

We(M) = {x € X : N (M) = {3}}.

A set M c X is named Chebishev provided N, (M) is a one-

vertex set for every x ¢ X.

THEOREM 8.5. [80]}. A graph G is a Hamming graph if and only

if the following conditions are fulfilled:

1) every three-vertex set in G induced a complete subgraph,
2) every clique in G is a chebishev set,

3) for every clique C in G and for every vertex z € C, the

set W, (C) 18 convex.
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REZUMAT. - Medii g¢i convexitate. In lucrare se considerd o
notiune de convexitate in raport cu o medie de puteri, numitll
r-convexitate. Se generalizeazi inegalitatea lui Hermite-Hadamard
pentru functii cu inversd r-convexd aga cum in {3])} s-a procedat
pentru functii cu invers¥ logaritmic convexi.

1. Introduction. In this paper we consider a notion of
convéxity with respect to a power mean called r-convexity. We
generalize Hermite-Hadamard's inequality for functions with r-
convex inverse. Then we apply it for the study of the monotony
of the "relative growth" of generalized logarithmic means. We try
to analyse so the position of the mean values of two numbers
between those numbers.

As moust of the definitions and results which we need may
be found in the book of P. S. Bullen, D. S. Mitrinovié and P.

M. Vasié [1) we content ourself to refer mainly at it.

2. Means. We shall use in what follows some means of two
positive numbers O<a<b. They all belong to the familly of
extended mean values defined by K. B. Stolarsky (see (1], p.345)
for res, rs+0 by:

Ey4(a,b)=(.(r/8) (b5-a®) / (b¥-aF))1/(#7F)
the definition for other values being obtained by taking limits.
As special cases we have the power means:

Pr=Er,2r for r=o0

* Polytechnic Institute, Department of Mathematics, 3400 Cluj-Napoca,
Romania
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P.=E, ,y for r+o

and
Py(a,b)=G(a,b)=(a-b)1/2

then the generalized logarithmic means defined by:
L,=E1'r*1, for re-1, r«0

but

L_,(a,b)=L(a,b)=(b-a)/(logb-loga)

and
Lo(a,b)=I(a,b)=(1/e) (bP/a%)1/(b-a),
Also we use weighted power means defined for osts<l by:
P..(a,b)=(ta’+(1-t)b¥) /T if reo
and
Poe(a,b)=G,(a,b)=atbl-t,
For t=1/2 we get the usual power means and for r=1 the weighted
arithmetic mean P_ . =A,.

Among the properties of these means we are interested in
their monotony with respect to the parameter. So we have (see
{1), p.159) for r<s:

P..(a,b)<P,.(a,b), 0<t<l (1)
and also (see [1] p. 347):

L.(a,b)<L,(a,b). (2)

3. r-Convexity. Let us censider the following notion: we
said that the positive function f:(a,b]-R is r-convex if:
L(A (X,y))SP (f(x),f(y)), Vx,yela,b]), te[0,1].

As we can remark, this notion differs from a similar one given

in (1] called r-mean convexity.
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From (1) we deduce that if f is r-convex then it is also s-
convex for every s>r. Also from the definition we deduce that f
is r-convex if and only if: a) f* is convex, for r>0; b) logf is
convex, for r=0 and c) f*¥ is concave for r<0. Thus O-convexity
is in fact logarithmic convexity.

The paper [3]) deals with functions which have logarithmic
convex inverse. We consider also functions with r-convex inverse.
Let us denote by K;[(a,blhe set of positive, strictly increasing

functions with r-convex inverse defined on [a,b). We have:

K;la,b) < K,la,b) , for r<s. (3)

It is also easy to check the following:

LEMMA 1. If the positive function f is twice differentiable
then it belongs to K;[a,b] if and only if:

I'(x)>0 and 1+xf"(x)/f'(x)sr, V¥ xe(a,b] (4)

Inﬁegrating the differential equation obtained from (4) we
get functions which can be considered to be r-linear. As a
special case we have: .

LEMMA 2. The function f, defined by:

()

La B A
A WYV
[« =N =)

xl_at .
£, (x) =1{logx - loga ,
at -x*,

has the properties:

£,(x)20 , £L(x)>0 , 1+xf)(x)/fl(x) =, V x2a .

4. Hermite-Hadamard's inequality. For a function f:(a,b)-R

consider the integral arithmetic mean defined by:

47
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Aitta,b) = FF(x) .

Hermite-Hadamard"s inequality (see[l], p-30) gives for a
concave function T the evaluation:
¢ f(a)+f(b))/2"A(F;a,b)<fF((a+b)/2) (6)
Also H.-J.S e i f Ff e r t proved in [3] that for a function
from /£[a,i>] holds:
A(F;a,b) < i I {a,b) ) )
We remark that from (@) it follows:
1(a,b)=L0 (a,J>)<1 (a/Ib)~(a+Ib) /2
thus (7) improves the right side of (6) for this special case.
We can do the same thing for functions from with r*0.
In the proof of the relation (7) it is used the following

result, proposed as a problem by R. Eu 1 e r in [2]:

\IM
Lim TT (c+(i-1)/u) I(c, c+l) , V c>0 . (8)
\i-1
The expression from the first member of (8 1is a geoMtric mean
(of n numbers) . We can prove a similar relation to (8) for an

arbitrary power mean.

LEMMA 3. If r+0 and c>0 then:

¢
lim Lr(c,ctl) .

1B-

®

Proof. I1f r>0, the mean value theorem of the
differential calculus applied to the function Q)*(Xx+Dr+1, x>0,
gives:

(CDALrD/ (D) < 04D Ik (2= DD/ (D) @0)]
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For n>1/c, we get by addition:

< Lr(c,ctl)

hence (9). For r<0, r#-1, we have to do minor changes in the
proof, while for r*-1 we must replace (10) by:

log(x+2) -log(x+1) < (x+1) -1<log(x+1) -logx.
Finally we remark that the case r-0, excepted from (9, is
contained in (8).

Replacing () by (@ in the proof of (?) given in [3] we

get:
THEOREM 1. If thefunction F belongs to KI [a, B
A(F;a,b)*f(Lr(a,b)). v
Let us remark that the function fr defined by G)
verifies:
A(fr;a,b)-tr(Lira,b)). a2
We can improve also the left inequality from (6) for the
same class of functions.
THEOREM 2. If the function T belongs to Xj[a,Jb] then:
A(f}a,b) i - -
i(/® Qr-L/ (@, D) +F (Lf(@,b)-a))/ (bzaz) 1
if r+and
AEDEXL(a,b)-a)+F (b(b-a) (14

if r«o.

Proof. For tc[a,Jb] we have:
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LB -£(8) £y, £(E)-£(a)
£ =B Tr ey £ i £ (15)

So, if r>0, (£71)T being convex:

£(b) -£(¢t) _r, £(t)-f(a) pr

tT S FBf@ ° TEFB) ~F(a)

or

£e) » LDV -£(a) . bTf(a)-a’£(b)
bT-ar br-ar

It is also valid for r<0. By integration we get (13). For

r=0; log(r~!) is convex and (15) gives:

E£(b) -£(E) ) oo, £(E)-£(a)

log t < HHy—F(a) F(b)-£(a)

logb .

Isolating f(t) and integrating we get (14).

5. The relative growth. We consider the following

expression:

Lf(a,b)-ar

- , %0
D‘r (a,b) = brf-ar
b-I‘i)(-aa b) ! r=0 .

which we call relative growth of L.. It is easy to see that:
0sD,.(a,b)<1, Vr; D,(a,b)=1/2.
THEOREM 3. If r<s and O<a<b then:
D,.(a,b)2D,(a,b). (16)
Proof. As the function f, given by (5) belongs to KX;[a,b]
and r<s, from (3) it follows that it is also in Kk [a,b] and so
(12), (13) and (14) implies:
A(f ;a,b)=f . (L.(a,b))2f,.(b)Dg(a,b)
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which gives (16). In fact we must consider separately the cases:
0<r<s, 0=r<s,r<s=0 and r<s<0.

Remark 1. From (@ it follows that the evaluation given by
(11) is improved by decreasing the value of the parameter r. The
same conclusion is valid for (3) and @4) if we take into
account (16). On the other hand, from (4) we deduce that for a
strictly increasing and continuously twice differentiable
function, there is a sufficiently large r for which (11) and (13)
be valid.

