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REZUMAT. — Selectit continue pentru multifunciii gi problema lul Pieard
pentru ecuafii multivoee. In lucrare se demonstreazi o teoremi de existentd a
unei selectii continue pentru ¢ multifunctie I definiti pe o submul{ime compacti a
lui B#+2, Se presupune ci F este o aplicatie continud ale cirei valori sint sub-
multimi compacte, nevide, nu neapirat convexe. Ca o consecintd, este obfinut
un rezultat privind existenta solutiei problemei lui Picard pentru ecuatia mulfi-
vocl 0%2[/0xdy € F(z, ¥, 2).

1. Introduction. In this paper we prove an existence theorem of a conti-
nuous selection for a multifunction F defined in a compact subset of R**2 and
taking compact nonempty values, not necessarily convex. The theorem estab-
lishes the existence of a continuous selection for each of the functions (%, y) —
— F(x, v, z(x, )), with respect to a given family {z(x, v)} of continuous functions
(%, y) — z(x, v). This result is stronger that Theorem 1 [5]. It is analogous of

1].

As corollary, we obtain the existence of a solution for the Picard problem,
2z

associated with the multivalued hyperbolic equation 'aa € F(x,y, 2), [4).
x oy

2. Preliminary results [5]. Let be the multifunction F: D X B — compX,
where D = [0, a] X [0, b], B is the closed ball centered in origin of R* and with
radius ¢ = M, + Mab, M, given by (2.3), M given by (2.4), X is the closed ball
centered in origin of R* and with radius M. Obviously, X is a compact space for
the metric d induced on X by the norm of R*. Let H be the Hausdorff —Pompeia
metric [3] on compX induced by d. Then compX is a compact metric space
for H.

Let €(D; R”) be the Banach space of continuous functions from D into R*®
and £YD ;R”) the Banach space of equivalence classes of Lebesgue integrable
functions on D and valued in R~

Let the following hypotheses be satisfied:

(H®) The curve v:x = {(y), 0 <y < b, is defined by the function
¢y € CY[0, b];R), satisfying the conditions

$(0) =0, 0 <¢(y) <4, 0<y<b 2.1

* Polytcchnie Institute of Iagi, Depariment of Mathematics, 6600 Iasi, Romanis




4 G. TEODORU

(H,) The functions P e« AC([0, a];R"), Q = AC([0, 5];R"), where AC([a,,

a,]; R") is the space of absolutely continuous functions f: [a;, a,] — R*,
normed by

I1711= 55 1101 +§' N

telay, @)

satisfy the condition P(0) = Q(0).
(H,) The function «:D — R* defined by
a(z,9) = P(x) + Q(») — P()), (r.3) €D, QX  (22)
is bounded and therefore, there is M, > 0 such that
|lo(%,9) 11 < My, (%,9) < D. %) @3

It follows that o« is absolutely continuous function in the Carathéodory
sense [2, §565—§568], « € C*(D; R»).

Let K be the set of absolutely continuous functions z: D - R" z e C*
(D;R*), [2, §565—§568] satisfying the conditions (2.3), (2.4), (2.5), where

|G| < M actnn =D (M) (2.4)

ox dy
z(x,0) = P(x), 0 < x < a, o5
[Z(¢(y),-y) =Q), 0<y<hb (%%) (2.5)

PROPOSITION 1. The set K is a nonempty convex and compact subset of the
Banach space ©(D; R*).

and

Proof. The relation ze K implies z € ¢(D ; R*). We observe that

a.e. (xv,y)e D, as z= C¥D ;R [2, §565—-§568].

Let M (%, y) be any point of D. Consider the parallel to x-axis, that intersects
the curve y in the point N({(y), y). Let M,(x, 0) and Ny(¢(y), ) be the ortogo-
nal projections of M and N on the x-axis. Denote D (x ») the rectangle M
N M, N,, given by

Dy(x,y) = {(w, ) I$(y) < % < %, 0 < v < ¥}
( (s, y)
% Oy

exists

ox 6y

Integrating ——=— over D,(x, y), one obtains

= ¢(y)

Ou dv Iu v
Dyfs, ¥) Wy)

(z, 0)do — { 22 (43)0)dv = 2(x, ) — 2(x, 0) — 2(¥(3), 3) + =(¥(), OF==

0

=z(%,5) — P(x) — Q0) + P(0), (».5) < D.

SS Mdudv= §dv§ Palw0) gy, de (w, v)|"”

<

*|®

.
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Using (2.2) it follows

(5, 9) = Pla) +Q0) — PO + { [ 22 dudo = a(x, 5) +
Doz

¥y x
+ (S duio = P(v) + Q) — PUO) + { av{ T%2 du, (. 5) < D.
D,(s:y) 0 U(y)

(2.6)

The compactness of K follows using (2.6) and the Arzela—Ascoli Theorem
and its convexity is obvious.

Remark. The relation z « K implies (x, y, 2(x, ¥)) € D X B for every (x, v) &
e D. Because each z € K generates a multifunction (x,y) — F(x, v, z(x, y))
from D into compX, we shall denote this mapping by G(z) : D — compX, where

G(2)(x, v) = F(x, v, z(x, ¥)), (x, y) € D. (2.7)

3. Continuous selections. The continuous case refined. We prove the fol-
lowing result, analogous to Lemma 3 [l].

LEMMA. Let A D — compX a coulinuous multifunction and v:D -—R*
a piccewise constant mapping such that d(v(x, y), A(x, y)) < ¢ for every (x, y)e D.
Then, for every € > 0, there exists a piccewise constant mapping w: D — R* such
that d{o(x, ¥), w(x, ¥)) < ¢ and d(w(x, y), A(x,y)) << for cvery (x, ) < D.

Proof Indeed given £ > 0, we can choose a partition (D) 1 < 7 € m,
1<j<nof J=1[0,a[x[0, b consisting of intervals D,; = [x;_4, %;[ X [y;- v {
such that v[Dy = z; and H(A(x,y), A(x',5')) <e for any (x ), («,
in D;. Then, for each (i, ), therc exists a point Fm A(x;-y, ¥j_1) such that
dw(xi-y, ¥j—1), &5) < p and d(&y A(x, v)) < e for every (x,y) € D;. We de-
fine the mapping w: D — R”* as follows : w|D;; = & for each (i, 7), w(a, y) =
= hm L w(%, ¥), w(x, b) = 11m n w(x, ). The mapping w has the required properties.

Obv1ouslv if (x, y) € ], then (%, y) € D,; for an unique Dy;, such that w(x, y) =

=¢; and v(x, y) = z;; = v(xi_1, ¥;-1), and consequently dv(x, y), w(x, y)) =

“'d('( i—1 Yi— 1), &) < p and d(w(x, v), A(x, ¥)) = d(E; A(x, ) <e By
continuity, these inequalities are also true and for x — a, y==5

THEOREM. Let F: D X B — compX be a continuous wmultifunction. Then
there exists a continuous mapping g: K — (D ; R*) such that, for cvery z € K,
g(2) 15 a regulated mapping in D and g(z)(x, ¥) = G(z)(x, y) for every (x,y) € D.

Proof. We shall construct, for every # > 1, a continuous mapping g*: K —
— £(D; R*) such that, for every z € K, g*(z) is a piecewise constant mapping
of D into X which satisfies, at every (x, y) € D,

d(g"(z)(x, ), G(2)(x.3)) <27, (3.1)
g (2)(%, ) — &™) (% ) || < 27771 (32)

It follows that for every z € K, the sequence (g*(z)) converges uniformly
in D to a mapping g(z) of D into X that is regulated in D and satisfies g(z)(x, 3) €
€ G(z)(x, y) at every (x, y) € D. Indeed, since the convergence is uniform in
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and each g is continuous in K, g will be a continuous mapping of K into £(D ; R®)
and this will prove the statement. The construction will be made in two stages.
First choose a decreasing null sequence (A,) of positive constants such that, for

every n 2 1, R

H(F(x, , 2), F(E, , §)) <273 (3:3) (3.3)
for any points (x,,2), (§ m, {) in D X B with [|(x, ) — (§, n) || <A, |lz—
— &|| < A,. This is possible, because F is umformly contmuous in D. We se-

lect, for every # > 1, a finite open covering (U})1 < N(n) of the compact -
space K such that

diam U} < A,, 1 < k < N(n). \

Let {p3)1 < k < N(n) be a continuous partition of unity subordinate to
(UMl < &k < N(n). We denote N(n) = N,(n)N,(n) and pi(z) = ¢i(2)rj(z), 4
=1, Ni(n), § = 1, Ny(n). The functions pj;: K — R, satisfy the properties:

a) 0 < pi(z) < 1 for z€ K, 1 =1, Ny(n), 1 =1, N,(n),

b) pii(z) =0, if z ¢ UG, i =1, Ni(n), j =1, Ny(n),

Ni(m) Na(n) Ny(n) Ny(s) » -

NIDM E Di(z) = p» gi(2)r; (2) =1, for ze K.

i=1 s=1 =1 j=1
We denote

r={z= Ui/pi(z) >0}, 1 <k < N(n).
Then, for every n > 1 and every vector index I = (}}, l;, ..., I,) such that
1 < v < V) n Wl # Q
v=1

there exists a piecewise constant mapping v} : D —X and a point z7 < () W?

v=1 b

such, that, at every (x, y) = D,

dwi(z, ), G (%, 3) <27*% (DR) (3.4)

This assertion is obviously true for # == 1. Suppose that it is true for n» =
=12 ..,p. fl=(,1,, ..., 1,) is such that (3.4) holds for » = p, we can
use Lemma and construct, for every integer s such that

1<s<N@p+1), mw NW £ g,

a piecewise constant mapping v}’ : D — X which satisfies, at every (x, y) = D,
a0t (v 9), GE(x 5) <277, L¥®) (35)
198135 9) — obtn, )| <277 (26) 36)

Remark. For any n-vector index ! = (I, &, ..., },) and integer s, we denote
by (I, s) the (n + 1)—vector index (I, 4, ..

.,-,,,S.
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Thus, if we fix a point
pet o - p+1
v
2y < () Wi W,
v=1

we deduce for every (x,y) € D,

dila(%, ), GEGTa(x, ¥) < A%, 9), G@)(x, 9)) +

+ HGE#) (%, 9), G(ehla(x, ») <2797° 4 277 7° = 274071
Hence, the assertion is true for # = p 4- 1 and consequently, by induction, for

every # > 1.

We next define, for every z € K, a sequence of finite partitions of the inter-
val | as follows; given z € K, we successively construct, for every # > 1 and
every 2m-vector index I = (I}, 4, ..., 4,), =0 x0 D=L 14, ... ,0), =

=008 .., B)1 <B <Ny(v),1 < <Nyv),1<v<n aninterval J7(2) CJ

such that
J= U Ji@ g 37
1<i€ Ny(1)
1€5€ Ny(l)
and
s =\ JisE s> g (38
1€s€N(n+1)
Indeed, let
x(z) =0
Ne(1)
% (2) = xi_1(2) + agi(2) 20 7}(2), i = 1, N{(]),
i=1
and
yoz) =0
1 1 1 e 1 . T AT 71)
¥3i(2) = ¥ja(z) + b (2) ;l gi(2), 7 = 1, N,y(1).
We denote

Ji(z) = [xl_4(z), 2@ [X [¥1-1(2), ¥

for each ¢ = 1, Ny(1), / = 1, N,(1). Then, obviously, Ji(z) jis nonempty if and
only if z e W,,, but (3,7) holds whatever z € K because ()1 < i < Ni(1),

1 < j € Ny(1) 1a s partition of unity. More generally, if I = (I}, I,, ..., l,,) is an
2n-vector index with 1 < I, < N(v), I=0x & D=1 ..., 0), =,

3 eenln), 1 < I < Nyv), 1 <} < Ny(v), 1 € v < n, for which J7(z) has been
constructed let

Zo(2) = 1(,1 A k- NEIR

Ni(n)
Athie) = withon(®) + (a 1) 23 7)) @70
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and

Yool = Y a0 i

Hihte) = yithon® + (6 T ot (0 25 ¢ )70
and set

Ji3(2) = Do on, #an(@) [X [0 w-n(2), Yol (2)
where s =5t X s?, foreach s =1, N(n 4 1) (st = 1, Ny(n + 1), s =1, N,(n 4
4 1)). Then Jfiy(z) is nonempty if and only if z < () W}'vﬂW"H, and, it

v=1

particular, z € {} W} implies that (3.8) holds nontrivially. We observe, that
v=1 v

”
in this case, diam Ji(z) = ab[] pi (2)>0. However, whatever z< K, we haw
v=1

by construction that
J=Ui@: =00 ... L), 1<y <N, 1<v<n) (39

We define, for every #» > 1, the required mapping g* of K into £1(D; R¥)
In view of (3.9) we can do this simply by prescribing, for every z € K, the restric

tion of g*(z) to each of the intervals J7(z). For every z & K, we define
N(1)

@I =25 xUsle) s (3.10

where Y is the characteristic function and set, for every # > 1, and every 2
vector index l== (I, 1, ..., 0,), i=0 x0 D=L 4 ... 01), BE=@B§ ..
B), 1<, <NW), TSBESN), 1 KBS Nyv), 1 <vsom,

N(in+1)

VO = X xS, 3.1

vz

This uniquely defines, for every, # > 1, g"(z) as a piecewise constant mappin
in J, and hence we can extend g"(z) to I) == ] by setting

g"e)(a, y) = lim g"(z)(, »),

” (3.12
gz)(x, b) = lylrr; £(2)(x, ¥).

Obviously, for every # > 1, g* is a mapping of K into £(D; R*). This con
truction implies, similarly with (5, Proposition 2] that each g" is continuous i
K. Thus, only the inequalities (3.1) and (3.2) remain to be verified.

Let z € K be given and fix (x, ¥) € J. Then, for every # > 1, there exist
one and only one 2#n-vector index I=(l},1,, ..., 1,), { =01 X I such tha
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(x,y) € Ji(z), This implies that, in particular, z ﬁ Wi and consequently, by
(3.11), -
@) (% 3), G (%, 3)) = Al 3), GE(E 3) < A 9), GE)(x 9) +
+ HGE) (% 9), Ge)(x, y) <27"" 427" < 27"
Moreover, if (x, y) € J7 then (x, y) € iy for one and only one index s with
1<s< N(n+1), so that also z e (':] W}’vﬂ Wit
Hence, we deduce from (3.4) and (3.6\’)ﬁ:£chat

g+ (2)(x, 3) — &) (% 9) 1] = |Iofa(x, 9) — 2f(x2) 11 <27"7"

Thus, the inequalities (3.1), (3.2) hold at every (x,y) € D. Obviously, by
(3.12) and continuity, then remain valid at x = a, y = b. This completes the
proof.

4. Multivalued equations with partial derivatives. Let us consider the multi-
valued equation

&% < F(x,7), (x,y)e D, z< B, (4.1)
oxcy
where F: D X B —» compX.

The Picard problem associated with (4.1) is defined in [4] and consists in
finding of absolutely continuous fuiction [2, §565—§568], » « C*(D ; R*), which
satisfies (4.1) a.e. (x, ¥) € D, and (2.5). As corollary of theorem of selection we
state the following existence result.

THEOREM. Let be satisfied the iypotheses \H,), (Hy), (H,), (H;), where:
(H,) I': D X B— compX is a continuwous multifunction.

Then, therc exists a regulated mapping w: D — R* such that the mapping
2: D — R, given by

i, 3) = P(x) +Q0) — PUO) + ({ 2w ojdud = a(x, 5) +

Dy(x, 3)
+ g 5 M, v)duds = P(x) 4+ Q(y) — P($(»)) + gdvg M, v)du,
Dy(x,5) 0 Yy
(.)€ D, (4.2)

i1s a solution of the Picard problem (4.1) 4 (2.5).

Proof. Let be Az, ) + g(2)(x, ), 2= K, A1 D— R»,* where g exists by
the theorem of selection. From (H,) the function z given by (4.2) is absolutely
continuous function in the Carathéodory sense [2, §565—§568] z & C*(D; R").
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=54
popy (%, 3) = A=, ¥) = g(2)(x, y) € G(2) (», y) = F(x,

9 (%,9)) ae. (x,y)=D and z(x,0)= P(x), 0 < 2$(3), 3) = Q)
0 < y < b. Hence z is a solution of the Picard problem (4 1) + (2. 5) ag\m

From (4.2) it follows 2
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REZUMAT. — Asupra estimdril punctuale a aproximérit funegilior prin funetlonale
lintare §1 pozitive. Fie }': V — R o functionali liniard §i pozitivd cu proprietatea

Fle;) = %7, = 0,1, unde V este un subspatiu liniar de funclii reale definite
pe un interval I, x € I este fixat, iar ¢; sint functiile ¢;(1) = ¢#. In lucrare se
di o evaluarea generald pentru |F(f) — f(v)| ¢ind f€ V, cu ajutorul unui modul
de continuitate de ordinul doi generalizat. Evaluidri concrete se dau apoi pen-
tru modulul uzual de continuitate de ordinul doi. De asemenea se dau aplicatii
la aproximarea prin operatori liniari §i pozitivi.

0. Introduction. In the present paper, based on a new method we improve
and generalize the estimates that we have obtained in [10] and {12] (see also
{13]). In fact, the unified method that we apply here results by combining these
methods. In order to enlarge the generality, we present this estimate with the
aid of a generalized modulus of continuity of the second order and in terms of
functionals, although the applications that we have in view are for the usual
second order modulus of continuity and for the poinwise estiinate of the appro-
ximation by linear positive operators that perserve linear functions. For such
operators our estimate improves the general estimate given in [6]. In the same
time, since our cstimate requires not the continuity of the functions, nor the com-
pactness of their domains, it is more general than the estimate in [6]. However,
in other sens the second is more general.

1. Main results. Let [ be an arbitrary fixed interval of the real axis. We
denote by &(I) the linear space of the real valued functions defined on I and by
F,(I) the subspace of &(I) of those functions that are bounded on each compact
subinterval of I. Forj = 0, 1, 2, ... we denote by ¢; € §,(I) the functions ¢;(¢) =
=it e I).

For any f = F(I) and any points of I: ¢, <y < ?, we define:

ty — —t
A, by 1o, 3) = 252 fit) + 225 fit) — f(5). (L1)
t e | 2 %1
In the following definition we shall consider a class of mappings that have

similar properties as the second order modulus of continuity. For this reason we
shall conventionaly call them general moduli of continuity of the second order.

* University of Brasov, Depariment of Mathematics, 2200 Bray R
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12 R. PALTANEA

DEFINITION 1.1. Let V be a subspace of &,(I) that contains the functions
¢, and ¢;. We say that a function w: V X (0, o) — [0. oc) is a general modulus
of continuity of the second order on V if the following conditions hold :

1) of,h) So(f,hy), (feV and 0<h <hy) (LK) (1.2)
i)off+0 8 =wf,h), (feV, >0, and p = ae, + be,, where
asR, b=R)

Examples of gemeral moduli of comtinuity of the second order.
A) The usual second order modulus of continuity, defined by:
wulf, B) = sup{|f(y + 0) =) + /v — ), y Lo L 0<p < h}, (13)
(f € &(I) and & > 0).
: B) A modified modulus of continuity of the second order, defined in [12]
v
wyf, ) =sup{[A(f. bt s el b —h < <y < ta} (1.4)

(f = &(I) and & > 0). .L\QC‘L

C) More general moduli can be obtained in the following mode. Let V¥,
be a linear subspace of &,([0, 1]) and let L: V, — &,([0,1] be a linear positive
operator such that L(e;, v) = ¢;(y), (j = 0,1 and ve [0,1]). For any «, B € I,
a < B we denote by g, g the polynomlal defined by ¢, g(t) = (B — &)t + «. Let
V C &,(I) be a linear subspace with the property that for any fe< V and any
points «, B € I, « < B we have f,s € V, where we denote f,5 =
=(f|[,0])°9s @ - For any A € (0, 1) and any & > 0 we denote:

w4 (f, ) = sup{k|L(fe,0.0) — fo,8(M) |} @ B 1, B —h < a<B}, (L5)
(fe V and & > 0).
")L,h(fr h) = l:‘l(tl?) wL,A,h(f: h), (fE V and h > O). (1.6)

If € is a family of such linear positive operators L: ¥V, — &,([0, 1]) then
we define:

0g(f, B) = sup wi,(f, B), (f< V and h>0) (1.7)

We note that wy(f, )) =o_ 1 ,(f, 24) and os(f, h) = wg,1(f, h), where

B, is the Bernstein polynomial of degree 1: By(f, 2) = (1 ~- M)f(0) 4+ w(1).
D) Other examples are:

of', B) = sup{If' () —FO1; vt =1, |y —t] <h}, (18)
(f = Cy(I) and & > 0),
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as well as the least concave majorant &,(f’, -) of w,(f’, -), defined in [9] by1

Sy(f', B) = sup {3 hen(f h) s m > 1, 25 A =1, (1.9)
=1

3 ki = By A > o}, (fe Cy), k> 0).

t=1
DEFINITION 1.2. Let © be a general modulus of continuity of the second

order as in Definition 1.1, on the linear subspace V  &,(I) and let the function
$: [0, &) — [0, ). We say that o satisfies the condition (A(Y)) on V if we havei

B R ek |l Rt ] | Eraall A IR

_tl
(feV,h>0and ¢, <y <ty b, t, e I).

LEMMA 1.1. Let o be a general modulus of continusty of the second order on
the linear subspace V. C &,(I) and let : [0, ) — [0, oc) be a function such that
$() 2 1 (¢ > 0). We assume that for every two points of I:.a << b and for ecvery

Junction g € V such that g(a) = 0 = g(b), if we denote h = b; % we have the
Jollowing relations ;

1) lgw)| < w(g, k), (t= [a b))
i) If ye [a,a+ k] then |gt) —

(1.11)

t=sIN(® x) and if y= [a + h, b] then the same inequality holds for
teIn (—, a)
Then o verifies the condition (A(Y)) on V.

