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A HEURISTIC SEARCH TYPE ALGORITHM FOR SOLVING
NONLINEAR ECUATION SYSTEMS

BALAZS MARTON ERN 0*

Received : June 12, 1987

REZUMAT. — Tipurl euristice de algoritmi pentru rezolvarea unor sisteme de

ecuatll nellneare. In aceastid lucrare se aduc unele imbunititiri algoritmilor
pentru rezolvarea sistemului nelinear prezentat im [1].

1. Introduction. In this paper we give some improvements to the nonlinear

system solving algorithms given in [1]. For approximating the solutions of the
system

fil%y, %9 oo, %) =0,7=12,...,m (1)

in a previously given domain S C R*, we suggested two algorithms based on the
excluding method of Kalovics [3]. In the followings we present this method.
The method is based on the following theorem :

THEOREM 1. (see [2] Theorem B) Let G C R» be an open set and DC G a
compact and convex domain. Assume that the fumction f: G— R is twice conti-
nuously differentiable and that there is the positive real K such that

K>-;-max[[éé(ﬁm2]:xED}- (2)

i=1 k=1 \ 0%i0%;

If ae D, f(a) # 0 and
p(x):=p(f, a, 2):=f(a) + f'(a)(x — @) + K[| x—al|[*sign f(a) 3

[f(%) — p(x)] - sign f(a) > O

then

for all x € D, x # a.

The method for approximating the solutions of the equation f(x) = 0
may be formulated as follow :

1. Let T be a hyperparallelipiped such that D < T, and let us consider
& lattice which divides 7 into a finite number of hyperparallelipipeds.

2. Let a be a node of the lattice such that f(a) =0 and T, a hyperpa-
rallelipiped for which all the vertexes are nodes of the lattice. If for all the
vertexes x of T, the relation

p(#) - sign fla) >0 4

. - N
)2.....-_: Research Institute for Computer Technigues and Informatics (ITCI), Sir. Republicii no, 109, 3400 Ciuj-Napoca,
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holds, then according to Theor
: y - em 1, .
tion. This means that fr T, contains n

ipi i om T we may exclud
lipipeds with the same property. ¢ the re

3. If there remained unex
another node @ and apply the me
of the unexcluded hyperparalle

4. To examine the unexcluded domain we choose a T
lattice and repeat the above givens. W

L _ e stop the refinement w
distance between two adjacent nodes of

: hen the may;
¢ . ‘ the lattice (the step of the lattril:z;
1s smaller than a previously given bound, which gl

. . d, ves the precision of the
approximation. We accept a hyperparallelipiped from the unexcluded domaig
to contain a solution of the equation if it contains a point x such that | fx)]
is smaller then a given positive real.

The advantage of this method over the most popular iterative methods
is that it has no points of divergence. It also has the interesting property of
finding an approximation for each solution of the equation in the inspected
domain. The major drawback of the method seems to be its low speed which
is due to the sysematic inspection of all the possibilities.

The above given method is characterised by the following theorem and
its consequences.

O solutions of the

union of aJ) hyperpaer(;l;ll]z:

efinement of the

THEOREM 2. (see [2] Theorem ¢ and its consequences) Let

1

d:= (R T@T T L@ TF — 1@ i),
’ 21{]’«/1;
n 3};(0) 2 2
1 f (@1 =[Z:( a)] :
FhHA | 4'=—1—'—‘: PR T}, ]=W
K; >% max {max {’Z::l 5:";;; Lt N

; .., my.
and d;, = max{d:] = L2 J in ot

ino a node a the domain -

tice 1s smaller than @, then :lm:f lal[ice-hyper?arallcl1p1pt"

If the step (}f thlf leatg’l:ii)en method conlains at least 0 . ; e
cluded with the abov r

q

a domain U 0 | fix) > < o
- case U will be excluded 'n.t a,ﬁ,n:,:d;d
for all x€ U. Iﬂ.tmsl * e T 1s nol contained n amy €
- Cons]eq;lel;ge fg. afsolut-ion of 5.‘"5“'"1‘.
S ts::’ucnce 3. If (1) has 70 sobito
fi77itec ‘;Izlﬁn(zlber of steps.

mber of StePs .
od rectangle of @
d

e T, Lhen T will be exclude
nin 1,
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Consequence 4. If x* is a solution of system (1), then for arbitrary r> 0
we can find a cube with the lengh of its sides » which conta{ns x*, rr>

2. Algorithms using the excluding method. Obviously the method given in
the previous section is also valid for equidistant lattices. Using this kind
of lattices has the‘ advantage that it simplifies the computations and makes
implementation easier. We shall call the hyperparallelipipeds in an equidistant
lattice cubes. Another advantage of using equidistant lattices is that in R for
defining a cube we necd % + 1 informations (the # co-ordinates of a vertex
and the lenght of its sides), while for defining a hyperparallelipiped we need
2n informations (the » co-ordinates and the % lenghts of its sides), which
means an cconomy of # — | memory locations for each cube.

In [1] we gave two alforithms using this excluding method. These are
similer to the depth-first and bredth-first search algorithms respectively, used
in inspecting a solution space [4). In the followings we present these algo-
rithms with slight medofications. In both of the algorithms a list is used to
storc the unexcluded cubes at each moment.

Algorithm 1. (depth-first type algoritm)
In this algoritm the list used to store the unexcluded cubes is organized
according to the last-in-first-out principle (LIFO).

Step 1. Let us consider a lattice with step d and introduce into the list
the cubes which cover T, with side-lenghts ! = d.

Step 2. If the list is empty stop. ,

Step 3. Take the cube from the top of the list, let this be C and let
a be the vertex in the definition of C.

Step 4. If C may be excluded using a then go to Step 2.

Step 5. If [f(a)| < n(n) > 0) and the side-lenght of C is smaller then
the desired precision (/ < ¢), then choose a point x in C as the
approximation of the solution in this cube; go to Step 2.

Step 6. Divide C into k* cubes with the side-lenghts I = 1/k, go to Step 2.

Algorithm 2. (bredth-first type algorithm) o
_ In this algorithm the list is organised according to the first-in-first-out
principle (FIFO).
Step 1. Let us consider a lattice with step d and introduce into the list

the unmarked cubes with their side-lenghts ! = d which cover
T (a marked cube in the list means that its defining vertex has

been used for exclusions).
Step 2. If the list is empty stop. . .
Step 3. Let C be the cube on the top of the list and a the vertex in
the definition of C. If C is marked, go to Step 6.
Step 4. Delete from the list all the cubes which may be excluded from

T using node a. .
Step 5. If C was not excluded mark it and move 1t from the top of the

list to its end; go to Step 2.
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Step 6. If the side-len
. -lengths of the cubes (the
. all
Zment) 1s smaller than the desired przercisio:;lre(;;equa1 at cach gy
s approm}na.tlon_ of a solution an arbitraril > 0), then Tetyr
each cube in the list which conta ny ch n

: . 0sen poin
(n > 0); stop. s a point % such that |7e, R

Divid h cub "’ 'f(x)K"i
1vide each cube C in the list i I
! = 1/k and introduce them unm:.rkégt(i)nk Choes. With side

. -lengt}
Obviously the choice of the PR _ ’ tep 2,
. . positive integer % arbi
the algonthms, although it should be made s%ch thzlst ﬁtlilt::lt;’?;ym for both. of
ments remain as low as possible and the bookkeeping OIY require-
the implementations we made we used % = 2.

opcrations simple. In
Between the two algorithms we can make the i
. . a usual compar
in generally between depth-first search and bredth-first scarch algorilzgﬁlsmaff

Algorithms 4 keeps on the list all the unexcluded cubes wit i
L ¢ th 3 iith the side-
lenght [ while Algorithm 1 divides one cube at a time and immediatelystri:s

to excludg the obtained cubes. This results in a larger memory requirement
for Algorithm 2.

The other difference between the two algorithms is that the first one

proceeds searching one solution at a time while the second one works on find-
ing all the solutions in parallel.

Step 7.

3. On informed algorithms. Both of the algorithms presented in the pre-
vious section are uninformed, i.e. the choice of the node used in an excluding
step is arbitrary. It is desirable to use at every step the node Wh‘.Ch. excludes
the largest domain possible. To find such a node might be more difficult than
solving the system itself. It seems to be more efficient to find a functlot;
which can choose “almost every time’ the node ‘which excludes the larg‘e]S)
domain. We mean here a function like those used in heuristic serch (see [t]):
In the followings we give such a function.

THEOREM 3. Let f: G— R be as in Theorem 7 and a, b = G such that

1 , 2 (3)
1£@) | — = L1 F@ 11> 1@ = 11 @]
2
s ||, where x° @
', 2 b, 4%) =0 and ||t — 2| > 12— 21 ectivel)
chj:ext}zex ejt;i;nzzl(fpoints) of the polinomials $(f, a, x) and P(f, b, %) resp
then p(f, a, ) - sign f(a) > 0.

Proof. The points x* and x* have the co-ordinates

o= g — Y9 signfla), i = i and

), + = 1, n respectively-
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The distance of 2 point x € G to x* is
1
: F
[l —2°|| = ['Z__:,{x, —a; + ol]( ag(a) SIgnf(a))] o)

== {i: {(x.' —ap +L 20 (% — a;) - s1gnf L af(a) J}

K 0x; ax.
=[11x = alP 4+ L7 @ — ) - sign fla) + Ilf(a)ll’]

Analogously we obtain :

iz — 20 = Hx_bllz_;_%f’(b)(x—b)-signf(b)+ﬁ{,-||f'(b)ll’

According to the hypothesis p(f, b, 22) = 0, i.e.

S(B) 4+ f/(b)(x* — b) + K||2* — b]||?* - sign f(b) =0,
thus
Lf®) ]+ f/(0)(#* — &) - sign f(b) + K || * — b][* = 0.

Using (7) we obtain the followings:
0= 1)1 + K /') = b) - sign /6 + 197 — 1]
= 1fO) |+ K112 = 217 = 11 O]
= /O] = = 1If @1+ Kll# = 211 <
< (@) | = =1 f @11+ K2t = al P
1 ’ 2
= 1fta) + K[l1# = #1F ~ oz 11/ @1F]

= @)1 + K[ f @ — a) - sign fla) + 1% - alp]
= [f(@) + f(@)(s* — @) + || #* — &l [*sign f(a)] sign f(a)
= #(f, a, 1) - sign f(a),

Which completes the proof.
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Consequence 1. Let a = G ang %€ G such thg
If y € G is such that Hy — x| <]
#(f, @, 9) sign f(a) > 0 |
If ye G is such that ||y — x|
p(f, a, ) sign f(a) = 0;
If y € G is such that [y — x2|] <[|lx— x%||,
p(f, @, ») sign f(a) < 0.

Consequenee 2. Let a, b = G which sati

X — x|, then
| =lx — x“l'l, then

then

- sign f(b) > 0.
This latter consequence means that for
one for which the value of the function h:G— R def

M) = [ f(x) | = -1 f ()1 P

is greater, we can exclude a larger domain.

. sfie relation (5) and
that p(f, a, ') - sign f(a) > 0 and [122 — 28| > || a2 —()bu, ’

ined by

¢ p(f’ a, x) = (),

9
€6 sy

then p(f, b, 7).

two points ¢, b € G, using the

In the case of searching the solutions of an cquation, in a given recten-
gular domain T using the excluding method, the fuction may not alweys
give the best choice. This is because the domain which could be excluded from.
G may not be entirely contained in 7. However / gives a choice criterion
for the node which will be used for exclusion. Bascd on this “hcuristic” func-

tion we give an informed version of Algorithm 2.

Algorithin 3. (best-first type algorithm)

j
|

Step 1. Let us consider a lattice with step d and let Cy, Cp, .+ ooy Cu DE

the cubes with side-lenght = d for which G C C;; for C; (1= fl»’c";
compute k(a;) (where a; is the vertex in the definition ol &

and introduce them into the list unmarked.
Step 2. If the list is empty stop.

Step 3. Let C be an unmarked cube in the list for wh
if there are no unmarked cubes in the list
wise mark C.

Step 4. Delete from the list all the cubes which may be

T using node a; go to Step 2. ' '
Step 5. If the side-lengths of the cubes in the list

Step 6. Divide each cube C in the list into A" cubes

ich h(a)

go to Step 5, other

excluded from

are smaller than 'gze
-3 1 a

desired precision (n > 0),- then return as approgun;tlon o

lution an arbitrarily chosen point from ea<-:h tcu e

a point. x such that [f(x)| <= (n>0); stop

with the side

I = 1/k; for each cube obtained compute the value of

% in the vertex from its definition and intr
list unmarked ; go to Step 2.

oduce t

hich contais

-lengths
the functlon'.
hem into ¢

!
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To compute the values of the function % in nodes of the lattice we don’t
need extra informations since both f(a) and f'(a) are used in constructing the
polinomials p(f, a, x) aswell. In order to ?.void recomputation of these values
it is useful to store them together with the definitions of the cubes. For
this reason we suggest that in an implementation of the algorithm a cube
should be a record structure with the following ¢omponcrts: ;, .

— the coordinates of the vertex : array of # reals:

— the side-length: real;

— the value of f in the vertex : real ;

— the values of the partial derivates in the wvertex: array- of » reals;
— the value of / in the vertex: real. '

. A further improvement to the algorithm would be if in Step 4 one should
not examine all the cubes in the list. According to Consequence 1.of Theorem
3 the test should be made only to'those cubes for which each vertex x sa-
tisfies the relation || x — x*||<|[[#> — x°[| (where x is such that p(f, a, x)=0.
Obviously it is not worth computing these distances for each vertex of each
cube to be tested but the sequence in which the testing of cubes is made
can be chosen in such a manner that the above given condition tclls when
the testing may be stopped.

Let v be a vertex in the definition of a cube in the list at Step 4. We
organise the testing on lcvels: level 0 are those cubes which have x as one
of their vertexes; level 1 are those untested cubes which are adjacent to level
0; ... level & are those untested cubes which are adjacent to level & — I.

THEOREM 4. If in level k no cubes were excluded, them in levels k> ko no
cubes will be excluded either.

Proof. If in level £ no cubes were excluded then for each vertex v of
each cube on level & p(f, a, v) - sign f(a) > 0. Since the distances of the closest
vertexes on level % to v are £ - [ all the vertexes of the cubes on level k+1
are at a distance greater or equal than (2 + 1) -/ to v. This means that for
each vertex of the cubes on level k> &, #(f, a, v) sign f(a) < 0. .