Remark 2. An inequality similar to (16) for power means was
proved by A.J.Goldman (see [1], p-203). On the other hand we
remark that (16) contains many inequalities between means. For
example, for r>1 it is equivalent with Lr(@,XJ)iPr(a,b) and for
O<r<l it gives Lr(a,b)£Pr§ For r<O<a we get:

Ertr+l1(a,b)iL(a,b)iEatB+1(a,b) .
All these relations may be found in [1]. He also have:
Lr+l(a,b)L(a,b)iG3(a,b), for r<-1 but the
inequality for -1<r<0.

Remark 3. From O£Dr(a,b)51 we deduce that it may be

preferable to use instead Dr the differences 172, that is:
L/ @, byPf(a,b) ~ > A(a,b) -L(a,b)
br-al " b-a "

where A-A"j. These are between -1/2 and 1/2 and are decreasing

upon r, as Dr is,

51
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REZUMAT. - Teoreme de punct fix in spatii cu metrick vectorialid.
In aceast3 lucrare se stabilesc trei teoreme de punct fix in
spatii cu metric¥ vectorialld analoge teoremelor de punct fix pe
spatii metrice demonstrate in lucrarea (3]).

1. Notions préliminaires

DEFINITION 1.1. Soit X un ensemble ordonné. Une suite
{X,}peN 4'€léments de X (0)-converge vers un &l&ment xeX s'il
existe deux suites {a,},.N et {b,},N d'éléments de X, telles que
a,<x,<b, (V) neN et a,tx, b,ix.

Nous désignons par x = (0) - limx, ou x, 2 x .

DEFINITION 1.2. Un ensemble ordonné X s'appele ensemble
réticulé si pour tous x,yeX (donc aussi pour tout nombre fini
d'édléaments) il existe xVy et xAy.

DEFINITION 1.3. Un ensemble réticulé X s'appelle ensemble
réticulé relativement complet si pour tout sous-ensemble
denombrable borné de X il existe la borne supérieure et la borne
inférieure.

DEFINITION 1.4. On appelle espace linéaire complétement
réticulé tout espace linéaire ordonné& qui est un ensemble
réticulé relativement complet.

DEFINITION 1.5. Un espace linéaire ordonné X est appellé
espace archimédien si A%x =0 pour tout x>0, xeX.

DEFINITION 1.6. Dans un espace linéaire réticulé archimédien

Civil Engineering Institute, Bd. Lacul Tei 124, 72302-Bucarest,
Roumanie
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X une suite {x,},.,N d'éléments de X p-converge (ou converge avec
régulateur) vers un é&lément x, s'il existe v>0 (appellé
régulateur de convergeance) tel que: pour tout nombre e>0 il
existe n,eN de maniére que:

|x,~x| < ev si n2n,
on note x = (p) - limx, (ou x, £. x)
si x=(p) - limx, alors x = (0) - limx,

DEFINITIOﬁ 1.7. On appelle es;ace régulier tout espace
linéaire réticulé archimedien tel que: tout suite (0)-convergente
est (p)-convergeante.

2. Définitions et notations. Soit X un espace linéaire
complétement réticulé et Z+e un ensemble. On définit une métrique
vectorielle d: ZxZ-X et pour AcZ on note le diamdtre de A par
§(A) = sup{d(z,;,2,)/%,,3,€A}.

DEFINITION 2.1. On dit que l'ensemble BcZ est d-fermé si
tout {2,},.N; 2,€B, z, 4 z implique zeB.

(11 2z, 8 2z = d(z,2) 20)
DEFINITION 2.2. Soit BcZ. Définissons par:

B = izeZz / z=d-limz, , z,€B }
n

LEMME 2.1. Si Z est d-complet la suite {B,}{, B,<Z,
B, d-fermé et &§(B,ji0 alors il existe z,¢B unique tel que

n[:an = {z,)

DEFINITION 2.3. Soit 1'ensemble 2Z+e d-complet. Une
application f: 2-+Z s'appelle application de Picard s'il existe
z"€Z telle que Fix(f) = (2"} et la suite {f?(z,)},N d-converge
vers 3" pour tout zge3.

DEFINITION 2.4. Soit 2Z#e un certain ensemble. Une
application r:2-+Z est une application de Janos si
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N £7°(2) = {z'} o ({z°} = Fix(f)
neN
DEFINITION 2.5. Soit Z+#e un certain ensemble, f,f : 2-2,
neN. La suite est assimptotiquement uniformément convergente
(designons par f, :a:; £f) s8'il existe v>0, veX tel que pour tout
e>0 il existe ng(e), my(e)eN tels que d(f,)(z),£™(z)) < ev pour
tout n>ng, m>m, et zeZ.
3. Théordmes de point fixe dans les espaces avec métrique
vectorielle.
THEOREME 3.1. Soit X un espace linéaire complétement
réticulé, Z»e d-complet, f: 2Z-Z et ¢:X,~X,. Nous supposons que:

(i) @ est | et @7(t) Q. 0pour t> 0 et n~ o

(c'est - & ~ dire: ¢ est function de comparaison)
(i1) &(f(A))<se(6(A) pour tout AcZ tel que f(A)cA
' (c'est - & - dire: f est (5,9#) - contraction generalisée)
Alors:
(a) £ est application de Picard
(b) f est application de Janos
Démonstration a) Soit A, = T(2), A, = T(A]J,..., A, = TUA]T
Alors nous avons: Anﬂ&An, A=A, et f(A,)cA, pour tout neN.
D'autre part:
8(A,,,) =8 (FTAT)=8(L£(A,)) <@ (8(A,))<@*(8(A,,))<...<9"(8(2)) 20
Donc &(Ap,;)40. Alors d'aprés le LEMME 2.1 il existe z'ez
unique tel que [)A,=(z°} et f nA,J c (1A, . donc Fix(f)={z"}.
Soit zp€Z et Bnn-'l{f,“(zo) (Y, 0, 2% . conme
£(B,) = {f"1(z,),r"%(3,), ...,2"} = B,,,<B, et
§(B,) = §(f(B,))<e(8(B,)) 11 résulte que &§(B,) !0 pour n-w,.
c'est - & - dire f7(z,)~z", ne
b) z‘eq'f"‘(z) c nAn = {z*} et donc Qf”(z) = {z'} q.e.d.
nEl n=1i ne

THEOREME 3.2. Soit X un espace liné&aire complétement
réticulé Z#e d - complet, f: 2Z-Z une application ayant la
proprieté suivante: il existe nkeN" tel que f™ solit une (8,¢)
contraction generalisée.
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Alors:
a) f est une application de Picard
b) f est une application de Janos

Démonstration (a) + (b). Dans le théoréme 3.1. nous avons
Fix (£f™) = {z*} et 38(f™(2))10 pour k-0 D'autre part:
Z2£(2)>f*(2)>...2£™(2)>... donc [)£™(2)={z'} q.e.d.

nel

THEOREM 3.3. Soit X un espace linéaire complétement réticulé
et régulier, 2z d - complet et f, f,: Z2-Z neN. Supposons que:
i) f est une application de Picard (On note Fix (f) = {2"})
ii) £, ¢
iii) Fix (f,)»e pour tout neN (On note Fix (f,) = {z,})
Alors: z, 4. z°*

Démonstration. Nous avons:

d(z,, 2*) =d(f,(2,),2z*)=d(£f)(2z;),2") ¢
<d(£](z*), £F™(zy)) +d(£2(z)),2°*)

D'aprads (ii) il en résulte qu'il existe v>0, veX tell que pour
tout e>0 ils existent ny(e), mg(e)eN:
d(f;(z,) , £™(2,)) < %v quel que soit n>ng(e); m>mgy(e).
D'aprés (i) il en résulte que pour tout neN nous avons:
d{f=(z;),z*) 2 0, pour mm,
L'espace X etant régulier il existe un régulateur de

convergeance w2v tel que: (V)e>0 il existe m(e,n)2my(e) tel que:
d(£f=(z;),z*) s %w (V) mzm(e,n)
Donc on obtient:

d(z,, z*) < %v»*-—;v < ew pour tout nxng(e)
ponc: z, 4 z+ =
q.e.d..
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REZUMAT» - O noua seria Fourier exponential-Laguerr# pentru
H-functiile lui FOX. in aceastd notd este prezentatid o noua eerie

Fourier exponential-Laguerre pentru H-functiile lui Fox, in doua
variabile.