Proof. Let f € V and let the real number 4 > 0. Let ¢, <<y < ¢, three points
of 1.Ift, — ¢, < 2hleta=1t, b=1¢,and p = (¢,— t,)/2. Also, let p be the po-
lynomial of degree one defined such that the function g=f + p verifies the con-
dition g(a) = 0 = g(b). Then from (1.11)—3} with p instead of # we obtain:

A(f, 21t M) | = |A(g, 8y 8y, ¥) | = |—8() | < (g, p) < @(g, h) =
=o(f. B < [222e (|22 H 2w (|2 ])] - e

ta— 4 — b

Now let the case ¢, — #; > 2k. Then at least one of the conditions {, — y >
> hand y — ¢, > h holds. We only consider the case ¢, — y > A, since the proof
in the other case is analogous. We denote a = max{t;, y — k} and b = a 4 2A.
Let p be the polynomial of degree one defined such that the function g = f
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<+ p verifies the condition g(a) = 0 = g(h). Because y € [4, a + A] and t,ti!
e I (N (b,o0) we can apply (1.11)—ii). Hence [git,) —g(y)] < ¢ ’ )-
- o(g, k).

Ifv—t¢ >h wehavey=a+ h<[a+hb] andt, € IN(—co, a). Fron
(1.11)—ii) it results [g(t,) — g(y)] < ¥ ”‘1%', - o(g k). It y —t, < h we have
a =1, and since |g({,) — g(¥)| = lg(y)| the above inequality is also true.

ty—y
h

From the relations already proved we have:
1y — , v—t
[A(f b )| = 18 b £y 3) | < 0 gity) — g(9) | +=— -

t,— 4 ty—
18) = 80| <[5 - w (|22 ) 2= | )] v w

h—1

h—y
h

In what follows x will be a fixed point of the interval 7. We denote by n,Er
€ &,(I) the function defined by:

0 t=x
o =1 .12
(%) {1, tel t+x )

If fe §(I) we denote by 8}f and §;f the functions defined by:
N H—flx), tel, to«x f
@ = 70 57 (1.19)

tel, tix

It results the following representation: f= 87f 4+ 8;f + f(x)e,.

DEFINITION 1.3. Let V be a linear subspace of &,(I) and let F:V — R be
a linear positive functional. We say that the functional F verifies the conditionr
(B(x)), where, x « I if the following conditions are accomplished :

) eV, (j=01)
ii) n, = V. (.14
iii) If fe V then |fle V |
iv) If fe V then 8]f< V and 3;f< V,
and
F(e;) = #/, (j =0,1). (1.15)

For a linear positive functional F: V C &,(I) — R that verifies the condi-
tion (B(x)) we denote

M,(F) = 5 F(ley — 2 )- (1.16)
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LEMMA 1.2. [12] For a Ilinear positive functional F:V C F,(I) =R that
satisfies the condition (B(x)) we have:

F(|3:-31 [) = F(|3:e,1) = M (F). (1.17)

Proof. Clearly |3fe,| = V. We have ¢; — xe, = 8¢, + 37¢, and from the
condition (B(x)) we have 0 = F(e, — xe,) = F(8F¢,)+ F(37¢;). Then F(|3} e, |)=
=F(8Fe;) = —F(3;¢,) = F(—38;¢;) = F(|3;¢,]). Also we have |e, — xe,| =
=37l + 137el.

tEMMA 1.3, [12] Let F: V C &,(I) = R be a linear positive functional that

satisfies the condition (B(x)) and such that M (F) # 0. Then the following represen-
tation holds :

E(f) = f(%) = Fi,(Fy, (91, 4lt0 1)), (f= V), (1.18)
where @5 o2 1 X I — R is defined by:

or, oty 1) = M:T{ 18, ()32 + 157 () (BEHE)),  (1.19)

and the notation Fy y,,... ) means the value of the functional F applied to tha
partial  function t;— g(t,, ..., t,) when t, = const (1 # j).

Proof. From (1.14) it follows that the partial functions ¢, — ¢; ,(¢,, £,) for all
fixed ¢, are in V. Next, the function ¢, — F, (9, ,({;, £,)) belongs to V since

1 -~ . X

Fofor sty t)) = (B3A)0) + o F(327)- 372, (). Finally Fo(Fufey, 1)) =
= F(37f) + F(3: f) = F(f — f{x)e;) = F(f) — f(#).
1 _ Remark. 1.1. For applications, the most important case of functionals as
n Definition 1.3 can be obtained in the following mode. Let p be a regular post-

tive Borel measure on I such that Sejdp. =, (j=0,1). Let V=&, ()N}

I
) &,(I) and let the functional F: V — R be defined by:

F(f) =\ fdo. (f= V). (1.20)

I

If T is compact, x € I and F: C(I) - R is a linear positive functional such
that F(e,) = 2f then F is of the form (1.20). We can consider that the functional

F is prolonged on the whole space V = &,(I) N ¥,(I) and thus F verifies the
condition (B(x)).

For the functionals (1.20) the relation (1.17) becones :
| ter — we 1 =

le, — xe, |[du = _;- 5 le, — xe,|du, (1.17)
{

i it
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where /- = I (—oo, x) and It =1 (%, o). Also (1.18) becomes:

F(f) = f2) = [ dult) {22 AL 4 1, m)dult)- (08)  (118)

I—- It
Moreover it is shown in [12] that in this case the following equivalence holds :
(F(f) = f(x), (f € V) iff (MLF) = 0). (AR) (1.21)
From (1.21) it results that F(f) = f(x), (fe V) if x is a end of the interval I.
Remark 1.2. More particular functionals (1.20) can be defined in the follo-

wing mode. Let A be a finite or countable set of indices and let the families
{x,-e I, 7= A} and {¢; > 0, 7 € 4} be such that Ec =1 and Ec Cx=2%.

€4 i€ 4

We consider V = {f e &,(I Ec | f(x;)] < oo} and the functional F: V — R
defined by :

F(fy=Tea fw (F= V). (022 (1.22)

The main result of this section is the following Theorem :

THEOREM 1.1 Let F: V C §,(I) = R be a linear positive functional that sa-
tisfies the condition (B(x)), when x € Int I, and let o be a general modulus of con-
tinuity of the second order on V that satisfies the condition (A($)). We suppose that

e, — xe,

h > 0 is a real number e V. Then we have:

ey — xe,

!Hﬂ—ﬂ@lsFﬁo

Proof. We first consider the case M,(F) # 0. we can write:

) - alf, b, (£= 7). WD) (129)

ty— 1,

@5, oty 25) = § Mau(B)
0 ,ift, zxo0rt <x

CA(f b by ), B < 2 <1y

From the condition (A ($)) we have for ¢, < x <t,:
At 1 <[22 (|25 )+ 520 ¢

— 1 — N
=p@+Aﬁo
where we have denoted:#
05,590 = $(0) - 0. + o

Therefore we have: |gy (4, t2) | < (9o, 3, . +(E0 22)) - (F, h).

ty— %

)] - af, h) =

L by, b, x)] o(f, B) = A6s, 4.0» by by %) - w(f, B),

€, — Xe,

a—% |y
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From Lemma 1.3 and the condition (B(x)) we have:

IE(f) — flx) | = |Fu(Fy(es, ot 2] < Fy(Fo(ley, ot 3) 1) <
< Fy(Fr((Poy, 5,0, #) (B B2)) @ (f, B))) = [F(os,5,4) — (05,1,0) (%) ]e(f, k) =
=40 - Fn) + F (4 | 257 |) = 90 ]olf, i) < F (4o | wlt, b,
We consider now the general case. Since x & Int I we choose two points

of I:ia and b such that a << x << b, and for any A € (0, 1) we consider the func-
tional G,: V — R defined by:

Guf) =2 E(f) + (1 = )] a) + 2= f0)], (= V).
Since G, satisfies the condition (B(x) and M,(Gk) > O, from above it follows:
IGf) = S < Gafde o, ).

e, — e,

& — xeo

We have:
F(f) = f(3)] = |+ Galf) — =) +

|

1—

X A(f a8, )] <

—xeo 1— 2

Gl "')(f» h)

If we consider f fixed and A tends to 1 we obtain (1.23).

2. Estimates for the usual second order modulus of continuity «,. For
any real number a we denote by {a[ the greatest integer number that is less
than a.

Rermark. 2.1. In [12] it is proved that the modified modulus (., 2h)
(see (1.4)) satisfies the condition (A(8)), where the function 6: [0, o) — [0, )
is defined by 6(/) = (1 + ]¢[)%, (¢ > 0). By taking into account Lemma 2.1
from below we can infer that the modulus «, also satisfies the condition (4(8)).
In this section we shall obtain other estimate that improves this one.

IA(f, @, b, 2) |.

_LEMMA 2.1. [12] For every f < &,(I) and cvery real number h >0 we have:

TP wilf, 2h) < oy} B). {(2.1)

Proof. Let ¢y, t, =1, 8, <y <t, and ¢, — ¢, < 2h. (We consider the poly-
nomial p of degree one defined such that the function g = f 4 p to satisfy
the condition g(,) = 0 = g(t;). We have A(f, ¢, £, y) = A(g, t1, by, ) = —&(Y)
and ,(f, 2) = w,(g, h).

Let ¢ > 0 be arbitrary choosen. Since g-is bounded on [¢,, ¢,] there is a
point #, € (t,, £,) such that:

LI lg(u )I > sup {Ig t)l te tl’ t2]} - &

2 — Mathematica 1/1990 R O
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-1\ +

and g(u,) > 0, since the otheron

. t+¢
We only consider the case %, > -%

can be reduced to this. Then 2», — ¢, € [t,, £,] and w,(g, k) > |g(t;) — 2¢(%,)
+ 824, — 1) | > —glts) 4 28(ue) — g(2ue — 13) > g(ue) — € > |g0y)] — 2
= |Ag, &y, 12, y) | — 2e.

Since ¢, #,, ¥ and ¢ are arbitrary choosen Lemma is proved. <e

=9 nd let x

LEMMA 22. Let a << b be two points of I. Denote by h =

< [a, a + h). Let g € §,(I) such that g(a) = 0 = g(b). Then the following inequ
litres hold :

) 1g)] < walg, ), (¢ = [a, b))
i) le)] < 5 eale B, (= (6 0+ 3] N 1)

i) g()] < 200(g, h), E= (0,0 +AINT)
iv) lg(t) — gl — R)| < 2058, 4), G = (0,0 +MINT)

v) lgl) — g(x)| < 2050, h), [t = (b0 + ;] NI @Y 2
xc-:-[a-i--%, a+h] and t <2x—-a+h)
vi) lgl) — 8(x)| < Susle. W), (£ <(p+h b+ HNL
x e [a+%, a-{-h] and i <2x—a+2h)
vil) [g) — ()| < (38 + 3 h+ 1) oule B, €= G0N D)

where R =14+ ]|b — ¢|[h[.

Proof. i) If ¢t = (a, b)) we have g(f) = —A(g, a,b,f) and we can apply
Lemma 2.1,

il) We have 4b — 3t > ¢ — 2h and 40 — 3¢t = [a, b]. Hence from i) it result
lg(4b — 3t)| < wy(g, ) and then:

lg)| =5 (el) — 26(2b — 1) + g(4b — 30)) — < (46 — 3) +

+ 2 (&)~ 260) + 82 — | < (5 + 5+ 5] oulas 1) = 5 asle. B

iii) By using i) we have |g(2b — )| < w,(g, ) since 2b —¢ e [a, b] an
then |g(t)| < lg(t) — 28(0) + g(2b — #) | + 18(20 — #)| < 2u4(g, k).
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iv) We have ¢ — 2k € [a, b] and hence |g(f — 2k)| < w,(g, £). By using
relations i) and iii) already proved, we have |g(t}) — g(t — &)| = l % (glt) —

— 2t — h) + gt — 20) + - glt) — S gl — 24)
= 2u,(g, 7).

v) From the conditions of the hypothesis it results 2x —a < b, 4x —
~t—2a=02x—a)+ 2x —t—a) 22x—a—h > a, and 4x —¢t — 2a <
< 4r — b — 2a < b. Hence from i) we have |g(4x — ¢ — 2a)| < w,(g, h). Next
ve deduce: |g(4x — ¢t — 2a)| = |(g(t) — 2g(2x — a) + g(4x — ¢t — 2a)) + 28(2x
o) —gl)] > lglt) — 28(2x — a) | — (e, ) = |(gt) — 2(g(2x — a) — 2g(x) +
tgla)) — 4g(x) | — wy(g, 1) > 18(6) — 4g(x) | — 3oy(g, &)

Hence |g(t) — 4g(x) | < 4oq(g, A).

From i) and ii) we have |g(x)}| < w,(g, /) a

(

<(%+1+%)‘”2(&h =

L

respectively |g(f)| < —mz(g, h).

ndr
£ g(x) - g(t) <O we have |g(t) — 4g(x)| = jg’l()|+4 le(x)| and jg(t) —

—-¢0) ] = 1g@) | + lg(x) | Bydenotmgzﬁ= I ()| and ¢ = |g(x) | and by taking
nto account that:

w

N

max {p+q;p>0,q>0,0<p %,p+4q<4}=2,

ve obtain relation v). If g(x) - g(f) > Othen wehave: |g(t) — g(x)] < % (g, &)

< 20,(g, h).
vi) By using relations v) and iv) wehave |g(t — &) — g(x |
espectively |g(t — h) — gt — 2h)| < 2w,(g, #). Then |g(¥)
~2g(t — k) + glt — 20) + (gl¢ — #) — g(x)) + (gt — h) — ’( =21 < (1+
+ 24 2) wy(g, h) < Bw,(g, k).
vii) Denote y, =b 4 j - L=

I =

® for j =20, k. We have:

kol

—1

gty =g(m) = 2, 7 @Wa-jr1) — 28(va—s) + &a—j=1)) + & - &(31) +

j=1
+ (1 —£) - g(¥0)-
We have g(v,) = g{b) = Oandy, € (b, b + 2] and from iii) we have |g(¥;)|<
< 2wy(g, k). We have also |y;41 — ;1 < h. Then:

1601 < ([ 7]+ 22)oute 1 = [ 2+ 2 ) onte .

j=1

I

Finally by using i) we have lg) —g()| < ()] + le()] < (3 # +
boht g+ 1 aale B
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LEMMA 2.3. The modulus o, satisfies the condition (A(0,)) on &F,(I) where
0,: [0, o0) — [0, @) s defined by :
0, ¢=0)
1, (¢=(0, 1))
2

(=22 (13)

0,t) = (3, ¢ (% 2“ (2.3
o]
5 0P+ L (= (30 o)) e

Proof. In order to apply Lemma 1.1let a < b two pointsof I, let g e &F,(I

be such that g(@) = 0 = g(b) and let us denote h = b—a, Relat'oendl l¥—l

results from (2.2) —i). Consider now a pointy € [a, a + %], andlet? € (b,0) NI
If t_hy S% then certainly v E[a —}—%, a —|—h], te (b, b —|—-ii an#

t <2y — a + h. Then from (2.2) —v) we have: omd
86) — 81 < 2oulg, 1) =8, (|52 ). -
, , 25 L
If l;—yl = (E’ 2] then < (b, b+ k] () I. Then from (2.2)—i) and iii
we have: [g(f) — g0)| < 16()] + 160)| < Bonlg, B) = 0, |5F Umz g h).

Iflt;y e(z_ then y = a+—-, a+h] te(b—l-k b+ hLamdm
< 2y — a + 2h. Then from (2.2)—vi) 1t results : =

[8() — g(¥) | < Sey(g, k) = 01

w,(g, A

Finally, if I%ll >% we take into account that in (2.2)—vii)

= |5 <)

<[z B+ 3h+1)oleh) <

and hence |g(f) —g(») | <

t—v

J osle B)-

&-

If y= [a+ h, b] then we take the interval —I = {—¢; t = I}, a* = —b,
h* = —g and we define g* € ¥,(—1I) by g*(t) =g(—t), ¢t —1I). We havel
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—ye [a*, a* + k)‘]. Then from above we deduce for ¢t € (—oo, a) N [: |gt) —
¢ . -ttt , v
)| = 1650 = & (=) < O (| T eale, 1) = 6|55 ]) wate A
Thus the condition (1.11)—ii) is completly proved. Consequently we can apply
Lemma 1.1.
CORROLLARY 2.1. For every | = 23,4 the modulus v, satisfies the condition
(4(6,)) on Fy(I), where 8;: [0, co) — [0, co) are defined by

0,() = 03() =1+ 7,  (t>0), (2.4)
where s 1s a real number such that s > 2.
05(¢) = (1 +1¢D% (¢ 2 0) (2.5)
0,(6) =1+ Tl{‘" < [0, 1)) and,
B() =1+ ¢+ 8 (< (®). (2.6)

Proof. Corrollary 2.1 results from Lemma 2.3 and from the inequalities:
0,t) > 0,(¢), (¢ = 0) for =2, 3, 4.

Indeed, for 6, we have the following cases: if £ = {0, 1] then 0,(¢) = 1,
ifte 1 _] then 6,(t) > 2, 1ftE(— 2]then e()>‘_3.‘>3 if te(z, 2| then
0()>o 1ftE(-— 3] then e()>33>6 and if >3 then 0,() > 1 + 2>

+ —t+ 12 6,().
For 63 we have the following cases: 8,(0) = 0, if £ (0, 1] thenf, (¢) =1,
if ¢t (1, 2] then 04(t) = 4, if ¢ & (2, 3] then 0,(¢) =9 and if ¢ > 3 then also
01 > 6,(0).
For 6, we have the followmg cases: if t € [0, 1] then 0,00) 21, if te
« (L —]thene()>2 1fte(— Z]then e()>1+ + ‘>3 if t>2

then 6,(t) > l-}-:-]t[—f--z(]t[) 2 0,(2), since u3—2u—3 /O for u > 2.

>-1

2

THEOREM 2.1, Let F: V C Fo(I) — R be a linear positive functional that sa-
tisfics the condition (B(x)), where x< Int I. Let the real number h > 0. Then for

everyj=1,2,3, 414f 0,0 A" % e V we have
IE(f) — /) < F (9, JJouf, ), (£ 7). 27)
Proof. The relations (2.7) result directly from Theorem 1.1 and Lemm1 2.3
(for  =1) and Corrollary 2.1 (for 7 = 2, 3, 4).

CORROLLARY 2.2. Let F :V C &F(I) =R be a lincar positive functional
that satisfies the condition (B(x)), where x < Int I. We suppose that e, € V.

Then :
IF(f) —f(x)| < (1 4+ B2 F((ey — xeg)®))ag(f, 1), (f€V, h>0). (2.8)

E(f) = f(2)] < 20, (f. (F((ex — %)) ? ) (feV). (2.9)

e, — xe,
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Remark 2.2. i) Relation (2.8) improves the estimates in [6] and [10].

ii) Relation (2.7) for j = 3 is given in [12] but with amother proof. (see Re-
mark 2.1).

iii) Relation (2.9) improves the estimate in [5].

iv) The estimate (2.7) for j =4 is specially constructed for the Bernstein
polynomial.

3. Applications to linear positive operators. By using the estimates in the
previous section we can obtain pointwise estimates for the linear positive ope-
rators that perserve linear functions.

A. THE OPERATORS OF S.N. BERNSTEIN. For any n € N, n > 1 the polyno-
mial operator of S. N. Bernstein B, : &,([0, 1]) — &, is defined by the formula:

Ef( ] Pnr(x), where C}«k) (3.1)
Par = (:) - 2l — x)»—*, x = [0, 1] and fe §,([0, 1))

THEOREM 3.1. We have:

B ) — ] < 125 0, (£ (REZ2E) ) e2)
meN, v>1 xe [0, 1], f= F([0, 1]).
Proof. If x =0o0r % =\1 the relation (3.2) is obvious. Let x & (0, 1). Then

1
(3.2) results from (2.8) if we take k= (MF, and from the relation:

n
#(l~2a)

n

B((ex — xep), %) =

Remark 3.1. The value 1,25 of the constant in (3.2) improves the constant
equal to 3.25 given in [6].

THEOREM 3.2. We have :

1 <sup sup 1B =T 4115, (3,‘5) (3.3):
neN feg,(l0, 1]) ( __1_)
721 frlinear wa\f,n 2
where || - || is the sup-norm. {’\ &’\.\

Proof. In order to obtain the right inequality in (3.3) it is enough to
estimate the difference | B,(f, x) f(x) for x (0, 1)). We apply (2.7) for j = 4

to the functional f— B,(f, %), k = n—i and f & #,([0, 11).: |Ba(f, #) —f(#)|<
<[1+i% Busle) 7 Bulles = et ) o (1073, where 3

k
- —x
”

1
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1
denotes the sum taken over those indices k for which [£ — x >n"z
n
In [14] and [15] it is proved the following inequality
! &
TS~ — x| )< e — 1, 34
n Ek ” x j)» k(’r) % ( )

4306 + 83746
5832

By denoting T,, = i (k — nx)"p,{x), from the relation:
k=0
Toerr (%) = 2(1 — 2) [T, (%) +nsT,e_1(x)], (s=1, n = 1) that is
proved in [8] and by taking into account T, (x) =1, T,, (x) = O we obtain:
Tyox) =x2(1 —2x) [(Bn? —6n) x(1 — x) +n] - (n > 1).
1

1 3 3
We have T,,(x) < T, 4(;) = Enz —3 n < E;n" Therefore :

where x= < 1,09 is the Sikkema’s constant.

. 3 - -5
Bl 9 = A1 < (147000 + ZJonlf, %) = (11143 Jon(fin 7).
For the left inequality let us consider an arbitrary real number e 0 > ¢ <1
and let the function f, € F,([0, 1]) defined by:
f) =tle fot 0 <t <e and f(f) =1 —t)/(1 —e) for e<? <L

; 1
Let # = 1. Then: w, 'fs, " 2) = wy(fe, 1) = |f: (0) — 2fc(e) + fe(2¢) | =1/(1—¢),
aud B,(f., €) — fo(e) = —1. Hence.
HBl(fz) _ fc“
@s( fe,1)

Since ¢ > O is arbitrary choosen the desired inequality is proved.

Remark 3.2, The value of the upper bound in (3.3) improves the value
143 given in [12]. In [2] and [6] it is given the value 3,25.

B. THE OPERATORS OF SZASZ—MIRAKJAN. For any neN, n>1 Ilet
§,([0, o)) = C[0, o) be the operator Szasz-Mirakjan given by the formula

0
SWf, %) = exp {(—n2) 3 (nx)Hk ) f(i), for x = [0, ox) (3.5)
k=0 n

and fe V = {f e §F,([0, oo)) f such that the serie in (3.5) is absolutely con
vergent for any x € [0, o

From (2.8) by takmg into account that S,((¢; — x¢,)?, %) = x/n, and
S«(f, 0) = f(0) we have:

THEOREM 3.3 We have:

>1—c=

b=

IS, %) —f(2)] < (14 Das(f, » *), (3.8)
reN, n=>1, feV, and x s [0, x)).
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A. THE OPERATORS OF D.D. STANCU — PARTICULAR CASE.