Remark. v may be chosen arbitrarily but it is convenicnt to choose it
as close as possible to x. o o )

The algorithm is rather complicated but it might be useful in isolating
the solutions of complex systems to a level at which fast iterative methods
can be used.

4. Implementation notes. As we mentioncd at the end of thg previous
section the algorithm presented should be used in combination with a.ffas;l:
converging method e.g. Newton’s method. This means tha_t the cubes whic
satisfie the precision criterion are passed to such an algorithm.

In the algorithm there are several processes which may be executcd con-,
Currently : ) N

— managing the database which contains the unexcluded cubes at eac
moment (adding, searching, deleting cubes); .

— testing of cubes (which may be done concurrently) A in paralle]

— dividing and constructing cubes (which also may be done in p .
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If the algorithm is used to approximate the solutions of a syt
em

(1), then the algorithm may be executed concurrently for each f(x) of form

This means that in applying the algorithm for such =0, j=1 7,
levels of parallelism. Systems there are tyy

In a future paper we shall give a computer program written i
is intended to be the base of a larger equation solving systerll?. ADA which
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ON THE APPROXIMATION OF A CUBIC SPLINE CURVE
BY CIRCULAR ARCS

IULIU VLAIC* anAd ANGELA VASIU**

Received: April 15, 1988

REZUMAT. — Aproximarea unel eurbe cubice spline prin arcurl cireulare. Pre-
zenta notd did o solutie numericd pentru determinarea curbelor plane, definite
prin puncte discrete, in vederea determinirii profilelor plane prin prelucrare
pe masini-unelte, cu comandi numericd. Algoritmul dat, calculeazi mai intii
o curbii spline care este apoi aproximati printr-un lant de arce de cerc tangente
unul celuilalt. Este prezentat un program pentru calculator in limbajul BASIC
pe calculatorul de birou HEWLETT—PACKARD 9845B.

1. This paper presents a numerical solution to determine a plane curve,
defined by # given points. First, a cubic spline interpolation is calculated,
then this is approximated by a string of circular arcs tangent each other in
such a way that the error in each point is within a given limit prescribed
by the user.

The computation and graphics representation programme is realized in
BASIC programming language on the Hewlett—Packard 9845B desktop com-
puter. The graphics is plotted within HP 9872B plotter.

2. Theoretical Formulation. Given a plane profile defined by points which
are known by their coordinates, we ask: .

1. The theoretical cubic spline function which interpolates the profile;

2. The approximation of the spline function by a string of circular arcs
tangent each other such that the error in each point does not exceed a
given e.

2.1. Let (%5, yo)» (%1 ¥1)» ---» (%a ¥a) be the given points with:

Ko < %y < oo < % (1)

The spline function F,: [%, %.]— R is composed of arcs of polynominals
of degrec three, joined continuously with continuous first and second deri-
vatives. For the first and the last points we have the additional conditions
of tangence or curvature:

‘ Fi(x,) = tg (eo) @)

F; (xn) = tg (a,,)

i [P ®
;I(xn) = Cn

Where the constants «,, a, and ¢, ¢, Tespectively are supplied by the user.
\

* Mecharical i ir, 2566 Cugir, Romania. i A .
i Uniw-r::ty ﬁﬂé?ﬁ}fﬁ,%i:“?bmy of ‘Malhomatics and Physics, 3400 Cluj-Napoca, Romania.
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By [6] the function F, has the following expression :
Fi(x) =y + (x — 2)(¥ie1 — 2/ (%41 — ) +
+ < (¢ = m)(x — %) [FH(%) + Fi(xiaa) + Fi(2)] “
where L
x€ [, %iq], 1 =0, n

In case of condition (2), one obtains the solution of the corresponding
system of equations by matrix methods. °

If in (3) we take ¢o = ¢, = 0, then we determine F, as an itcrative soly.
tion of a linear system of equations, using, for instance, the method of Young
where the precision of the solution can be fixed by the user. This last case
is described by the computer prograinme in Table 1.

3. The Algorithm of Approximation by Circular Arcs. The approximation
of F, by a string of circular arcs is determined as follows below. The circle
passing through distinct points (a,, &,) and (a,, ,) and having m = tg « as
the slope of its tangent in (a,, b,) has the centre:

%X, = ay + mby, — my, (®)
y. = A|B
where -
= a} + b} — a} — b + 2(a; — a,)(ao + mby)
B =2[b, — by — m(a, — a)]
and the radius:

R = [(x. — ao)? + (@& — bo)2]" (6

If' B =0 the circular arc is replaced by a line segment. If a=—::- the

-

(5) formulas become :

yc=b0
%= [a — a3+ (b — bo)?)/[2(ay — a0)] g
if a, # a,.

The next circular arc has a common tangent with the preceding circulaf
arcin (a;, b;) which becomes (a,, b,). We have:

m= —(a; — %)/(by — ye) if by # ¥

and
m = 400 if b, = y,..

. Let ¢ be the precision of approximation of F, by circular arc, Whidfitls-
given of the user. If g:[a, a,]— R defines the circular arc obtained ¥
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|
w’ the formulas (5) and (6), we have:
| Fy(a,) = g(ao), Fi(ay) = g(a)) o (8)

pecause the points (ag, bo), (), b)) are, at the same time, on the theoretical
~urve and on the circular arc. This means that

y=IF—gl: [ap ] R
 has Q maximum, which we ask not to depasse e.

We ask that:
max y < ¢ when x € [q,, a,] )

In the domain [%,, x,] with a variable Ax step we obtain points : (ag, by),
(a3, by) - -s by which we consider the circular arcs as we have considered above.
The last point of every calculated circular arc, except the last point x,, is the
first point of the next circular arc. The step Ax is modified, increasing it, and
so we obtain different arcs, and we test for every one a condition of type (9).
We retain the last string of circular arcs for which (9) is still satisfied. In
this way we minimize the number of the circles of approximation of F, by
circular arcs.

In Table 1 is given an algorithm to determine a cubic spline of inter-
polation. We denote by (x, y:), =0, » the given points, by (x, Fi(x)) an
arbitrary point of the theoretical spline curve; by Pas x, the step Ax of the
crossing of the [x,, x,] interval. D1 = D10, E; F;, G; 1 = 0, n are some auxi-
liar variables. :

A complet programme, in view of processing a profile on a machine-tool,
contains after the determination of the F,, the processings of approximation
of F; by circular arcs and records the final data in CL—FILE (Cataloging
File), [2], (3], [5]. ‘

We mention that a post-processing is asociated for the machine-tools with
Numerical processing command, which “compile” the profile in machine instruc-
tions. Different codes are used : ISO, APT etc. To this end, the authors have
]Careg';ed such a post-processing, for the machine AGIE CUT, DEM 29 (Switzer-

nd). '
. The approximation algorithm with arcs, for the cubic-spline function, re-
‘0ains unchanged for any plane contour type, i.e. for any contour defined by
mplicit, explicit or parametric functions.

.4 An example of using of the programme. Given the plane curve, by the
plividual pointsl 1>0[—150,"20], Pl[p—lgz& 10], P2[—80, —10], P3[—40, —5],
1134[‘ 10, 5], P5[20, 20], P6[40,30], P7[70, 45], P8[100, 50], P9[130,45],

10150, 35). We ask: .
) the graphic representation of the spline-function of interpolation; we

Choose Pag % < 0 1-
2) the graphic of the approximated curve, by the calculated circular arcs.

. Using the programme given in Table 1 it resulted the cubic-spline curve
of ll1'“3rpolatiouf) with the g'aphic representation given in Fig. 1. The indivi-
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sven points, which define the fuqction, are noted by the '4-' sign.

igglrog):i‘;atfd curve is represented 10 Fig. 2, at the same scale with tt%: tg:::e

retical profile from Fig. 1. The ends of the circle arcs are noted by “#°
All figures are plotted on the HEWLETT—PACKARD 98438 dESl;:top

computer.

Table 1

The computation and graphies representnﬂon prograinme, in BASIC programming
lunguage, for 8 cuble-spline function of Interpolation

10  REM *******************}***.***********
90  REM X ¥ MTLRMINATION OF A PLANE CURVE % % % % % % %
50  REM k% DEFINED BY N DATA POINTS

* % %
REM % % %

%  REM %% APPLICATION OF CUBIC SPLINE %%
%  REM % FUNCIION OF INTERPOLATION %%
70  REM **********************************
g0  REM

90  REM CUGIR 1987

100 REM

110 Select = 16

120 INPUT “Selective code of the printer?” Select
130 PRINTER IS Select

140 DEG

150 INPUT “Number of points N = ?”

160 INPUT “The graphics representation scale ?” Se
170 PLOTTER 1S “9872A"

180 SCALE — 190, 190, —125, 125

190 FRAME

200 PEN 1

210 MASS STORAGE IS “: F8"

220 PLOT — 175, 0

230 PLOT 175, 0 .
240 PLOT 172, 2

250 PLOT 172, —2

260 PLOT 175, 0

270 PENUP

280 PLOT 0, —90

290 PLOT 0, 110

300 PLOT —2, 107

310 PLOT .2, 107

320 PLOT 0, 110

330 PENUP

340 MOVE -5, —5

350 LABEL "“0”

360  MOVE 170, —5

370 LABEL “X"

380 MOVE -5, 100

390 LABEL "Y"

400 PLOT —175, 100

410 PLOT — 145, 100

420  PENUP _
430 LORG 5 ;
440  MOVE —175, 100 ;
450 ‘LABEL “:"
460  MOVE —145, 100

470 LABEL “:"

480  MOVE —175, 110



490
500
510
520
530
540
550

560
570
580
590
600
610
620

630
640
650
660
670
680
690
700
710
720
730
740

2)
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
850
960
970
980
990
1000
1010
1020
1030
1040
1050
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LABEL “0”

MOVE —145, 110

LABEL 30"

LORG 1

CSIZE 3

MOVE —175,—110

LABEL "I:;g“ 1 — The graphics of interpolation spline-function for individual
oin

LABEL “

LABEL “

OPTION BASE 0

DIM F(100), G(100), E(100), X(100), Y(100)

FOR I=0 TO N

PRINT I;

INPUT The rectangular coordinates of the points
(X,Y, CONT )?”, X(I), Y(I)

PRINT “X ="; X(I);* Y ="; ¥Y(I)

NEXT I

GRAPHICS

LORG 5§

FOR I=0 TO N

MOVE X(I), ¥(I)

LABEL u+n

PENUP

NEXT I

LORG 1

GOSUB Print

PRINT “If there are some changing introduce the index of the point which must
be changed. Otherwise press the clak 'CONT’ *

Edite: I=PI

INPUT “Introduce the index which want to change” I
IF I=PI THEN 920

I=INT(I)

IF (I<0) OR (I>N) THEN Edition”

DISP “Introduce coord. for the point nr.”;
INPUT “ ", X(I), ¥(I)

PRINT USING Image; I, X(I), ¥(I)

GOTO Edition

Print: PRINT LIN (2), SPA(12); “DATE INITIALE"
FOR I=0 TO N

PRINT USING Image; I, X(I), Y(I)

Image: IMAGE “Point nr. “DDDD”;"” 5X, “X
NEXT I

PRINT I IN(2)

RETURN \
INPUT “Pas abscisa Pasx = ?" Pasx

D10 =.001 | Precission of approximation”
FOR I=1 TO N-1

D1=X(1)

D2=X(I—1)

D3=X(I+1)

D4=V(I)

DS=Y(I—1)

D6=V(I+1)

D7=D1-D2

D8=D3—D2/

E(I)=.5%D7/D8

D9= ((D6—D4)/(D3—D1)— (D4—D5)/D7)/D8
F(I) = 2%D9

I; “(X,Y, CONT)”

="K, §X, “¥Y=";



1060
1070
1080
1090
1100
1110
. 1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1260
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
4540
1550
1560
1570
1580
1590
1600

G(I)=3%D9

NEXT I

F(0)=0

F(N)=0

D3=8—4% SQR(3)

DI=0

FOR I=1TO N—1
D9=D3%(—F(I)— E(I)-)(-F(I—l)—( 5—E(I)) % F(I+ 1)+ G(1))
D8=ABS(D9)

IF D8>D1 THEN 1180

IF D1 > =DI10 THEN 1110

GOTO 1200 :
F(I)=D9+F(I)

NEXT I

FOR I=0 TO N-—-1

G(I)=(F(I+ 1)—FI)/(X(I+1)—X(1)).
NEXT I .
PEN 1

FOR X=X(0) TO X(N) STEP Pasx
GOSUB Interpolar

PLOT Sc¥X, Sc¥F

NEXT X

X=X(N)

GOSUB Interpolar

PLOT Sc¥X, Sc¥F

PENUP

MOVE 999. 999

..STOP -

Interpolar : IF (X > = X(0)) AND (X < =X(N)) THEN 1370
DISP “ARGUMENT OUT OF LIMITS"”

STOP

D9=X

GOSUB Unu

RETURN

Unu: I=0

IF.D9> =X(0) THEN. 1470

PRINTER IS 0

PRINT “ARGUMENT OUT OF LIMITS!”

PRINT “ X(0)="; X(0);" X(N)="; X(N);" X=";X
PRINTER IS 16 '

STOP

I=1+41

IF I > N THEN 1420

IF D9 > X(I) THEN 1470

I=I-1

D8=X—X(I)

D9=X—X(I+1)

D7=D8¥%D9

D15=F(I)+ D8 G(I)

D6=1/6

D1=D6% (F(I)+F(I+ 1)+ D15)
D3=(V(I+ 1) =Y (1)) /(X (14 1) — X(T))
F=D3%D8+Y(I)+D7% D1
RETURN
END

o Vot
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Fig. 1. The cubic-spline curve of interpolation, for exemple in paragraph 4.

i ircular arcs.
Fig. 2. The grafic of cubic-spline curve, approximated by circ

= Mathematica 3/1988
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REZUMAT. — Integrare Monte Carlo pe simplex. fn prezenta lucrare se stu-
diazi evaluarea unei integrale multiple pe simplex, folosind metode probabi-
listice. Se utilizeazd reducerea dispersiei estimatorului folosit cu ajutorul metodei
separdrii pdrtii esentiale §i respectiv metoda alegerii esentiale. De asemenea se
considerdi doud scheme combinate ale acestora. Metodele considerate folosesc
polinoamele lui Bernstein definite pe simplex. Experimentele numerice con-
firmd utilitatea aplicirii acestor metode de reducere a dispersiei. Rezultatele
obtinute sint comparate cu cele obfinute in cazul aplicirii metodei Monte Carlo
clasice.