1. Introduction. The object of this paper is to introduce
a new class of double Fourier Exponential-Laguerre series for
Fox®"s H-function [4] and present one double Fourier series of

ethis class.

In what follows for sake brevity:

fj*B.
Jn*X

The following formulas are required in the proof:

The integral [1,p.704,(2.2)]:

JN*cos2ux|sin-j| z|sin-§j ** <ap,fq)

1-wl-2u,h) , ,ep), (I-wl+2u/h
e H ¢ D) . (@.ep), ( )) 11

742 (~-wlfh), A& fg), (1-wx,h)

where h>0, A£0, B>0, |Jargz|< 1/2Bn, Re[1-2wI*t2h(1-a™)/en]>0,
@y8! 9»ee n) =
The integral [2,p.711,(2.3)]:

*» Department of Mathematics, University of Bahrain, p.o.Box 32038, Isa
Town, Bahrain
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- (a,, e,)
wy+a ’-VL: Hm”{ k PP ]d =
[yeeriimmgday | o7 & |
( 1) m,n.2 ( W2 a, k) ’ ( wglk) ’ (a ep) (1.2)
p02 q’l f ) ’ (V'wzlk) ’ !

where h>0, A<0, B>0, |argz|<1/2Bm, Re[wy+a+kb;]>=1 (7j=1,2,...,m),
Rea>~-1.

The orthogonality property of Laguerre polynomials [3,p.292-
293, (2) & (3)):

0, m*n, Rea>-1;

e ag-xy @ a = 1.3
fox e L, (X)L, (Xx)dx r(a;,l;+1) | m=n, Rea>O. (1.3)

The following orthogonality property:

0, msn
f"e“’“"cosznxdx= —’2‘—. m=n#»0 (1.4)
(o}

{n, m=n=0.

2. Double Fourier Exponential-Laguerre series. The double

Fourier Exponential-Laguerre series to be established is

(a e)]

(sing) My tHpE £)

z(sin%) “2hy Kk

- 2 - (‘1)': irxy & .
L Tlasemy & LD (2-1)

(1 w]_ zrlh) ’ (-wa-ark) I‘(_wz‘l k) ¢ (ap’ ep) ¢ (1—Wl+21',h)
(5 -Hy,h), (by, £5), (1-wy, B}, (€=, KO)

1,n+3

X Hpii/ge3|2

valid under the conditions of (1.1), (1.2), and (1.3).
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Proof. To establish (2.1), let

(a,, ep)
£)

S §

£f(x,y)= (sing) 2 y"*h,:{'glz (sin-’z—‘) “2hy K

= E Ear,cezkxl'c.(}’) . (2.2)

I=-w t=0

Equation (2.2) is valid, since f(x,y) is continuous and of
bounded variation in the region 0 < x < m, 0 < y < o,

Multiplying both sides of (2.2) by y%*eYLJ'(y), integrating
with respect to y from 0 to «, and using (1.2) and (1.3), we

obtain

("wg'ark) ’ (wglk) ’ (apl Op) -
(bql fq) ’ (V"walk)

(-1) "(sin%) s Hp.’z",’g,z[z(sin—g—) -2h

=Y a4, ,T(a+vel) e2ie (2.3)

Lm-

Multiplying both sides of (2.2) by cos2ux, integrating with

respect to x from 0 to 7 and using (1.1) and (1.4), we get

- 2(_1)v (2.4)

Au,v
vyIn) T(a+v+l)

(1-w1-2ulh) ¢ ("wz—alk) ’ ("wgl k) ’ (apl ep) ¢ (1-wl+2u:h)

me+l, neld
X Hpwa a2 (%—wl,h), (bg, £, (1-w;, h), (Vv-w,, K) ‘

except that Aq , is one-half of the above value.
From (2.2) and (2.4), the formula (2.1) is obtained.

Since on specializing the parameters the H-function yields
almost all special functions appearing in applied mathematics and
physical sciences. Therefore, the result presented in this paper
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is of a general character and hence may encompass several casses

of interest.

1.

3.
4.
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REZUMAT. - Razele de aproape convexitate ale unor functii. in
lucrare sint determinate razele de aproape convexitate ale
functiilor sinus integral si sinus hiperbolic integral,
folosindu-se conditia de aproape convexitate a lui Kaplan.

1. Preliminaries. Let / be an analytic function in the unit
disk U. The function / is said to be convex if it is univalent
in U and if F(U) is a convex domain. The function f is said to
be close-to-convex if there is a convex function f on U such that
Re(F1(2)/v* @) > 0 for zeU. Using a well known criterion of
univalence, due to Ozaki and Kaplan, it follows from definition
that every close-to-convex function 1is univalent 1in U. The
following theorem is also due to Kaplan and gives a necessary and
sufficient analytic condition for close-to-convexity.

THEOREM 1 [1]- An analytic function f in U is close-to-

-convex if and only if 9 is a nonvanishing function in U and

for every rc(0,1) and 0Mt1<t2<r.

For a function / which is analytic around the origin we
define its close-to-convexity radius as being the radius of the
largest disk centered at O in which f is close-to-convex. It is
obvious that the problem of finding the close-to-convexity radius

of f is the same with that of determining the maximum value of

University of Cluj, Faculty of Mathematics, 3400 Cluj-Napoca, Romania
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the real and positive parameter A for which the function
g(z)=f(Az) is close-to-convex in U.

Finding the close-to-convexity radius of a function is
important as an independent problem and also because in this way

is obtained a lower bound for the radius of univalence.

2. Main problem. We deal in this note with the problem of

finding the close-to-convexity radii for the functions

8i(2) =Lzsi:tdt, z€C

Shi (z) =L‘9‘tht, zeC

Note first that these functions have the same close-to-
convexity radius, denoted by rgy. This becomes clear from the
relation Shi(z)=Si(iz)/i. The nonvanishing condition for the
derivative implies that rysw.

Letting A = {(t,,t;):0st,<t,<2m} Theorem 1 applied to these

functions now gives

I,(t, t,) = f:'Re(zctgz)dt > -n (1)
1

I(t,.t,) = f:Re(zcthz)dt > -x (2)

where z=rei’, for every r € (0,ry) and (t;,t;) € A.
If we put
X=x(t)=rcos(t), y=y(t)=rsin(t)
g; (t)=ysh(2y)+xsin(2x), g,(t)=xsh(2x)+ysin(2y)
hl(t)-ge(z ctg z)=g,(t)/(ch(2y)-cos(2x))
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h,(t)=Re(z cth z)=g,(t)/(ch(2x)~cos(2y))
then the functions g,,h,,9,,h, are even, periodical of period
and verify the relations

g;(t)=g;(n-t), h;(t)=h;(n-t), sgn hy=sgn g;, j=1,2 (3)

ga(t)=gy(t-n/2), hy(t)=h,(t-n/2).

Using the well-known inequalitis sin(a)/a < 1gsh(b)/b,
cos(a) < 1sch(b), a,beR” and the sign of g{ if follows that g,
increases on ([0,7/2], decreases on [n/2,%n), and rsin(2r) <
< g,(t) < rsh(2r). Consequently relations (1), (2) are fulfiled
for r < m/2 because g5 and hj are positive, so r; € (n/2,n).

Using the sign of h; it follows that the minimum points
(t;,t;) of I, with respect to & verify t;, e {0,m-tgy, 2n-t;),

t, € {ty,n+ty,2n} where t, = ty(r) is the unique root of the
equation g, (t) = 0 situated in (0,7/2). Aplying relationé (3) we
finad

I,(0,tg)=I,(2m-ty, 2m) =I, (m-ty, m+ty) /2<0

I, (n-tgy,2m)=I,(0,n+ty).

So the minimum points (t,,t,) of I, with respect to A
satisfy the relation (t,,t;)e{(0,m+ty), (n-ty,m+ty),(0,2m)}. We
distinguish two cases:

a) If I,(0,m-ty)20 then I, (n-t,,m+ty)SI,(0,M+t,)sI,(0,27) 80
min{I,(t;,ty)t(t;,t;)ed}=min{I,(t;,t;y):(t,,¢t,)e€ Ay=I, (m-tq, n+ty).

b) If I,(0,m-ty)<0 then I,(0,2m)<I,(0,n+ty)<I,(n=tq,M+ty) SO
min{I,(t;,ty):(t;,t0e B }=inf{I;(t,,t;):(t,,t,)€A}=I,(0,2m).