Forn € N, n > 1and the real number « > Olet the operator L}: &,([0, 1))
—» @, defined by :
n—k—1

k—1
[Te+i0 [T 0= s+ja
=0 =0

L 9 =%(4) (2} @7
=0 n
T+ ja
70
for f= &,([0, 1]) and x = [0, 1].
Using (2.8), since LZ({e; — xe,)%, x) = x(1 — x) if:‘—, we have:

THEOREM 3.4. For any « 20 and ne N, n > 1 we have:

IL3f) — f(0)] < 1,25 af, (‘—*———)') %) @8

n(l + «)
(f = &([0, 11), x = [0, 1]).
Remark 3.3. The constant 1,25 in (3.8) improves the constant equal t
3,25 given in [7].
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REZUMAT — Asupra functiilor slab eontinue. In lucrare se obtin unele des-
compuneri ale continuititii slabe i conditii suficiente pentru ca o functie si
fie slab continud (continui).

1. Introduetion. In [4] I,evine defines a set 4 in a topological space X
to be semi-open if there exists an open set U such that U C A  Cl{U), where
Cl(U}) denotes the closure of U - A set A is semi-closed if its complement is
semi-opett. The intersection of all the semi-closed sets containing a set A is the
semi-closure of A, denoted by sCl(4). In a topological space X a set A4 is feebly
opett [G] 1f there exists an open set U such that U (C 4 C sCl{U). A set is
feeblyv-closed if its complement is feebly-open. The intersection of all the feebly-
closud sets containing a sct A in a topological space is the feebly-closure of A4,
deroted by {C1(4).

A sct 1 in a topological space X is said to be a-set [11] (preopen set [9])
if .! C Int (Cl(Int(4))) (AC Int(Cl(4))). It is known [3] that 4 is a-set if and
oy it 4 is feeblyv-open.

In 4! Levine introduced the concept of semi-continuous fuuctions.
Nevbruunnovad [10] showed that semi-continuity is equivalent to quasi
ceuntinity duc to Marcus [7]. On the other hand, I.evine [5] introduced
the concept of .weakly continuous functions. In 1973, Popa and Stan [17]
introduced the concept of weakly quasicontinuous functions. Weak quasi conti-
nuity is implied by both quasi continuity and weak continuity which are inde-
pendent of each other.

Tt is shown in [14] that weak-continuity is equivalent to semi-weak continuity
mthe sens of Costovici [1]. Recently, Mashhour ect. al. [8] have de-
fined and investigated a new class of functions called «-continuous functions.
These functions have been investigated by Noiri [13], [16]. In (6] Mahes h-
wari and Jain introduced the concept of feebly continuous functions. These
functions have been investigated by I,ee and Chae [2] and the present au-
thor [19]. By [3] follows that feebly continuity is equivalent to «-continuity.
Recently, Noiri, [15] has introduced the notion of weakly a-continuous func-
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tions (or weakly feebly continuous functions) and studied several properties
weakly a-continuous functions.

Ih this paper, we obtain some decompositions of feebly continuity and
me sufficient conditions for a function to be feebly continuous (continuo

2. Definitions. pDEFINITION 1. A function f: X — Y is said to be fe
continuous [6] (reps. precontinuous [9)) if for every open set V of Y, 7t (V)
feebly-open (resp. preopen) in X.

DEFINITION 2. A function f:X — Y is said to be wecakly feeblycontin
[15] (resp. weakly continuous [5]) if for each x & X and each open set V con
ning f(x), there exists a feebly-open (resp. open) set U containing x such t
AUy C CV).

DEFINITION 3. A function f: X — Y is said to be quasi continuous
(resp. weakly quasi continuous [17]) at x & X if for every open set U contain
x and every open set V containing f(x), there exists a non-empty open set
such that G C U and f(G) C V, (resp. f(G) C CI(V)).

If f is quasi continuous (resp. weakly quasi continuous) at every point
X, then it is called quasi continuous (resp. weakly quasi continuous).

DEFINITION 4. A function f: X — Y is said to be weakly almost continug
[201 if for each open set V containing f(x) ,there exists a preopen set U conf
ning x such that f(U) C CI(V).

Weakly almost continuity is implied by both weak continuity and pre
tinuity which are independent of each other.

DEFINITION 5. A point x of a topological space X is said to be 6-adhen
of a subset 4 C X if 4 M CY(V) # I for every open set V containing x. The
of all 8-adherents points of 4 is called the 6-closure of A and i« denoted by Cli
If A = Clgd, then 4 is called 6-closed. The complement of a 8-closed set is
led 0-open. It is shown in [21] that Cl(4) = Cly(4) for every open set A4
Clg(A4) is closed for every subsets 4 of X.

By [8], [15] and [20] we have the followins dxagram }

quasi continuous « feebly continuous -  precontinuous i
’ { !
weakly weakly weakly
quasi continuous « feebly continuous —  almost continuous

3. Main results. In [18, Theorem 1] it is proved that a precontinuous af
quasi continuous function is weakly continuous. In [8] Mashhour et{
obtained the result that every precontinuous and quasi continuous function
feebly continuous. In [13, Theorem 3.2] Noiri proved the following theorer

THEOREM 1. A function f: X — Y is feebly continuous if and only if
precontinuous and quasiconlinuous.

As an improved of these results, we have the following two theorems:

THEOREM 2. A function f: X —Y is feebly] continuous if and only if
precontinuous and weakly quasi comtinuous.

Proof. Let G be any open set of Y and x € X such that f(x) € G. Asf
weakly quasi continuous by [14, Theorem 4.1] there is a semi-open set U, C
containing x such that f(U,) ¢ CI(V). As f is precontinuous by [9, Theorem
there is a preopen set U, (C X containing x such that f(U,) C V. By [13, Lem
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3INU=U,NU,is feebly-open, x € U and f(U) C V. By [8, Theorem 1.1]
fis feebly continuous. Conversely, if f: X — Y is feebly continuous, by Theorem
1, f is precontinuous and quasi continuous, hence weakly quasi continuous.

THEOREM 3. A function f: X —Y is feebly continuous if and ounly if f
s weakly almost comtinuous and quasi comtinuous.

Proof. 1t is similar to the proof of Theorem 2.

The following theorem is proved in [5]:

THEOREM 4. A function f: X — Y is continuous if and only if f is weakly
continuous and 1 (Fr(G)) is closed in X for every open set G C Y.

For the feebly continuous functions we have the following two theorems.

THEOREM 5. A function f: X —Y is feebly continuous if and only if f
15 weakly quasi continuous and 1 (Fr(G)) is preclosed in X for every open set
GCY.

Proof. If f is feebly continuous, then f is precontinuous {8] and by [9, Theo-
rem 1] the inverse image under mapping f of each closed sct of Y is preclosed in
X, thus 71 (Fr(G)) is preclosed in X. If f is feebly continuous then f is quasi con-
tinuous [8], hence weakly quasi continuous.

Conversely, let G be any open set of Y and x = X such that f(x) € G. The
function f being weakly quasi continuous by [14, Theorem 1] there is a semi-open
set VCX Lontaining x such that f(V) C ClI(G). Let us consider the set U =
=V — 1 (F1(G)) = VN (X — FYFr(G)). As f (F1(G)) is preclosed in X
X - f“ (Fr(G)) is preopen. By [13, Lemma 3.1]. U is feebly open. As x & V
and f(x) € G it follows that x < U. Let y « U. Then y & V and y € f71(Fr(G)),
thus f(y) & CI(G) and f(v) € Fr(G), thus f(v) € G. As U is feebly open and contains
%, it follows by [8, Theorem 1] that f is feebly continuous.

THEOREM 6. A function f: X — Y 1s continuous if and only if f is weakly
almost continuous and f~YF1(G)) is semi-closed in X for every open set G C Y.

Proof. It is similar to the proof of Theorem 5.

TEHOREM 7. Let 'Y be a regular space. Then the following conditions are
equivalent for a function g:X —+Y:

(1) g s fc’c'blv continuous.

g7 (Cly(B)) is feebly closed in X for everv subset B of Y.
c) g is weakly feebly continuous.
d) g7 (V) ts feebly closed in X for every O-closed set I’ of Y.
e) g7V (V) is feebly open for cverv 8-open set V of Y.
i) g 15 continious.
I)
I

(b)
(
(
(
(

roof. (a) — (b) : Since Clg(B) is closed in Y for every subset B of Y, g7
)) is feebly closed by [8, Theorem 1.1].

(b) = (c) : Let B be any subset of Y. Then we have

fCl(g~Y(B)) C ICl{g~HClo(B))) = g~*Cly(B)).

Therefore, g is weakly feebly continuous by ([15, Lemma 2.2].

(¢) = (d) : Let F be any 0-closed set of Y. By [15, Lemma 2.2] we have
fCl{g~YF)) C g~Cly(F)) = g Y(F). Therefore, g7YF) is feebly-closed in X.

(d) = (e): Let V" be any 9-open set of Y. By hypothesis g7(Y — V) =
=X — g7Y(V) is feebly-closed in X and hence g~1(V) is feebly-open in X.

&)= (a): Since Y is regular, Clg(B) = Cl(B) for every subset B of Y and
hence open set is 0-open. Therefore, g is feebly continuous.

(a) <> (f) : Follows from [8, Remark].

(Clo(
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Remark 7. In Theorem 7 the following implications hold even if the assuf
tions that Y is regular is dropt: (a)= (b)= (c)= (d) <« (e).
DEFINITION 6. A topological space X 1is said to be »im-compact ii d
point of X has a base of neighbourhoods with compact frontiers.
THEOREM 8. If Y is a rim-compact space and f: X —Y is weakly fo
continuous function with the closed graph, then f is feebly continuous.

Pyoof. Let x € X and V be any open set of Y containing f(x). Since
rim-comact, there exist an open set W such that f(x) € W ( V and the fro
Fr(W) is compact. It is obvious that f(x) € Fr(W). Thus for each y = Frla
we have (x, y) € G(f). Since G(f) is closed, there exists open sets U (x) C X

V(y) CY containing x and y, respectively, such that f(U,(x)) ﬂ V(y) 3
The family {V(y) : y € Fr(W)} is a cover of Fr(W) by open sets of Y. Since F
1s compact there exist a fmlte number of points y,, ¥,, ..., ¥, in Fr(W) sucht

Fr(W) CU{V(y:): 1 < ¢ < n}. Since f is weakly feebly continuous, there e
a feebly-open set U, contammg x such that f(U CChWw). rut U =17,
NiNUy(x):1 <4< Then by [16, Lemma 3.3! U: is feebly-open :
uNy —w)=90. This shows that f(U) C V and by [8, Theorem L

is feebly cotinuous.

THEOREM 9. If Y s rvim-compact Hausdorff and f is weakly fecbly o
nuous, then [ is continuous.

Proof. By [12, Theorem 41, Y is regular and it foilows from Theoren
that f is continuous.
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REZUMAT. — Coniraefil generalizate si punets fixe. In lucrare sint obtinute mai
multe teoreme de punct fix pentru aplicatii T: X — X, contractive in raport cu
o metricd generalizati d: X® — R%.

0. Introduetion. The well known Banach’s fixed point theorem has bee
extended in many directions until now. One of the most interesting of the

consists in taking the metric d of the ambient space X with values in R, and t
impose upon the considered self-mapping T of X a contractivity condition lik

d(Tx, Ty) < A(d(x,¥), xy<X. (Ky) (K,

where 4 :R* — R* is a (vector) increasing operator satisfying certain regularit
assumptions. In particular, when A4 is linear that is

A= (a;), with a;; 20, 1 <7, j<n

a basic result of this type has been established in 1964 by Perov [15] for th
case of A being an a-matrix, and in 1973 by Matkowski [13] for 4 satis
fying a normalily condition (see the terminology of Section 1). Concerning th
relationships between these notions, the answer — precised in the above menti
ned section — is that an a-matrix is necessarily normal and viceversa or, equi
valently, that Perov’s fixed point result is identical with Matrowski’s. This im
plicitly means that all ,,vector” type fixed point results based on such (linear
techniques are immediately reductible to their “scalar’’ counterparts: for exam
ple, the main statement in Balakrishna Reddy and Subrahmany
am {2] is identical (from this viewpoint) with that obtained by Delean
and Marinescu [20], the Czer wik’s theorem in nothing but a varian
of Reich’s [16] and, finally, that the contractor type fixed points result esta
blished in Balakrishna Reddy and Subrahmanyam [3]isr
ductible to the Altman’s one [1, ch. I, §5], as well shall prove in Section
The nonlinar case will be also considered under this perspective, in Section
where afixed point result extendingin a strict way the one obtained by Kw
pisz [12] is being formulated; the reduction to the Banach’s fixed poin
principle is then discussed for the obtained statement, in the spirit of Bessa
g a’s metrization theorem [4]. Some further considerations about these questio
will be made elsewhere.
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1. Normal and asymptotic type matrices. Let R” denote the usual vector
mensional space, R”. the standard positive cone in R”, and < the induced
ring. Also, let (R2)” denote the interior of R* and < the strict (non-reflexive)
ning induced by it, in the sense

2=(Cy, .., Loy <y = (n, ---, M) provided ;<< 4;, 1 < ¢ < n. We shall
cate by L(R") the (linear) space of all (real) # X » matrices 4 = (a;) and
R*) the positive cone of L(R"*) consisting of all matrices 4 = (a;;) with a;; >
,1< 1,45 < n For each 4 « L (R*), let us put

v(4d) = inf{X > 0; Az < )z, for some z < 0}

call the considered matrix, normal, when v(4) << 1, or, equivalently, when
system of inequalities

azlc1+ L +ainCn<Ci: 1 g‘lSﬂ, (S)

a solution z = ({, ..., {,) < 0, as it can be readily seen. Concerning the
lem of characterizing this class of matrices, the following result obtained
Matkowski [13] must be taken into consideration. Denote
ay) =1—ay i=j (N,)

= djj ,’l:#j, lg’i,]gﬂ
inductively (for 1 <« 2k < n — 1)

ag*t = allal) — allald, i = (N)

=aal +afal), i£4, k+1 <4, j<n

THEOREM 1. The matrix A € L, (R*) is normal, if and only if

a?>0,1<i<n (&)

Proof. As already noted, the argument may be found in Matkowski's pa-
however, for the sake of completeness, we shall supply a proof which dif-
in part, from the original one.

Necessity. Assume (S) has a solution z (§,...,%,)>0, that is

a 1 1 1
au)Cl - a‘,-z’Cz - aﬁa’ta — . = ﬂgn)cn >0
a 1 1 1
- aZI)CI + a(zg 2 aés’Ca — ee. — ai,.’l,. >0
4 (1 1 ] 1 1
- aSI)CI - a.gi'l)C2 + ai()li)c:{ TT e e . T ai(in)Cn > 0 (Sl)
1 1 1 1
— @, Cl — a(n%C:e - a(,.:lﬁa — .. ainCn >0
view of
a] 20,1<4,j<ni#j
nust have

1 1
agl))"'r aim) > O;

e, in particular, (C,) is fulfilled for ¢ == 1. Further, let us multiply the first
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inequality of (S,) by the factor aP/al > 0 and add it to the i-th relation of

the same system for 1 = 2,3, ..., #; one gets (if we take into account the no-
tations (N,) plus ‘a{l) > 0)

(I)Cl - all)C2 - a"’L’a T ees — a(llv)l >0
(2)cg—ag(3""--~_a(zzzu>0 (%
1 — a8 et — ... — atfz >0 (S
et — B — ... + B >0

Since

a? >0,2<4,j<n i#7,
we necessarily have

2 2!
a3, ..., >0

that is, (C,) is fulfilled for 7 = 1, 2. Now, if we multiply the second inequality]
of (S,) by the factor a?/ald > 0 and add it to the i-th relation of the same
system for ¢ =3, ..., #, one obtains that (C,) will be fulfilled with ¢+ =1, 2,

3; continuing in this way, it is clear that, after » steps, (C;) will be entirely sa-
tisfied.

Sufficiency. Let us admit that (C,) holds; our goal is to find a solution z =
= (%, ..., §,) for (S) with {; >0, 1 < 7 < . To do this, let us start with the
system

(1)

ATt _a(ll2)‘£2 — a(lla?ia R S agt)zm = 0y
_a(l)gl + a('llggz - a(l)aa T e a’l’tﬁn - 0'2 S \ ,L
! —ﬂ(:sll)€1 - a:(llz) 2 (l)ga cee a(;n)gn"— O3 ( A (S)
[RN .«
—a(n’l)il - amgz — a(l)ga + a(:i)l n = On
where y = (qgy, ..., 6,) > 0 is arbitrary f1xed. Denote
oM = o, 1 <i<mn (\c‘\ (M)
and, inductively (for 1 < £ < n — 1)
ot = alle® + alfol, k+1<i<n (M) (N,)

Let us apply to (S;) the same transformations as in (S,;); one gets (by these no-
tations)

1 1 1 ’ 1) (1)

a\le, —alPe, — a5, — ... —alE, = o
2 2 2 (2)

g, — aPE, — ... — allE, = oy '
2 2 2), &2 2
4 - a(d)az + a(31 3 T ees T a(S')tlE.m = O3 (SL) (SZ)I
2 2)s 2)s 2)
— a‘,,z’ 2 — a‘,}r,;. + aﬁ,,l,,, = cf.

where, in addition,
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a?>0,2<i<mn
in view of

a >0,i<4,j<ni#j
If we apply to this new system the same transformations as in (S,;) and, further,
iterate these upon the obtained system (S3), etc., we arrive at the following
diagonal form of (S;)

(1) (1) (1 ()p (1
ayg — aks — @y — ... — au)» n = Un)

(2)» 2 (2) (2

AopGe — usCg — .. — Qaply = 0’2)
4 ®) @) (3) ‘
Q3363 = +.. — @345, = O3 (S”)

. . . e

(n) (n
a:nEm = O’”)

In view of (C;) plus the above positivity properties, it is clear that the unique
solution z = (&, ..., §,) of (S;) must satisfy {; > 0, 1 < ¢ < #; this, combined
with the equivalence between (S;) and (S,), ends the argument. q.e.d.

A useful variant of Matkowski’s condition (Q,) may now be depicted as
follows. Letting I denote the unitary matrix in L(R"), indicate by A,, ..., A,
the successive “diagonal’”’ minors of I — A ,that is

1 —ay —ay,

A =1—ay, A,=det( ) o A, = det(I — A).

— a5 1 — ay,

By the transformations we used in passing from (S,) to (S,) and from this to
(S;), etc., one gets at once

A =af, 1 <i<n,
sothat, (C; may be (formally) written as
A;>0,1 <14 g ()

After Perov’s terminology [15], a matrix 4 « L (R") satisfying (C,) will be
termed an a-matrix. We therefore proved that the notions of normal matrix and
a-matrix are identical (over L.(R")).

For the applications we have in mind, further characterizations of this class

of matrices are necessary. To this and, let ||- || denote one of the usual norms
in R* {e.g., the euclidean one) as well as its compatible matrix norm introduced as
Al =sup{|{4x]||; ||x|] < 1{, 4 = L(R,).

By convention, a matrix 4  L(R”) will be said to be asymptotic if 4¢? —0
A? — 0 as p — o0 or, equivalently if
A?x — 0 as p — oo, for each x € R™.

The following simple result will be in effect for us.

3 — Mathematica 1/1990
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LEMMA 1. The matrix A € L. (R") s asymptotic if and only if EAP con
<N
ges in (LR"), ||-|]), the sum of this series being (the matrix) (I -—ﬁA)‘1 (he
— A is tnvertible in L(R™) and its inverse belongs to L. (R¥)).
Proof. Let the matrix A be asymptotic. If x € R* satisfies (I — 4)x:
then, the immediate consequence of such an assumption (by repeatedly apply
A to the equivalent equality)

x = A?x, for all p = N.

gives us x = 0 (if we take the limit as p — oo) proving that (I — 4)~1 ex
as an element of L(R"”). Moreover, in view of

I—Ar=(1—A) I+ A+ ... 447, p > 1,
one gets (again by a limit process)

I=(I—-A)I+A4A+ 4+ ...),

which ends the proof. q.e.d.

Before answering the question of which relationships exist between the ¢
of matrices we just introduced and the preceding ones, let us give a useful rer
ming result about normal matrices.

LEMMA 2, Let A = Lo (R*) be a normal matrix. Then, an equivalent n
- 11° in R* and a number X in (0, 1) exist with the properties

a) [|4%]1° < M||x[|7 x < R

b) 0 < x <y tmplies ||x]|° < ||y}]|°

Proof. By the hypothesis about A4, we have promised a vector z =
eeer &y) <0 and a number A € (v(4), 1) with 4z < Az Let us introduce
norm ||-]|® in R* by the convention

[[2]]° = max {£;]/8;; 1 < i <m}, x=(§, ..., &) =R
(As a matter of fact, an equivalent norm exists generated by a scalar proc
and satisfying (a) + (b) above; see in this direction Perov’s paper we alre
quoted. But, for our purposes, it will suffice having a non-smooth norm of
kind). By the obvious relation

2 < (l1%]ly)2 for all x € RY,
one gets (if we take into account the choice of z)

Ax < (l|x]lg)dz < x|1%]1° -2, x = RS
wherefrom, (a) results at once. Since (b) is almost immediate, we omit the
tails. It remains only to prove that ||-||® is equivalent with, e.g., the euclic
norm ||- || in R”, But this follows easily by the relation (deduced from (D

NG 4 oo+ O < {x]1° < [Ix]] - max(47'; 1 < wi < n), ne
and this completes the argument. q.e.d.
' We are now in position to give a complete answer to the above posed:
blem.
THEOREM 2. The mnotions of normal matrix and asymptotic matrix
sdentical over L (R™). o
Proof. Let A € L, (R") be normal. By Lemma 2, we found an equiva
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porm | |- 1]|% on R* with the properties (a) 4+ (b). From the former, it is clear
that

A?x — 0 as p — 0, for all x € R},
lwhich (by the properties of the cone RY) is equivalent with the asymptotic pro-
iperty. Conversely, assume 4 € L. (R") is asymptotic. Letting x > 0 be arbitra-
i1y fixed, put
| 2 = 3 A?x (evidently, z > 0).
| =0
'As Az = 21 Px, we necessarily have z = x 4+ Az which, combined with the
; P21
lchoice of «x, gives Az < z. The proof is complete. q.e.d.