0. It is known that a definite integral can be estimated using probabi-
listic methods, and these methods are preferably to approximate the definite
integrals when multiple integrals are considered. The integral is looked as ex-
pectation a certain random variable, which is an unknown parameter. The
estimation of this parameter, i.e. the definite integral, can be obtained if one
performs a sampling from random variable considered, and taking an unbiased
estimation function for this parameter. Generally, this method is not fast-
converging ratio to volume of sampling, and efficiency depends on the variance
of estimator. For increasing the efficiency must to reduce the variance as
much as possible. Two important methods for reducing of the variance are
known: the method of conmtrol variates, and the method of importance sam-
pling [3].

To evaluate the multiple integrals on the unit hypercube, the two methods
were used in [5]. The Bernstein polynomials were considered to reduce the
variance with the above mentioned methods. We consider the same problem
ln the case when the integration domain is the n-dimensional standard simplex.
Some numerical results are presented when there are applied the two metghods
to reduce of variance, and combinated schemes of these. All these techniques
are raported to crude Monte Carlo method. )

1. Let S, be the #-dimensional standard simplex, i.e. S, = {(#1, ..., %) €
SRz, .., %, >0, %+ ... + %, <1}, and let f be an.absolute integrable
unction defined on S,. The approximating value of the integral

S Sf(xl, o, E)d%y ... A, (1)

Sn
‘an be obtained using probabilistic interpolation of integral

I=S Sf(xl, o %) (mldzy ... d%,)

Sn
—_ .
- = * University of Ciuj-Napoca, Faculty of Mathematics and  Physics, 300 Cluj-Napocs, Romania.
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ectation of random variable f(X;, ..., X,), where (X, .. LX) -
:181 tf:ﬁg);% distributed random vector over the simplex S,. ! n), i

If one considers the estimation function
N
1 ) *)
OLN—_—:—Ef(X(l,...,Xn)'
N k=1

where (X®, ..., X#), k=1, N, are independent and identically unform dis.
1 F I ) ) . ; )
tributed random vectors over the simplex S,, then ayis an unbiased estimpg.

tion function for the parameter I. The variance of ay is cg/N, where g
is the varance of f(X,, ..., X,). Thus, ay converges with probability one t
I as N— «. With this method, the crude Monte Curlo method named, we have

1 ~
S S S, o0, 2)d%, . dx, = EMN’
Sn

where

A 1§ K ®

aN: —Ef(x{)i M xn )n

N k=1

and (xgk), . xf.k)), k=1, N, are uniform random number vectors over S,

2. In method of control variates the reducing of variance is obtained if the
integral I is writed as I = I, 4+ I,, where

I, = S S % ves %) — g%y, -, %) (0 dxy ... dx,),
and ”

Ie=s... Sg(xl, o ) (n ) dxy ... dx,).

Sn

The function g is selected such as to be theoretically integrated and to mimi
. the behav;our.of function f. Thus, the estimation of integral I is reduced
-at the estimation of integral I,.

In the following we cousider that g = B,(f), where Bo(f) is the Bernsteid
polynomial of global degree m relative to f:

B ’ m o om—i, M—iy—. .. =iy . i

. _ 1 1 "
mf'x‘l’"'r.xn)—z E s f——l‘—i’ A
=0 §,=0 iy=0 m m m

+

( m o om—i M=ty =1y ‘

. i f: n — . o Ym—ig—eee TN,

i Q i )xl Xo .. Xy (1 Xy [N :’vn) N

Then we have that :

i

!

m41 m--i,—...—in—i,,-, 5

n i=0 in=0 m ’ pl} g
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To evaluate the integral I, one considers the estimating function

N
1 X
By =5 L e(xl, .., x),

where ¢ =f— B,(f) and (X¥, .., X9, k= I, N, are independent and
identicelly uniform distributed random vectors over the simplex S,. This esti-
mating function is an uubiased estimating function for the parameter I,. The
veriance of By is 6}/N, with of the variance of ¢(X,, ..., X,), where (X,,
.., X,) is uniform random vector over the simplex S,
Using this method we have

S...ffm, ey %) dy ...dx”zr‘,(ﬁwzz),
Sn '

WIUI

N

2o, o 2,

b‘ 1
N_Nk=l

where (x(,k’, ce xf,”), k=1, N, arc uniform random number vectors over the
simplex S,,. ' '

To approximate the integral (1) with the method of control variates as
well as with the crude Monte Carlo method it is necessary to generate the
uniform random number vectors (xﬁ"), cen, x,‘,"’), k=1, N, over the simplex
S.. Rejection mcthod can be used, but for large # this method is inefficiently
because the rejection probability is also largely. In [6] was proposed a new
method to generate uniform random number vectors over S, and this method
was compared with rejection method. The method presented in [6] follows
from a result given in [2]. Namely, if X, ..., X,4; are independently, identic
cxponential distributed random variables (A = 1), then the random vector
Y, ..., Y,) with the component Y;= X;/(X;+ ... + Xpy1) 1is umfo_rmly'
giistributcd over S,. Taking into account this result following generate algorithm
Is given in [6]:

Step 1. Generate u,, ..., #y4y, uniformly over (0, 1),

Step 2. Calculate y;=Inu, i=1,2+1,

Step 3. Calculate s =¥, + ... + Yns1s

Step 4. Calculate x; = vifs, 1 =1, n. .
The vector (%, ..., %,) is uniformly random number vector over the simplex S,.

. 3. Mecthod of importance sampling cousists to consider a new density func-
tion g that mimji'cs tjixe properties of function f and also to be simple because
2 sampling rclative to this density function will be neccessary. Then we have

I= S S/z(xl, o 2)8(By s By .. A%,

Sn
Where 4 = g1 f
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In the following we consider that g= B.(f), where B,(f) is the norp

i : 2li
Bernstein polynomial of global degree m relative to f, ie. B (f) =~ p lzeg -

(
with A,
T=S...SB,,,(f;x1, cee, %) d%y ... dX, =

Sn
1 ”m M—iy—. .. —ipy i i
Tt )42 ... () z:“o B = f(m' I)

Taking into account that B,(f) is a positive linear operator we have thy
ﬁ,,,( f) is positively when f > 0. Alternatively, it i§ 'afided an appropriate po.
sitive constant to function f. Futher on the positivity of function f is cop.

sidered.
The estimation of integral I is given by estimating function

ih( YL XD,

1

YN =

Z|=
[

where (X(lk), ey Xff)), k=1, N, are independent and identically distributed
random vectors who have the common probability density function B,(f) on
the simplex S,,. The estimating function yy is an unbiased estimating function

for the parameter I and the variance of yy is o&/N, with o% the variance
of nX,, .

.., X,), where the random vector (X,, ..., X,) is E,,.( f) distributed
over S,. Hence, we have ' i
S Sf(xl, cee %) A%y ... dX, Ry,
Sn
where
N N
~ 1 * * T {0 L )
N= — hx,...,x,. = — 1 Sl
N :‘;1 (= ) =3 ;; Bu(f; #0, ..., 2
with (s, .., M), k=1, N, random number vectors, B(f) distributed
over S,. !

To generate a random number vector (%1, - .., %), Bulf) distributed ov¥

Sa, one considers an urn which contains balls of M — (m“) colours enote!

bB?,(il'...’bi”)’i1=0,m’i2=01m'_1:17 -.-,1:;;"——0 m—‘il—---"i”‘rdﬁz
G ...,in) De the event of drawin out a ball 1ab ’ ..., 1) 2D
probability of this event g abeled by (1,

P(By,...,in) =f(i’::' o Lﬂ)/éo “.'n—ixi.in_,f(% 2)

m o
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{ a ball of colour (i ..., 1,) is drawing one comsiders random numb

Xy, e x,,). which is sampling value vector with Dirichlet distributione;)‘(;e:&olr
L+ 7&» -1 —t .. .(; 1, + 1}){ 91 This sampling value vector colrres:
jonds to random vector (X,, ..., X,) with B,(f) probability densit i
wer S,. Nemely, if the distribution function of rgndom vteitor ?‘IXY f.l%]?d;? !;
s F and p is the corresponding probability density function thenpusing' the
‘heorem ON compound probabilities it results that

F(xy), ..., %) =P(X, <%, ... X, < %)=

" me-fy—. .. —ig—y

= '}:_\,o e .-,?;6 P(Bgi, ...,i) P(Xy < %, - .., Xy < 24| Biiy,.yim) =
l ”
- m+1) ...m+nT i,E-o

f(’fl‘v Y %)P(X1<"1» v, Xu<2,| B, ....im)-

g0 m
But, for a selecting colour (7, ..., %,) the random vector has the probability
density function
b+ #)! - xf‘...x‘:x
il il — iy — o —im) ]

Pl -~-.fu)(xl' L} x,.) =
)M—‘;—...—"Q

X (1—%1—...—2:,

over the simplex S,. Hence

1 ”
[% e xﬂ = PEEEEY
I’(x]r ) (M + 1) T (m T h)T Tl
Wo-fy— ... =y i\ in ‘ ’ ) _
E f(_, R p(‘n---,'u)(-"l, vy Xa) =
in=0 m m
1 ”~ T R I f i i.)
= — b, =X
T Z;o in=0 (m "
moom- 1y m—iy— ... = i ; B _ _ . . i
() ). ) xin Lozl — ,) ,
4 L5 i
therefore p = B )
’ ) erate a random number

Using these results one gives an algorithm to gen

vector, Em(f ) distributed :
Step 1. A correspondence one-to-one

7,2, .., My (i, o) =00 i =0, m—i— . —te-t}
one defines, M = (m + ").
®
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Step 2. Calculate pp = P(B,w), k=1, M.
Step 3. Generate uniform x over (©, 1).

Steﬁ 4. If x [Pl + “ee + Pj_l, 171. + ‘e + ]5;'), then generate Dln :
D@, + 1, ...,0,+1; m— iy — ... — i, + 1) random number vector (xc ey
vn, %) [7,8), with #(5) = (&4, -- -, 1) e

Step 5. (%1, .- -» %) 18 B,(f) distributed.

5. In the following we consider an estimate of the integral I by comiy;
in

the two methods to reduce of variance. In the first one applies the meyy
of importance sampling then the method of control variates is applied eThOd
is why onme writes I = I3+ I;, where -

1,,=S S (kg - - o %) — Bulls %y oy %) 1 Bulfs %y <0y 2,)d%, L dy,

Sn

and

14,—_5 SB,,,(h; %y e, %) Bulf %y« o ., %)%y ... dx,,

Sp

with the function h the same of the previous section, i.e. h = n! f/Ba(f).
The integral I, can be calculated using the formula

S SB,,,(v; %y oo, %) Bu(w; %y, ..., %)%, .. dx, =

Sn
m m—i—...~ig—y ;M M—fr— ... —fp—y :
=X .. X BB (2 X
H=0 in=0 .1‘.2=0 J§O v\{m Ty m)w(m ’ “.””]
x __mp (i1+j1‘).__(i,.+j,.'2m—z'1—...—i,,—j1—---—jn
(2m 4+ n) 1 1y Ty tm—il—---—in—jl'—“'—j"'

To i ; .
estimate the integral I; one considers the estimating function

1
Oy = EE wXP, ..., xX®,

k=1

::;Iev:c;rh _"flm(h) and (i{(‘h)’ 0 XD), k=T/N, are independently =
function f Sm:lv;t tcommon By(f) probability density function. Of cOU% blt‘
' 0 be positively, otherwise it is incremented by S0

constant. The estimating f i p
. . b rlall
o%y|N, where o2y is theg unction 3y is unbiased and it has the V2

dom vector B,(f) distribzatlc::ia,nce ‘.)f WXy, ..., X,), with (X5, - Xi) * ‘.
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By this combinated scheme we have that

S S fx o x)dxy L dx, ;IT(§N +1,),

Sn
with

N

o2)

N = 1‘ (xgk)l MRS ] xsf))l

1
N >

k) (k) T a7 2 . .
where (¢, ..., 2%)), R =T N, are random number vectors B,,(f) distributed

over the_simplex S, TQ generate these random number vectors one follows
the algorithm presented in the previous section.

6. In this part one considers invers combining scheme than the scheme
presented in the section five. After the application of the method of control
variates, the importance sampling method is applied. We assume that e =
= f — B,,(f) is nonnegative. Then the integral I is writed in the form I =
= I, + I, where I, is that from the section two and

I,= S e Sz(xl, e x,,)ﬁ,,,(c; Xy veey %)l ... dx,
S
with 2z = n!¢/B,(e).
One takes the estimation function

N

EN = El Z(ng)x ceey Xfik))'
where the random vectors (X(,"), e, Xf,k)), k=1, N, are independent.and
identically B,(e) distributed. The estimatin function ey Js unb1ased. for the
parameter I, and it has the variance ogs/N, with ccs the variance of

z(X,, ..., X,), where (X,, ..., X,) is a random vector with B,.(e) probability
density function over S,. Hence we have

S"'Sf(xl, ...,x,,)dxl...dx,;z;lT(gN-i-Iz),

Sn
where
N
&,
ey = .I_E 22, .., 2P,
N k=1
: J: istri over
with ({9, .., xf‘”), k= 1, N, random number vectors, B,,(¢) distributed

the simplex S,. To generate these random number vectors on€ proposes the
algorithm from the fourth section, by e replacing the function f.

7. Numerical experiments have been performed bﬁtth?at‘zgnrggte};:gstﬁg
redice of variance. and by the two combining schemes. It was
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nw = 2) and the integrand function f(x, y) = e
The results are pre.«gentcd in Table 1. In all the fou.rd me(’;hods the Bel’n:t-giﬁg
olynomials of global degree m = 2,3, 4 were é:ons1. ered. The,"al’lances o
'?he estimators were conputed by numerical metheds usm'g a romanian COmputer
CORAL—4030 in double precision. In all the cases the variances were reporteq
to variance of the crude Monte Carlo method. ) |

bidimensional case

Table 1;
m=2 m=3 m=4
Type of scheme (1) 2 (n (2) (1) )
fonte Carlo 0.0096597  100.  0.0096597 100. 0.0096597  10p.
e o 00002210 229 00001021 106  0.0000580 0,
Importance sampling 0.0001364  1.41  0.0000635  0.66 0.0000362 (.37
rtance sampling- :
I’::,fzmlnva,iatep & 0.0000439  0.45  0.0000118  0.12 0.0000041  0.04 |

Control variate-
importance sampling 0.0000505 0.52 0.0000129 0.13 0.0000045 0.05 !