Consequently, with a previous use of relations (3), tye
close-to-convexity condition (1) for the function Si and for a

fixed r becomes
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I,(0,tg)>-w/2 and I,(0,m/2)2-/4. (4)
consider now the case of the function Shi. Denoting by
cé=té(r) the root of the equation g,(t)=0 situated in [0,7/2] we
have by (3) that to+té=n/2.Usinq again (3) and proceeding in an
analogous way as before it follows that the minimum value of I,

with respect to A may be

I, (ty, ®m~tg) = 2I,(t;,n/2) = 2I,(0, ¢,

or

I, (tg,2x-t3) = I,(0,®)+2I,(t5,x/2) = 2[I,(0, t,) +I,(0,%/2)].
So, the close-to-convexity condition (2) for the function
Shi and for a fixed r becomes
I,(0,ty)>-n/2 and I,(0,ty) + I (0,w/2)>-m/2. (5)
It follows now, from (4) and (8), that the following
conditions are fulfiled when r equals rg,:
I,(0,ty)=-n/2 or I (0,n/2)=-m/4 (6)
I,(0,tg)=-m/2 or I,(0,ty) + I,(0,m/2)=-m/2. (7)
Presuming that I,(0,t,)>-n/2 for r=r, we obtain from (6) and
(7) that I,(0,n/2)=-n/4 and I,(0,ty) + I,(0,n/2)=-n/2, SO
I,(0,ty)=I,(0,n/2)=-n/4 which is impossible because h, is
negative on [o,t;] and positive on {[tg,n/2].
Finally, the close-to-convexity radius r, of the functions

Si and Shi is the smallest root, situated in (w/2,7]), of the
egquation

o % ysh(2y)+x8in(2x) ;. _ _ =&
I, (0, (1)) fo ch(2y) -cos (2x) at 2

where x=rcoa(t), y=rsin(t) and t,(r) is the unigue root of the
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equation ysh(2y) + xsin(2x) = 0 situated in (0,m/2).

An approximative value obtained for r, is ry~3.1411...
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GENERALIZED PRE-STARLIKE FUNCTIONS
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REZUMAT. ~ Functii prestelare generaliszate. Lucrarea se ocupk cu
functii prestelare cu mai multi parametri, de ordinul a g¢i tipul
B. Sint stabilite unele inegalitXt{i privind coeficientii acestor
functii.

Introduotion. A function f(z) normalised by £(0)=f!(0)-1=0
is said to be in the class S if it is analytic and univalent
in the unit disc U={2z:|z|<1}. A function f(2) -z+2 a,z”is saiad
to be in the class of functions starlike of org;r a, Osa<l,

denoted by s"(a), if

Re{-z—tf—'(’-%}za (z€U)

Further we say that f in S belongs to the class S(a,B) if
f satisfies

| zf'(z) _,
£(2z) B
z£/'(2) .. _

I-—FT;T-+1 2a

where 8¢€(0,1), Osa<l.
The convolution or Hadamard product of two power series
f(z)af:anz" and glz)*Z:thz” is defined as the power series
nel = n=0

ftg(z)-z;anbnz" . A normalised analytic function is saiad to be
n=

in the class of functions prestarlike of order a and type 8,

* Department of Maihematics, Willington College Sangli, Naharashtra State,
India
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0sa<l, Be(0,1), denoted by Rf, if f*S, peS(a,B) where S, g=z(1-
Bz)~2(1"@), For B=1 we get the class R, introduced by Ruscheweyh

(2].

Main Results. We need the following lemma due to Kulkarni
S.R. [1]:

LEMMA: Let f be in S(a,B8), then for z in U

zf/(z) |, 1-P(1-2a) 1
Re{ £(2) }> B 1

We also need,

LEMMA: Let

S,,p=2(1-Pz) 2% =243 " y(n,«,B) 2", then

n=2

n

II [B(k-z«)] (2)

y(n,a,6p)=22 TR for n=2,3,4, .

Proof: We have

S=z(1—ﬂz) -2(1-a) _

n

- II B (k-2a))

=Z[1+ =2 zn-l =
,,Z, (n-1)!

n

Hence the result follows.
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THEOREM 1. Let f be in R}, then

1 \
Re{G(2)} > T+P (3}

where

£ _z_)
G(z) = ( (1-pz)>2

- P4
(1_32)2-20)

Proof : Since f is in R: , F=f*S, n belongs to S(a,B)

Re{zf’(z)} , 1-p(1-2a)

£(2) 1+p
zf'(z) . _ 2(1-a)
Re{w*‘l 2“} > __l‘l‘ﬂ

We have
F(g) = f*sa’,,(z)
ZF'(g) = f*z(sa'ﬂ(z))'

ZF'(2) . 5 . oy Fx(z(1-p2) "3-3%)
Flz) 20 = 2 e (i pa) 6o

Hence the result follows.

THEOREM 2. If f(z) -z+}_; a,z” be in R? and
ne=
Sa,n = #(1-Bz)~2(1-a) then

n-1
1+Y laly (k, a,B)

k=2

Bn-1+z; Bn_k‘Y (k,a, p)

|2, <

Proof : In view of Theorem 1, we can write
with |b,| <1 .
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f*(Z('-PZ) ): Vl*/'_ribnz (4)
=

Equating the coefficients of z74 in the power series expansion

of (4), we have,

7

Whence the result.

Note : For 0-1, we get the result of Silverman and Silvia

[31-
ACKNOWLEDGEMENT : My thanks are due to Prof. Silverman and

Silvia for their valuable discussion.

REFERENCES

1. Kulkarni,S.,R, : Some problema connected with univalent functiona. Ph.D
thesis. Shivaji Univ. Maharashtra State, India.(1982)

2. Ruscheweyh i Linear operators between classes of preatarlike functions.
Comm. Math. Helv. 52(1977) pp-. 497-509.

3. Silverman & Silvia s The influence of the second coefficient on
preatarlike functions. Rocky Mountain Journal of Maths, vol 10,

no.3(1980).

70



STUDIA UNIV. BABE$-BOLYAI, MATHEMATICA, XXXVI, 4, 1991

ON A PARTICULAR n-a-CLOSE-TO-CONVEX FUNCTION
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REZUMAT. - Asupra unor functii n-a-aproape convexe. In lucrare
sint stabilite citeva propriet3ti ale unor functii n-a-convexe.

1. Introduction. Let A be the class of functions f£(z) which
are analytic in the unit disc U={zeC : |z|<1}, with £(0)=r'(0)-
-1=0. In [2] the author defined the class Kp,a(6), the class of

functions feA which satisfy

Re| (1-a) B21L(2) o DTIf(e) |y ey
DPf(z) Dn*1f(z)

-1 (n)
where a20, §<1 and D“f(z)a———-’:———*f(z)zz(zn £(z)) ™
(1-2z)7? n!

where (*) stands for the Hadamard product (convolution) of power

’

series, i.e. if r(z)= ;:rjzj and s(z)= ;;sjzj, then
(r*g) (2) = ;:zgsjzi.

Note that the classes K, ,(6§) and Z,(§)=K, o(§) were studied
in [2] and the classes Kh'a(l/z) and 2,(1/2) were introduced by
H.S.Al-Amiri [1]) and S.Ruscheweyh [7] respectively.

We denote by AC,(8) (the class of n-close-to-convex
functions of order &) the class of functions feA which satisfy

o 2 E2) 5
Dn’lg( Z)

€U

where geZ,.,(68), <1 and let Ch,a(S) (the class of n-a-close-to-

University "Aurel Vlaicu", Department of Mathematics, 2900 Arad,
Romania .
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convex functions of order §) the class of functions feA which

satisfy

(1—a)‘Dndf(2)+a‘anf(z) >8

Re
D"‘lg(z) D"’zg(z)

, Z€U

where geZ,,,(8), §<1. These classes were introduced in (3] and we
have presented in (4] .some properties by using sharp
subordination results from ([S5] and ([6), and the classes
Cn,all/2), AC,(1/2) were studied in {1)].

Let yeC with Re y>-1 and tg(z)=§:-%§;zj. In (7],

i

S.Ruscheweyh showed that if Re y 2 (n-1)/2 and feZ,(1/2), then
f*b, € Z,(1/2).

In [4) we presented some new results concerning this

function and in this paper we will give other new properties of

the function b, (z).

2. Preliminaries. We will need the next lemmas to prove our
results.

LEMMA A. [4, Theorem 3). Let y>-1 and

- n-y 2n-y
6,= max {n+1 ) 2(n+1)} £8<1.