We cannot close these developments without giving another characteriza-
‘tion of asymptotic (or normal) matrices in terms of spectral radius ; this fact —
{of marginal importance for the next section — is, however, sufficiently interes-
ting for itself to be added here. Let 4 € L(R") be a given matrix. Under the na-
tural immersion of R* in (*, let us call the number A € C an eigenvalue of A,
povided Az = Az, for some z « € different from zero (called in this case an
dgenvector of A). The number

‘ p(4) = sup{|r|; A = eigenvalue of 4}
| will be referred to as the spectral radius of A.
LEMMA 3. The matrix A = L (R*) s asymptotic if and only if p(4) < 1.
. Proof. Suppose A is asymptotic. For each eigenvalue, A, of 4, let z = C,
'be any eigenvector of 4 corresponding to it. We therefore have Az = Az and this
s gives
APz = Wz, for all p = N.
By the choice of A, plus z # 0, we must have A? — 0 as p — o, which cannot
bappen unless |r] << 1. Hence p(A) << 1. Conversely, assume that the matrix
4= (a;) in L(R") satisfies p(4) < 1, and put 45 = a;®), ¢ > 0, where
(IU(E) = d,-J + €, 1 < 1:, j S n.
We have p(4.) << 1, when e > 0 is small enough (one may follow), to- prove
this, a direct argument based on the obvious fact
det (4,) — det (A) when ¢ — 0+).
Now, A, being a matrix over RY (in the sense
a9 >0,1<14,j<n).

for cach ¢ > 0 we have, by the Perron —Frobenius theorem (see, e.g.,, Bushell
[6] for a fixed point argument involving Hilbert’s projective metric) that 4, has
a positive eigenvalue u = p(e) > O (which, in view of p(4,) < 1, must satisfy
p < 1) as well as an eigenvector z > 0. Combining these informations, one gets

Az € Az = vz < z.

Hence, A is normal. This, along with Theorem 2, completes the argument.
q.ed.
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The technical interest of this proof consists in avoiding the use of the nom
Jordan forms (cf. Rus [17, ch. IV, §1]). For the standard argument we
to Gantmacher [11, ch. XIII, §3].

2. Mappings of linear contraetive type. Let X be an abstract set. In thef
lowing, the notion of R*—valued metric on X will be used to designate any fu
tion d: X% — R? satisfying the usual sufficiency, symmetry and transitiv
properties (the last one with < standing for the ordering induced by R?). T
convergence property of a sequence (x,),en in X towards a limit x € X be
introduced as d(x,, x) — 0 for p — oo, we have that each convergent sequer
is necessarily d-Cawuchy (that is, d(x,, x,) —0 as p, ¢ — o0) but the conve
is not general valid ; the ambient space X will be said to be d—complete wh
each d—Cauchy sequences converges. Finally, given the self-mapping T of X, ¢
it A —contractive (for A= L (R*) when (K,) is being satisfied. We are interested
the sequel to determine under what specific assumptions about A4 it is true tl
the considered self-mapping has fixed points. In this direction, a basic answer
concentrated in

THEOREM 3. Suppose X is d—complete and T: X — X is an A—a
tractive mapping with A = L (R*) being normal (or, equivalently, asymptot
Then

a) T has a unique fixed point, z € X

b) for each x € X, the sequence \T*x),.x converges to this fixed point um

an errvor evluation expressed as

d(T?x, 2) < (I — A)1A2d(x, Tx), p<N. (

Proof. The standard one may be found, e.g., in Perov [15]. We sl
give here an alternative argument based on ordering principles. For each 1
€ X, one has, by (X,)

d(T?x, Trtix) < A?d(x, Tx), p= N
and therefore, by Lemma 1, the function
o(x) =2, d(Trx, T*Hx), xe X
p=N
is well defined and continuous from X to R”. Of course, by this definition
d(x, Tx) = p(x) — p(Tx), for all x € X.
Now, if we define an ordering on X by
x < vy if and only if d(x, y) < p(x) — p(¥)

it is clear that each ascending (modulo <) sequence (%,)yen in X is a d—Cau
one, bounded from above. This, combined with a maximality result of the au
[19] gives us that, for each x & X, a maximal (modulo <) point z€ X &
with x < z. We claim this is our desired point. Indeed, as z < Tz, we n
sarily have z is a fixed point of 7. Moreover, noting that the structure (X
has maximal element (since T has at most one fixed point) we actually 1

T#x < z, for all peN
which, combined with ¢(z) = 0 yields the desired conclusion. q.e.d.
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As implicitly results from Lemma 2, the above statement is nothing but an
equivalent formulation of the Banach fixed point principle ; see also the remark
in the above quoted Perov’s paper. Indeed, letting ¢: X2 — IR, be the metric

on X defined as
e(x, y) = [ld(x, M) |I% %, y< X, (D)

it suffices to note that X is e—complete and the contractivity condition (K,)
implies
e{Tx, Ty) < he(x,y), x,ye X,

wherefrom the assertion follows. The meta-conclusion we may derive from this
could be formulated as : each contractivity argument involving Rn — valued me-
trics and normal/asymptotic matrices may be translated into a contractivity
argument involving ordinary metrics and subunitary p051t1ve numbers. The fol-
lowing examples will clarify this assertion.

Example 7. Let X;, 1 < ¢ £ »n, be Hausdorff uniform spaces whose topolo-
gies are generated by the pseudometric families (dwiy; w(@)eTy), 1 <1<mn,

respectively and, putting X = X, x ... X X, let the operators T,: X — X,
1 <4 < n, be such that: for each n-uple w == (w(l), ..., w(n)) in T= r, X
X ... X T, there exists a normal matrix A(w) = (al¥) in L (R"), with
du(TH2), Ti(¥)) < 2585 dugy(%;, ), 1 <3 < m, (K,)
J

for each couple x = (x1, ..., %), y= (¥ .., ¥,) € X
Denoting ’
do(x, y) = max{d,(x;, ¥:)/C(w); 1 <1 < n}

(x=(2, .., %), y= (0 ..., ) € X)

where z(w) = ({4(w), ..., {,(w)) > 0 is that introduced by the normality condi-
tion, the family (d,; w € I') defines a Hausdorff uniform structure over X,
sequentially complete if all uniform structures on X;, 1 < ¢ < #, are sequentially
complete, We also put T = (T, ..., T,) (in the sensc

T(x) = Ty(x), ..., T,(x)), x € X).
Then, the above inequality (K,) gives

doi(Ti(x), Ti(y)) < (]E af}-")ﬁj(w))dw(x, y) 2 Mw)Cw)dy(x, ), 1 €1 < n,

that 1is
d,(Tx, Ty) < x(w)do(%, y), », y € X,

where y(w) € (0, 1) is again introduced by the normality condition imposed upon
A(w). Now, by the uniform version of the Banach contraction principle (see,
eg, Deleanu and Marinescu {l10]) we have promised a fixed point
for T; in other words, the main result in Balakrishna Reddy and
Surahmanyam [2] can be completely reduced to these known statements.

Example 2. Let (X;, d;), 1 € ¢+ € n, be complete metric spaces and, indica-
ting by K(X;) the class of all (nonempty) closed parts of X;, 1 < 7 < n, assume
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the operators T;: X = X, x...X X, > K(X,), 1 < ¢ < #, are such that a couple
of matrices B = (b;), C = (¢;) in L,(R") with A = B + C normal, and a num-
ber p € (0,1 — v(4)) may be found with the property

H(Ti(x), TAy)) < JEb;,d,(xj, ¥i) + 2 ¢ disty(x;, T{x)) +

pdisti(y, Ti(¥)), 1 < ¢ < n, for any pair x = (x,, ..., x")&v.g (Ky)
¥y = (Vi ..., ¥,) of (arbitrary) points in X
(Here, H(...), dist; (...) are the usual Hausdorff pseudometric and, respecti®]
vely, the usual distance function in (X;, 4;), 1 < ¢ < #). Let A « (v(4), 1 — u
and z = (L, ..., §,) > 0 be such that Az < Az (possibly, by the definition of
v(4)). Introducing a metric structure on X by the convention
d(x, ¥) = max{d,(x; ¥,)/T;; 1 < 1 < n}
(x=(x, ..., %), ¥y = ..., ¥a) € X)

and noting that, for each n-uple of pairs Y, Z; = K(X,), 1 < ¢ < #, and each
point x = (%, ..., x,) € X we have

H(Y,Z) = max{H(Y,;, Z)/%;; 1 <& < n}
dist (x, Y) = max {dist,(x;, Y,)/{;; 1 <4 < n}
where
Y=Y, X...xXY,Z=2Z,x ... XZ, (of course, Y, Z € K(X))
the above relations give (the notation T = (T,, -..., T,) having the “multi-

valued” meaning of the preceding omne), for 1 < ¢ < #,
H(T(x), T{y) < 27545 d(x, ) + 25 ¢,%; dist(x, Tx) +
J 1

+ pg; dist(y, Ty) < (:» + )¢, max {d(x, y), dist(x, Tx), dist(y, Ty)}
that is

H(Tx, Ty) < (M + p) max {d(x, y), dist(x, Tx), dist(y, Ty), x,v € X.
Therefore, all conditions in Reich’s theorem [16] being fulfilled, we derivej
that a fixed point for T must exist in X ; this is exactly the main result inCz e r-
wik [8] where a more technical proof based on a successive approximation me-
thod has been used.

Example 3. Let X,;,, Y,, 1 <1 < n, be Banach spaces and, putting X =
=X, X ... X X,, let X, be a subset of X. Assume the operators T;: X, —Y,,
1 < 7 < #», closed in the usual sense, are such that a normal matrix 4 = (a;)
in L (R*) and a number B > O exist with the properties: for each x = (%,
x,) € X, there may be determined bounded linear operators I',(x;) €
X,), 1 <i<mn in such a way that

(%, + Ty(x)yy, oo 2 + To(x)ys) € X,  and
”Ti(xl + Pl(xl)yl' ooy Xy + Fn(x») n) - Ti(xlv MR x,,) _yoH < (k‘d\_\ (K‘)
Eaijlly,,ll, 1<i<mn for each y=(y,, ..., 7)€Y =Y, X...XY,

P s

L(Y,
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[ITax) || < B, 1 <é < (Ks)
Letting A € (v(4), 1) and z = (&;, ..., {,) > 0 ve such that 4z < Az, denote
P(x)y = (L,Ty(x)yr, -« o0 LT (%4)50)
{(for any couple x = (%3, ..., x,) € X,, y=(¥1, ., Yn) €Y)
and by T the operator from X, to Y defined as

T(x) = (ClTl(x): LR CnTn(x))» xe X,

If we now write (K,) for ({1, ..., $¥s) € Y and take into account these con-
ventions, one gets

HT(x + T(x)y) — T(x) —y|| < A |yl y =Y,

(here, ||- || stands for the supremum norm in both X and Y) as well as (by the
relation contained in (Kj))

[HT(%)|| < v, with y > 0 independent of x € X,

Consequently, the contractor type Alt man’s theorem [1, ch. I, §5] is appli-
cable ; by that result, we deduce T(x) = O has a solution in X,. In other words,
the statement in Balakrishna Redd andy Subrahmanyam
(3] is nothing but a variant of this “onedimensional’”’ existence result.

The list of these examples may be continued with, e.g., the fixed point sta-
tements involving Krasnoselskij/Urysohn operators or the Altman type coinci-
dence theorem appearing, in respectively, the first and second reference of the
above quoted authors, but these seem to be not too representative ; some further
considerations about them will be done in a future paper.

3. Some nonlinear versions. Let (X, d) be a complete (R"—valucd) metric
spacc and T:X — X an A —contractive self-mapping with A : R” — R (vec-
tor) increasing (u < v implies Au < Av). As explicitly noted in the above sec-
tion, a linearity assumption about 4 (in the sense 4 « L,(R")) makes the corres-
ponding fixed point result involving T, reductible to Banach’s. It remains now
to study the nonlinear case (modulo 4). Essentially, any fixed point statement
of this type is again reductible to Banach’s, in view of the Bessaga metrization
theorem (cf. Deimling [9, ch. V, §17] and the references therein). But, this
reduction process, obtained through a Zorn maximality argument, cannot be
considered as effective ; this “immaterial”’ dependence makes these statements
be much more interesting than their linear counterparts. We shall start our dis-
cussion with the following result of this type obtained by Kwapisz [12].

THEOREM 4. Let the self-mapping T of X be A-contractive (in the semse
of(K,)) where the increasing operator A fulfils

for each w e RY, there exists M(w) = the maximal solution (Ko
m R of u=Au + w °
u = Au for the only case u = O (that is, M(0) = 0) (K,)

[(u,) pen decresing in Ry and U, —> 4 R% as p— o
imply Au, — Au as p — .
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Then, conclusions (a) + (b) of Theorem 3 (minus the error evaluation form{
(E)) are valid.

The maximal solution argument — originally developed by Wazews
[20] — used in the above theorem is, of course, interesting from a techni
viewpoint. But, a closed analysis shows it cannot cover (for # = 1) the stanlq
result in this direction duetoM at ko ws ki [13]. In fact, the operator 4 : R}
— R7. defined as (for some z > 0)

A(u) = u — z, when u > z

= (, in the opposite situation
does not satisfy (Kg) for w > z but it obviously has all the properties involy
in Matkowski’s theorem. So, the question arises of whether or not an appropr
substitution of these conditions by another ones may be performed in su
way that a covering property of this type be valid. The answer is affirma
and the conditions in question (containing in a strict sense (Kg) — (Kg), as
above counterexample shows) are (K,) 4 (K,,) below. In other words, the
lowing extended version of Theorem 4 may be formulated.

THEOREM 5. Let the self-mapping T of X be A-contractive (im the semst|
(K,)) where the (vector) increasing operator A satisfies l
the subset S(A) of all w € R with Au < u is not empty! (1
A?tw — 0 as p — o, for each w e R'. (K

Then, T has a unique fixed point, z € X, which is the limit of any sequence of s
cessive approximations starting from an arbitrary point of X.

Proof. Letting x € X be such a point, denote

x, = T?x, p=N.
We have, by (K,),

d(xp, xpi1) < AP(d(x,, 1)), p € N,
so that, by (K,,), d(x,, %p41) — 0 as p — co. Let u € S(A) be arbitrary fix
There exists, by the conclusion we just derived, a rank p = p(u) =N w
d(xp Xppy) < u — Au < u. Without loss one may assume p = 0 (since, oth
wise, we substitute x = %, by x, in these reasonings). We have successively (

(Ky))

) € u=d(x,, x,) < Au=d(x,, %) <

A(xy, %) + d(xy, %, < # — Au + Au = u,

d(xy, %) < u= d(%,, %3) < Au=d(x,, ;) <

d(%y, %) + d(%y, %3) < u — Au + Au = u, etc,
and this gives

d(x,, %) < u, for all g = N.
Hence, again by (K,),

d(xp, %p4q) < APu, p,g<=N,

which tells us (via(K,,)) that (z,)p<n is a d-Cauchy sequence. As X is comple
%Xp—» 2z as p — oo, for some z & XP ; we claim z is our desired point. In fact, lett
g — o in the above relation yields (by the triangle inequality)

d(x,, z) < APu, for all p € N.
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This (by (X,)) again gives
d(%p41, T2) < APy, pe N

and therefore (combining with (K,,)) x, — Tz as p — co. By the uniqueness of
the limit in (X, d) we must then have z = Tz. Moreover, let z* be another fixed
point of T and put w = d(z, 2*) ; one has

d(z, 2*) = d{T?z, Ttz*) < A*w, p € N,

wherefrom (by (XK,,) again) z = z*. The proof is complete. q.e.d.

In particular, for » = 1 (when (see [14]) (K9) is reductible to (K,,)) this re-
sult is identical to the above quoted Matkowski’s (cf. also Turinici [18]).
On the other hand, when A is linear, (K?) plus (K;,)) are fulfilled in the normal
case ; s0, Theorem 3 is a particular version of the above statement. As we already
said, a reduction of Theorem 6 to Banach’s contraction principle is (theoretically)
possible, but very little can be said about the effectiveness of this procedure, in
many situations (except the ones characterized by relations like

A(z2) € W12z, T > 0 (for some » = (0, 1) and z > 0)

when, by the construction of the associated metric ¢: X? — R, we indicated in
(D') (see the prcceding section) this objective is attainable). The situation is
complicated by the fact that, under a weaker form of (K,,), namely

AP — 0 as p — 0, for cach u = S(4) (XKio)
a fixed point of T is to be reached, provided

d(x, Tx) < u, for some x€ X, u = S(A) (Ky)

is being accepted and, moreover, two fixed points z, z* of T arc identical, whe-
never

d(z, 2*) < u, for some u = S(A)

(the proof being almost evident, we omit the details). In other words, by these chan-
ges in Theorem 5, the fixed point of the ambient mapping is not unique, in general,
and this makes Bessaga’s reduction theorem be without object in such a case.
We note in the same context that a sufficient condition for (Kj,) to be valid
is the couple (K,) + (K4) and also, that (Kj,) reduces to (hence is equivalent
with) condition (K,,) provided S(4) is cofinal in R’ (for each v € R’ there
exists # € S(4) with v < #u).

The notion of contractive (in the sense of (K,)) self-mapping may be also
deemed in the larger context of the linear spaces endowed with a topological
convergence structure and an ordering one, induced by a cone ; some results in
this direction have been obtained by Bohl [5, ch. IV, §4} and Collatz
17, ch. II, §11] in the case of A being a linear and, respectively, nonlinear ope-
rator on that space leaving invariant the considered cone. These, however, do
not cover ours, as it can be directly seen.
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REZUMAT. — Sirurl de multifunefil ecare satisfac anumite condifil de
contractlvitate. In prezenta notd ne propunem si demonstrim trei teo-
reme de punct fix comun pentru giruri de aplicatii multivoce defi-
nite pe spatii metrice complete care satisfac inegalititi contractive de
tip (1) sau (5).

1. Dans cette note nous allons démontrer trois théorémes de points fixes
communs pour des suites d’applications multivoques définies sur des espaces
métriques complets qui satisfont aux inégalités contractives de type (1) ou (5),
en partant des résultats ressemblants obtenus par B. Fisher [2], H Ka-
neko 5], T. Kubiak [4],I. A. Rus [7] et K.'L. Singh, J. H.  N.
Whitfield (8], Nicoleta Negoescu [9] pour d’autres types de con-
ditions de contractivité,

2. Soient (X, d) un espace métrique, A et B deux ensembles nonvides de
X ex x un élément fixé de X. Alors on définit :
DA, B) =inf {d(a, b):a < A, b < B}, D(x, A) = inf{d(x, A):a & 4},
H(A, B) = max{supD(a, B), supD(b, A)}, H(x, A) = sup{d(x, a):a s A},
ac4 be B

3(4, B) = sup{d(a, b) :a= A, b e B}.
Aussi on définit les suivantes classes d’ensembles :
BNX)={4:ACX A#3 et 4 borné}; CL(X)={A: 4 CX,

A # 3 et A fermé},
CB(X) = BN(X) N CL\X), Cpt(X) ={A: A CX, A +# D et A compact}.
Observations. La fonction D est continue (v. [3]).
Evidemment on a: D(x, 4) < §(x, A) et (4, B) > H(A, B).

La fonction H est une métrique sur CB(X) (et sur Cpt(X)) appellée la mé-
trique de Hausdorff [v. [11).

THEOREME 1. Soient (X, d) un espace métrique complet et (S,), (T,) deux
suites d’applications multivoques de X dans CB(X). Supposons quw'tl existe une

constante h, 0 < h < 1, telle que pour chagque m,n = N* et pour tous x,y € X
ona:

HS,x, T,y) < k*max{d*(x, ), D(x, S,¥)D(y, T,y), D(x, T,y)D(y,Snx)}. (1)

* Institus Polytechnigue de Jassy, Chaire de Matk emaliques, 6600, Jassy, Roumanie
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Il suit une des deux possibilités:
a) ou max{d*(Xa—1. X2n), H(%2m, Xont1)@(X2n—1, X2n)} = d*(X2n—1, X2n) et
alors d%(Xay, X2n11) < hAP(Xop—1, X2n) et d(Xgm, Xowy1) < Jlﬁ (%2n—1, %2u),
b) ou max{dz(x2n—l: Xon) B(Xzn, X2n41)d(%2n—1, x2n)} = d(%zn, X2n+1)
d(X2n_1, %)
et alors d%(xg,, Xont1) < A&(Xon, Xont1)@(Xon—1, X2s) OU d{X2y, X2pt1) <
< hd(Xzn_1, X2n)

(car Xon & Xon+1 St d(me x2n+l) < O)
Mais max {4/%, #:0 < & <1} = 4/h et donc:

A(%zm, Xon—3) < AJBA(Xgni1, %24), Vm € N*. (3"
De la méme maniére on peut montrer que:
d(xn‘.’.—l: xZn) S \/}jd(xZn—l: x2n)~ (3")

En répétant le raisonnement qui nous a conduit aux inégalités (3') et (3"') nous
obtenons: d(Xas, Xont1) € (%0 %) et d(Xont1, Xowss) < A%A(%y, %,).
En notant par »° = max{d(x° x,), d(x,, x,)}, nous avons pour m > n:

m—n—1 m—n—1

d(xm xm) < 2 d(xn+b xn+i+l) < 2 k"_HrO < hnro(l - k)
i=0 =0
et d(x,, x,) — oo pour # — . Donc (x,) est une suite de Cauchy.
Mais (x,) C X et (X, d) est un espace métrique complet et il suit que (x,)
est une suite convergente a un point ¥ € X (lim x, = x € X).
Alors: D*(%ym—a, T,x) < H3(Sp%2m -2, Tpx) < Mmax{d?(xem 2, %),
D(%am —2, Sw¥am—2)D(x, T,x), D(%am—2, T,x)D(%, Sp¥2m—2)} oU
D*( %o —g, Fpx) < BPmax{d*(Xom s, %), d(X2m—2, Xom—1)D(x, T,%),
D(xzm—z, Tnx) . d(x, x2m—l)}-

Pour m — o0 nous avons: DXx, T,x) < hPmax{d¥(x, x), d(x, x)D(x,T,x),
D(x, T x)d(x, )} = 0, ce que implique D(x, T,x) =0 et donc x € T,x pour
chaque .