(1) — variance, (2) — per cent of crude Monte Carlo mcthod.
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USING THE TRAPEZOIDAL AND SIMPSON FORMULAS

OCTAV BRUDARU*
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REZUMAT. — Tablou sistollc pentru integrarea numericd prin formulele tra-
pezulul 81 Simpson. In prezenta lucrare se prezinti un sir de implementare
pentru formula trapezului §i a lui Simpson, care permite calculul integralelor

de forma (1).

1. Introduction. The first papers on systolic computation [3], [4] have
sroved clearly that the systolic arrays could lead to devices that would have
emarcable performances. Since then, the interest has never ceascd and great
srogress has been made in this domezin [6], [8].

The purpose of this paper is to present a systolic array implementing
the trapezoidal and Simpson formulas, which is able to compute with a cou-

stant rate of time

(k)
Ite) = | fulx) dx M
alk)
k=1, ..., K. We supposc that f: [a(k), b(k)]— R is given by an arithmetic
expression, £ = 1, ..., K. The proposed solution is bascd on the results con-

cerning the design of systolic arrays dedicated to the pipelined computation

of real functions given by arithmetic expressions ([1]). .
In Section 2 we outline the trapezoidal and Simpson formulas. In Section
3 we give the systolic network implementing these formulas and analyse its

performances.

. 2. Outline of the methods. For a fixed k< {1, ..., K}, if applied to the
Integral (1), the trapezoidal rule [2, p. 594], [7, p. 107] becomes

(k)

I(k) = [f(k; 2(k, 0)) + f(k; x(h, n(R) + 2 25 flk: 2k )IRR)Z (2)

Where f(k; x) = f,(x), x(k, 1) = x(k, O) + ih(R), i =0, ..., n(k),
x(k, 0) = a(k) and h(k) = (6(k) — a(k))/n(k).

. I('/{)he Simpson’s rule ([2, p. 596], [7, p- 108]) gives the following form
)

I(k) = [f(k; x(k, 0)) + f(k; #(k n(R) + 4S,(R) + 25,() KRB (3)

* Universitatea 41, 1. Cusa”, Seminarul Matematic ,,A. Myller", 6600 Iagi, Romania.
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n(k) = 2m(k), S,(k) = flk; %(k, 1)) + f(k; 2(k, 3)) + ... +

+ f(k; x(k, n(k) — 1), Sy(k) = f(&, x(k, 2)) + f(k; x(k, 4) + ... 4+

+ f(k; x(k, n(k) — 2))-

f formula required by the .computation of I(k) is given b
ty(k)leshe?e,p%}(Z) =0 (ty(k) = 1) if I(k) is given by (2) (3), k=1, R
ic network. In [1] and here, the clock tick (CT) is the tip
needga 'fg‘i;eycsif;‘g g(i\vision or both a mu1t11.)11catlon and an addition. Furthe
the variable ¢ designates the time which is a count of the number of CT,

i ive during every pulse number.
e suppose that each processor 1s.act1vc g ! y s
W T]?epsystolic network implementing the trapezoidal and Simpson formula

denoted by SN, needs the processors depictcd in Fig. 1.

where

d :
! i i I‘L i
X—APHX X Dy d D :'.)-l" """" | D {— P—l—vd
! ! At |
h d ! [
‘ }
Z1 Z? 2m
(a) (b) (c)
L Y
— —v ! Z—‘ '—"Zl
X— §f —=Y X A X . C L~C'
(d) (e) (f)
X
i
XA M Z x— G =y c /
[
T ;

(9) (h) (N
Fig. 1: The processors needed by the systolic network.

These processors are des ribed below.

a) The AP processor has the registers Rx and Rk which cont
values %, — &k and 7, respectively. As soon as it receives ‘1’ as 2 cont:

ain &
rol Sk
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it executes x'(¢ + 1) = Rx + Rk, Rx < — #'(t + 1). i
{1;11)’11; can be used to load both Rx and RA. ¢+1) Eventgally, @ single

b) The D processor works so that d'(¢t 4 1) = d(f) and if d(t) = 1 then
gt +1) = #(t) otherwise y does not emit.

c) The cell DM 1is a demultiplexer and works so that a'(t + 1) = d@)
and if d(t)=1 and d{t +4) =0, then z(t +1) =y(t 4+ i — 1) and z, ksi
does not emit at this time, 1 =1, ..., 2m 4 2.

d) The subarray whose label is “f” accomplishes the computation y(¢+ RT( )
= f(x(t)), where RT(f) is the: response time of a systolic array able to pipeline
the computation of the function f and having 1 CT as period. Some techniques
to design such an array for a given f are presented in [1]. '

e) The A processor performs x'(t + 1) = x(t) + y(¢).

f) The C cell works so that ¢'(t + 2) = ¢(f) and if ¢(f) = 1 then 2’(¢t + 2)=
=z (t) II; 4x (1) + 2y (¢ + 1) otherwise (c(t) =0).2'(¢t+2) =2() 4 2x() +
2(t + 1).

4 g) The M processor executes z(t + 1) = x(¢)y(¢).

h) The G processor work so that if ¢(/) = 1 then y(¢ + 1) = x(¢). other-
wise (c(t) =0) y(t + 1) =0. ’

i) This processor works so that if ¢({) = O then x(¢ + 1) = y(¢)/2 and for
ct) =1, z(t + 1) = y(8)/3. '

The entire SN network is presented in Fig. 2. Let us analyse the manner
in which the own activity of SN and the I/0 operations are syncronised.

Y . . FERREE R (i (e B —
,y.c@g, ' @J;Lk : 1
HK ‘ .j DRL’—" -

ANy "

o , -7 D

A Vo |V F,gcl___'l?l_ _jl':_-u%nj,_,m
ApAq 1 mof M

-

(L

Fig. 2: Systolic implementation of trapezoidal and Simpson formulas. Y

If I is the label of an input (output) of a processor in SN, then let us

denote by L(f) the value entering (entering from) that one. Let u% denote Sblg
fy the moment in wheih I(k) emerges from INT, k=1, w{nKb ;c:. ‘ﬁfﬁned
has one CT as period it results that f, = to + k, where & e dete

by an initia] condition.

' Let us consider a fixed 2 {1, ..., K}. From INT(t) = I (k)d we mu:';
have (tx — 2) = h(R). Because of the activity of Gy, wh}ch se}:en S ;eros :
soon as the last value of f, was sent by Fj and by supposing n(k) <2m + 1,
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we can take, without loss of generality, f(k; x(k, 7)) =0, j < f
om + 2. Ou the other hand, let us observe that the c-inpuzc Ofngf) +1,
the values of fy(k) during the £ — 3 CT and therefore this signa) 7ot Tegg,
division proccesor at the right time (4 — 2). Teaches
The pipe of seria}ly connected processors Ay, A, Cy, ..., ¢ !
the value of the su]m in tgrailfets of k(2) (}: 513;e say kS.UM(k)' Thismsucxgmp"“‘
ss zero A, sccumulates the terms U1 2L O, T S0 ) end s
npt O o through 2n -+ 2 delays before em ule must be applied. g,
. ( Zgoes irough 2m cleys befo crging from C,, duringy, _ 5
it results that Z(t — 2m — 3)=0. Thus, TY( — 2m — 1) = l'v(]f)' ; ]C‘l
yah}efgoes tt_o ';hg right of t{xq Pl]()ie l;tog;:th.efr S(k) indicating to cach (?1\‘[
its le oj ver ylcai 1}1p1€;:, 15 Ix/nut tlphze y3 _(_1 c(]?) = 0) or by 4 (if c(k)=1)~,
=f(}e 'S(;'(k“g))la‘f(l at Zmb(—f- §+"f217_) —kf(k Ax{()k, n(k), Valty — 2m 7,
TB Y2 1) = [k w(k, 20), 6 =1 =/ Ak 2= L)) and Rit -
The first computed value of fi '(i.e."f(k. ; x(k, n(k))) ente .
tF ;; 1121mD_(t3 C TZS It rcisults 1’chat this value must enter (D)z)b)[ x at t:s—VQh,,? u_nigct;
On the hotliz;; hﬁng 1) ; wl(; obtain for k=1 that D,(t, — 2m 3=
G at o om—5 ’anfi tl;xs of serv)e( ]\tfhat the array Iy sends f(k; x(k, nft):
Cloaly, AP, begins its sctivi = 2m = 5 = RT(/,)) = ik, ol
dh O a1 ) T) bile f = 2m — 4 n—(kif'{ﬁfk) CT sade
control . . ’ ! rue values ont
tganr(;, Eag:" _I_t STCiulthSTt(l}e;t x(k, 0) and %(k) must be loaded in AP, noit
c . mom :
XN, ?zCI;lently,KthB I%oxr}?;ts to send the first values through the inx
b=l K Dr L TY and Foare SN =Ly + b = 2m =5~ K
and S(F) = t, — 1, lrespegtivel;n =3, S@)=to—2m—2 S(TV)=l-
We obtain #, by taking

min ({S(D,), S(Z), S(TY), S(F)} U {S(XN)Jk =1, ..., K})

\ = min ({S(D,)} U {SXNy)fk = 1, ..., K}) =0. F
s

@ consequence of the above analysis, we can state the followiss

THEOREM. .
XN,,(;,,_zmhi SI;le])“l(}‘to —2m—3) =1, D,(t,—2m—3+7=0 13
k. k), k=1, ... K %; xl(if'rn(k) ), Z(ts—2m — 3)=0 and TY (1 — 2V

=L ..., K and t, is given by ((‘i‘;) =1Ik), k=1, ..., K where t;."of‘

Let us remark .
. th .
With the time neec at the entire processing takes ¢, + K CTs 8 comP‘t‘E

. d b

time could be red o) an usual se i i thist
u quential algorithm. Observe f
RT({») < ({?T( J ) c:d=1{ the ‘}?ays Fy k=1, g K are arranged ol
. or er to . " . ’ g
:1’]1;1 XN,, by usi;;"‘;hizln_s, a single input may be used instead of Xo:;it'
ee succesive CT: put to send the cor di input va]lled :
more regular, th s, k=1,"... K Xt £, — responding 1np oN pects*
simple. » Y€ control path ang p=f k=1, ... K then 4 ore o
the executing of the reset comand :

1l

) vy —
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Let us remark that following the definition given in [5] th
ijs a systolic one. On the other hand, the design g111ses siméle]’prozessrif:n:fi
ments, which are locally connected. The I/0 operations are made by the pro-
cessors placed on the boundary of the array. The proposed network can be
modulary extepded in order to handle a larger value of K.

‘I'he necessity to accomodate a larger value of M can be avoided by splitt-
ing the interval [a(k), b(k)] in (I) into smaller ones by preserving A(k), al-
though SN could be extended by adding simple C-cells at the right end of
the pipe and modifying the connections between the D-processors in DM,
k=1, ..., K. For this reason the A-cells were placed on the left end of
the pipe. Such an extension could be made more easy by using only inner
product step processors instead of the existing processors, but the last ones
are more complicated then first ones.

Also, this design satisfies the basic features of a systolic array as they
are given in [6].

The proposed network can be modified or extended in order to implement
some new formulas, but this is a topic for another work.

REFERENCES

—

.Brudaru, O. Systematic Synthesis of Systolic Arrays for Some Real Functions Computation,
Tech. Rep. no. 2, Computer Centre, Politechnical Inst. of Iasi, February 1987.

.Demidovitch, B., Maron, 1., Elements de calcul numerique, Edition Mir, Moscou, 1973.

.Postef, M., Kung, H.T., Design of Special-Purpose VLSI Chips. Example and Opinions,

Proc. 7th Internat. Symposium on Computer Architectures, May 1980.

Kung, H, Leiserson, C., Systolic Arrays (for VLSI), Proc Sparse Matrix Proc., 1978,

Socicty for Industrial and applied Mathematics, 1978, 256—282.

. Leiserson, C.E., Saxe, J.B., Optimizing Synchronous Circuitry by Retiming, Journal of
VLSI and Computer Systems 1, 1983, 41—67.

.Quinton, P., An Introduction to Systolic Architectures, Tuture Parallel Computers, LNCS,
(272), P. Treleaven, M. Vanneschi (eds.), Springer—Verlang, 1986, 387—400.

.Scheid, F. Theory and Problems of Numerical Analysis, Schaum Outline Series, McGraw
Hill, New York, 1968. .

. Schreiber, R., A Survey of Systolic Computation, Research Report, Computer Science De-
partement, Rensselaer Polytechnic Institute Troy, New York, 1986.

- wN

o N o »



STUDIA UNIV. BABE$-BOLYAL MATHEMATICA, XXXIII, 3, 1988

SIMULTANEOUS CONSTRUCTION OF;SIMILAR
MATRICES AND THE SIMILARITY TRANSFORMATION
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REZUMAT. — Construirea simaltanit a matrleflor similare si transformarea
de similaritate. Fie M o matrice pétraticd. Se di o metodad pentru construirea
simultani a matricilor E §i D pentru care M = EDE"!. Metoda poate fi fo-
lositd pentru a comstrui o matrice D avind anumite proprietiti dorite.

The entries of all matrices are from a ficld, say, the real numbers,

2 1+ 2
Let matrix M =(O 0 —4) be given. With M let us consider th
0 1 4
following configuration :
1 G €3
1 0 0
0 1 0
0 O 1 (I
7 2 1 2{1 0 O
75 0 0 —4y 0 1 0
73 0 1 41 0 0 1

‘whete on ‘the top and to the right of M the unit 3 by 3 matrix is placed
We call the first three columns ¢,, c,, c; the columns of the comfiguration
We call the last three rows 7, 7,, 7, the rows of the configuration.

In (1), let us add to the second the pr :+d row by 2
We indicate this operation by : row the product of the third

!