If fez,(8) then f»b€Z,(§(n,v,8)) where

3(n,v,8)=

1 +1 _
n+1 [F(1,2(n+1)(1-5).Y+2;1/2) y+n]

and this result is sharp.

LEMMA B. [4, Theorem 4]. Let y > -1 and
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n-y+1 2n-y+2 2n-y+3
max { n+2 ' 2(n+2)} <8< 2 (n+2)

If f€AC,(8) related to geZ,,,(§) then f*breACn(S) related to
g*byezn+1(6).

3. Main results.

THEOREM 1. If -1 < y < 0, then fez,,(%‘{-) implies that

f‘bvez,,(g (n,y, ﬁ» , where

- n-y 1 L(y+3/2) n-y
n,y., = +
8\ Y (n+1)yx T(y+1) n+1
and the result is sharp.
_ n-y 2n-y . n-y
Proof. If -1 < y £ 0, then max{n+1 P 2(n+1)} vE) and

by using Lemma A for § = (n-y)/(n+l) and a simple calculus we

obtain our result.

THEOREM 2. If y 2 0, then fez,,(s?—(ﬁ-:{-)-) implies that

2n-y+1
ftkgezn(z(n+1)

and tbis result is sharp.

n-y 2n-y . _2n-—y |
Proof. If y 2 0 then max{n+1 ' 2(n+1)} Z a1y ¢ taking
) =-§%%E¥T in Lemma A and using the well-known relation
sg)m - ~ 2n-y |\ . 2n-y+1
F(l,a,a,;2)=1/(1-2) we have sin. v, Z (o) 2 (n+1) and we

obtain our result.

Taking y = 0 in Lemma A we obtain the next result.

COROLLARY 1. Let 7:%1"“1 and f€Z,(8) ; then
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f+by€2,(§(n,0,8)) , where

1 [1-2(n+1)(1-6) m] for w_20%1

§(n,0,8)=] A1l 2-22enOW 2(n+1)
1 1 2n+1
S S O S £ =_2n+1
n+1[ 21in2 ”’] . for 8=

and this result is sharp.

Taking n=0 in the above corollary we obtain:

/
COROLLARY 2. Let 0 £ § < 1 and feA with RO-ZTI?(%ZOB . Z€U.

/
Then Ro-z—;(—(z-%)—>§ + ZEU where

28-1 1
—_2_22(1-6) ’ for 6‘3

-~

1 1
—_—, d=—
zinz ¢ for 8=3
and F(®s)=f(3)*bg(z) , and this result i1s sharp.
Considering n=0 and é=0 in Lemma B we obtain the following

result:

7
COROLLARY 3. Let 2sy<3 and f,geA. Then Re-L{Zl,0, zev,

Mz) i, 22
where Re(1+—zg-—z—J> -1, z€U implies Re—2) 50, zeU
g/(z) G/ (z)
"
where Re(1+£(%(i-‘:-)—)>-1 , Z€U and
z

F(z)=f(Z)*b,(2) , G(5)=g(s)*b, (5).
Taking n=0 and é6=1/2 in Lemma B we obtain the next result:

COROLLARY 4. Let 0<y<l and f,geA. Then
/ " \
rRe L2yl  ;eu where Re(1+ zg_(z) ))0 , Z€U implies

(z) 2 g'(2)
! "

Re—i-'—if)—>—1— , 2€U where Re(1+£q—§ﬂ)>0 , ZEU ano
G'(z) 2 @' (z)
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F(z)=f(2z) »b,(2) , G(2)=g(2)+b,(2).

Considering n=0, y=0 in Lemma B and y=0 in Theorem 2 we

obtain the next two results concerning f*b, respectively.

COROLLARY 5, Let 1/2 < § < 3/4 and f,geA. Then

/ "
re-£ (2) (z; >8 , zeU where Re(1+—w)>26—1 , z€U implies

g'(z

G'(z)

g'(z)

G'(z

/ "
Re-£{2) 53 | zev where Re(1+ZG—(Z)))>25‘1 . Z€U and

F(z)=£(z) *b,(z) , G(z)=g(2z)*b,(z).

COROLLARY 6. If fez [-B-)\ then fsb,ez (271 _
2\ n+1 0=%n\ 2(n+1)

and this result is sharp.

1.
2.

3.
4.

REFERENCES

H.S. Al-Amiri, Certain analogy of the a-convex functions,

‘Rev.Roum.Math. Pures Appl., XXIII,10(1978), 1449-1454.

T.Bulboack, Applications of the Briot-Bouguet differential
subordination, /[to appear/.

T.BulboacX, Classes of n-a-close-to-convex functions, [to appear/.
T.Bulboacl, New subcasses of analytic functions, Seminar on Geometric
Function Theory, Preprint 5(1986), "Babeg~Bolyai" Univ. Cluj-Napoca,
13-24,

§.8.Miller and P.T.Mocanu, Differential subordinations and univalent
functions, Michigan Math.J., 28(1981), 151-171.

P.T.Mocanu, D.Ripeanu and I.§erb, The order of starlikeness of certain
integral operators, Mathematica (Cluj), 23(46), No.2(1981), 225-230.
S.Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math.
Soc., 49(1975), 109-11S.

75



STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXVI, 4, 1991
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REZUMAT. - Asupra unei subordoniri diferentiale Marx-sStrohhiicker.
Fie A clasa functiilor f, £(0) = £'(0) - 1 = 0, analitice in
discul unitate U. Fie g o functie univalentd in U, cu ¢g(0) = 1.
Presupunem ci sint verificate conditiile (5) gi (6), unde h(s) =
= g(2z) +zg'(2)/q(z). Rezultatul principal al lucririi afirmi ck
dacX feA gl zf"(z)/f’'(2) < zk"(2)/k’(2) atunci zf'(2)/f(2) <

< zk’(2z)/k(z), unde k este definitd de (9). Se consider¥ cazul
particular k(z) = (e’ - 1)/A unde [A] s a.

1. Introduction. If the function f with rf'(0) + 0 is
analytic in the unit disc U, then r is convex in U (i.e. f is
univalent and f(U) is a convex domain) if and only if
Re(3f"(2)/f'(2)+1)>0 in U. Let A denote the class of analytic
functions f in U, which are normalized by £(0) = 0 and f*'(0)=1.
A function f in A is starlike in U (i.e. f is univalent and £ (U)
is starlike with respect to the origin) if and only 1if
Re(zf'(2)/f(2)] > 0. If Re[zf'(2)/f(z)] > a, 0 a< 1, then f is
called starlike of order a. A classic result due to Marx [2] and
Strohhlicker [7) asserts that a convex function f in A is starlike
of order 1/2, i.e.

2£Nz) 5, (z€U) = Re zf/(z) , 1

feA, R L L) =
A Re=Ea) ) 2

(zel) . (1)

If F and G are analytic functions in U and G is univalent
then we say that F is subordinate to G, written F < G, or F(&m)«<
<G(8), if F(0) = G(0) and F(U) c G(U).

If we let k(2) = g/(1-8), then the implication (1) can be

* University "Babeg-Bolyai*, Faculty of Nathematics, 3400 Cluj-Napoca,
Romania



P.T. MOCANU

rewritten as

zf"(z) . zf'(z) _ zf'(z) , zk'(z)

feaA,
A ) X (2) £(2) (2)

(2)

In (4) S.S.Miller and the present author determined certain
general sufficient conditions on the function k in A, for which
the implication (2) holds.

In this paper we determine other sufficient conditions on
k in A, for which (2) holds. For example these new conditions are
satisfied if k(z) = (e*® - 1)/A, where |A] < 4. This example is
an improvement of a recent result of V.Anisiu and the author (1].
In particular we offer a new and more simple proof of the

starlikeness condition obtained in [1}].

2. Preliminaries. We shall use the following lemmas to prove
our results.

LEMMA 1. Let G be an analytic and univalent function on U,
with G*({) » 0, for { € 3U. Let F be analytic in U, with
F(0) = G(0). If F is not subordinate to G, then there exist
points 24, € U and [ € dU, and an m 2 1, for which

(1) F(z) = G({) and

(1i) zoF'(2g9) = m{G'({).

More general forms of this lemma may be found in (3). A
recent survey on the theory and applications of differential
subordinations is given in [5].