De la méme maniére on a ¥ € S,,x pour chaque m, et la démonstration est
finie.

Du théoreme 1 on a la suivante conséquence obtenue par nous dans [9],
théoreme 3.

THEOREME 2. Soient (X, d) un espace métrique complet et S, T : X — CB(X)
deux ap plications multivoques qui satisfont A Vinégalité (1) pour S,, =S et T,= T.
Alors S et T ont in point fixe commun x = X
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Aussi le théoréme 2 a lieu si S = T: X — BC(X).

Le théoreme 1 est vrai aussi si (S,) et (T,) sont deux suites d’opérateurs
S, T :X,.X, neN*,

Du théoréme 2 nous obtenons un théoréme analoque en remplagant les appli-
cations multivoques S, T:X — CB(X) par deux opérateurs S, T : X — X.
Ce résultat est illustré par le suivant: X

Exemple. Soit X = {1, 2, 3}. Nous définissons sur X un métrique d par:
9 -

d(1,2) =2, d(2,8) =, d(1,3) = %
Soient S, T: X — X définis par S1 =52 =S3=1let T1 =73=1,T2 =

= 3.

Alors il existe 'Z— < h <1 tel que l'inégalité:

d¥(Sx, Ty) < h*max{d¥x, y), d(x, Sx)d(y, Ty), d(x, Ty)d(y, Sx)} est satisfaite.

Alors il existe le point x =1 tel que 1 =5S1=T1

THEOREME 3. Sotent (X, d) un espace métrique complet et (S,), (T,) des sui-
tes d’applications de X dans CB(X) qui sont convergentes ponctuellement d S et
T respectivement. Nous supposons que (S,) et (T,) satisfont d la condition : 1l exis-
e 0 < h<<1 te que:

Hx(S,x, T,y) < h*max{d*(x, v), D(x, S,x)D(y, T,y), S(x, T,y)D(y, S,x)},
Vn e N*, Vi, vy X. %) (4)

Alors S et T ont un point fixe commun # € X.
Démonstration. Nous montrons d’abord que pour tous %,y < X il suit:

ID(y, S\x) — D(y, Sx)| < H(S,x, Sx). () (@)

En effet, soient a € S,x et b= Sx. Alors d(y, a) < d(v, b) + d(b, a) et
d(y, a) < D(y, Sx) + D(a, Sx), donc D(y, S,x) < D(y, Sx) + H(Sx, S,x).

De la méme maniére, nous obtenons D(y, Sx) < D(y, S,x) +H(S,x, Sx)
et alors l'inégalité (4') este vraie et. donc on a (4') (D(y, S,x) (y, Sx))ul
< H%(S,x, Sx). -

On peut obtenir une inégalité analogue pour T, et T. (ﬁ,x,%x\

En employant l'inégalité (4”') et le fait que H est continue, il suit que S
et T satisfont aux hypothéses du théoréme 1 et donc S, T ont un point fixe com-
mun dans X.

THEOREME 4. Sotent (X, d) un espace métriqgue complet, (S,), (T,) deux
swites d’applications multivoques de X dans BN(X). Supposons qu’il existe une
constante h, 0 < h < 1, telle que pour tous m,n < N* e x,y < X, nous avons !

8%(Su#, Tuy) < WPmax{d(x, y), H(x, Swx)H(y, T.y), D(x, T y)D(y, Swx)}{3) (5}

Alors (S,) et (T,) ont un point fixe commun, c’est-a-dire il existe un point
#< X tel que u « S,u et u  T,u pour tous » € N*, Davantage, S,, et T, ont
un point fixe commun unique et S,u = T,u = {u}, Vm, n € N*,
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Démonstration. Nous définissons une paire de suites d’applications f,, gat
1X — X telles que: pour x, y € X soient f,x, g,y des points dans S,x et T,y
respectivement qui satisfont aux inégalités:

d(%, fux) > JHH(x, Sux) et

Ay, g) = JRH(y, T ).

Alors, pour chaque «x, ¥y € X et m, » = N* nous obtenons:
P{f.x, 3) < {2(Sw¥, T,oy) < b max (hd2(x, v), (JE2H(x, S,x)H(y, T.y),
(WhED(x, To)D(y, Spx)} < b max{d*(x, y), d(x, fur)d(y, gu3),

(%, ga)A(, fm*)}-

Donc (f,) et (g,) satisfont aux hypothéses du théoréme 1 (pour des opéra-
teurs) et donc il existe un point fixe commun de (f,) et (g,), # € X.

Si nous supposons qu’ils existent deux points fixes communs # et v de (f,
et (g,) nous obtenons:
d¥u, v) = @*(fuu, gw) < h max{d*(u, v), 0, d*(u, v)} = hd*(u, v). Donc d(x, v) =0
c'est-a-dire v = v et % est un point fixe commun unique de (f,) et (g,).

Fvidemment % € S,,u et u € T,u et donc nous avons:
3(S,u, Tyu) < h*max{0, H(u, S,u)H(u, T,u), 0} pour chaque m,n € N* et
H(u, S,u) =0, H(u, T,u) = 0, denc Spu = T ,u = {u} pour Vm, n € N*.

On voit que # = X est un point fixe commun de (S,) et (T,) si et seulement

si # est un point fixe commun de f{,) et g(,). Cela implique 'unicité du point fixe
ue X et le fait que S,u = T,u = {u}.

Observations Le théoreme 4 est vrai aussi pour une paire d’applications mul
tivoques, S, T: X — BN(X).

Le théoreme 4 a lieu et dans le cas S = T : X — BN(X).

Nous donnons maintenant un exemple d’application multivoque qui ne sa-
tisfait pas aux conditions de cette conséquence du théoréme 4, mais qui satisfait
aux conditions du théoréme 2.

Exemple. Soit X = [0, 1] avec le métrique usuelle d et T: X — BN(X),
Ty = lo, %] Vx < [0, 13.

Soent 0 < x <y < %, alors 8(Tx, Ty) = %mais H(Tx, Ty)=0 et alors it

n’existe pas un 0 < A<<1 qui satisfait 4 l'inégalité (5), mais I'inégalité (1) pour
une seule application est satisfaite.
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Sa(x) = S (x) = SIP(x ) + SPM(x)(x — %) +

= \ sz(u, S (), S (w))dw dt (L) @

where S (%,) = y, and 3"i(x,) = y,. In equations (2.1) and (2.2)
we use the following iteration process, where S}(x,) = yo and S(x,) = 2
For x € [, xapy} A =0(1)n — 1, and 5 = I(I)m,
SP(x) = SiTh(m) + STl (2 — m) + 1/2f,(%, SE (%), SIZh(x)(x — %)
SPUx) = Si7h(m) + S\ E)x — %) + 125, SEh(m), SEA()(x — n)?
SV (%) = Si%h(m) + STl (x — ) +

T tmejid
+S S Si(tm —F 4 LSE by — § +1), SV Nty — 7 + 1)) + Q1B
*5*x
S5P(x) = Si™(m) + S (w)(x — ) +
¥ gt

+ § ( }2(uﬂ—i+l, Sy—”(“m—i+l):§y—l] (#m—5+1)) - Sthm—jy18bm —js 1

By construction, it is clear that both Si(x) and Sa(x) = CY{([0,1 ).

3. Error estimation and eonvergence. In order to give error estimates f
the method, we need to write down the exact solutions for the system under con
sideration using Taylor’s expansion in the following form:

x i

y(x) = y"i(x) = 3, + y»(x —x5) + S Sfl(“l:y["‘”(“l)z"" ~(u,)) du,dt, (3T
%5 (>-H

Y(3) =) = it | ffon, ), 2w (32) (34

E3

4
z(x) = 2™(x) = z,+ zy(x — %) +S sz(“v yrli(uy), z[m—z:]( b))dudt, (3.9
by 3-5\

£(2) = £(x) = 7 + (foli, Yo ow), =0 R (34

*
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Proof. Since, e(x) = |y(x) — Salx)| = |y"™)(x) — S*)(x)|, then by
and (3.1) we get:
e(x) < |m — Sg’ilnl + lys — S;z['—n}(xk)l [x — x| +

E2

+S 5 |fi(sr, y0m=11(u;), 2™ =1(w,)) —f1(ny, S’E"_”(ul)’ S,&"'—”(ul)) |du,dt, <

*t %5

NN
+ ewh + L S S {[ytm-1)(u,) — Slg”-”(‘ﬁ)l + lz[m—”(“l) — Sl[bm_l(“l) [} duy
by %

we have used the fact that SY’(x,) = S{® (%) for all j = 1(1)m.
Let I;= |y *(u,;) — SI"*Y(u;)| and
Ji= lzm=iu;) — 5" "Y(u;)| for i = 1(1)m, then one gets:

I < |y — S () |+ vk — S&™ () | s — x| +

“g t“+1
+ L ™ me) — S o) | +
%, %,
+ 127w 0) — ST ) H adt
ittt
< e + el — x| + LISS {Liv1 4 Jir1jdob 41dt 4y,
1%
Similarly, one can show that
“o b 41
Ji <&+ élu — x| + Ly S [Li 41+ Jir |du; 4dt; 44
e
Therefor,
i+ Ji < (& + &) + (en + &) u; — x| +
“itit1
+ (L, + Lz)s s Hesr + Jivr|dus 1885 41
"xk

Thus, we get
il

e(x) < e, + esh + Ly S 5 1y + ], |du,dt,

L
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< et ah + L\ \{(ea+ &) + (ex + &) [y — 2l +

A el
®
ot -~

¥t

(L, + L,) S U, + J,)dugdt,}du,dt,

x 0z

kk

< ey + eih + L1[<e,.+ék);‘~'[+ (eh + &) "'] +

)

Ly + Ly) S s 5 S (I, + J,ldu.dt,du,di,

k Kk kK

\ek+ekh+L(ek+ek>[ (L + Ly Z ]+

+ L+ @5+ L+ L) ]+

®

t ¢

\

ANl

(L, + L2)=S (I, + Jyldugdtsdu,dt,du,dt,

kR

5 L
R ey
B ™

L]

NN

As a result, we get

x) & e+ eih + Lifer + &) [ 3o+ Lo+ L) + (L + L)

m—2  h2(m—1)

hﬂ
+E+"'+(L1+Ll) )

]+ eh+ek)['+
hlm'l‘]_’_

(Zm~—1)!

(LA L)+ (L + LS 4 o (L L)

tli‘t

5 SIS S S g+ Jm] -Gttty ... dudt,.

# 2 m—1tn
+ L+ L)

z z

k k k k

R
But, I, = |9 (u,) — Sy (#,)], then
Lo < |3 — SiZh(x) |+ 1y — ST | 1w — x| 4+ 120 13" (50 —
— ") [J(um — )2 + 1/2|f1(x, Sk{m}(xlc)slémj(xk)) -
— [ul®, a 2) | - (e — x)?
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< ot eiltm — %] + 1200y, B) (s — x)* + 1/2L, [y —
— S | + |z — SENx) [ (m — 5
< & Fexltn — 2] + 120007, B) (4 — %) + 12 Ly(eg + &) (w0 — %)
Similarly, one can show that
Tm < &+ G lty — 2| + 1/20(", B)(4, — %)2 + 1/2Ly(en + &) + (thy, — 1
Consequently, we get
In+ Ju < (& + &) + (ek + &) Juy — 2 | + () (4, — m)2 +
+ 12(Ly + Ly)(es + &) (n — %)%
Finally, we end up with the following:

e(x) < et eih 4 Lufen + &) [T 4 (Lo 4 L) | 4+ (Lo + L2

y U , hz(m—l) h2m
. — { W2 L L,)m—1)
ot + (L, + L) Zom _1)),+( 1+ Ly) Zm |

G| Tt @[ L L)

h2m+2
(2m + 2)!

. h2m—1
+ (L, +L2)2;‘1+ e+ Ly Ly z(zm_l)‘"f‘

h2m-t1 _ h2m+2 y
o] T L) alh)

<e+eah+ Lik(e, +e)(1 + (Ly+ Ly) + (L + L)+ ... +
+ (L L= + (Ly + L= + (L L") + Lib(eh + &) -
(U4 (Li+ L) + (Lo + Lo+ ..o+ (Lo + L™ 2

h2Zm-+2
m—1 m+1 - .
+ (Ly + L)+ L(L, + L,) T -o(h)

, _ L, + Lym--t — 1] , -
< e + eih + Lik(e, + &) & e 1)> — L L k(e + &)

U4 Ly 1] ——t BT
Gy Tl B g e

Let C,=L, Lol © o (b Lomct g g et Liv
[(Ly+ Ly) — 1] (Ly+Ly—1" @2m 4 2t

e(x) < ¢ (1 + Coh) + 6Coh + 6Cih + Cuéxh + Cih?m+20(h),
where C, = 1 4 C,. This proves the first part of the lemma.

+ (Ly + L))" ——

+ (L + L)~
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Using the previous procedure (2.2), and (3.3) one can show the following
estimate ;

é(x) < & + &b + Lohle, + &

Ly, + Lyym+1 1 , —
) (& + Iy ] Loh(e; +é:

(Lot Ly 1
(L + L™ — 1 h2m+2
—aw 4+ L(L Lyn—1 h).
L, +Ly 1 + Ly(Ly+ Ly) (2m+2)l°’()
Let Ty =L, Fatt™2—1 &~ g IiFL"=1 g
2L+ L) — 1 L, +Ly—1"
C; = LZM , then one gets
2m + 2)!

é(x) < aCuh + &(1 + Coh) + el ik + &Coh + Cihtm+2, w(h),
where C, = 1 -+ C,. This proves the second part of the lemma.

Next, an estimate for e'(x) is given using (2.1) and (3.2):

£®) < i — S0 |+ {fulw,ym =1 () zim=t(my)) —

z

3

— fulwy, St"=1(u)),5¢" _1](”)) |du,

< e+ ng Iy + J1)du,

x

k

< e;+L1§{(e,,+ék) + (ei 4 &) 1wy — % + (L + Ly) -
“8
%y I3

SRR AL AL

z €

I3
e.+L[(ek ek + ek + &) —]+L1(L + L)
"t
S [y + J.] du,dt,du,

kR

w-“‘*’-' L)

L]

—_—

<a+ Ll + &) [+ (Lo+ L) ] 4+ Ll + 8[54+ (L + L 5| +

¢

[Is + Jl - dugdtsdu,dt,du,.

[3

IO ¢

L

ot
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Hence, one gets

¢(x) < e + Lyfes + &) [h + (LA L) S+ L+ LIS+

h2m—3

+ (L + Lz)m—

] L E D+ L)+

h2m—2

+(L1+Lz)26“,+ B A=y

zu t

o | L
12 m 14
- (Ly + Lz)m_lss S S (er + &) + (ex +
I I k
+ ek) Ium - xkl + 1/2[(“)( " k) + "“)( " )J (um - xk)2 +
+ V2(Ly + L,) (e + &) (4w — x,)°] du,dl,,. . . duydtydu,
#(x) < e+ Lyfewt &) b+ (Ly + L) 13+ (L + Lo St

h2m—3 h2m—1

+ (Ly + L)"! -7+ V2L + Ly)™

m—~2
+ (L, + Ly) p— P

N L+ [5G+ L) (L L
he m—2 h2m-—2 h2m
et G L) T T (L Ly ]+

m—1 jh2m+1

+ Ly(L; + Ly) Zm 1) !“)(h)
e(x) Sep+ Likley+6) 1+ (Ly + L) + (Ly+ L2+ ... +
+ Ly + Lo)m 2+ (Ly + Ly)™=' + (Ly + L)) + Lik(ert &) -
U+ Ly + L) + (L + L)+ o+ (L L2+

+ Ly L] 4 La(Ly + Lm0 wfh)

(Ly + Lym+1 — 1 + Llh(e; + e-;’) .

e'(x) < ep + Lih(e, + &)

(Ly+ L) —1
. (Lt L™ —1 L, + L)yn—1 " o
(L1+L,)-1+Ll( 1+ Ly) (2m+l)lw()
Let C; = L, ot lamii-1 C;=1, 5t -1 .4
(Ly+ Ly) — 1 (Ly+ Ly — 1

C/ =T (Ly + Lym—1

, then we get
8 @m + 11 &



A SPLINE APPROXIMATION 57

(%) < exCih + ECoh + (1 + Cih) + ECik + Cihrm+t wh).
Finally, it is now easy to show that
&(x) @+ Lppley + &)1 + (L + L)) +(Ly + Ly + ... +
+ (Ly+ L) 2 4 (Ly + Ly)™ "+ (Ly + Ly)™] + Loh(er + &) -
M+ (L + L)+ L+ L)+ oo+ (L + L) 2+
+ (Ly + L)1 + Lo(Ly + L™=t = k)

(2m + 1)1
) (Ly + Lm+1 — 1

< &+ Lhles + & + Ly hiei +7) -

(Ly + Ly) —1
LGt Ly™—1 m—y  hIm+l
Lt L)1 + Ly (L, + L,) P l“’(h)
Let C) = Lz (Ly + Lym+1 — 1 ’ C-; — L2 (Ly + L™ — 1 , and
(Ly+ Ly) — 1 L, + 1" -1

= 1, Lt Lt
(2m + 1!

&(x) < aCoh + 6Coh + eiCih + &1 + Cih) + Csht™ Hw(h),
this proves the last and the fourth part of the lemma.
Now, let E(x) = [e(x) é(x) é'(x) &'(x)]T
E, = [e & &x &]7
C =[G Ca Cs Cé]

where T stands for the transpose. Note that, the initial conditions
implies that E, = [0 0 0 O]T, then from Lemma (3.1) we can write E(x) in
the following form:

, then we get

E(x) < (I + Ah) E, + Ch2m+1e(h). (3.11)

where I is the identity matrix of order 4 and A is the matrix defined as
follows :

CO CO Cl CZ
co, Co C G
Co Co Ci  Cif
Cs Cs Ci Ci
Let ||E(x)|| = ||E(%x)||w, then (3.11) becomes
HE(x) || < (1 4 [14118) LEsI| + HC || B +'a(h)

the above inequality is true for all xe [x), %)), £ =0(1)n — 1.
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In particular, the following inequalities hold true: .\“\1.\*‘*0)\_\\\

(1 HA411R) HEy 1] < (1 + 141182 [|Baeil] + (1 + |14 [1R) ||C] B2+ 0(h)
(A [ANRPHE 1| < (X JIA AP Ex—2|| + (1 + |14 [ )2 IC] B2 +e(h),
I+ HAAP [|Eaz]] < (1 + [1A]1R) Ess|| 4 (1 + [|A[[AP|C] [h2m+1e(R).

T+ AR HEL ] < (U4 AR E ||+ (14 |14 ][R (C|{h=+e (k).
Adding L.H.S. and R.H.S. we get

HE()| < Amtio() [1C11SS (14 |14 BY

L+ 1A BPH — 1
1+ (4] —1

= hom o) 1E[1 4 LA )

< hm+iah) ||C]

= hzm(h)% [e'il — 1] < Bh2ma(h).
where B = 11l [ell4i—1].
141l

Using (2.1), (3.1) and (2.2), (3.3), it can be easily shown that
e'(x)= |y"(x) — Si(x)| < Ci*™ w(h)
and
&’ (x) = |2"(x) — SK(x)| < Coh* w(h).
Thus, we have proved the main result of this paper.
THEOREM 3.2. Let y(x), z(x) be the exact solution of the system of equationst
Y'(%) = fu(% 3, 2), ¥(%0) = Yo, ¥'(%0) = Yo
2"(x) = fo(x, v, 2), 2(%,) = 24, 2'(%) = 20
If Sa(x) and Si(x), defined by (2.7) and (2.2), are the approximate solutions

and f,, f; = C([0, 1]) X R?), then for all x <€ [x;, xp1]. R =0(1)n — 1, we
have ’

ly(.‘) — s (%)] < Blhz"’ ofh), 1 =0(1)2
|29 ~ 59 (x) | € B,h™ w(h), i = 0(1)2

where B, and B, are constants independent of h.
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REZUMAT. — O metodd de aproximare globali petru probleme la lmitd nell-
niare de ordinul al doilea. Lucrarea propune o mectodd globali de aproximare
a solutiei problemei bilocale neliniare 3y + f(x, ) =0, 0 € x < 1, (0) = «,
¥(1) = B, cu ajutorul functiilor spline cubice §i quintice. Metoda este o com-
binatie Intre metoda colocatiei spline §i o metodd discretd a multipagilor. Ea
are ordinul de convergentd patru. Sint date doud exemple numerice care jlustrea-
z3 aplicabilitatea metodei §i avantajele ei.

1. Introduetion. We consider a numerical procedure based on spline fu
to approximate the solution of nonlinear two-point boundary value prob;
ordinary differential equations. Though polynomials have long been the fu
most widely used to approximate other functions, spline function ir
circumstances is a more adaptable approximating function than a poly
Besides, it provides a simple and powerful theory.

Generally, a spline approximation satisfies certain continuity con
and some discretization equations. In this paper we shall consider a pr¢
where the conditions of continuity are impilementcd explicitly. In view
fact that boundary value problems involving differcntial equations o

higher than two are not too common, we confine our attention to seconc
equations of the form

d2
o Fn ) =0,0<x <1, 30 =« y(1) =B,
where a and 8 are comnstants. We assume that for
(x, ) eS=0<x<1, —0<y< +0},

flx, ¥) is continuous, ¢fjey exists and is continuous. Since the boundar
problem (1.1) is likely to be nonlinear in nature, it may happen that w
solution exists they are more than one. In this context, we recapitul
work of L e e s (1966) where it is mentioned that whenever # = sup aff

problem (1.1) possesses a unique solution. Differential equations of this
particular, systems of such equations occur frequently, for example, in
nical problems without dissipation.

* Indian Institute of Technology, Depart t of Math tics, Kharagpur — 721302, INDIA




A GLOBAL APPROXIMATION METHOD 61

Cubic splines to obtain the solution of linear two-point boundary value
problems have been used by Bickley (1968). Albasiny and Hoskins
(1969) have discussed the application of cubic splines in the solution of second
auder linear problems and concluded that results which are accurate upto Q(/44)
xan be obtained in a special case. Fyfe (1969) has used cubic splines to solve
linear second order problems and examined deferred corrections, effects of
nonuniform spacing and a mesh refinement procedure. Usmani (1980) has
discussed a fourth order scheme for linear problems involving second order
differential equations.