21’3 —7, (

and we record the result of operation (2) performed on (1) as follows:

0
? 27’3 — 72

g

—_ O O=O

QON| OO =
»#-»JLN)
SO~
OO
- O

* Iowa State Universit: Ames, szaﬂment 0, Malhemaucs ITowa 0011 U.S.4
Yy 0 f ’ 5
]
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B R R I S .
fi 2 il " U“'" o ) "0; ‘1\‘ 04 & = e DT
PO 5 OdS A T .0-. 0 -1 |- 3 IR \) {_...’
Voosavlos bDilds ne 2001 21y - i )
0 2 40 Lgn e e
0 1 410 R

We immediately follow operatic.)nh ,.(2,) by its dual performed on (4), B
the dual-of (2),' we- mean's:“adding té -the -third Cblimill)r ihezf‘prodhet('o)f th'z
second column by —2”. We indicate the operation dual of (2) by:

© —2¢, »4'0,-: ()
and we record the result of operation (5) performed on (4) as follows:
o .

.‘(—20,2 —> _03

‘-‘:(6)

0 0
S
0 :1

'S'i'elds ol

BEIRC AN @

{10V i Ly

R S
e LG LsrlivinT

ccow|oox

R R SR Vs BT Sl o 3 AR ) O § BRVY: 2
NN 2 0 BT (7 SR FE T O P NS TS S
2/0 0 1
- :We¢ -obsgrve: that after performing in:succession .operation: (%), and its dual

(5) on (1), we ‘obtain contiguration (7] with"the following™ properties:
In (7) the top square malriy s, the iévcrsé of dhe right square matrix. 8

oy In (7) the product of the top and left and right square matrices (in
T this’ order) s equal to’the original left square matriz in (1) (9)
. : ool 8 ;
Indeed, it is easy to \i‘erif)f that ., k

2 1 2 10 02 1 0\(1 00 R
io o._4)= 01 —2)(0 2 o)(o 12 (10)
0 1 4 0 0 1/\0 1.2/\0 01

Voo

.+ Clearly, (10) describes a similarity ‘?tfﬁggf?FQi??iOn since it is of the form
M= pgp— FEARETR S IV

From (3) to (7) it follows that our’ method’produces a matrix similar to
the originally givega )matrix M simultanequsly: with the corresponding similarity

3— Mathematica 3/1988
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i the similar matrix th X
mation. Moreover, as (10) shows, . U8 obtaige .
ﬁazﬁgyre desirable form than M ‘ inasmuch as it has more zeros than R}d l{

Let us continue by performing another operation followed by its .u¢

on (7) with the aim of constructing a matrix similar to M of g simpler fira

!
yet. ‘

For instance, in (7), let us add to the first colum the third columy W:
indicate this operation by : - j

Cg ¥ Cy (“r‘
and we record the result of operation (11) performed on (7) as follows:
1 0 O
0 1 “"'2 Ca - Cl
0 0 1
2 1 0[1 0 O (12
0 2 0|0 1 2 ;
0 1 2|0 0 1
yields
1 0 0
-2 1 =2
1 0 1
(13
2 1 0j1 0 O
0 2 0{0 1 2
2 1 210 0 1

We immediately follow operation (11) by its dual performed on (13). Th
dual of (11) is: “adding to the thrid row the product of the first row by —I
We indicate the operation dual of (11) by:

—Ty =7y (u
and we record the result of operation (14) performed on (13) as follows:
1 0 0
=2 1 =2 —7, ~er,
LI (1
2 1 0f1 0 0
0 2 0f0 1. 2
2 1 2(0 0 1
yields
1 0 0 ’
-2 1 -2 » |
0! (16
02 0/ 0 1 2
0 o 2] —1 0 1 ﬁ
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We observe again that in configuration (16) th two . .
by (8) and (9) prevail. Indeed, (16) the two p Toperties described

21 2 10 0\(2 10\ 100
00—4=—21—2)020)012 (17)
01 4 1 0. 1/\0-0 2/\=1 0 1
Clearly, (17) déscribes a similarity transformation since it is of the form
M = EDE™,

So far, fqr _the simultaneous construction of similar matrices and the
coresponding similarity transformations we have used transformations of the

form :

Adding to r; row the product of r; row by any real number s followed
by adding to c; column the product of c; column by —s where i # j. (18)

We symbolize (18) as follows:
s7; = 7; followed by —sc; — c; with i+ j and s any real. (19)

Remark 7. In (18) as well as (19), the order in which an operation and
its dual are performed is immaterial, i.e., (19) is equivalent to:

—5c; — ¢; followed by sryws7v; with i # 7§ and s any real (20)

For some theoretical reasons [2, p. 147] matrix M (appearing on the
left side of the equality sign in (17)) cannot be similar to a matrix which
is of a simpler form than matrix D (appearing as the middle matrix on the
right side of the equality sign in (17)). In fact, D is the so-called Jordan ca-
nonical form [I, p. 17] of M. L

Accordingly, no further entry of matrix D in (17) can be reduced to 0
by a further application of operations (19) or (20) on the configuration (16).

However, there are two other pairs of operations which can be performed
on (16) and which yield matrices similar to D with the following properties.
The result of ome of the pairs of operations is to change the position of 1
appearing in D. The result of the other pair of operations is to replace 1
appearing in D by any nonzero real number A.

The above two pairs of operations are:

Exchanging r; row with r; row followed by exchanging ¢;
.column with c; column.

(21)

ind ]
Multiplying 7; row by a nonzero real number h Jfollowed by '
Plyine v diviing c, column by h (22)

- The pairs of operations (21) and (22) are symbolized respectively as!
7; « 7; followed by ¢; <> ¢; (23)

. l . ;
7i— hr; followed by ¢i— —Ci with h # 0 (24)
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‘It can be readily verified that Remark 1 is also applicable o (23 i
(24). . ) agf
Let us apply an instance of (23) on (26), e.g., |
v, ++ 13 followed by ¢, < ¢, (2v
We record the results as follows: f
1 0 O
-2 1 -2 ry 7,
1 0 1
2 1 0 1 0 O
0 2 0 0 1 2
. 0O 0 2|—-1 0 1
yields
1 0 O
-2 1 =2
1 0 1
0 0 21| -1 0 1
0 2 0 0 1 2
2 1 0 1 0 O
and
1 0 O
-2 1 =2 € +* Cy
1 0 1
0 0 2|—-1 0 1
0 2 0 0O 1 2
) 2 1 0 1 0 0
yields
; 0 0 1
-2 1 =2
1 0 1 .
2 0 0l—-1 0 1
0 2 0 0 1 2
0 1 2 1 0 O

w : all
26). Igdgsg’ervg that, as expfac_ted) the two properties (8) anc} (9) Pre‘al:

gl~2 001'200__101.(;
00_4=—21_2020'012"i
1 4 10 1J\o 1 2 0 0 ;

1
perfo‘y;eglsgn Oblsgrv? that, as mentioned above; the ‘result of OPeraﬁODisﬂf?
(16) is to change the position of 1°in the matrix apped”
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he middie on the right side of the e
lescribes a similarity transformation.

Finally, we apply an instance of (24) on (26), e.g.,

quality sign in (17). Clearly, (27) also

- 1
73— 2r; followed by c,— 36 (28)
\We record the results as follows:
0 0 1
-2 1 =2 7o— 27
1 0 1 2o
2 0 0|—-1 0 1
0 2.0 0O 1 2
0 1 2 1 0 O
yiclds
0O 0 1
—2 1 =2
1 0 1
2 0 0o -1 0 1
0 2 0 0 1 2
0 2 4 2 0 O
and
0 O 1 1
-2 1 -2 &a— '2‘03
1 0 1
2 0 0| —1 0 1
0 2 0 0 1 2
0o 2 4 2 0 0
viclds
0o 0 '1/2
-2 1 -1
] 0 12
2 -0 0| —1 0-1
0o 2 ol 0 1 2
0 2 21 .2 0 O

We rewrite the similarity transformation indicated by (28) in the usual

“'&}':
2 1 2 0o o0 1/2\(2 O 0\[—1 0 1
0 0 —4l=l—2 1 —=1])f0 2 0o}f 0 1 2 (29)
0 1 4 1 0 12/\0 2 .2 2 0 0
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. hown by (29), the result of .

tioned above, and as s el . Operat '
erfo“:fnettliegnlo(%) is to replace 1, appeanng in the middle matrix op }&tés ‘m.
side of the equality sign in (27), bY 2 d, there i "

2. In carrying out our method, there is 1o need to

of t}ie’tzgﬁigmations. For instance, the repetition (3) of (1) apq }()g?tof"“
etc. are unnecessary since they can be combined. We have Tepeateq th(.
con.ﬁgrations for the sake of clarty of our exposition. _ s

ark 3. We recall [2, p. 147] that a matrix i§ called frig
of chec:gi type) if all of its entries below the first subdiagona] ang
first superdiagonal are zero. L,
irs Ssiflg ou§ methed, it can be readily verified that any square matr:
M can be made similar to a tridiagonal matrix 7. In fact, by Tepeatch
necessary) applications of (19), (23), (24), our method constructs Simultaneol){
matrices T, H, H™* such that M = HTH,

Remark 4. We observe that throughout the entire process of tridiago:;
lization of a square matrix M by our method, we do not need the char,
ristic polynomial of M nor do we need the eigenvalues or eigenvectors of )
But then, precisely for this reason, we cannot expect that our methed wou
yield the Jordan canonical form [1, p. 17] of a square matrix without requir;
to solve some polynomial equations in order to make judicious choices for:
in (19). The fact that the Jordan canomical form was obtained in (17) wit
out any reference to the characteristic polynomial of M was quite accident:

For instance, let us try to contruct the similarity matrix 4 given

5 6 .
— 3
A_(_Z_ _2) ‘

which would yield the Jordan canonical form of A. Clearly, A is alread'™

the tridiagonal form. Let us try to replace 6 in A by O through operel®

of type (19). The tempting choice of s = 3 in (19) for the operation 3ry !

wlould replace 6 in 4 by 0 but then the dual operation —3¢, — ¢ ,“"Ould "(

}c)hailce t(111at 0 by 3. So, the choice of s must be made more judicioush:"

ans ?111 » We perform operations (19) on our initial configuration involvilg*
en determine the suitable s, Accordingly, we have:

1'ﬂgonal ((f
above 4

1 0
0 1| sramy

——

5 6|1 0

yields
1 0
0 1 '
5-25 6—2s| 1 s,
- =210 1
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vields

yiclds
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1 0
0 1 l —SC; =6y
5—2s 6—2s 1 s
—2 -2 0 1
1
0 1 ——scl = Cy
5—2s G—2s 1 s
—2 —2 0 1
1 —s
0 1
3—2s 2s2—75+4+6 1 s
—2 —242s 0 1

39

(31)

Now, we determine s in (31) in such a way that 2s* — 7s + 6 = 0. Thus,
we have to solve a quadratic equation. A root of the equation is 2. Substi-
tuting s = 2 in (31) we obtain (32). Next, we perform operations (19) on (32)
in such a way that the newly obtained O is not affected and we determine
s so that —2 in the lower left 2 by 2 matrix in (32) is replaced by 0. Com-
bining operations (19) in one configuration, we have:

(32)

(33)

(34)

1 -2 S7, > 7,
0 1 —8Cy =
1 0 1 2
—2 2 0 1
vields
142s —2
—$ 1
1 0 |1 2
—2—5 2 |s 2s5+1
We determine s in (33) in such a way that —2—s=0. The root of this linear
tquation is —2. Substituting s = —2 in (33) we obtain :
-3 -2
2 1
1 0 1 2
0 2| -2 -3
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. . i imilarity transformati
which simultaneously describes tl}e sun11a1_n on and .
Jordan canonical form of matrix 4 given by (30). We Tewrite (%({)es-mt’ﬂ

usual way: R . - 1 th
5 6y (-3 '%2)(1' 0)( 1 2
(—2 ~2J —( 2 T S22 ~3) ©

As mentioned above, we obtained (35) without determining the
ristic equation or the eigenvalues or the eigenvectors of matrix 4
(30). However, we had to. solve a quadratic equation. Obviously, (35)
us with the eigenvelues 1 and 2 of 4 and with their correspondip
vectors (—3, 2) and (-2, 1). .

Chargg,
8lven py
prOVidcs
8 cigep.
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REZUMAT. — Cu privire In extensibllitatea limbajelor de programare in sens
dinamle. Notiunea de extensibilitate in limbajul de programare se imbogiteste
cu noi elemente. Extensibilitatea dinamici permite ridicarea gradului de e-
lasticitate in programare. ’

1. Introduction. The programming medium constitutes a relatively new
notion in the field of computer programming, largely embraced by the pro-
jectors of economic, scientific and social applications. In the following we shall
mean by programming medium an association of software components allow-
ing:

— computer programming in a specific programming language ;

— possibilitics of edition for programs and documentary texts;

— facilitics of high level program repair (adjusting), without resorting
to the assembling language specific to the computer;
© — compatibility ensuring with other programming media, with respect
to data organization and management.

 These components will act as an entity, ensuring the management and
the optimum partition of the computer resources. The user must dispose of
a complete set of imstructions allowing the optimum exploitation of the pro-
gramming facilities. L

The problem of programming language extensibility appears to be needed
by the increase of programming efficiency and the diversification of the pro-
gramming facilities at programmer’s disposal. The methods of language exten-
slon known till now allow a so-called cxtensibility in static meaning. This
denomination points out the fact that the grammar as model of svntactical
Specification is fixed to the soft product implementation-; the user canuot ope-
Tate modifications (adaptation.to the programming real needs).

2. Dynamic Extensibility with Algebraic Specification of Programming
guages. The extensibility of programming languages at the graxnznat}_cal
level does not constitute 2 new problem. But the mpde of implementation
of this one on concrete cases is still far from exploitating the offcred advan_-
tages. This extension mode constitutes 2 complex problem, knottily to apply.
The ‘adequate development of a mathematical apparatus concerning the
HAS hierarchy has for purpose the necessity of creating a formal mecchanism
for specifying a concept of abstract calcultion system, structurally developed

.‘\_

* University of Cluj-Napoca, Compuling Data Cenler, 3400 Cluj-Napoca, Romania.
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N ics for a programming lan ,
; be considered as semantlcs _ ° : 8uage
ul; ;)lrd;;; atxf by formal specification of an abstract calculation systep, t}l]. We
sb a tion of an algebraic model for the respective system and a s cla.
oreno tation of the calculation concepts implicated iy

allowing the 1'.epresenlc ol
ot calculation system. ) ;
stra ';‘he concept of zbstract calculation system as support for the Semantj;

3 ificd by means of the heteroge
s progremming language is specificd ans geneo
?rfcchgnign, undfr the form of the algebraic structure:

a= {D = (D,.‘)ieIU (ch)js]: IS = (ZS({))"GI U (Zs(j))jaj. F},

us algeby,

where : . .
(D,)ier = the set of primitive calculation objects ;

(Dy)jey = the set of composcd calculation objects;

$S = the operator scheme formed by the primitive and composed opera
tion schemes ;.