LEMMA 2.[1]}. The radius of univalence of the function
f(z) = (e®* - 1)/z is given by r = 4.83... , where r satisfies the

system
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I ercostsin (rsint-1)+Sint =0
\ ercost [rcos (rsint)-cos (rsint-1) J+cost =0

LEMMA 3. If \A\ < r0 = 4.046... , where r0 is the root in

the interval (0,2n) of the equation r[l + ctg(r/2)] = 2, then

Proof. It is well known that

5_ . 1- N R 5 <
1 2 fa @n)!

where B2n are the Bernoulli numbers. Therefore we have

Bn £214
e*-1 z 2 & @)}

and we deduce

Re(l+— -————- K .zl
e *-1 23 2 @ @2 n!

Using the well known formula

-~Ctg-5 - 1-Y -1hA_.
5 8 3 £x @M1 IzZI »r <2n

we easily obtain

Refi+— ———)YK A-A +Actg-i
N oe*-l z 2 r 2 2

and from this last inequality we deduce the desired result.

LEMMA 4.[6]- The inequality
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Az

Re
etz

>0

holds for all z € U, if and only if |A| < r", where r' = 2.832...

is given by

r* = 1’14—}’0 (3)

and y, is the smallest positive root of the eguation

(4)

ysiny + cosy =

ol

We note that r" is the radius of starlikeness of the

function r(z) = e* - 1.

3. Main results.

THEOREM 1. Let q be univalent in U, with gq(0) = 1. Let

h(z) = g(z) + 2242)

c(z)
and suppose that
h 1s convex in U (5)
/
Re{ h/(z) g(z)|> o0, zeU . (6)
q'(2)

If P 1s an analytic function in U, such that
P(z) < h(z), (7)
then the analytic solution p of the differential equation
zp'(g) + P(z)p(z) = 1 (8)
satisfies p < 1/q. »
Proof. cCondition (6) implies g(z) # 0 in U, hence the

function 1/q is analytic and univalent.
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Without loss of generality we can assume g 1is univalent,
with q(@) +0on Uand q° @ # 0 for z e du. If not, then we can
replace q, h, P, and p by qr®@ = q(rz) , hr(2) = h(rz) , Pr@ -
= P(rz) and pr@ = p(rz) respectively, where 0 < r < 1. These
new functions satisfy the conditions of the Theorem on 0. We
would then prove pr < I/gr and by letting r 1 we obtain p<\/q.

Now assume that p * 1/g From Lemma 1 there exist points z0
eUand C € du and m £ 1 such that p(z0) = 1/¢(C) and zop~ (20) *
« 4n C C*(C)/QZ(C)- Therefore from (8) we obtain

/
Pz, = —L_-ZP(Z) _ oy, m{g({)

p(z,) plz,) q({)
- (m-1) g’ ()
hQ) + q()

IT we let

P(z0)-h<0 m-Dq
(CyA" (0 '

then from () and the fact that m £ 1 we deduce Re<$ >0, or
equivalenty Jarg 6\ < n/2. Since C h" () is the outward normal
to the boundary of the convex domain h(U) we deduce that P(s0O)t
C h(U) , which contradicts (5). Hence we have p * 1/9.

THEOREM 2. Let q satisfy the conditions G) and (6) of

Theorem 1 and let

k(z) = zexpj;z-Ltt)_-ldt . )
If f €A and
™ (@ < (10)
L9 "
then zF"(2)/F(2) isanalytic in U and
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zf’(z).< zk/(z)
£(z) k(z)

Proof. From (9) we obtain

q(z) = -‘%—g—)— and h(z) = q(z) + %";—) = 1+£}:—,{_(z’;—) .
Since condition (10) implies f'(z) # 0, the function P(2) = 1 +
+ zf%(z)/f'(z) 1is analytic in U and satisfies (7). For this
particular P equation (8) has the analytic solution p(z) =
= f(2)/[2f'(2)]). Thus all conditions of Theorem 1 are satisfied
and we deduce p < 1/g. Since 1/q(z) # 0, this implies p(z) » ©
and so 1/p(z) = zf'(2)/f(2) is analytic in U. In addition from
p < 1/q and g(2) * 0 we obtain 1/p < q, i.e.
;f'(z)/f(z) < zk'(2) /k(2).

4. A particular case. If we let

Az
etr_1

qlz) =

’

then from Lemma 2 we deduce that g is univalent in U if

[A] < 4.83... and in this particular case we have

k(z) = 1'5’" and h(z) = 1-Az .

On the other hand we have

g'(z) O | 1

+ -

h'(z) g(z) e*s-1 Az

and by using Lemma 3 we deduce that
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/
e-,q# >0, if |A| < r, =4.046...
h'(z) g(2)

Thus if |A| < ry all conditions of Theorem 2 are satisfied
and we obtain the following result.

THEOREM 3. Let r, = 4.046... be the root in the interval
(0,2m) of the equation r{l1 + ctg(r/2)] = 2. If f € A and

, f”(z)
£'(2)

sM<r,, for zeU,

then

zf/(z) < _rz
f(z) elz_l

, for |Al =M.

This theorem is an improvement of a result in [1].

By using Lemma 4, from Theorem 3 we deduce the following
sufficient condition of starlikeness, which was obtained in [1].

THEOREM 4. Let r" = 2.83... be given by (3) and (4). If feA
and

f”(z)

sr*, for zeU,
£(z)

then £ is starlike in U and this result is sharp.

Example. Let f ¢ A be defined by
f(z) = f‘e""dt .
0

From Theorem 4 we déduce that f is starlike if |A|sr®/2=1.41...
In particular, if we denote by p the radius of starlikeness

of the error function
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er £(z) = fo’e-t‘dc ,

then p 2 4-%; =1.19... We note that the inequality p 2 r*/2 in

(1) has to be corrected by p 2

I‘
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REZUMAT. - Convolutii de functii univalente cu coeficienti
negativi. In lucrare sint stabilite unele proprietidt{i ale
convolutiilor de functii stelate de ordin a gi tip B cu
coeficienti negativi.

1. Let A denote the class of functions of the form

f(z)=z-) a,z", a,20, n=2,3,...

n=2

that are analytic in the unit disc U = {2zeC; |z|<1}. The function
feA is said to be starlike of order a, a€[0,1), with negative
coefficients, if

zf/(z)

Re f(z)

> a, zZ€eU.

We denote this class by S"(a). Let a€[0,1) and Be(0,1); we define
the class S"(a,B) of starlike functions of order a and type 8
with negative coefficients by

S"(a,B) = {feA; J(f(z);a)<B, zeU},

where
zf'(z) _,
J(£(z) ;@) = |—L(2)
_____-—Zf/(z) +1l-2a
£{2)

Remark 1. Let D be the disc with the center at a = (1-2a8%+

+ B’)/(l - 32) and the radius r = 28(1-a)/(1-82) when Be(0,1) and

* Univergity "Babeg-Bolyai”, Faculty of Mathematics, 3400 Cluj-Napoca,
Romania
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a€[0,1), and let D = {weC; Re w>a}, when B=1 and ae{0,1). Then

for zeU we have

J(f(Z) ;@) <P = 3%%é§L €D (1)

and we deduce that if feS"(a,B), then

/
Rei%§T%§L >0, z€eU,

where o=0(a,B8) and

o(a,p) =-li%%%1ﬁ .

We obtain $*(a,1) = S"(a) and S"(a,B)cS"(0), where o=0(a,B).

Remark 2. By using (1) we also obtain
a) if 0sa,;<a,<1, then S"(a,,B)<8"(a,,B);
b) if 0<B,<B,<1, then S"(a,B,)cs"(a,B,).

Let f and g be two functions in A,

f(z) = z-Y a,z" and g(z) = z-Y b,z".
n=2 ne2

Then we define the (modified) Hadamard product or convolution of
f and g by
(f+g) (2) = z—g ab,z" .
n=

In this paper we show that it r, ges'(a,ﬁ) , then f»ge

es*(a,y)ns"(8,8), where 0<y<8 and a<6f1.
We will use the following result due to V.P.Gupta and

P.K.Jain [1].
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THEOREM A. A function £,

£(z) = z-Y a,z", a,20, n=2,3,...

ne2

is in $"(a,B) if and only if

n-1+p(n+1-2a)
n=2 25(1—a)

a,s1.

The result is sharp.
2. THEOREM 1. Let f,geS*(a,B), a€[0,1), Be(o,1}. Then
f*ges* (a,y(a,B)), where

- 2p?(1-a)
v(a.B) (3-2&) (B+1)2-2(1-a)

and O<y(a,B8)<B. The result is sharp.