Recently, Chawlaand Subramanian (1987) have suggested a fourth
ader method involving a cubic spline procedure coupled with fourth order
Numerov scheme for the solution of nonlinear boundary value problem (1.1).
[n this paper, we suggest another fourth order solution procedure where a cubic
spline coupled with a quintic spline scheme is used for the same problem. We
have also made a systematic error analysis and established fourth order conver-
gence of the present method. Numerical examples are supplemented to show
:he working of the method.

2. Development of the numerieal seheme. We consider a uniform partition A
of the interval [0, 1] into N subintervals by inserting the knots x =
=jh, j = 0(1) N, where step length # = 1/N, and I, = (x:_1, %), £ = 1(1) N.
On the partition A, a natural representation of a spline function of degree
m contains (m + 1) N parameters and hence we require as many relations.
The continuity conditions provide m(N — 1) relations and (N -+ 1) relations
ate obtained through collocation. Hence, we need m — 1 (= N(m + 1) —
-m(N — 1) — (N + 1)) relations more for the complete determination of all
the unknowns.

Let S,(x) be a quintic spline on the j th interval I, To simplify the
presentation, we use the abbreviations

Sj(x’l) =z, and Sj(x) = M,

The following quintic spline relation can be derived from Ahlberg, Nilson
and Walsh (1967), Albasiny and Hoskins (1971) as

Zi-a + 2251 = 625 + 25541 + a2 2.1)
_ Z—O (Mj_z + 26M,_, + 66M, + 26M;,, + M;4s), j=2(1) N — 2.

But, from differential equation and the boundary conditions of the problem
(1.1}, we obtain

M,z y"(x) = —flxi,z), 1t =11) N —1, (2.2)
and
My =~ y"(x) = —f(0, «), My = y"(xy) = —f(1, B). (2.3)
Using relations (2.2) and (2.3) in (2.1), we get
—Rj2 — 22]'_1 + GZj - 221:_;_1 — Zj42 (24)

=:_(’)('fj'2 + 2651 + 66f; + 26f;11 + fi+2), j=2(1) N — 2.
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As the relation (2.4) gives N — 3 equations in N 4 1 unknowns z;, we need
four relations more. This is in complete agreement with our earlier statemes
made in the beginning of this section. Since the boundary conditions give twe
relations determining 2, = «, and zy = B, we need two more relations o
This can be achieved by using quartic splines in the neighbourhood of the t
end points.

When a quartic spline is considered as the approximate solution, a relati
similar to (2.4) may be obtained as

t]
—zic + 28 — Ziy = o (fiot + 10fi + fia), § = 1) N = 23
(14\ v
It may be mentioned that the relation (2.5) is equivalent to well-known fourt}§
order Numerov scheme.
Now using the relation (2.5), we get two equations for ¢ = 1 and 2. Th
two equations, after some algebraic simplifications, give a relation near t
first boundary point x, = a as

—4zy + 7z, — 22.'; — 23 = :—; (4f, + 411, + 14f, +fa)-()..‘¢\ (2

In a similar fashion, we can derive a different relation near the second bound
point xy = b as

—zn_s — 2tn_g + Ty — 42y Q:LD‘)\ (2.
== (f-s+ Wf_a+ 41 ot + 4fn)-

The equations (2.6) and 2.7) are the required two additional relations. Therefo
the relations (2.6), (2.4) and (2.7) form a set of (N — 1) equations to
termine the N — 1 unknowns z;, 7= 1(1) N — 1. As the function f(x, 3
is non-linear in y, some 1terat1ve procedure is necessary to solve the syste
We consider the application of Newtoun’s method to the above system.
With the nodal approximations z; to the true solution y(x) known, t
approximate second derivates M, are calculated from the relation (2.2). Usi
these values of z; and M,;, we construct a cubic spline interpolant #(x) to t

true solution y(x) as
(%, x)3 —
u(x) = —%—— M+ ——— (x " M, (o 8) 2y
2 X, — X M, — %
+(y. h{w)('—'ﬂh_—J'f'(yH-l_ 6‘“ )(xhx‘J. X< X< Xigge
Xide\
The above solution procedure may be summarized as follows:

Step 1. nodal approximations z; to the true solution y(x) are computed usi
the quintic spline scheme,

Step 2. with the help of z; values, the approximate second derivatives M,
calculated from equation (2.2), and Wy

Step 3. finally these values of z; and M, are used to construct a cubic spli
interpolant #(x) in the whole range 0 < x < L.
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The method proposed here actually generates a global spline, not just
fs values at the nodes. That is, a continuous global approximation to the
e solution y(x) is produced.

In the next section, we devote our attention to error analysis and conver-
rence of the method.

3. Convergence, In this section we show that the procedure described in
the previous section has fourth order convergence. For the ease of analysis we
introduce the vector and matrix notations. Let

Y=0On..oyw-1)" Z=(2, ..., 2n0)T, F = (fl’ weos a7, (3.1)
1 1 T
C=hn 2, 0, .0, 0, 8, 487, D =5 fo o o Oreees O o5 fiv /)

be the vectors and the five-band matrices J and V are given by

= 7 —2 —1 - -205 70 5
|—2 6 —2 —1 78 198 78 3
-1 -2 6 —2—1 3 78198 78 3
J=0 o B
b1 -2 6-—2—-1 | 3 78198 78 3
j -1 -2 6 -2 3 78 198 78
5 -1-2 71 ] 5 70 205 .

(3.2)

In a compact form, the system of equations (2.6), (2.4) and (2.7) can be written
as

JZ — B[BF(Z) + D] = C. (3.3)
For the exact solution Y, the equation (3.3) becomes
JY — P[BF(Y) + D] = C + T(h), (3.4)
where the truncation error T(h) = (4, (%), ..., tn—1 (B)) 1is given by

ks

(k) = T YO(EL), % < & < %,
) = — 1L20 ¥ (x;) + O(h7), & = 2(1)N — 2 (3.5)
ty_1(h) =— % YO (En_1), Aoz < Eno1 < Xy

From the equations (3.3)—(3.4), we note that the difference Y — Z, say E,,
satisfies
(J—mBU)(Y —2Z)=T(h) (3.6)
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where

F(Y) — F(Z) = U(Y — Z) (mean-value theorem),
and U = {u,, ..., uy_,} with u, being a certain value of df;/dy;. Therefo
equation (3.6) may be written as

= (J — BBU)" T(). (»X) 3.

Now, from (3.5), the norm of the truncation error can be obtained
(see Usmani and Warsi (1980))

1 , o
ITH < g HWO, where We = max |y® (91(38) (38

(all norms are co — norms unless otherwise stated). |
We have to consider ||[(J — #2BU)"1|| to estimate the difference ¥ — Z =
in equation (3.7).

Further analysis to find the above norm entails invoking some resul
of the classical theory of applied linear algebra, especially theorems concerni
non-negative matrices, diagonal dominance, graph connectedness and mono
nicity. Some important properties of the matrix J which are useful in t
present analysis are given in appendix A.

Following [12], we consider the norm |[|(J — A*BU)™'|| in two separatl
intervals, (i) —oo <# <0 and (i) 0 < % < n2. ;

Case (i): —c <u <0
In this interval, both the matrices J and (J — 42BU) are clearly monoton
and J — #*BU 2 J. Therefore |

I = MBU 11 < 171 < (g + ) (see appendix ). (3

s 3\
Case (ii): —0 < u < =
Let U=U*+4+ U—, where Ut >0 and U- < 0. So, we can write

— *BU = M(I — i*M-1BU*], where M = J — h*BU_. 3.1
J [ ] J LB e

As B is a nonnegative matrix, it is easy to show that M is monotone. Hena

M-t >0and [M 1] < (1AW (3.11

Following Henrici (1962), we state the following lemma for. the norm d
[ — M-1BU*]-1,

LEMMA 3.1. For 0 <u <8 and ||B*M BU*|| < k<1,
the matrix [I — RRMABU™*] exists and

I — BM-BU*]1[| < _l_l_k for h < H,

where H< \/E ‘1 _ 1},
% 8
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Since |{A*M1BU*|| < k‘u )< 1, for A < H, we get

-

WL — M IBU 1| < (3.12)
)
8ht
Therefore, from (3.10) we obtain
[ — RBU)M | < [[(I —AM7TBUT] | - [|M7] (3.13)
Lyt
on —, h<H.
1 — huf—o + -

The above results can now be stated as:

LEMMa 3.2. For y = C?ﬂ 1 and —o < u < 8§,

FEsH = |IY —Z|] < M, (3.14)
where
%l —Q0 < “ < 01

S 0<u<8.
48(8 — u)

Since a cubic spline is used as the global approximation to the solution
4(x), the norm of the corresponding error, say E, (x), can be calculated as
{see Hall, 1968)

HEJ(x) ]| € — h‘W(‘), where W = max |y®¥(x)]|. (3.15)
VEr€l

Now, we are in a position to estimate the total error, E( = E, + E,), of the
method and we state it in a theorem as

THEOREM 3.1. Let y & Clo 1) and —oo < uw < 8. Then our method described
i section 2 provides convergence of O(h) for the problem (1.1), that is,

HEL] < [Ea|| + [[El] < ¢ 2, (3.16)

where

9--k+ ww,

Thus, the error in the present method is of order four. This fact is also verified.
by numerical illustrations.

5 — Mathematica 1/1990



66 . K. S.'SASTRI, S. K. BHATTA

4. Solution of the difference equations. Newton’s method is discussed to
solve the nonlinear system (3.3). From Kantorovich’s result sufficient conditions

are obtained which guarantees the convergence of Newton’s method (see
Henrici 1962).

For the nonlinear system (3.3), let

R(Z) = JZ — [BF(Z) + D] — C, (W) @4.1)
and
ZO=(29,...,z8.) @ (4.2)
be an initial approximation. Then, Newton’s method for the system (3.3) is
R(ZW) _|. R(Z9) AZ =0 U\fﬂ (4.3)
whose solution is given by “
AZ® = —[R(Z0)])IR(Z%), i=10, 1,2, ... L\.h) " (4.4)
provided that the inverse of the matrix
' " A(Z) = ] —wBF(2) \W5) (4.5)

exists for Z=20,1=0,1, 2, ... )
If the matrices A(ZW), v=0, 1, 2, ... involved continue to be nonsingular,

a sequence of successively better approximations Z® can be obtained by
the algorithm

ZoHD 200 AZO, v =0, 1, 2, .... () (4.6)
Suppose
sup L) geum. ) )
32,- Z,.=Z'-

To obtain necessary bound for the inverse of the matrix A(Z®) we consider
the two cases: (i) —oo < #©® < 0, and (ii) 0 < @ < =2
Case (i): —co < u® <0 .

. Following arguments similar to those given in section 3, A(Z®). is mono-
tone and

HA@O) 1] < 117731 < 2 [+ 1) = B ser () s,

8h
Gase (ii): 0 < u® <z -
Let U=F'(Z®) and U = U* 4 U-, where U* > 0 and U~ < 0. Suppose
M = J — ®¥BU-, then it is easy to prove that M is irreducible and monotone.™
Let us consider the matrix 4(Z©). Now

A(Z®) = M(I — BM-1BU™). (W) (4.9)

As the product: of :two monotone : matrices is.a monotone ~matri_x,. A(Z®) -will
be monotone provided (I — A*M-1BU¥) is monotone. Following: C:ollatz
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(1966 ; 378), the above condition becomes |[A2M ~1BU *|| < 1, which after some
simplifications becomes # < H, where

H < \/_2_(1 _ u(O,))' w0 < 8.
w!% 8

We state the above result in the following lemma.
LEMMA 4.1. If 0 <u® <8, then A(Z®)is monotone for all h < H,

provided
H <'\/ 2 1 — Wy, (4.10)
! 8

So, we reach the conclusion that the inverse of the matrix A(Z®) exists
and is nonnegative.

Following arguments similar to those given in section 3, norm of the inverse
of A(Z®) may be obtained as

THEOREM 4.1. For 0 < ! << 8 and for all b < H, we have

7(0)) —1 __®  __Ro ;
[A(Z) 1] < S0 als) B, say, (4.11)

where 1 + 452 = o.
Now, if the initial approximation is properly choosen such that

JZo = C, (4.12)
then .
[IR(ZO)|| < ok?, (4.13)
where
[F@Z®) ||+ = max (1201, 1ol Bfwl, [20w) <o (414)

From (4.8), (4.11) and (4.13), we obtain
[|A(Z©)1R(Z®) || € Byoh* = =4, say. (4.15)
Let Ly(hy) = max |[f] over 0 < x < 1 and for y satisfying

max |Y — Z{| < N(h,)n, where N(hy) = (1 — /1 — 240)/h,.

1SiSN-1
If R= (I’l, ooy 7':\7_1), then
N-1 2y
9% | < ML, (h% = K, say, for 1 <1 < N — 1. (4.16)
j k=1 ﬁzjc‘zk

Now, the main theorem of Kantorovich’s theorem which guarantees convergence
of Newton’s method is satisfied provided

hy = Byn K < 1/2. (4.17)

With the help of (4.8), (4.11), (4.15) and (4.16), we obtain the following
result
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THEOREM 4.2. For the solution of the nonlinear system (3.3) by Newh
method, let the initial approximation Z© satisfy (4.12).
If —o < u® <0, then Newton’s method is convergent provided

hy = 3184- oLy(hy) < 1/2 (4
If 0 < u® < 8, then Newton’s method is convergent provided
h < HO and

By = oL,(h?) < 1/2 (4

w’
64(1 — 10 w/8)
In cach case, the speed of comvergence of the method is givem by

1

Y = 20| < 2

(2h,) 21 No- 4

5. Numnerieal illustrations. In this section we present the computatic
behaviour of the method formulated in section 2. Consider the two proble
Example 1{12]. " 4+ e =0, 0 < x < 1, y(0) =0, y(1) = In2. with thee
solution y(x) = In(1 + %), and

Example 2. ¥’ — % 1+ 2+2=0, »0)=0=y(l). with exact solu

2
y(x) = G ¥ 1.

The approximate values of the solution and its derivatives arc obtai
using the method described in section 2. For the solution of the nonlit
system (3.3), it is easy to verify that %, < 1/2 for both the problems. Ta
I and II contain values of maximum error in the solution at nodes and t
points. Table III contains various error terms in derivative approximation
both the examples. The notation ||E,|| denotes max |y, — z;| and D

1€i<N-1
denotes max |y®"(x; + 0.54) — u®(x; + 0.5%)|, 7 = O(1)N — 1, where (#)
the #** derivative with respect to x. For the sake of comparision we have
computed the solution using the method given in [12] for both the exam
and tabulated the maximum absolute errors at nodes and mid-points in colu
{|IEx|| and ey respectively. All computations included in this work are car
out on CYBER 180/840—A. The notation 6.04(—7) is used for 6.04 X 1

Table 1
Errors for Example 1

N HEg]] HENTI e eN

8  .60415 (—6)  .20165 (—5)  .15365 (—4) .15786 (—4)
16  .29388 (—7)  .12867 (—6)  .10895 (—5)  .10839 (—5)
32 .24273 (—8)  .80668 (—8)  .69988 (—7)  .71032 (—7)
64  .16390 (—9)  .50476 (—C)  .45082 (—8)  .45466 (—8)

128 .10758 (—10) .30520 (—10) .28627 (—9)  .28756 (—9)
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Table 2

Errors for Example 2

N NEa1 HEnI e eN

8  .64841 (—5)  .16424 (—4)  .11700 (—3)  .12020 (—3)
16 .21645 (—6)  .10481 (—5)  .82514 (—5)  .84595 (—5)
32 .19245 (—7)  .66034 (—7) .55176 (—6)  .56129 (—6)
64  .13277 (—8)  .41315 (—8)  .35786 (—7)  .36149 (—7)
128 .85362 (—10) .25785 (—9)  .22810 (—8)  .22935 (—8)

From the data presented in Tables I and II, we conclurle that the theoretically esta-
blished fourtjh order convergence is numerically verified. We also observe that alhough
oui method and the method given in [12] are both fourth order convergent, results are

much better at the mesh points int our case.

Table 3
Max. absolute errors in derivative approximation at mid-points

Por Example 1 For Example 2
N De D2 De D*e

8  .79437 (—5)  .92481 (—
16 .61595 (—6)  .25944 (—

2)  .74526 (—4)  .69823 (—1)
2)

32 .43842 (—7)  .68865 (—3
3
4

.58842 (—5) 20141 (—1)
) .42402 (—6)  .54255 (—2)
) .28781 (—7)  .14092 (—2)
) .18820 (—8)  .35916 (—3)

64  .20470 (—8)  .17751 (—
128 .19248 (—9)  .45069 (—

APPENDIX A

Here we present some interesting properties of the matrix J which are useful in analysis of
the method in section 2. J is a symmetric, five-band matrix. It is also an irreducible matrix
following a well-known result of graph theory, namely, a n X » complex matrix is irreducible if
and only if its directed graph is strongly connected’ (see Varga 1962). Besides, J is diagonally
dominant with strict dominance in first and last rows, and hence it is a irreducibly diagonally
dominant matrix. So J is monotone and J' is nonnegative (see Henrici 1962). Furthermore, J
is also a Stieljes matrix (see Varga 1962). In addition, since it is irreducible, J~! > 0.

The matrix J can be written as the product of two symmetric tridiagonal matrices P = (P;;)
and @ = (Q45) where Pi,i =2 P, 4i=—1, Q;; =4 and Q .+ =1, that is J=PQ and hence
J1=Q'P, where J is given 'by (3.2).

A relation between the matrices P and Q can be established as Q = 61 — P, Therefore, Q7 =

1
=PY6P1— I)71, or Q7P = _6— (P 4+ Q7). From Usmani (1980), the norm of J~! may
be obtained as

|UﬂH<—-mP'n+;Wﬂm um+ )
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REZUMAT. — Analize stabilitigil penﬁu un nou operator de integrare direetil.
Se studiazi stabilitatea unui operator de integrare directd pentru ecuatiile
vibratiilor liniare ale unui sistem cu » grade de libertate.

1. Introduetion A new direct integration operator has been introduced [3]
for integrationof differential equations describing the non-linear dynamical
tesponse of a structure:

MU + g(U) + /(U) = P, M)

or, particularly, the linear structure response, i.e.

MU 4 CU+ KU = P(t), (2)

io which; M = the mass matrix; U.= [#, ... #,]7 = the degree-of-freedom
(deplascement) vector; f and g = non-linear stiffness and damping function,
tespectively ; C and K == damping and stiffness matrix, respectively; and, a
dot indicates differentiation with respect to time £.

The operator is defined by following formulae:

U, = U, +U At 4+ Uy(At)2/2 + U, (A1)3/6 + B(A)3AT,

U, = U, + U,At + U, (At)2)2 4 v(A1)2AU, 3)
U, = U, + U,At + 3(AnAU,
U, = U, +1.AU,

in which the subscript 0 and 1 denote function values in ¢, and ¢, = ¢, + A,
tespectively. The operator coefficients B, y and & are given by:
_ et a0 s (= 0P

’

g —ep VT 5 — (4)

* Polytechnical Instiiwse of Cluj-Napoca, Depariment of Structural Mechanics. 3400 Cluj-Napoca, Romma
** University of Cluj-Napoca, Depariment of Mathematics, 3400 Cluj Napoca, Romania
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in which p, ' and p” are positive integers arbitrarily choosen and 6, 6" and 9" =

< (0, 1) and are associated with p, p’ and p’’ respectively [3].

In the subsequent analysis we study the stability of the operator defined by Eqs

(3), when applied to the linear Equation (2). Because a change of the initial ba-,

sis into the the basis formed by the eingenvectors of the problem K®; = M ®, 1
will decuple the matricial Eq. (2) -see [2], (4], the operator stabﬂlty will be‘
analyzed for a single -degree-of-freedom (SDOF) system equation, i.e.

% + 28wu + = p(t), (ﬁ) )

in which o is the circular frequency, and £ is the damping ratio.
2. Operator matrix. The operator formulae Egs. (3) written for a SDOF
system take the following matrix form

X, = SeX, + RoA’.‘:r QO\ (6)
in which:
X(t) = [w(e) w(t) we) w137, Cxod (7a))
X,t) = X(0), Xo = X(t), (X0) (7o)
1 At AR2  ABfg %
_lo 1 a A2 % ;
=10 0 1 At ) (8’;

0 0 O 1

and

R, = [BAB A2 3A¢+ 1]7.
Eq. (5) can be put in the matrix form

AX0) =20, V) (9
in which

A=[0 2% 1 0] Q) (104
Writting Eq. (9) for £ =¢, as ’
AX =p G\ (1)

in which p, = p(¢,) and substituting Eq. (6) in Eq. (11) leads to
A Sy Xy + ARAU, = p,. () (14
Let denote by '
a=ﬁAR,=Bx’+2ﬁyx+‘8k\‘x\\ (13a)
%= bt = 2e(MT),  ({}'o) (14b)

in which T = 2xn/o is the system period.
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Solving Eq. (12) with respect to Au, yields

My = — —— A4S, X, + 2. (14)
Using Eq. (14) in Eq. (6), the latter one can be put in the form
X, = SX, + R (15)
in which
R = ﬁ R, —_—% [BAZZ YAt 31JAHYT, (16)
and the operator matrix S is given by
S=S,—RAS, =(I— RA)S,. (17)
Explicitly, the matrix S is given by:
11— Be, A1 — Bey)  ABR(1/2 — Bey) A3(1/6 — Be,)
—ve 1=y, Ml—ve)  AL(12 — o)

S = 1 1 (18)

~ 3, v 3¢, 1 — 3¢, At(1 — 3¢,)
— ¢ —-—1—c2 —ics 1—¢,
Ag? Ag? At .
in which ;
¢, = x%fa
Cy = (22 + 2¢x)/a
¢y = (x2/2 + 28x + 1)/a (19)

¢y = (%26 + Lx + 1)/a,
and a is defined by Eq. (13).

Applying to matrix S the similarity transformation defined by

§S"=D"1.S5.D (20)
in which
D = diag[d;;] di = (At)4-F, i=1,4 (21)
resuts in
1—B¢, 1 — e, 1/2 — Beg 1/6 — Be,
r | Y0 1 — e, 1 — veq 1/2 — ye, 22
5= — 3¢, -3¢, 1 — 3¢, 1 — 3¢, 22)
—¢ —e, - m—Cq 1—¢,
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According to Egq. (20), matrix S entries s; can be generated by
sy = sy~ i j=14 (D (=
in which s; are matrix S’ entries (Eq. (22)).