F = the symbol of the function which associates to each operation schem
¢ from HAS(i) a hetcrogeneous operation F(o) specific to HAS(i + 1).

The behaviour features of the operation schemes are specified for eachone
under the form of formal identities.

The objects of abstract calculation system are represented as formal ex
pressions, organized as a heterogeneous algebra of words, of the following form

O = (W =WerU (W)jay, S = (25(1))iar U (ES(5))jas. F,

where the significance of the notations is similar to that of the notations fror
the support algebra for the semantics [1).

The notion of dynamic extensibility imposes a dynamic character to th
algebrae @ and ¥, allowing the definition of new semantic forms which &
rich the algebra d (a collection of semantic forms). According to these s
marntic forms, taking into account their representation, the semantic com®
pondent which will enrich the algcbra @ will be automatically generated. '

An estimate morphism f: W— @ is inductively defined between o o
fa. Every element w € W represents in the programming language ass0cEt?
or specification cither a program, inmstruction, set of instructions bet*®
begin and end, or a calculation process. An clement w is of the form #ifs~
.. w’i‘(;l structured on depth levels (1]. i
analySise oefes’z:}miicle process by means of the morphism f involves 2 et
s oA, elseparatlon of the component parts at subword level 10 o
s Bemerat teve‘. In other words, an analysis is performed in order to X e
to each s nzn '?Ctlc components. After these ones are established, one 5%

yotactic component the semantic correspondent from 4

pondence being establj P ) e
the syntactic %orm alt))l:ltsxlvl'ggﬁ it will imply the verification of the Py

that the semantic § en the limits of the semantic formalism. -

ormealism i ; - al p?

mete’i‘quf the semantjc fcff;n;ﬁiﬂfses certain restrictions to the act?® ™
Ing 1nto ace N

the zbove defined ouiqilC S

i on form UF
estimate menpr o nce and the representation o

i ) - The
orphism f hes a recursive character: T
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mate of @ and the establishment of the component syntactic forms will make
the estimate process to be taken again, corresponding to the depth levels of
the subwords . _ ‘

For w € W and w = ww,.. -, we hav_e f@) = f(x)) of(w,) o ... o f(w,),
where o represents the concatenation operation of the semantic units. If the
estimate of Fhe functflon fon one of the components w, fails, then the estimate
of @ will finally fail, too; this will determine the inexistence of a semantic
associate for w. As a matter of fact, w can have complex forms, entailing the
same property for f(w).

In order to understand the form of f(W), we define two Operations in X,
strictly needed by the symbolization of the final form of f(w): ‘

— the concatenation operation o, Vo), 6, € &, 6,00, = 605, (where o0,
means a sequence of scmantic components);

— the stratification operation (analogous to the brackcts in algcbraic ex-
pressions) ; using the brackets, the depth level of a word % in en cxpression
w will correspond to a closing level of a pair of brackets.

The result of the estimate f(w) will appear as a strzatification on levdls of
the semantic forms corrcsponding to the syntactic forms. In other words, f(w)
will appear as a translation of w into the language of the semantic forms.
The form f(w) can constitute a starting form for the znalysis of the scmantic
correctness of the expressions w. In the concrete case of the programming lan-
guages, this amounts to the analysis of the correctness of the programs. »

To each formal expression w € °§ corrcsponds an object of dynamic cal-
culation (calculation process) or a static object data type).

The extensibility, considered both conceptually and as a mode of perform-
ing, must be seen at this level; this fact ensures the naturalness of the no-
tion specification, too, in the frame of the speccification of the programming
language. In this meaning, the extensibility has a dynamic character and can
be performed by either the construction of new composed objects and new
operation schemes, or the enrichment of the properties of the existing objects
and the extension of the existing operation schemes. This extension of the
operation schemes must be scen as the extension of an algebraic relationship.
Let TIP1 and TIP2 be two specified abstractions and let TIP3 be a bew com-
Posed abstraction whose specification is based on TIPI and TIP2. The nC\lVl
Operation schemes corresponding to the definition of the new abstraction wi

be defined as follows :
¢: TIP1 x TIP2— TIP3,

Where TIP1 and TIP2 are injected into TIP3 as structured supports or as
Parameters for expressing the objects from TIP3.

.3'. Examples. We present further down some examples of dy
tensibility,

Example 7. This constitutes a mo

Hons (<, <= =) to the arrays
by this that o’nl?’tio a)rravs of the same dimensions can be cqmplzllred:.tmth
he comparison 4 <= ‘B, where A and B are two arrays, will have

value if for A(; ) and B, j), i j = 1, % we bave A(i,j) <= B(: 7): Such

namic cx-

de of extending the comparison opera-
having the same dimensions.: We mean
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an extension has not a great enough lmportaigficaiionelg‘%‘Statlcany ensyrgy
at the instant of the programming language spenore el'=st;icit 1S, must COHstitute
a programming option, allowing to the user 1 ore elastici Y I programp,
But. if this extension is performed 1n 2 par'amci’ fied ner at the Compjje,
levei, this will allow to perform sen51.bl}’ simpitlied programs.
Example 2. In close connection thh.the first cx;mp!e, We can afg, .
form the extension of some types of action objects. For inszance, in tp, fol.

lowing instruc_tion:
" IF COND THEN ACTIUNEI ELSE ACTIUNE2

the. condition COND can be performed by using composition operations eXten.
ded to arrays of real numbers. Such models of extension can also be imagipg
for the arithmetic operations (+, —, -, /)- .

Example 3. This example constitutes an 'algcbralc model of hierarchizeg
specification of the data types in a programming language. _Thq mathematig|
models compel more and more recognition as to the specification and impl.
mentation of the languages. They gain permanently ground against the apj
sanal methods of specification, implementation and extension of the map
machine communication languages. The formulation of the problems by mean
of the mathematical apparatus with all the corresponding notions and concepts
allows the study and establishment of well substantiated algorithms ast
the specification, implementation and extensibility of the programming language
In the following, using the HAS hierarchies, we shall present an algebri
model of data stratification in a certain programming language.

. We choose as zero level of the hierarchy the following homogencous alge
ra: :

o= {Dy, Q,, F,: D,— I},
where : .
i o = the support of the algebra, consisting of the sct of all possible dat
In a programming language ;

I%’f :h? se“tt.of operations defined on the support D, : e
sentatfo_] uri:: .on which assoclates to every clement x from D, ifs ‘repthe'

N i Bth 10 standard units: Vx e Dy, F(x) = i(x), where {x) 3%
Tepresentation length of % in storage st dard units ; ’ ;

I =a subset of the nat 1 8 mrandard units set of &
values of the function o élra'_ numbeg' set, wh1'ch represents the ot ot
in the hierarchy,. . ° nd will constitute the index set for the

The next level PR . . . et
and has the fol‘lgwi?lfg t}:frrﬁl:eramhy is defined on the basis of the 267

where : 1={D, = (D), (2S0)oeq Fo: Dy— I, Fy}, |
Dy = a first partitiop; L
data types, the I?art"tilon'mg of the elements of the support Do 18 clas®™,

oni o ! : S
55,  the set ot o ng criterion being the representation lengtl:

mew object types (class eration schemes corresponding to the deﬁnition‘? i
€ of data types), or calculation with objests © S
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»

o Qq the function m points out the m-arity, m(o) = n. If b = byp, ... b0
then an operation scheme: 102 ... by

6 = (1 0, Fo(by) Fo(d,) ... Fy(b,)F (b))

is associated. When o runs over the operation domain, Q,, and for a fixed
oitis (by, by ..., b,) € Dj which varies, the result is the set of all operation
schemes which can be defined in the frame of the level 1 of the hierarchy ;
F, = the symbol of a function which associates to each operation scheme
a heterogeneous operation scheme specific to the level 1.
If o= (n 0, Fo(by) Fo(by) ... Fy(b,) Fo(b)) is an operation scheme, then
F,(o) is a specific operation in 4, defined as follows:

Fy(a) : Dr,wy X Drpy X ... X Dr,em— Drypy-

The domain and co-domain of the operation F,(c) are inherited from the
previous level; what is specific in the ncw hierarchy level is its manmer of
action. If o satisfies the commutativity property, which is expressed as fol-
lows :

O(bl, b2' < s, b,,) = o(bu, b‘2, c ey bh'), (1)

where (¢1, 2, ..., tn) is a permutation of the sequence (1, 2, ..., #), then
this property will be transmitted to the algebra d,, too:the function F, asso-
ciates to the schcmes:

oy = (1, 0, Fo(b))Fo(by) - .. Fo(ba)Fo(b))
and : '
o, = (1, 0, Fo(bu)Fo(bsa) - - - Fo(bi)Fo(0))

the same law of composition, namely F;(o;) = Fy(s,). In other words:
Fy(03) : Dryea X Drygy X -+ X Dr,om— Dry

and :
Fy(05) : Dryy X Dryey X -+ X Drigyy = D ry

are chosen to be equal functions, leaving aside a permutation of the dqma;n
of definition. . . o
The equality (1) defines an equivalence relationship on Dy.-In thls1 way
One easily notices that XS, can be seen as the set of the eqmyalencg ? asses
specified by the equality (1). This finding allows to reduce a number of ope-
r . me . -
opsihecified by 4, In & e in which the function F, is defined, the

Taking into account the mod :
set D, is i%ientified with the set of equivalence classes D,/Ker F,, where:

Ker Fo=1{(by, b)) € Dy X D, _lFo(bx) = Fo(b.)}-

- - In order to define the level 2 of the HAS hierarchy, onfe muic_:xavec elrrf
Vi€w the manner of data interpretation. This starts from the a%t t : areted
tain datum represented in a certain representation mode can be interpretec
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i
nterprete
erpfetation
lue, In the

» T€Dresenty

- instance, a value a represented' on an octet‘can be i
g,;t?iiﬁzlg -ift‘z;ral value or character. The significance of the int
depends ob the type of the variable attached to the respective va
case of the level 1 of the HAS hicrarchy, Dr,w), where Fy(b,) =1
the class of data types which are represented on an octet. But, generally i
a programming language, the set of data types represented on an octet o
length 1) consists of : the ‘boolean type, the character type, the byte type
etc. ' . )

In order to facilitate the mode of expression, we consider D, = D).,
where I is the co-domain of the function F,. Taking into account the fay
that I is a finite set, the same property results also for the family of gy
(Di)iar- , _

The connection between the interpretation ‘mode and the representatio
length of unstructured-type data in a programmung language is illustrated by
the following two-dimensional matnx:

Ay Gyp ... Gy oe. Ay
a21 a22 DR azj A az,n
I .
Ay Ay . a,']' vee Qi
\Cpy g - - - Ay + o+ Onm
where : .
0, if for the representation length 4 the type (interpretation mode)
Qe = j does mnot exist;
[ A

1, in the opposite case.

The index of line =1, # constitutes the representation length of the
data, while the index of column j = I, m represents the index associated t0
the set of the interpretation modes. We gather all interpretation modes ”;
the set M and all possible representation lengths in the set N. Lines ¢qu

to zero can exist in the matrix; these ones correspond to an iuc.\'istent_l'ePrrelz
sentation dimension for a certain language for which the hierarchy 15 co
structed. '

Every D; must be seen 2s a reunion of subsets D
have common elements. In other words,

ding to the unstructured data types. T
cations, the level 2 of the HAS hierar

i J =1, which C‘;‘f
D; explodes in the subsets corresg:iﬁ-
aking into account the above SP

chy is defined as follows:

&= {D; = (Dy)ien, jans, (£S0i), Fy: D, x M- N X M, Fs},

where : 5
g§= the s}tlxpport of the data type of length i, interpreted in the ﬂfloiztil

0;; = the set of operati .. o !
or calculaftion schemes in fhéaf ame ot s for defining the new tyPe eted

T x
in the mode §; rame of the existing data of length 4, %P



ON THE EXTENSIBIBILITY OF PROGRAMMING LANGUAGES 47
F,= function which establishes by its values the index [ i
. : _ X set for th !
of sets Dy ¥(b,9) = Dy X M, Fy(b, ) = (Fofb). f)aress. ¢ family
Fl = thbekiymbgl tof a function which associates to each scheme o = (n
o, bibs --. bnR) and to an interpretation mode j a het ion
scheme specific to the level 2 of the hierarchy. ! Frogeneons operation
The support of the heterogeneous algebra d, being established, the indexa-
tion of the family of sets Dy can be reconsidered with a single index +, in
order to simplify the mode of defining the function F ,

. ' : 2. For this purpose we
re-define the analytical expression of the function F, Zs follows:I '

Eyb, 7) = (m(Fo(d) — 1) + (j + 1))ar,ey,
where the definition elements are those previously defined.

For a given o, Fy(o) will represent a specific operation in d,, defined as
follows :

Fy(0,5) : Dre,.jy X Dron X -+« X Drgpiy = Drg,

where the domain and the co-domain are inherited from the previous level,
while the mode of action will be specific to the new level.