Proof. From Theorem A we know that if f, gcs'(a,B) and

£(z) =.z- ", = z-Yhz",
z znz.;a,,z g(z) z;;

then
~ n-1+p (n+1-2a) 2
nz-; 35 (120 a, <1 (2)
and
—~ n-1+f (n+1-2a) 3
§ 36 (1-a) b,s1. (3)

From Theorem A we also know that f*geS”(a,y) if and only if
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~ n-1+y(n+1-2a) 4
; 2y(1-a) by < 1 (4)

and we wish to find the smallest y=y(a,B) such that (4) holds.

From (2) and (3) we get by means of the Cauchy-Schwarz

inequality
—~ n-1+f (n+1-2a)
)) zg(l_a) Jab, s 1 (5)
which implies
vazb, < 2p (1-a) , n=2,3,... (6)

n-1+f (n+1-2«a)

We observe that the inequalities

n-1+y (n+1-2a) n-1+f (n+1-2a) }
2?(1—“) anbn s 2ﬂ(1“¢) vaan ‘ n 2,3, “ e (7)

imply (4). We also observe that (7) is equivalent to

“'1*7‘:*1‘2“’¢ag>;s "'1*‘”;*1‘2“’ , n=2,3,...  (8)
By using (6) we obtain

n-1+y(n+l-2a) 2p(1-a) (n-1+y(n+1-2a)) -
Y VaPn < vy (n-1+p (n+1-2a)) o M=2a3.

In order to obtain (8) it will be sufficient to show that

2B (1-a) (n-1+y (n+1-2a)) n-1i+f (n+1-2a)

=2,3,...
(n-1+f (n+1-2a«) )y * n=2.3
These last inequalities are equivalent to
- - - 2
I 1+n+1—2a < (n-1+f (n+1-2e)) , n=2,3,.

2p%(1-«)

or
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2p2(1-a) (n-1)
(n-1+p (n+1-2a))%-2p2(1-a) (n+1-2a)

Yy 2y(n) = , nN=2,3,...

We note that y(n)<y(2) for all n = 2,3,... and then we

choose

2p%(1-a)
(3-2a) (B+1)2-2(1-a)

y(a,B) = y(2) =

We have y(2)>0 because 232(1-a)>0 and
(3-2a) (B+1)2 - 2(1-a) = 2(1-a) (B+1)% - 2(1-a) +
+ (B+1)2 = 2(1-a) (B%+2B) + (B+1)2 > 0.

We also have

B-y(a«,p) = (1-p)2+8p (1-a) +4af (1-p) +2ap? o
) (3-2a) (P+1)2-2(1-a)

By Theorem A the function

29(1"“) 2 (9)

f(2) = -3 820 2

is an element of S"(a,B8) and

4 2(1‘“)2 . .
(£,+£,) (2) = z- (1}‘9(3_2“)): z* € S*(a,y(a,P)) ,

because
4P2(1-a)? . _2y(1-«)

(1+p (3-2a))? 1+y(3-2a)
Then the functions f = g = f, are extremal functions for this

., when y = vy(a,B)

theoremn.
|
COROLLARY 1.1. If F,ges*(a,B), then f*gesS*(a,B).
Proof. We use Theorem 1 and Remark 2 b).

COROLLARY 1.2. If f,geS"(a,B), then r*geS"(p(a,B)), where
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1l 4p2(1-a)?
Pl B) = 1 75 (5pe1-4ap) (10)

Proof.1f f,geS” (a,B), then f*ges” (a,y(a,B))cS" (a(a,y(a,B))),

where

o(a,y(a,B)) = 1+2GY1(-0-“Y'£1) -py)(alp) = p(a,p)

and p(a,B) is diven by (10).

—_—pm2
COROLLARY 1.3. If f,geS*(a), then f*g € s*(ﬁlii-).

3-2a
Proof. We know that S*(a) = S"(a,1) (see Remark 1) and by
-yl
using Corollary 1.2 we obtain f*ges*(p(a,1)) and p(a,l)= :_g;

The preceding result (Corollary 1.3) are due to A. Schild
and H.Silverman [2].

3. THEOREM 2. Let a€¢(0,1) and Be¢(0,1]. If f,ges'(a,b), then
r*ges* (§(a,B),8), where

- 2
$(a,Bp) =1 -§gé%jf%§ .

and a<é(a,B)<1l, The result is sharp.

Proof. If f,ges”(a,B), then (6) holds. By Theorem A we know
that f*ges*(6,8) if and only if

n-1+f (n+1-29) 11
Y T 3p(1-8) ab, <1 (11)

and we wish to find the largest é=6(a,B8) such that (11) be
satisfied.

We note that the next inequalities

n-lfp(n+1-26)¢§:B; ¢ p-1+B(n+1-2a)

, n=2,3,... 12
1-8 1-a ! (12)

implies (11).
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By using (6) we have

2p(1-a) . n-1+f(n+1-238)

1-8 a,o, < 1.8 n-1+p (n+i-2a) , n=2,3,...
and we deduce that
20(1-a) . n-1+f(n+1-28) _ n-1+P(n+1-2a) n=2,3,...

1-8 n-1+f (n+1-2ea) 1-a
or
2B (n-1+B(n+1-26)) (1-a)25(1-§) (n-1+B8(n+1-2a))?, n=2,3,... (13)
implies (12).
The inequalities (13) are equivalent to
A < B,
where
A = -482(1-a)2 + (n-1)? + 2B(n-1) (n+1-2a) +
+ B?(n+1-2a)2 = (n-1) (B+1) ((n-1) (B+1) + 4B(1-a)) > O
and
B = (n-1)? + 28(n-1) (n+1-2a) + B2(n+1-2a)2 -
- 28(1-a)2(n-1) - 282(1-a)2(n+1) =
= (n-1) (B+1) ((n-1) (8+1) + 4B(1-a) - 2B(1-a)?).
Wa obtain
3 ¢ B . (n-2) (Ps1)+aP(1-a)-2p(1-a)? _
A (n-1) (B+1) +4p(1-a)

1o 2p(1-a)? -
Ly ap ey D 0@

We have
§ £ 6§(2) £ 6(n), n=2,3,... ,
because §(n) is an icreasing function of n.
Now we choose

§(a,B) = 6§(2) =1 - 2B(1-a)?/(5B+1-4aB).
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We have §(a,B) > a because

. . (3B+1) (1-a) +4a?p
8(a,P)-a P (1-a) pri >0

and §(a,B) < 1, because
- 2
1-8(a, ) ='If¥%%%f%%TI >0 .

The extremal functions are f = g = f, given by (9).

Remark 3. By using Theorem 2 and Remark 2.a) we obtain again
Corollary 1.1.

Remark 4. Since o(§(a,8),B8) = p(a,B), where p(a,B) is given
by (10), we obtain S'(S(a,B),B)cS'(p(a,B)). So we can prove
Corollary 1.2 by using 2 and Remark 1.

Remark 5. We have §(a,l) = (2-a2)/(3-2a), hence we can
obtain Corollary 1.3 by using Theorem 2 and Remark 1.

Remark 6. For given a and 8, a € [0,1), B € (0,1), the
classes S"(a,y(a,R)) and S*(6(a,B),B) are inclused in S*(p(a,B)),

but they are generally distinct.
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REZUMAT. - Un criteriu de univalent# de tip Kudriasov. In lucrare
se obtin condi{ii de wunivalentd similare cu cele date de
Kudriasov, conditii care folosesc gi coeficientul a,.

Let A be the class of regular functions in U = {z:|z]|<1},
£(z) = z + a,z2 + ... and f(z)/z » O for all z € U.

THEOREM A [3]). Let f(2) be a regular function in U, f(g) =
=2z + a,z2 + ...

If

|£”_(_2_). <M (1)

£'(z)

for all z € U, where M = 3,05, then the function f(z) is
univalent in U.

( In Kudriasov's results the constant M doesn't depend from
a,. The result could be improved for valours of |a,| approaching
to 0.

In this paper we obtain the conditions of univalence similar
to the result of Kudriasov's type, conditions which use
coefficient a, too.