3. Stability analysis. Denoting in Eq. (15) # and #;4,. instead of t, an:
4 respectlvely, leads to the recurrence relation

Xk-l-l = S Xk + Rpk , k = p(tk) &m\ (24
Applying Eq. (24) succesively for 1 =0, 1, ..., » — 1, results in
X, = S"Xy + (S*1p, + S*=2p, + ... + Spa_y + DR{SY (2

Defining the operator stability as the sensitivity of the solution X,= X{i,
to small changes in initial conditions X, it can be seen that the latter term
of Eq. (25) do not influence operator stability. Thus, the stability can be anz
lyzed for the homogenous equation (5), i.e. p(f) =0, > ¢,. In this case, Eg
(25) becomes

X, = sx, (1) 8
Let J be the Jordan form of matrix S, and ‘
S=TJjT LX) (A

in which T is the transformation matrix to Jordan form (see for instance [1]
Using Eq. (27) in Eq. (26), the latter one reads :

= (T J"T)X,, 2 (

from which it can be seen that the stability criterion will be the conditi
that the spectral radius p(S) of matrix S, be bounded by 1:

e(S) < 1. §52) (

The foregoing conclusions and the cntenon expressed by (29) are also poin
out in (2). '

So, our task will be to find conditions which ensure that operator matri
S have all eigenvalues of modulus less than or equal to unity. Matrix
will be employed instead of S, because having the same eigenvalues as S
and a sampler form.

The characteristic polynomial of matrix S’ will be found first, and then transi
formed in order to apply to it the Routh—Hurwitz criterion. 3

According to Egs. (22) and (19), the characteristic polynomial of matni
S’ is

—

f(0) = det(S" — AI) = aP(z) (o)
in which
z=1-—13,
P(z) = a® — b2 +.02 —d, (\)

-
Hﬁmwummaﬂmnﬁmw
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Proof. Eqgs. (36) are Routh—Hurwitz conditions applied to coefficients d
of polynomial Q(w)—see [6], [5].
For a system without damping, i.e. £ = 0, coefficients d;,—Eq. (35) read:

Yo = [B——-i- +8_”2’

3 1 1
n=yY-s-5ta (‘lﬂ/\ (37
dy=~ (3—1/2)
Ys = 1/4,
and the conditions (36a)—(36b) are equivalent to the following ones:
1° 8> 1 U8 (9
3 1
op __ % s [+ ;
28-24 1 50amd va x>0 NS (3%}
or j
i ' e nb) x
B— 5+ <Oand 22 < D n \‘\})j’& : (391#_?.
z P2 i
3oy 2 >0 and (oo G
Y-_Z.—Tz- and Vx, x >0 & (
or ;
Y—;—‘ll?<0andx2<—8-—1;—— (’\0\0\ (40
ot

4° Condition (36¢c) can be expressed as

p< Tt and 3 <3<, A\ (41

in which
312 = (v -+ 1/6) £ [(y + 1/6) — 2811,
We have therefore, f
THEOREM 3. For un wundamped system (C =0 in Eq. (2) and { =0 i=
Eq. (5)) the operator Egs. (3) are stable if and only if coefficients B, y and & sa~
tisfie Egs. (38), (39), (40) and (41).
Particularly, if Egs. (38), (39a), (40a) and’ (41) are satisfied, the operator is um
conditionally stable, 1.e. 1t is stable for ¥x, x >.0.
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4. Numerleal examples. Examples 1 and 2 refer %0 un undamped system.
Example 1.

B=1/28 y=1/4, 5=1/15 (42)

Conditions (38) and (41) are satisfied ; conditions (39b) and (40b) give x* < 3.5,
from wich it follows the stability limit (see Eq. (13b)):

At

V35
T < e = 29775 (43)

Indeed, the spectral radii computed directly from matrix S’(by QR iteration)
were: At/T = 2975 ... p = 9979; At/T = 2980 ... p = 1.00267. The varia-
tion of the spectral radius p can be followed in Fig. 1, in which the moduli
of eigenvalues 3, are plotted against A¢/T : p=max || ; the minimal p—value is.

=13
85224 at AT = .28066.
Example 2. The special case 3=1/2 (44)

In this case we have: djy =2(B — y/2 — 1/24), d, =y — 1/3 + 1/2?, d, =
=0and d, = 1/4.

_If dy # 0 we have not Re(w) < 0: indeed, let be w; € R, w,, w3 = C (w; =

=w,).

i?rom d, = 0 it results: w, - 2 Re (w,) = — |w,|* and then, w, and Re(w,)

have opposite signs.
Consequently, if 8 = 1/2 we must have also

—ry
P 2 + 24 0 (45)
Thus, d, = 0, d; = 0 and the characteristic equation Q(w) = 0 reduces ¢,
dwr + 1/4 =0;
if 4, < 0 it follows that Re(w) > 0, we must have then d, > 0, ie.:
Y 2 % and Yx, x >0 (46a)

Or

(46b)

1
— and %% <
Y<3 &1/3—Y

As a numerical example, let be:
vy = 1/24, y = 1/16, & = 1/2. (47
Conditions (44) and (45) are satisfied and the condition (46b) gives the stabi-
lity limit
. zz{_f = .38985.
Numerically : Af/T = .389 ... p = 1.000; Af/T = .40... p = 1.4473
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Note 2. Choosing operator cocfficients and time step. The operator defined
by Eqgs. (3) was derived under assumption i = constant for ¢, € [¢,, ¢, +At] —
—see {3]. In order to meet this assumption, the time-step-to-period-ratio At/T
have to be choosen much less than the stability limit found as it is done
in the foregoing examples.

Several numerical test indicated coefficients 8 = 1/28, v = 1/4 and 3 =
=1/1.5, and a time step A¢ < T/50, as one of the best choice meeting opera-
tor stability and accuracy, for both undamped and damped system, (for a
multi-degrees-of-freedom system T is the shortest system period).
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REZUMAT. — Evaluarea statistled a coeficlentului de siguran{d la solieitiirl
variabtle prin elciuri asimetrice utilizind modelarea parabolicd. In prezenta noti
se stabileste o relatie imbunitititd pentru calculul coeficientului de siguranti la
solicitdri variabile prin cicluri asimetrice.

Compared to the classical methods of approximation of the Haigh type
diagram [1], the present paper aims at establishing an improved relation for
the calculus of the safety coefficient at variable loadings through asymmetri-
cal cycles.

Soderberg [1] approximates the Haigh type djagram through the AC straght
line, Serensen [2] and Gh. Buzdugan [3], through the 4BC broken line,
respectively the quarter of ellipse having the OC and OA semiaxis.

These methods approximate the diagram of resistances at weariness ne-
glecting a part of the real field, (case [1] and [2]) or increasing this field [3}

The expressions of the safety coefficients obtained by Soderberg and
Gh. Buzdugan, using the classical notations.

4‘ = <’III/C’—I! e = 0',,,/0'4,

are
1 .
g = b+ 0 ’ \\\ (1)
l o
“= e W A

M(c,, o,) representing the coordinates of a current point on the omothetic
curve.

* Higher Education_Instituic of Hunedoara, 2750, Hunedoass, R







82 S. MAKSAY, FR. WEBER

In the particular case in which # == 1 and point M, has the coor
902, Go2 (the positive pulsatory cycle to be checked) the statistical esti
no longer necessary, the parabola passing through this point, and the v
b is
%

o_, ( o2
— == ,+—
as 2 ! 2

V(o2 9%
A R
Modelling through relation (3) with the value of coefficient b given

situaties the approximation curve in the immediate vicinity of the Hai
diagram, leading thus to values close to the real situation.

b=
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ABSTRACT. — In this paper, the sufficient conditions for the existence of
periodic solutions of the certain fourth, fifth and sixth order nonlinear system
of equations are given. Thus the n-dimensional analogues of the results given in
"] {2] and [6] aré obtained.

I. Introduction. This work is concerned with the. problem of- existence of
priodic solutions of real fourth, fifth and sixth order nonlincar system of
wuations of the forms. '

WAV BY, CLX, HX + diltgrad C(X) + D(X) =Py, X, X, X, X)

(1.1)
W EXG 4 FE, X X, X0)¥ 4+ L grad 6(%) + H(Y, D)X +
(1.2)
+ K(X)= Py, X, X, X, X, X0
and
X0 4+ LY 4 MXO N + £ grad U(Y) +
(1.3)

+ S(X, X)X + T(X) = P,(t, X, X, X, X, X®, X©)

Here .Y, the unknown function of ¢, is an element of the rcal #-dimensional
space R* with components (x;, %s, ..., %,). 4, E, L and M are constant # X %
matrices. B, F, H, N and S are continuous # X # matrices depending on the
aguments shown in (1.1)—(1.3). C, G and U:R” - R arc functions of class
(% The functions D, K and T:R* —» R* are of class C.

P xR XR*XR*XR* >R, P,: ] x R* x R* x R* x R* X R* >
SR, P JXRXR xR xR x R X R* - R»
are continuous in their arguments and w-periodic in . Where J being the
infipite range —oo < ¢ << co.

* University of Erciyes, Depariment of Mathematics, 3803% Kayaserl, Turkey
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Our object is to establish the following results:
THEOREM 1. Suppose that
(i) A 1is symmetric,

(i1) there exists a comstant a, > O such that

(L)
[IB(X, X, X, )N <a, ||X]|| for all X, X, X, X « R»; (14
(ii1) the matrix
1 -
(20— 5 a)! (19 oz
is positive defimite, where
a4 = inf (<D(X), X>) l.f
Hrip>tl pxp )’ (L0) (
and I is the m X w ddentity matrix;
(iv) there exist comstants o, > 0, B, > 0 such that \\,\)s

1P}, X, X, \ N < a4+ BIXH+ X+ 11X (13
Jor all t and all X, X XN, X « R~

Under these conditions, a comstant e, > O exists such that if B, < ¢, thm
the equation (1.1) has at least one w-periodic selution.

THEOREM 2. Assume that
(i) E and H are symmetric;

(ii) there exists a fumction K:R® » R such that

:—K*K(X) i=1,2 ...,n; (9 (18

4+

(iii) there exists a comstamt by, > 0 such that

[IF(X, X, X, X, X0) X || <b,||X|]| for all X, X, X, X, X e R* (19
where L\r'ﬁ

inf > v 1
by = ?nxx,-(H(X, ) > 1 (L0 (LM

Jfor all X, X « R* and M(H (5\", X")), (t=1, 2, ..., n) denote the eigenvaluesqf
H(X, X);
(lv) there exist consinats oy > 0, B, 2 O such that

!
1Py X, X, X, £ XO)|] < o+ (11X + 1EDON (1
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forall t and all X, X, X, X, A® e R*;
(v) the function K satisfies either
<K(X), sgn X> » 400 as [|X]|]| - o0, (1.12)
or
<K(X), sgn ' > - —c0 as [|X]] - o0, (1.13)

where<<, > demotes the wusual inmner product in R* and sgn X = (sgn x,, .
g0 X,).

Thus there exists a constant € > 0 such that if B, < e, the equation (1.2)
has at least ome w-periodic solution.

THEOREM 3. If
(i) L, M and S are symmelric ;

(ii) there exists a function T :R* — R such that

ey

L=TyX),i=12 ..., » (1.14)
(iii) there exists a comstant cq. > 0 such that
INX)X | < | 1X || for all X, X < Re; (1.15)
(iv) the matrix
el — —}I cEL1sgn L (1.16)

is positive defimite, where

cs = inf 3, (S(X, X)) or —sup ,(S(X, X)), 5=1,2, ..., » (1.17)

according to the positive or megative definite of L and (S(X, X)) denote the
eigenvalues of S(X', X ).
(V) there extsts a constant ag > 0 such that
[Py, X, X, X, X, X, XO)|| < ay (1.18)
for all ¢ and all X, X, X, X, X®, X6 « R»;
(vi) the function T satisfies either
< T(X), sgn X > 500 as ||X]] > (1.19)
or
< TX), sgn X > » —o0 as ||X ][] - o0. (1.20)

Then the equation (1.3) admits of at least ome w-periodic solutios.
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Theorems 1, 2 and 3 are »-dimensional analogues of the results obtaines
in [1], [2] and [6].
Remark 1. Theorem 2 can also be established for an equation of the form

X® + EX® 4+ F(X, X, X, X, X)X + 2 grad 6(X) +

+ H(X)X + K(X) = Pyt, X, X, X, X, x0) (\1) (1.21

in which E, F, G, K and P, are exactly as before. But the coefficient H, is
symmetric continuous # x # matrix depending only on X and satisfying the
condition :

in| 1
by =% NH(X)) > 8-

If we take F(X, X, X, X, X®) = F,(X) in (1.21), we obtain the equatior
given in [5].

Remark 2. The result related Theorem 3 can be cstabhshed for the equa-
tion of form:

X® 4 LX® 4 MX® + N(X)X + a‘;-grad UX) + Sy(X)X +

L4 T(X) = Pyt, X, X, X, X, X, X©) (I (1.22)

where L, M, N, U, T and P, are exactly as before but the .S, is symmetrie
continuous # X # matrix depending only on X and satisfying the condition:

¢s = X N(S1(X)) or —F M(Sy(X)).

Remark 3. Using the Theorem 3, Ezeilo’s Theorem 2 [2] can be easly
extended by replacing a continuous function of X, g4(x) say, in the place of
the constant d,.

2. Some prellmlnaries. The proof of all three theorems dre based on the
well-known Leray—Schauder fixed point techmque, with the equations, embed-
ded in a suitable parameter-dependent equations. For Theorem 1, the parame-
ter-dependent equation is

X0 4+ A% + (1 — wa, + uBX, X, ¥, X1+ (%0
a : , C e
b aograd C(X) + (1 — waX + pD(X) = wPy, X, X, X, %) (@)

while for Theorem 2 and Theorem 3, the paremeter dependent equatxons are
Tespectively

X® 4 EX® 4+ {(1 — wb, + pF(X, X, X, X, X0)}X + Gv"’\
+ 1y grad G(X) + {(1 — Wb, + pH(X, XX + (1 — wox + @2

+ pK(X) = pPyt, X, X, X, X, X¥)
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and
XO 4 LX® 4+ MX® + (1 — u)ey + «N(X)NIY + p.d grad U(X)

+ {1 — wegsgn L + uS(Y, X)X 4 (1 — w)egV + uT(\) =
=uP,t, X, X, X, X, Y&, X6, (2.3)

Where, in all cquations, the parameter p satisfies 0 < u < 1. The constants
byin (2.2) and ¢ in (2.3) are arbitrary but their signs will be positive or
negative according as K in (2.2) and T in (2.3) are subject to (1.12) or (1.13)
and (1.19) or (1.20) respectively.

Observe that for p =1, (2.1) (2.2) and (2.3) reduce to the original cquations
(L1), (1.2) and (1.3) respectively. For u =0 (2.1) reduces to

N 4+ AN + a,X 4 a,X =0 (2.4)
and (2.2) to
XO 4 EX® 4+ 5,X + b, X + by} =0 (2.5)
and also (2.3) to
X® + LX® 4 MXW 4 ¢, X + c.sgn LX + cgX = 0. (2.6)

It is casy to see from hypothesis (iii) of Theorem 1, the equation (2.4) has no
nontrivial w-periodic solutions. Also, if b, # 0 and ¢g # 0, by (1.10) and (1.16),
the same results hold for the cquations (2.5) and (2.6).

To prove Theorems it suffices [3] to verify the existence of priori bounds
}, v and v which arc independent of p(0 < p < 1) such that any w-periodic

solutions of X(£) will hold followings: For the equation (2.1)

HXO1 <8, HXO1 <8, [1X@O11 <8 11X <3 8>0; (27
for (2.2)
HXO1 < v XY@ < v HXO1 < v 1XO1 <
HXW@ ) <v, v>0; (2.8)
and finally for (2.3)
HX@O I < v HXO1 < v IXQ1 <y (1X01] < v,
HXO@ | < v, [IXO@]] <v, v>0 (29,

must be satisfied for all ¢ € [r, v 4 ] and arbitrary =.

3. Outline of prooi of theorems. The technique for the verifications of
{27), (2.8) and (2.9) for (2.1), (2.2) and (2.3) rsepectively are the same as
that used in (1], [2], [6] and we shall therefore skip inessential details. The
following result holds:
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Let X: [0, @] » R* be an w-periodic function of class C4, C® and C¢ for
the equations (2.1) (2.2) and (2.3) respectively. Then for some ¢ > 0,

T+ T+
§11x00) 11as < w2 {000 00) ) at 3 A @3

wherej = 1,2, 3for X(f) e Ctj =1, 2,3, 4for X(t) € C5andj =1, 2, 3, 4,
for X(¢) € C®. For the proof of (3.1) see [4].

To verify (2.7) for {2.1) let X = X(¢) € C* be an w-periodic solution
(2.1). Consider the function V = V(X, X, X, X) defined by

V=<X X+ 54X> — <X, X 4+ AX> — u<X, grad C(X)> +
+ uC(X). (L) 3:
A straightforward differentiation of (3.2), using (2.1), gives

V=<X, X>+ <X, B*X> + <X, D*> — p<X, P,>(3%)
where

B* = (1 — w)a, + pB(X, X, X, X), D* = (1 — w)a,X + uD(X).
Observe from hypothesis (i) of Theorem 1 that

[B*X, X, X, )X|] < a1X]] (BN (34

for all X, X, X, X « R*. Also from (1.6), it is clear that
<X, D¥X)> > a,||1X |2 for ||X||> 1.
Thus, for some constant §, > 0
<X, D¥X)> > a,| | X||P — 3, (%5) (3.3

where 3, is independent of p. Comning the estimates (3.5) and (3.4) with (3.3,
we have that

Ve NX|PE—al IXIX||+a [IXIP— 8 —p<X, P>

From this point onwards, the arguments in [1] apply. Indeed by using (1.7
and (3.1) and proceeding as in [1] with B, chosen sufficiently small, it can b
readly shown that

pmwmw<%d=aLz
[1]

where 3, > 0 is a constant. The first two inequalities in (2.7) now follow, jus
asin [1]. By taking the inner product of (2.1) with X® and integrate from ¢ =
= 0 to { = w as in [1]], the last two inequalities can be obtained obviously.
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To verify (2.8) for (2.2) consider the function V = V(X, X X X Xw)
ifincd, for any solution X = X(t)eC® of (2.2), b

P=—<X, X 4 EX> 4 <X, ¥> + 5 <EX, I> — p<X, grad G(X)>

(3.6)
—K*(X) + oG(X)
jist as in [6]. Where the function K*: R* - R is given by
ﬁ‘aﬁf_’ WKiX) 4 (1 — wbgrs, i =1, 2, ..., n 2.7)
TS

Differentiating ¥ and using (2.2) and ( .7) gives

V=<X, X> + <H*X, X> + <F*X, X> — u<X, P,>
where

H* = (1 — p)b, + uH(X, X)
and
F* = (1 — wb, + uF(X, X, X, X, X®),
Note that in view of (1.9) and (1.10)
LIE*X, X, X, X, X, 0)X|| < 8,|1X]|
and
<H*X, X)X, X> > b||X|]?
brall X, X, X, X, X®WeR~
The arguments in [6], with P, subject to (1.11), will show readily that, for
some constants v, > 0, v, > 0
V2 n(lIXPE+ HXP) — 58 X — vs
where vy, v, are independent of w. From the w-periodicity of X and (3.1) if B,
is sufficiently small it can be readily shown that
5 ||X(J) lidt < vs, ] =1, 2, 3.

The first three inequaht1es in (2.8) now follow as in [6]. To obtain the last two
imequalities take the inner product of (2.2) with X©),
Finally for the verification of (2.9) for (2.3) let X = X(¢) € C®be an w-periodic

solution of (2.3). Conmsider V = V(X, X, X X X, X)) defined by
V = WsgnlL (3.8)

where

W=—-<X, X& + LX® - MX> + <X, X® 4 LX> + 2z <MX, X >

1 . . . -
—3 <&, X> — uX, grad U(X)> + pU(X) — T*(X).
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Here the function T*:R" > R is given by
aT*(X) . : : : ,
o = BTAX) + (1 —plegry, i=1,2, ..., n (},“)\ RES
On differentiating V' and using (2.3) and (3.9), we have

V=(<L¥, X> 4+ <X, N*i> + <X, S*X> — <pX, Py>sgnL
.LO\ (3.1¢
where Q”

N* = (1 — p)eg +:uN(X)
and

S* = (I'— p)essgnL + pS(X, X).
By (1.15), (1.16) and (1.17) we obtain that

INEOEN <ol (W @311

and

<X, S*(X, X)X> > o] |X|] or <X, S¥X, X)¥> < —¢||X|]? (312

P : i - A
for all X, X, X € R* e ‘

Combining the estimates (3.12), (3:11) with. (3.10) .and noting that the matrix
LsgnL is positive definite, we have that ‘

V2 vl [XTE— e LT TIX N+ e [IX ] P — aal X ]
where v, > 0 is the least eigenvalue of LsgnlL. ~ . o
After this point the arguments in [2] can be applicd. From the w-periodicity
of X and (3.1) it would follow that

w

S||X(f)(t) [dt< v, j=1,2 3.
[1]

Thus, the first three inequalities in (2.9) now follow as in [2]. By taking the inn
product of (2.3) with A®and using by Schwarz’s incquality the remaining last
three inequalitics can be obtained easily.
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W. Bruns, U. Vet ter, Determinantal
Rings, Lecture Notes in Math., 1327, Springer
Verlag, Berlin Heidelberg 1988, 236 p.

Let U be an m X »n matrix over a ring A4.
For t < min (m, n), the ideal generated by the
tminors of U is denoted [,(U).

Let B be a commutative ring, and consider
an m X » matrix X = (X;;) whose entries are
independent indeterminates over B. If B[X]
denotes  the polinomial ring B[X;j:1gi<
<m 1< § < n)and I,(X) is the ideal generated
by the 1 mmors of X, let R, (X) = B[X]/I4X)
the residue class rings. These rings are the most
pominent members of a larger class of rings
of type B[X /T called determinantal rings. Their
defining ideals I can be described as follows:
given integers 1 < uy <7 ... <up <m, 0 < 1<
<o Srp<m, and l<gv <...<<vg<n,
0< s < ... < s¢g < m, the ideal I is generated
by the (r; + 1) -minors of the first u; rows
and the (sj + 1) -minors of the first vj columns,
I<igp, 1€j<yq.