Now there is still only a step to the definition of the structured data
types (RECORD, FILE, SET, etc.). The level 3 of hte hierarchy will keep
its support from the previous level, cnriching itself with only a series of ope-
rations characteristic to the new defined data types. We make the convention
to define the level 3 of the hierarchy as follows:

Ay = {D3 = (D)iarn, (ES)), F3},

where the components of the heterogeneous algebra have significances similar
to those of the level 2 of the HAS hierarchy. The obtaining of structured-
type objects on the basis of unstructured calculation objects is connected to
the action mode of the function Fi. What is characteristic for this level, where
composed (structured) calculation objects are thained, is the concatenation
operation of the already defined calculation objects.
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REZUMAT. — Clasiflcarea lerarhicé pentru clusterl llnlnrl: In lucrare se pro-
pune o metodd de clasificare ierarhica divizivi. Se cox;slxderﬁ cd aglomeririle
de puncte (mori, clusteri) din multimen datelor -de clasificat au forxpe liniare,
Admitem ci o clasi de puncte poate fi descrisd cu succes de o mul;gme nuan-
tatd. Se propune un algoritm (GFL) pentru detectarea subc]ustqnlor liniari
ai unei clase nuanfate. Acest algoritm se utilizeazd pentru a construi o ierarhie
nuantati ce descrie structura de clasificare a unei muliimi de date. In final
se prezintd algoritmul de clasificare ierarhici FDH. Algoritmul permite detec.
tarea claselor liniare in cbsenta oricdror informatii a priori privind structura
datelor. )

Introduction. A divisive hierarchical classification algorithin has been pr
‘posed in the papers [2], [4], [5], [6]. The aim of this paper is to exte
this classification procedure in order to detect linear shape clusters. The methe
to obtain the principal component of a fuzzy class given in [3] may alsob
used for the classification .of linear clusters. S

[

1. Linear cluster substructure of a fuzzy elass. Let X ={x1, ..., ##}, 2/ €}
be a data set. The cluster substructure of a fuzzy class C of points from!
‘may be described as a fuzzy partition of C ([2], [4))

)If t P={4,,...,4,} be a fuzzy partition of C, where C is a fuzy &
on X.

~ The linear 'shapc‘clustcr may be reprezented by a direction #* and a poit
v*. The ‘prototype L' of the fuzzy class A, is thus

- 4

)

Li = (v, ). !
The linear variety corresponding to -this prototype is

Vi, ) = (v e Ri|y = v 4 té, 1 < R).

et @ be a norm induced metric. The distance of a point % to Vids:

A5, Vi) = (117 = v = (3 — v, wipyie, |

The scalar product is |

. (%, 5) = 2™M y,
where M is a Symmetric positive definite matrix :

® University of Ciuj-N,
J-Napoca, Faculty of Mathematics and Physics, 3400 Cluj-Napoca, Romanis.
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In order define a dissimilarity between a point #f and the proto i
we'll use the local metric 4 induced by 4 and the fuzzy class AI:. Aczxr)celifg
to [2] we may write : : .

\

di(«4, Vi) = Ai(x) d(x, V). (4)

The dissimilarity D,(x/, L) between x/ and I¥ is therefore
D!, LY) = (A(#)P(11 %7 — |2 — (5 — v, wip2). ©)
The inadequancy between the class 4, 2nd its reprezentation by the proto-

type L' can be expressed using D; as

14, 1) = ¥ Dwi, L. ©)

J=1

Let L = (L, ..., L") be the representation of the fuzzy partition P. The
inadcquacy between P and L is given by '

JP, B) = 3104, T Y
Therefore we may write
I, L) =3 3 (A1 9 — o = (o = o, w0 ®

The optimal fuzzy partition and its reprezentation may be viewed as
minimizing the criterion function J:F,(C) X (R# x R#)— R given by (8).
Therefore we have the minimization problem.

mini_mize J(P, L)
|2 F.(C) ©)
|L e R# x R

F,(C) is the family of all fuzzy partition of C having » atoms.

In order to solve the problem (9) we may use the next:

PROPOSITION 1. P e F,(C) is a local minimum of the function J(-,L) of

and only if
Ch i1, ., m =10 (10)
” dz(xj, L‘) ‘ .
=1 as(a?, )

A(%) =

4— Mathematica 3/1988
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Proof. See [2], (4] -

PROPOSITION 2. L € Rinx Rén 1s a local minimum of the functiyy, Jip

if and only if

$ it

) =1, i=1 ..., n

r (I

T @iy

j=1

(i) w' = is the umit eigenvecior corresponding to the largest value of the seall
matriz S; of the class A,

S;=M (f) (Ai(a)* (2 — V) (%7 — v‘)T)M- (1

J=1

Proof. The proof given in [1] for the particular case C = X also ho
for C a fuzzy set on X, C #0.

The Fuzzy n-Lines algorithm [1] may now be generalized to detect t
cluster substructure of a fuzzy class.

GENERALIZED FUZZY #-LINES ALGORITHM (GFL).

S;. Fix #, 2 <n <p—1,; fix a scalar product on R4

S,. Inmitialize a fuzzy partition P = {4, ..., 4,} of C.

S;. Compute Li= (v, w'), 1 =1, ..., #, using (11) and (12).

S,. Compute a new fuzzy partition P2 those atoms are given by (0

Sg. If]| P2 — P'|| < e then stop. Otherwise set |
Pl:= P and go to S,.

2. Fuzzy hierarchical classification of linear clusters. A divisive procedut
to obtain a binary fuzzy hierarchy ([2], [4], [5]) may be developed 1%
the GFL algorithm. In this hierarchy we have fo consider only actual clust®
In this respect we define a clustering degree of a binary fuzzy partition

Let P = {A , A be a fuz . , h c]usteﬂnf
degree R(P) of lP ig} defined bZ; partition of a fuzzy class C. The

ZA 1()+3T4 ]
P M % A ‘

ZC(x)

where A‘,

1 is the 1. ;
1 € S cut of the fuzzy set 4; ie.

. 3 1

0, otherwise



HIERARCHICAL CLASSIFICATION FOR LINEAR' CLUSTERS 51

R(P) is also called the polarization coeffjc;ient and it measures the struct

degree ([2], [4]) of a binary fuzzy partition. It is easy to see tha: (r)ucs ullé??’r)lesj

< 1. S
We admit that a binary fuzzy partition P = {4 . i

clusters iff the next condition are fulfilled : tu A} describes "real

. 1 y
() Ixre X, 4y(x) > 7 =12 (14a)

(i) R(P) > ¢, where ¢ is an appropriate threshold. (14b)

The algorithm corresponding to the divisive procedure to obtain a fuzzy
hierarchy is the next:

FUZZY DIVISIVE HIERARCHICAL (FDH) CLUSTERING ALGORITHM FOR
.LINEAR CLUSTERS

SL Set 1: =0, N:=0, P = {X, &}.

S2. For every C & P, C not marked and C # @ perform S4. Allocate
every marked C to PHI,

S3. If PH#1 = P! then stop.
Otherwise set J: =17+ 1 and go to S2.

54, Using the GFL algorithm calculate the fuzzy partition
P = {4, A,} of C and its represcntation
(LY, L?¥); L' = (u%, v)). If P describes real clusters (conditions (14)),
then allocate 4, and 4, to PHL Otherwise mark C and set N: =
=N + 1.

It is casy to see that this algorithm leads to a binary fuzzy hierarchy
Thgz fuzzy partitions P?, P!, ..., P! represent a chain with respect to the
Tefinement relation ([4)).
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REZUMAT. — Clasificare cu relajli nuanpate. in lycraxe se fl.x.ndamenteazn
matematic o tehnici de clasificare bazatd pe aproximarea relaiilor nuantate
prin relatii clasice de echivalentd. Sint Slute doud teoreme de existents a ele.
mentului de cea mai bund aproximare in raport cu norma Cebisev, respectiy
norma integrald. Printr-un exemplu n}xmeric se aratd cd acen's.tﬁ wetodd furn.
zeazi rezultate mai ,plouzibile” decit metoda descompunerii convexe a rela-

tiilor nuantate [1].

Introduetion. The aim of this paper is to give a new classification mety
with fuzzy relations. This method is based on the approximation of a fy
relation with classical (hard) equivalence relations. It is well known that;
equivalence relation induces a hard partition on the data sct. We study ¢
existence of the best approximation of a fuzzy relation with respect to t
Tchebishew and the integral norm. A numerical example will show that«
method is a more natural approach to the classification problem than the
vex decomposition of a fuzzy relation [1]. v

1. Definitions and notations. Let X be a non-cmpty sct. A fuzzy set ‘

%(( isXa function 4:X—[0,1]). A fuzzy relation on X is a fuzzy sets
X A.

A fuzzy relation R is a similarity one if it satisfies the following axiom

a) R(x, ) =1, (V) s X (reflexivity) !

b) R(x, y) = R(y, x), (V)x, ye X (simmetry)

¢) R(x, y) > ‘Sg}() (max(R(x, z) + R(z, y) — 1, 0)] (max — A transitivit
Bezdek and Harris [1] proved that R is a similarity relation iff I

is a pseudometric on X. Iet &(X) be the famil e S |ations &
: y of all similarity re ;
X and &(X) the family of all classical equivalence relations on X. '

2. The hest approximati . ; i jon W€
the existence of '?I?e bes ool Juzzy relations. In this sction &

classical equivalence
ferent mnorms.

Let us first conside . . : :
norm - der the bounded functions subspace and the

stuf
' . IS S wit
; t approximation of a fuzzy similarity felatlol,:o g
relations in some subspaces of R¥x*¥ with respect 07

'f chebish”

IS —e¢ll = SupIf(x, 3) —g(x, »)|
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1

|

1

|
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rHEOREM 1. For every R = &(X) there exists R* < 8o(X) which is the best
approximation with respect to the Tchebishew norm, Moreover, of : - - .

o = inl{r[[R(%o, %) 2 7,..., R(x,y, 2,) > 1= R(%o, %,) > 1 — 7}
then IR — R*|| = (1)

Proof. Let R* be defined as follows :- R¥x, ¥) =1<(3) x= %o %y, ...
..., Xn—1, ¥, = V @ sequence of clements in X such that R(x,, Xag1) >p, (VE =
=0, 1, ..., 7n— 1. It is obvious that R* e &,(X).

I’Ct x, Ve X' If R*(x! _\') = 1 = (3) x = xo; xl: ey xn—ly xu =y = X
such that R(x,, %Xp4) > p. (Vre=0,1, ..., n—1= (3) € >0 such that
R(zy, xe1) 2 0 F¢, (V) 0<e<eg=R(x, ) >1—p—c (V) 0<ec<e,
(according to (1)) =1 — R(x,y) < p = )

| R*(x, ) — R(x, 9)| < ¢ (2

On the other hand, if R*(x, y) = 0, then R(x, ¥) < p (according to the defini-
tion of R*) = (2). Hence the inrquality (2) holds for all 2, y € X.
According to (1), for every ¢ > 0, there exists a sequence % = %, %, ...
..., ¥, = vsuch that R(xg, %)) 2 p— 2, ..., R(%y—1, %,) > p — ¢ an.d R(x, y) <
<1 —p+ z (otherwise p — ¢ would belong to the set of which inf is p). If
R*(x, v) == 1, we have:

| R¥(x, y) — R(x,9)| > p — ¢ (3)

If R¥*(x, 3) = O then there exists k& such that R¥(%, %34;) = O (otherwise the
transitivity of R* would imply R*(x, y) = 1). Hence from R(%, %i41) 2 p — ¢,
we get:

[ R¥(xy, Z%as1) — R(xa, Zag)| 2 p — ¢ (4)

From (3) and) (4) it follows that for every € > 0 there exist x, y € X such
that ;

'

|R¥(x, ) — R(x, )] > p—¢ )

~ From (2) and (5) it follows that ||R — R*]| =0 _ "
We now assume that R* is not a best approx;matlons. ’I‘hl:1 mean: t :y
there cxists R, € & (X) with ||[R— R,|| <p—¢ €> (})1 fII}gE;e ;a)m> ey

as above we determine a sequence g, %y, - -5 X such tha (%0, % k/

& ..., R(x,_y, x,) 2 p—cand R(x,y) < 1 — p + €. 1f there ?mStstracsiicts

that R, (x,, x,,+,),="0, then [R,(%s %r+1) — R(z, xk+|)(|J> 1p o 'fzhf im\lve have

the incquaity’ R — R, | <'p~ c. Hence (V=0 1 ..., = 1 ve have
(xa, %k4) = 1. According 'to the transitivity of R, we dTa':,iLn i 3) =L

It then follows that |R,(x, v) — R(x, ¥)| 2.p — = Contradiction. Hence,

'S @ best approximation of R. }_
Remark. The besf approximation is not unique. o
Let us now consider X x X as a measurable space \vzi:h1 t';cl}e fm(;tse ox?(;ia;;;r;

B Let &m(X) be the family of all:fuzzy measurable relations
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i ilbert space with the j
functions on X X X) - L,(X X .X) is a Hilbert sp he integry .
induced by the scalar product :

= { )"

XxX

rEEOREM 2. For every R =R,(X) there exists a unique best ap Prosing
R* of R in conv (&,(X)N &,,,(X)): - |

£roof. The space L (X x X) is Hilbert and R € &,(X) implic R
e LZ(X X X) because X X X has finite measure and R is boundeq, The

conv (%o(X) N Au(X)) is convex (as 2 closure of a convex set). On the ¢

: : - tric space, it is also complet
hand being a' closed set in a completc me ) plete, 1
assertion o% the theorem now follows from the Beppo—Levi theorem (se:
mstance [3]). ) o .

Remark. The assertion of the theorem is not trivial, which means+
there exist fuzzy relations, even similarity ones, which do not I
conv (Ro(X) N &u(X)). _ y

Let us consider the relation R, on X, = {1, 2, 3, 4} given by Ry
= a, (V), j € X,, where A = (a;;);=73, j=13 is the following matrix:

1 03 06 0
4=103 107 0 |

06 07 1 02

0 0 02 1

Let X = [1, n 4 1] and R be the fuzzy similarity relation defined by:

R([x1 [v)) l<a<un+1l, 1sy<nt]l
R(x, y) =40 f(x=n+1ory=mn+41)and £ #)

{P [2] it is shown that the distance between R and conv &g(X) is stric i3
ive.