THEOREM 1. If f(2) is a regular function in U, f(z) = a +
3

+ a3z” + ..., and

* University of Bragov, Department of Mathematics, 2200 Bragov, Romania
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f”(z)

2
7 12) (2)

for all z € U, then the function f(z) is univalent in U.
i f”(z)
4 f'(2)
Schwarz's lemma (2] and Becker's univalence criterion (1], for

Proof. Let's consider the function g(z) = Using

the function g(z), we obtain

zf"(z)

1- 2
R e

= (1-]z|?) |z]-ajg(2) | < 4(1-]z|?) |z|* < 1,

and, hence, it results that the function f(z) is univalent in U.
THEOREM 2. Let a be a complex number, Re a>0 and the
function f(z) belongs to the class A.

If

' f”(z)
£(z)

for all z € U, where the constant M verifies the condition

Mg 1 5
|z|+ 2|a,|
max (1-]z|2Re9) |z (4)
Isl<1 Rea 2a,|
1+—T IZI

then, for every complex number B, Re B2Re a the function

z 1
Fy(z) = [pfo ubt £/ (u) dul ® (5)

18 regular and univalent in U.

Proof. Let's consider the function F:{0,1] —~ R,
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. 2|a,|
- y 2R
F(x) = (1§Z‘:‘) 2124[ ; x = |z|
1+—2x
M
Because F(%) * 0 it results that m(ax]F(x)>0. Let's
x€{0,1
"
consider the function g(z) = —:'?-%;%'7—))- Using the generalization
z
"
of Schwarz's lemma [2) for the function g(z) = -’% i,((z)) , Where
z

M is a real positive constant which verifies the inequality (4),

we obtain

|a, |
—1. f”(z) |Z|+ M (6)
M fl(z) | |, 203
+ B
M
for all z ¢ U, and, hence we have
(l_lzlzaoclzf//(z) <
Rea | f/(z)
2|a,| (7)
1 olan Iz|+__.._
< M - max|-21=lz2P) z| M
Isis1 Re « 1+ 2{a,| I2|
M
From (4) and (7) we obtain
(l_lzlznec) zf”(z) <1 (8)
Re a f'(z)

for all z € U and from Pascu's univalence criterion (4], it
results that the function Fg(3) is regular and univalent in U.

COROLLARY 1. If the function f(2) belongs to the class A and

f”(z)
fl(z)

(9)
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for all z €¢ U, where the constant M verifies the inequality

M< 1

2]a,|
|+ =5 (10)

max|(1-1z|?) |z
| T
M

then the function f(z) is univalent in U.

Proof. From the THEOREM 2, for a = 1 and 8 = 1, we obtain
the COROLLARY 1.

Observation. From Kudriasov's result it doesn't result the

THEOREM 1,but from COROLLARY 1 for a,=0 we obtain the THEOREM 1.
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TEST SETS IN QUANTITATIVE
KOROVKIN APPROXIMATION

1. RAGA"
Received: December 15, 1991
AMS subject classification: 41A36
REZUMAT. - Multimi test in aproximarea Korovkin cantitativik.

Lucrarea contine rezultate cantitative de tip Korovkin in care -
in afar¥ de functiile liniare - este utilizat¥ ca functie test o
singurd functie convexi.

1. Let (X,d) be a compact metric space and let B(X) denote
the space of all real-valued bounded functions on X.
Let C(X) be the subspace of B(X) consisting of all
continuous functions on X. For f € B(X) and § > 0 let
w(f,8) = sup {|f(x) - £(y)| : x,y € X, d(x,y) < §}.
Suppose that there exists a constant 4 > 0 such that
o(f,té) s (1 + pt)e(r,d) (1)
for all f € B(X) and all t,§ > 0.
Let F be a nonnegative functiop in B(Xz) such that
F(',y) € C(X) for each y € X. (2)
Suppose that there exist constants ¢ 2 1 and k > 0 such that
d9(x,y) < kF(x,y) for all x,y € X. (3)
T.Nishishiraho [2) has proved
THEOREM 1. Let T:C(X) - B(X) be a positive linear operator
such that Tl = 1. Then
[Tr(x) - £(x)| < (1 + pk6™9 TF(- ,x) (x))w(f,§)

for all £ € C(X), x €¢ X and § > 0.

2. Let E be a normed real space and E' the dual of E endowed

* fTechnical University, Department of Mathematics, 3400 Cluj-Napoca,
Romania
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with the usual norm. Let X be a compact convex subset of E.
For f € C(X), hy,...,h, € E' and § > 0 let us denote
w(f;hy,...,hy) = sup {|f(x) - £(y)|: x,y € X,

1=1

a(f,8) = inf {o(f;hy,...,hy) s m 21, hy,...,h, € E',
fjlhilz - 572,

In what follows let L:Z(X) -+ C(X) be a positive linear operator
such that L1 =1 and Lh = h for all h ¢ E'.

For x € X and § > 0 let us denote
1(8,x) =sup{;m: (Lh} (x) -h}(x)) :m21, h,, ..., h€eE, ﬁ:lh1|2= 5§72y,

Then we ;;ve (see [1], (5, Th.1.4]): N

THEOREM 2., Let f € C(X), x € X, § > 0. Then

(i) o0 < &, < 6, implies Q(f,8,) < Q(f,8,) and

7(81,X) 2 1(65.%)

(ii) 13;1\ Q(r,8) =0

(iii) |Lf(x) - £(x)] < (1 + 1(8,x))N(L,8)-

In Theorem 1 the test set is {1} u {F( ,Xx) : x € X}.

In Theorem 2 it is {1} U E' u {h® : h ¢ E'}.

Suppose now that there exists a constant ¢ > 0 such that

204x12 + Iyl?) = Ix + y1? 2 clx - yI? (4)

for all x,y € E (See[6,p.86}, [7]). In this case we shall obtain
guantitative results in which- besides the linear functions -
- only one convex function is involved as test function.

Let us remark that ¢ < 1; moreover, ¢ = 1 if and only if E
is an inner =~ product space. Condition (4) implies that E is

unifofmly convex (see[5)).
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THEOREM 3, Let f € C(X), x € X, § > 0. Then:
|LE(x) = £(x)| < (1 + LF(-,x)(x)/cé?)u(£,8) (5)
|[LE(x) - £(x)] < (1 + (Le - e)(x)/cé?)n(f, ) (6)

where e(x) = kx}2 and F(x,y) = 2(e(x) + e(y)) - e(x+y), X,yeX.

Proof. In this case (1) holds with u = 1 (see {2,Lemma 3]).
By virtue of (4) we can choose ¢ = 2 and k = 1/¢; so (2) and (3)
are also satisfied. Now (5) is a consequence of Th.1l.

For x,y €¢ X, a € [0,1] and f ¢ C(X) let us denote

(x,a,y; ) = (¥ - a)f(x) + af(y) - £f((1 - a)x + ay)

From (4) it follows (see(4]) that (x,a,y; e) 2 ca(l-a)e(x-y)
for all x,y € X. Let x € X. Then f € C(X) - Lf(x) defines a
probability Radon measure on X with barycenter x. It has been
proved in (3] that for all f € C(X) there exist u,v € X, u » v
and a € (0,1) such that

Lf(x) - £(x) = (Le(x) - e(x))(u,a,v; f)/(u,a,v; e).
Let h € E'. Then we have Lh?(x) ~h?(x) = (Le(x) -
- e(x)) (u,a,v;h?) /(u,a,v;e) < (Le(x) - e(x))(h(u) - h(v))?/
/ce(u-v) < (Le - e)(x) {hl?/c
It follows that 7(6§,x) < (Le - e)(x)/c&2 and thus (6) is a
consequence of Th.2.

Let us remark that in (6) the test functions are the
constant function 1, the linear functions and the convex function

e. On the other hand it is easy to verify that o < Q.
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Bolyai is issued in the following series:

mathematics (quarterly)
physics (semesterily)

geology (semesterily)
geography (semesterily)
biology (semesterily)
philosophy (semesterily)
sociology-politology (semesterily)
economic sciences (semesterily)
juridical sciences (semesterily)
history (semesterily)

philology (quarterly)

Dans sa XXXVI-e année (1991) Studia Universitatis Babes-Bolyai parait dans
les séries suivantes:

mathématiques (trimestriellement)
physique (semestriellement)

chimie (semestriellement)

géologie (semestriellement)

géographie (semestriellement)

biologie (semestriellement)

philosophie (semestriellement)
sociologie-politologie (semestriellement)
psychologie-pédagogie (semestriellement)
sciences économiques (semestriellement)
sciences juridiques (semestriellement)
histoire (semestriellement)

philologie (trimestriellement)