Over an algebraically closed field B = K
of coefficients one can associate a geometric
object with the ring R,(X). Having chosen bases
4,...,d, in an m-dimensional vector space }
ad ¢, ..., e, in an n-dimensional vector space
¥, one identifies Hom K (V, W) with the mn-
dimensional affine space of m X n matrices,
ofwhidx N[X] is the coordinate ring. Let

k
El\d, and W’ k le'ef with ¢* the
z—1
dual basm Then the ideal I above defines the
deferminantal variety {f = Homyg (V, W)|[rk
FVy, < v, 7k f*/w'*;j <sj 1 <i<pl<j<g}

The authors also treat simultaneously a
sccond class of rings: the homogeneous coordi-
mte rings of the Schubert varicties, called
Scthubert cyeles.

Algebrically one can cousider every deter-
minantal ring as a dehomogenezation of a
Schubert cycle. In geometric terms one passes
from a (projective) Schubert variety to an affine
determinantal variety by removing a hyper-
plane ,,at infinity”.

Linear algebra over determinantal rings
is also discussed.

Gr. CALUGAREANU

RECENZII

S. Rempel and B.-W. Schulze, A~
symptoties for Elliptic Mixed Boundary Pro-
blems, Mathematical Research, vol. 50, Akademie-
Verlag, Berlin 1989, 418 p.

Microlocal analysis, including the theory
of pseudo-differential operators ($DO} and the
theory of Fourier integral operators (FIO) is
a powerfull tool in the investigation of boundary
value problems for linear partial differential
operators. Combining methods from analysis
(both real and complex), functional analysis,
algebra, differential geometry and topology it
lead to substantial progress and to the proofs
of deep results concerning global properties of
the solutions of these problems, such as, for
instance, the famous Atiyah-Singer index theo-
rem, Fredholm property etc.

YDO’s are a class of operators including
the linear partial differential operators as well
as the simplest functions of them (e. g. thein-
verses of elliptic operators and their complex
powers). Establishing a correspondence between
these operators and some class of functions,
called symbols, one cxtends the operational
calculus, developed in the case of constant
coefficients and based on Fourijer transform, to
the case of variable ones.

At it is well known the parametrix of an
elliptic differential operator on a manifold
without boundary is a vDO but, in the presence
of the boundary, the parametrix may contain
also other terms. A lucid and fairly complete
presentation of this situation can be found in
an other monograph by the samerauthors. , Index
Theory of Elliptic Boundary Problems” Aka-
demie-Verlag, Berlin 1982 (Russian translation
Mir Editors, Moscow 1986).

The present book is dealing with the pseudo-
differential calculus for boundary value pro-
blems with discontinuous (mixed) boundary
conditions and geometric singularities of the
boundary (manifolds with conical singularities
and edges). In this case, due mainly to the pre-
sence of geometrical singularities, the correspon-
ding algebras of operators with symbolic struc-
tures containing the parametrices arce of high
complexity and the theory is far from being
in a final form (the authors mention many open
problems in the Notes section of each chapter).
The main tools used in this study is the Mellin
transform, Mellin operators and Mellin symbols,
following the ideas developed by the authors
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in two fundamental papers published in the
Mathematische Nachrichten 111 (1983), 41—
109, and 116 (1984), 269--314.

The book is divided into four chapters:
1. Operators on the half axis; 2. Continuous
asymptotics and higher order operators; 3.
Boundary value problems; 4. Mixed boundary
value problems on manifolds with edges.

Chapter 1 begins with the studyof the

classical Mellin transform defined on Cg° (Ry4)
(space of infinite differentiable functions with
o]

compact support) by Mu (2) =s u(t) - tz—1d¢

[

and extended first to an isomorphism from
LY¥R,) to L*Re z= 1/2) and then to a mero-
morphic function on C. The basic idea in applying
Mellin symbols (a specified class of meromorphic
functions on C) is to identify Re z = 1/2 with
the conormal direction to the boundary. This
chapter contains also a detailed study of function
spaces with discrete conormal singularity, be-
cause the functional analysis in this simplest
case, of discrete asymptotics, contains all the
basic elements of a more general theory which
is developed in the second chapter. In fact
troughout the book, the authors return frequently
to the discrete case. Green operators, Mellin,
operators, Mellin symbols are also considered.

In the second chapter the results obtained
in the first one for discrete asymptotics are exten-
ded to continuous asymptotics by associating
with certain given subsets A, A’ of C some func-

tion spaces 4 and CY ,,. The authors show,

on an example, that this more complicated
situation can effectively occur at it is treated
by considering some analytic functionals defined
on appropriate function spaces.

The third chapter is devoted to the study
of pscudo-defferential boundary value problems
without transmision property. Again some ade-
quate function spaces oun a cone and on a wedge
are considered. Green operators with or without
boundary symbols and Mellin operators arc
applied to study ellipticity and Fredholm pro-
perty for these problems.

The last chapter of the hook is dealing
with mixed boundary value problems on mani-
folds with edges. In this case, beside the R,
-calculus a ¢DO -calculus along the edge is
also applied and, since the boundary conditions
may change when crossing the edge, some
extra-boundary conditions of Shapiro-Lopa-
tinski type along the edge, have to be imposed
Also, in parametrices one gets potentials needing
for matrix valued operators in the semse of
Boutet de Monvel’s algebra or Vishik-Eskin's
work.

Including many original results
authors, the book presents in an unified
fundamental results from the theory of
differential boundary value problems on
folds with singularities. Although not e
read the book is clearly written and ¢
a plenty of results and methods. We recol
it warmly to all interested in partial diff
equations and related areas.

S. col

W. Tutschke, Solution of Inital
Problems in Classes of Generalized Al
Functions. Teubner-Texte zur Mathematik,
110, Leipzig 1989, pp. 180.

The main goal of the book is the g
tion of scales of Banach spaces of gen
analytic functions for solving initial val
blems for differential c¢quations. To m:
book self-contained, thc author includ
the needed background functional-analyti
terial in detail, such that the book can i
as an introductory text by a beginner who
to enter the domain. But the presentati
gresses rapidly up to recent results, »
them obtained by the research group P
komplexe Differentialgleichungen’ of the
matica Department at Halle University,
the hook will be of interest for the spe
in the field too. (The author published an
book on the same subject: Partielle ko
Differentialgleichungen in einer und in me
komplexen Varjablen, Berlin 1977).

The first chapter of the book ,,{
value problems in Banach spaces” Dbegins
a brief introduction to the calculus of ¥
space-valued functions defined on an i
of the real axis (differentiation and Rig
integration). The chapter contains also an
cation of the method of succesive approxis
for solving the initial value problem:

—= = flt, u), uw(0) = u,

where f: I X B — B, I is an interval in |
B a Banach space. As an example, the!
of an infinite system of ordinary differ
equations is reduced to (1).

The next chapter is devoted to the
of scales of Banach spaces, which are fa
of Banach spaces B; and linear injections
By — Bg, (g, 1] <1 for all 5, s in an
interval (0, s,) and s’ < s. As principal ex
one considers scales of Banach spaces of



RECENZIL 93

rphic functions on some domains G; compactly

tained in a given domain G in the complex

ne, such that UGy = G. The developed theory
lows the author to extend the method of
mecessive  approximations for solving initial
ralue problems in scales of Banach spaces (Chap-
er 3 of the book).

Chapter 4 is concerned with the classical
Jauchy-Kovalevskaya theorem for the complex
'quation

otw
-37 = f(¢, z, w, p), (2)
wbere f= (fy, ..., fm), f; holomorphic functions
of 2, w and p, 2= ()1 < ¢ K n w=(wj)
1< j < m, wj bolomorphic functions of z and
v, ow, 6‘."'”)
PR T
By a famous result of H. Lewy (1957)

there are infinitely many differentiable functions
fsuch that the differential equation

Jw ; ow Jw 3
e W o—— —
ot f( Y gx " Oy ®)
has no solution. H. Lewy’s result was the starting
pint of a lot of papers looking for conditions
asuring the solvability of the equation (3).
The Cauchy-Kovalevskaya theorem shows that
this is the case if f and w® are holomorphic
functions, satisfying some boundedness and
Lipschitz conditions together with their first
daivatives. Some conditions are also imposed
on the initial vectors.

Chapter 5 is dealing with the proof of
Holmgren theorem on power series representa-
tin of the solution of a system of differential
equations in the real case (i.e. real functions and
real variables).

The study of generalized analytic functions
is done in Chapter 6 , Basic properties of gene-
tlized analytic functions’’. These are solutions
w=uw{:) to the differential equation

ow —
— = a(dw + b, )

oz
where a(z) and b(z) are complex-valued conti-
mous functions defined on a domain in the
omplex plane. Obviously that, for a=b=10
e obtains the classical Cauchy-Riemann condi-
ion characterizing holomorphic functions.

The rest of the book — Chapters :7
anitial value problems with generalized analytic
nitial functions : 8. Contraction-mapping prin-
iples in scales of Bamach spaces : 9. Further
xistence theorems — are devoted to a syste-
netic. application of the method of scales of

Banach spaces ‘of generalized analytic functions
for solving initial value problems. Among the
topics treated here we mention: overdetermined
first order systems, scales of pseudoholomorphic
functions in L. Bers’ sense, Euler's polygonal
line method, Gronwall lemma etc.

Written by an eminent specialist in the
field with substantial contributions to the subject
the book is a valuable contribution to the theory
of injtial value problems with gemeralized ana-
Iytic functions. Starting from the introductory
notinos the book brings the reader to the fron-
tiers of current research, stressing on the main
ideas of the theory and of its connections with
other domains of investigations.

‘We recommend it warmly to all interested
in the applications of the functional-analytic
methods to differential equations.

S. COBZAS

Numerical Trestment of Differential Equa-
tions. (Proceedings of the Fourth Seminar
,,.2NUMDIFF — 4" held in Halle, 1987), Teubner
— Texte zur Mathemaiik, Band 104.

The papers contained in the proceedings
are divided into three sections. The first one
is: Results on Ordinary Differential Equations,
Differential Algebraic Fquations and Delay
Equations. Some works lay stress on stiff diffe-
rential equations and en extensions of Runge
— Kutta methods to delay equations.

In the second part entitled: Results on
Partial Differential Equations and Related
Topics, some numerical techniques are discussed
(finite differences, finite clements and method
of lines). Two interesting works are devoted
to convection — diffusion problems. Further-
more, some questicns of numerical stability in
nonlinear problems are considered.

In the last section: Applications in Science
and Technology, the works deal with concrete
questions of applicability of differential equations
and differential algebraic equations to problems
in science and techmology. The authors use a
large variety of techniques to obtain desired
numerical results,

An increased number
high mathematical level. Others treat very
interesting applications: the cquations of
Prandtl’s boundary layer, the modelling of non-
newtonian fluid flow, periodic phenomena in
reaction diffusion systems, etc.

However, there is a good balance between
theoretical aspects (numerical stability, error
estimations in numerical methods, treatment of

of works have a
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higher. — index differential algebraic equation),
the analysis of numerical methods for: stiff
systems, two — point boundary value problem
parabolic and hyperbolic equations and their
application to concrete problems.

C. I. GHEORGHIU

Seminar Analysis of Karl — Welerstrass—
Institute 1986/87 Edited by B.— W. Schulze and
H. Triebel, Teubner Texte zur Mathematik
Band 106, Teubner Leiprig 1988, 332 p.

The volume is the continuation of a
corresponding series published by the Karl—
Weierstrass— Institute of Mathematics 1981—85
(the volume 1985/86 appeared as Band 96 of
Teubner-Texte). This volume contains thirteen
papers on partial differential equations, function
spaces, global analysis and differential geometry
with applications to mathematical physics
More than half of the book is occupied by a
paper by J. Eiccorn, Elliptic differential opera-
tors on noncompact manifolds, pp. 4169,
which is concerned with the spectral theory
of certain self-adjoint differential operators
over noncompact Riemann manifolds. The paper
is only an introduction ot this reach field of in-
vestigation and, as the author asserts in the
preface, an extended version is planned to appear
later. The next paper is B.—W. Schultze,
Elliptic complexes on manifolds with conical
singularities, 170—223, where the theory of
single, differential operators on manifolds with
singularities, developed by the author jointly
with 8. Rempel, is ¢xtended to complexes. Other
papers included in this volume are A. Juhl,
On the Poisson transformation for differentua
forms on hyperbolic spaces, 224-236; W.
Hoffmann, On a trace formula for Hecke opera-
tors, 237— 245 ; K.—- D. Kirchberg, Some results
concerning the Dirac operator on compact
Kihler spin manifolds, 247— 255 ; two interesting
papers by Th. Schmidt on Infinite-dimensional
supermanifolds, 256— 268, and on Supergeometry
and its application in physics, 269—286; R.
Johnson, Recent results on weighted inequalities
for the Fourier transform, 287—296 ; H. Triebel,
Atomic representations of Fpsqspaces and Fourier
integral operators, 297-305; B. Lange and
M. Lorenz, Propagation of singularities for opera
tors with double involutive  characteristic
306—311; H.—G. TLeopold, Pseudo diferential
operators and function spaces of variable order
of differentiation; W. Sickel, Superposition of
functions in spaces of Besov—Triebel— Lizorkin

type. The critical case 1 < s < nfp, 319 326;

H.—J. Schmeiser and W. Sickel, On
mation by Riesz and Abel— Poisson
periodic Besov— Lizorkin—Triebel spa
332.

Written by eminent specialists in
the papers included in this volume contaj
tially new results obtained by the aut
will be of great interest for all working
domains of research.

Proceedings of the Second In
Symposinum on Numerlcal Analysis, Pray
Teubner —Texte zur Mathematik, B
Leipzig, 1988.

There have been 12 plenary lect
49 section lectures at this Symposium
to the following themes: Numerical &
Approximation Theory and Smoothing,
Element Methods (superconvergence), Bify
Problems, Numerical Methods in ODE, N
cal Methods in PDE, Eigenvalue Probly
Computational Statistics.

Only 9 plenary lectures and 34!
lectures are included in this volume. A
these plenary lectures is given here fu
pleteness: Axelsson O., ,,A priori bouu
discretization error estimates for parabd
blems’”, Douglas J. Jr., ,, Three models for
looding in a naturally fractured petroleus
voir’’, Feistauer M., Zenisek A., “Finite¢
variational crimes in nonlinear elliptic prd
Folta J., “Notes on the history of m
analysis in its connections with Prague”, G
S., “Survey of convergence criteria of
gonal power processes”, Hackbusch ¥
new multi-grid method”, Necas J., “Fin
ment approach to the transonic flow pu
Parter S., “Remarks on the solution of
systems of equations”, Tichonov AN
problems with inaccurate data”.

The presentation of the titles &
authors of these papers represents a gu
of their high mathematical level. The
are up to date such as: variational form
for nonlinear elliptic problems (based es
on important results of Czerchoslovak st
equations), stability and error estimates
bounds and discretization error) of (
finite element approximations for time-de
convection-diffusion equations etc.

As to the section lecture; some ¢
refer to the use of FEM for solving sol
blems of fluid mechanis (ideal comj
fluid flow in a plane cascade, matl
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lelling of urban air pollution, etc.).for the
dy of elasto-plastic bodies behaviour and for
e study of dynamic behaviour of solids. .

Some problems regarding spline function
ape preserving splines, spline approximation
the stabilization method for solving nonlinear
undary value problems, etc.).

Two of the papers refer to the Runge—
Kutta methods (their modification for stiff
problems and the Lyapunov matrix equation
for these methods).

The other papers deal with mathematical

aspects’ which are miore or less relatcd to the’

above mentioned topics.
We consider these proceedings’ to be use-
ful for those intersted "in numerical analysis

and especially in its apphcatlons in, ODE and )

PDL.

C. I. GHEORGHIU.

Lothar Budach, Bernd Graw,
Christoph Meinel, Stephan Waack
Algebrale and Topologleal Properdes’ of Finite
Pattially Ordered ' Sets,
Mithematik Vol. 109, Teubtier, |

. The book is a revised,
completed -version of the first author’s lectures
beld at Hurboldt-University during the academic

. Leipzig, 1988.

yar 1983/84. The original lectures have been

cosiderably extended by new contributions in
the arca and by revised proofs of known results.

‘The use of methods which have been
developed in the algebraic topology and com-
mutative algebra allows a new prospective on
comhizatoriai problems. The authors intention

isto close the gap which appears in using topo-

logical methods in the theory of finite partially
ordered sets (posets).

The common theme for the five chapters
of the book are the principle of inclusion-exclusion
anl the theorem of Rota concerning Galols
connections of posets.

Chapter 1 constitutes an introduction
to the theory of partially ordered sets which
tomprises the original form of the theorem of
Rota.

From Chapter 2 on the book wuses a
"diagram cohomology” introduced there. A Leray
spectral sequences is developed and a homological
proof (due to Baclawski) of Rota’s theorem is
presented.

Chapter 3 is devoted to the .study of.

homotopy properties of posets. Using Quillen’s
theorem it is shown that Galois connections
are nothing else than a very special case of homo-
topy equivalence which yields a new proof of
Rota's theorem.

Teubrier Texte zur

expanded and’

Chapter 4 introduces the Mobius algebra.
which is a kind of a. combinatorial analogue of
the Chow rings of algebraic geometry. Also
analogue of the Riemann— Roch theorem of
Grothendieck is proved which leads again to a
new proof of Rota’s theorem.

Chapter § gives a brief introduction to
Cohen— Macaulayness and shellability as an
important combinatorial property which implies
thé Cohen—Macaulayness. -

Finally an appendix is given, containing
applxcatlons of algebraic topological properties
of posets in ‘computation theory. By the authors’
rematk, this is the original motivation of the
volume. The book is provided with a literature
containing 60 items and a index of terms.

Accordmg its origmalxty -and > style the
volime can be highly ‘recominended to all inte-
rested in the exciting field ot posets and their
apphcat:ons

A, B.'NEMETH

Vlctor Gulllemln, Shlomo Stern-,
berg; Symplectie Techniques jin Physies,
Cambridge University Press, 1984 468" pp.,
ISBN 0521 24 8663. = ..

"This is one of the most’ elaborated boak
on symplectic geometry written in an inter-
disciplinary spirit of: the mathematics and
theoretical phiysics. The ‘Preface ' presents the
subject starting from a hystorical and metho-
dological point of view giving some general
comments over the bogk, whose purpose is
twofold: to provnlc an introduction in the
matter and to exposeé the main results from
a present-day approach. The content is the
following :

1. Introductirn. This first chapter is
quite general, demanding only few mathe-
matical prerequisites. Here are presented some
physical aspects generating the -symplectic
techniques going from the Hamiltonian me-
chanics and the various theories of light. So,
one discuss siccessively the relationships
bet-veen the linear optic. the geometric optic
and the wave optics, as well as the correspon-
ding relations with the classical and the quan-
tum mechanics.

II. The Geometrv of the wmoment map.
This is a:highly. mathematical chapter. There
are presented the nornal forms, the Darboux-
Weinstein theorem on the local symplecto-
morphism of two symplectic manifolds and
the equivariant version of the theorem rela-
tive to a compact group action, the moment
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map and some of its physical and mathemati-
cal aplications as the harmonic analysis of
group representations. Convexity properties
of the toral group actions as well as the prin-
ciples of geometric quantisation are also pre-
sented.

III. Motion in a Yang-Mills field and
the principle of gemeral covariance. The chap-
ter is devoted to the study of the particles
iu a Yang-Mills field. The symplectic structure
of the cotangent bundle of the total space of
the principal bundles is studied with appli-
cation to the isotropic and co-isotropic embed-
dings, and to an symplectic analog of the in-
duced representation.

1IV. Comgplete integrability. Here, the group
— theoretical method and the .moment map
are applied to study the complete integra-
bility of different mechanical systems. Amung
the topics covered we mention the fibrations
by tori, systems of Calogero- type, Solitons
and co-adjoint structures, the -algebra of for-
mal psendodifferential operators, the higher-
order calculus of variations in one variable.

V. Contractions of symplectic homoge-
neows spaces. Results on the cohomology of
Lie algebras and on the contractions of bomo-
geneous symplectic spaces, with applications
to the Galilean and Poincaré elementary par-
ticles are given.

The work is concluded with an ample
list of References and a general Index.

On the basis of their broad experience
and scientifical work, the authors performed
a valuable and original synthesis on the sym-
plectic geometry. The symplectic techniques
play a crucial role in the mathematical for-
mulation of many problems from the classical
and the modern physics. A subject of common
interest to both mathematicians and teore-
tical physicists is treated systematicaly and
exhaustively being au excellent text for gra-
duate courses, or even for scientifical research,

M. TARINA

RECENZII

A. Di Nola, S. Sessa, W. Ped
E. Sanchez Fuzzy-relatien equatio
their applications to  knowledge engi
Kluver Academic Publishers, Dordrecht)
ton, ILondon, 1989 (Theory and
Library, Series D: System Theory,
ledge Engineering and Problem Solvi

The book is an in-depth study
fuzzy relation equations and their appli
The authors are outstanding speciali
the domain and they provide us a
hensive and up-to-date account of the

The book is organized as follows;

Chapters 1—9 present the majot
concerning the fuzzy relation eg
fuzey relation equations in residuated
lower and boolean solutions of m
fuzzy equations, decomposition of f
lations, fuzzy relations with triangular

In chapter lo the approximate
of the systems of fuzzy relations equatid
studied.

Chapters 11--13 deal with the
cations of fuzzy relation equations ij
ficial Intelligence. The treated topi
uncertainty in knowledge-based syste;
structions, validation and optimizal
knowledge Dases, imprecise reasoni
the inference mechanisms in the expert

Chapter 14 presents the theory q
design of fuzzy logic controllers.

Chapter 15 contains two bibli
papers on fuzzy relation equations and
on fuzzy relations.

An author index and a subject!
complete the book. |

The book is a very lucidand
hensive tratement of fuzzy relation eqd
It will be a useful tool for researchers
field. Researchers in different or relatd
as well as the students will be benefit
introduction to relevant literature.

The book is highly recomme
all interested in fuzzy sets and relat
The book is very important for thed
ment of the fuzzy set theory and its
tions. Qur thanks are due to the |
and to the Publisher.

D. DUMIT
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