3. Numerical ex

ample. .  We col’ri'i
the fuzzy similarit Ple. Tet X be a set with four clements

y relation on X given by the matrix:

1 04 03 03
R=104 1 0 o

03 0 1 ol
It is not difficult . e OO
decomPOsi'cioncin ;voo(i'e)e: that R € cony &o(X) and R has the uniqu®

R=04 R, 4+03 R, 4+ 03 R,,
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where

’ R2= , R3=

O~ OO
e Yol
- o o

1
0
1
0

OO
O - O
OO~ O
-0 O O
SO ~ O
— O O

1
0
0
1 0
Thus, according to the convex decomposition method [1], R is approximated

by R,. The best approximation of R with respect to the Tchebishew
porin 1s:

E)OO.—A
SO = O
S = OO
-~ O OO

It is easy to scc that:
[IR~—~ R¥||=04< ||IR—R,|| =06

An algorithm for thc computation of a best approximation of a fuzzy similarity
relation on a finite set with classical equivalence relations is given in [2].
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> . — Regdsirea consecutivi eu redundanti ml“nl.mﬁ- In acest artico!
g:}%ﬁiﬁiﬂwa ,gzultate privind proprigtatea de regisire consecutiva cu ,J
dundant3 minimi. Aceste rezultate aratd c3 problema poate fi Tedusi la e.
terminarea unui drum hamiltonian in doud grafe, daci mulfimea de intrebay
verifici anumite restrictii. Construirea celor doua\grafe se bazeaz_é pe colectia
de dete §i mulfimea de intrebiri ce se adreseazd acestei colectli.

Let C be a data collection (data base) stored on the medium (suy
S which is considered to be linear. Suppose that the data requests fr:
are formulated as questions, and let Q Dbe the set of these questions, F
given question ¢ € Q, denote by ¢(C) its answer, namely the elementst
C needed by the question g. In order to determine the answer ¢(C), at
t(g) (answer time) is needed.

_ S.P. Ghosh [1] discovered the property of consecutive retrieval, st
is a manner of organizing the data collections, in which there are minix

the two important factors:the needed medium for storing the collectic
and the answer time for the questions from Q.

DEFINITION 1. The collection C has the property of consecutive retr

(the CR property) with respect to Q if all d: ¢ conscctt
stored on the medium S, %q eQ Q if all deta from ¢(C) ar

The CR property does not exist for every pair (Q, C); that is why s

;)srgg:gzg’cig: 11'r111<z:dels approximating this property were proposed. Such2 %
the counsecutive retrieval wi ini . ropost:
[2]. In the frame of f1 etrieval with minimum redundance, proP¥

is model, certain data from the collection ¢ ™
elzleuce the redundance appears), but every quesn:“] 5%
cousecutively on the medium S, while the to1 -
zrelfi cgﬂ ?fl?f:g tcllle;t% ﬁms;c be minimum. Such a storage mode (with rCd;l;lre";'
data in the order: Property) does always exist. It is sufficient f0 5

. ql(C)J zc,...,
if Q = {ql’ 4 ..., ‘I»}. ! ( ) q”(C)’

_——

Uﬁ"ml"y f buj
. of Cluj-Na 400
poca, Faculiy of Ma!homatia and Physi,
1l m. 9 Cl“j- P ! .
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Remark 1. If every record from C is stored only once on th i
then 7 from Definition 2 is zero. y e medium S,

In the fo]loyvmg thgre are analysed different situations of determiriing the
consecutive retrieval with minimum redundance, which reduce to the deter-
mination of the optimal Hamiltonian path in a graph. In [4, 5] the problem
js studied in the general case, but thc obtained algorithms are very complex.
In [2, 3] different limits (bounds) for the redundance value are given. As
one shows in [7], the problem in the general case is very dil'ficult?

We shall firstly consider the case in which the number of elements in
Q is 3 or 4. Let be Q=1{% q ..., q,}. We construct the completely un-
oriented graph G, = {X, U, c}, where:

X={0 9 - =0

U =all (g) edges from the complete graph;

¢(gi, g;) = the number of data from the answer g(C) of the following com-
posed question (conjunctions of questions or negations of questions from Q):

g=8 A .- - ANGa AGAGiaa Ao AGaa AGATGa A oo Al

For the question g € Q we shall denote by a(g) the address of the first
datum from ¢(C) which appears on the storage medium S. Also denote:

{q;, fob=1;

¢g=1_ .

: g, ifb=0;
plgir ... gin) = ¢(C),

where g =g A ... A g

. THEOREM 1. Let be Q = {q,, .., g}, C={dy, ..., dn}. If n < 4, then the
minimum redundance 1s:

y = (s — d)/m, (1)
where :
s= 2 lplgh... g0l
(g o eerinya {0, 1)
it +in22

while d is the length of the maximum valned Hamiltonian path in the above
constructed graph G,. If this Hamiltonian path is (g, 4,0 - g;,) then:
alg,) < a(g,) < .- < alg;).
Proof. For n =3, it is given in [3] a D. E. Knuth’s result, in which
the minimum redundance is: o
7 = (1p(4:9295) | + min( |;b(q1%93) l, 12(18:94) |, 2(919:85) 1)) [m. (2)
If we denote:

Y = {15(3:9:95) | |£(9:3:93) |, |5(9:9:33)} = {c(92 95) (90 gs)s ¢(q1.92)}
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then from (2) we obtain (1), where :

| pgrgeds) | + 150290 | = o(qr, 2) + ¢(g2 9o), I min ¥ = cfg, 0
4 = [ pl:gegs) | + 16(@:8ag0) | = c(gs, go) + (90 ), i min V= ofg, g
|5(.s30) | + 1 p(@0:3:05) | = €(@s @) + o(7n, o) 1 min ¥ = (g, )

In the graph G, there arc three Hgmiltonian paths, and 4 is jug the
length of the minimum valued Hamiltonian path. If, for instance, d <, A
q,) + ¢(9., qs), then, storing the data such tha'E a(q,) < a(q,) <_a(q3), they calrj
appear in the order: p(¢:9,3s), P(7:7:93), $(9:9:33), P(019:93), P(719:35), P(09:9,)
P0:205)- P(6:8:93), P(0:19295), and the redundance of this storage mode js ()

Now we shall consider # = 4. Suppose that:

a(gs) < algs) < a(@) < a(ga), &)

and denote #; = a(g;), j =1, 2, 3, 4.

From the address 4, (on the medium) the set ¢, (C) must be stored, whil

from the address a, — the set ¢;(C). We shall obtain the minimum redundane
if ¢;,(C) will be stored in the following order:

— the set 4, = ¢,(C) — ¢;(C) = p(¢;, §;,) from the address a,;
— the set B, = ¢,(C) N ¢.(C) = $(gi, ¢;,) from the address a,.

Since from the address a, the set g;(C) must be stored, while from th
address a; — the set ¢;(C), then we can firstly store B,, then A4, = ¢,(C)-
— By — qi(C) = $(§:, ¢:. §i,), and finally the elements which have remained
from ¢;(C), namely B, = ¢;(C) N ¢:,(C)— B,, stored starting with the address 4
@ Acilalogouslzfq, the szzé) q;,(CI;) can be storcd in the following order: B, froBm

e adress ay, Ay = 94(C) — By — gi(C) = p(g;, 4, 1) U (g5, 9, Tu) after B
and B, = ¢,(C) N ¢,(C) — B, starting from the address aj, followed by 4=
= 9"-(()%) - Baf= 23 4, 91, 9:.) U £(3i, 9:)-

serve from the above described storage mode that the CR property
doe;1 e~mslt3 because: ¢,(C) = 4, B,, 7:(C) i B, | AzJ B., q'._(c)p: B,U
U A5 By, 9,(C) = By J A,. As one can notice, there is no other possibiil!

of storage fulfilling (3) and wit} : ine
g storageg fnlde i s“;ltn a smaller redundance. The redundance obtal®

_ 1
7= = (@ 9 3 8 L+ 16 01 91, ) | + 12(35, s 9 900 ) =

1 . . ;
= 2 (6= e 00) + clg, 0 + el g,). 5

The redundance whid‘i

is minj . Do
the value: Imum for that permutation (i1, %o f3 T4) for

4= (g g:) + c(g,, i) + (¢i, ¢3)

i i 7 i
s maximum. The value d is the length of a Hamiltonjan path in’ the graph b
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For the next result we shall consider a completely oriented graph G, =
= {X, U, ¢}, constructed starting from the sets C and Q as follows:

X =1{q0 9 .., ¢} =QU {90}
U = the arcs of the completely oriented graph;

¢(gs 45) = 14:/(C) U ¢,(C) | = 1g;(C) — () 1;
,_ %(C) = .
THEOREM 2. If Q = {q:, ¢, ..., q.} fulfils:
g(C) Ng(C) N(C) =@, Vi, j, ke {1, 2, .. ,n}, i#5,j#k ki, (4)
then the minimum redundance is:
r=dim—1, )

where m = |C|, while d is the length of the minimum valued Hamiltonian path

in the graph G,, path starting from gq,.
Proof. Suppose that the sets ¢,(C) are consecutively stored on the medium
and the following condition is fulfilled :

a(g:;) < a(gi) < ... < a(g:,) (6)
Let be M;=gq;(C), i=0,1, ..., n. We construct the following sets
(using hereafter the notation AB= 4 (N B):

B,= B, =0;
B,~=M,ﬂ]‘f¢+1, 1= 1, 2, ey nw—1;
A,'=M,-— Ba‘—lu B.‘, 1= 1, 2, R (B
We have M;=B,_ U4, B, i=12, ..., 1 and from (4) we obtain:

BN Bipy=M;N\Mipyy A Miyy = 2.
If the data are storcd on the medium as follows:
All Bl' Az, Bz, ceey A»—l, Bn—h Am (7)

then the CR property takes place, and the scts Ay By, By, ..., B,y will
be stored starting from the addresses a(gi), ---» @(gin). In the condition (6)
the minimum redundance is given by the sequence (7). The number of data
from (7) is: :

n—1

@ =3 14l + 2, |Biosl =

n—1

= |M,B,| + &, IMBiiBil + IMBuil + 2 1Bl =

n—1

n—1

= MM,y M,)| + 2, (M(Mi_, ) M) M\ Miv))| +
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n—1

+ ]Mu(M”—lu M»)l+ ’E=l m/fiMi-Hl =

n—1 _ ' n—1
— M|+ );2 (MMM |+ 1M1+ §|M‘Mi+l,§

n—1

= |M (M, M) |+ 22 MM U Misi) |+ 18,0

. i AM =90 1i=223 ..."m M;_, NM, NMi=@ (from (g
?xic; é,'.r_)” w—1 and My=@, we obtain : .

d= |M,| + 2 |M,~(JW.-_1M—,'+1 U Mo Mg U MioMin) + IMa_ M,
= |M,| + E |M M, U M MM | + | Moo iM, | =

n—1 " _
= M| + 2 1M M| = 2 |- M.
g2 s =

We obtained that in the condition (6) the redundance is of the form (3)
where ©

"

d= M = 217, N 1,01 = 1 elg;_ 9)

f=1
and ¢;, = ¢,. Therefore d is the length of the Hamiltonian path o, Qi o0 ic
Taking into account all permutations (, f, ..., ja), we reach the mimmi?
redundance for that permutation from which we obtain a Hamiltonian path
of minimum length in the graph G,, path starting from the vertex {o

REFERENCES

—

. gB 1210 golg S.P., File Organization: The Consecutive Retvieval Property, Comm. ACM, 15 (197)

2. Ghosh, S.P., Consecutive St . m. ACM, 1
(1975), 464 —471. orage of Relevant Records with Redundancy, Com
3. Ghosh, 8. P, Dala Base Organization for D . : 1977.
’ e ata Management, Academic Press, "

4. gorsk é, J.. On Consecutive Storage of Records, Math. Fofmd of Computer Science (Proc.5
5 Gy;nl?;k idaj’nSkb S:};:t. 6—' 10, 1976), 45 (1976), 304 —310. . Repo"”;

. o, War;zav:v'a, ’;9776. Optimal Arvangement for Consecutive Storage of Objects, 1¢S PAS:

6. Ikeda H., 4

wery Set . . ) . 'sle ofhll‘-
A Consccgtiue R :z : ;l;lﬂl Representative Records and Consecutive Remeém{) f S R

7 priy Wafszawa, 1081, 86 op Property, Proc. Conf. on Cousec. Retr. Prop., ic "
- Lipski, W., On Stying Containing Al Subsets as Substrings, Discrete Math., 27 (1978). #-

.



§TUDIA UN1V. BABES-BOLYAI, MATHEMATICA, XXXIII, 3, 1988

DISCRETE FIXED POINT THEOREMS

IOAN A. RUS*

Received : Juby 24, 1938

REZUMAT. — Teoreme discrete de punct fix.

Teoria discretd a punctului fix (teoria punctului fix in teoria multimilor, in' teoria
multimilor ordonate §i in teoria generald a categoriilor) a cunoscut in ultimi - -
25 de ani o largd dezvoltare (a se vedeea [3), [18)—[21]). Printre altele men-
tiondm ci S. Eilenberg a stabilit (a se vedea [11], pag. 17—18 si 168) o varianta
discretd a principiului contractiilor §i a aplicat aceasti varianti in teoria auto-
matelor. In prezenta lucrare se stabilesc teoreme discrete de punct fix de tip
Eilenberg gi se dau citeva aplicatii In analiza neliniard. O problem# deschisi: |,
Care sint implicatiile rezultatelor din aceasti lucrare in teoria automatelor?

1. Introduction. The discrete fixed point theory has been, in the last years,
subject to an intensive development (see [3], [18] — [21]. The following results
are the principal results in the set-theoretical approach for the fixed point
theory : o

THEOREM 1. (Abian [2]). Let X be a nonempty set. Then f: X — X has
a fixed point if and only if there cxists a subset Y C X, such that for every
subset ZC Y, -

Z Nf(2) =B implies YN(Z U f(2) UT2) # 9.

THEOREM 2. (Abian [1]; see [26]. Let X be a nonempty set. Then f: X —
— X has a fixed point if and only if X is not a union of three mutually dis-
joint set X,, X, X, such that X;Nf(X:) =9 fot i=1,2, 3

THEOREM 3. (Deaconescu [9]). Let f: X— X be an injective mapping
and Y C X a maximal total f-variant subset of X. Then

Fr= (X\Y) NENSE) N ENSY)-

~ An other example. S. Eilenberg (see '[11-] p}_)._l7—18, 168) 'formt.llated a
discrete .analog of the contractions principle, wlnc;h has applications in auto-
mata theory. The Eilenberg's result is the following:

THEOREM 4. Let X be set, R, C X x X, n € N, a sequence of equivalence
relations and f: X — X such that:

() XxX=R,ODR,D...DOR.D--+
(i) (N R, = A (the diagonal in X x X),
1] : ;

—_

* University of Ciuj-Napoca, Faculty of Afashemalics and Physics, 3400 Ciwj-Napoca, Romania .
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(iii) 1f {x,} is any sequence in X such that (x,, %n+1) € R, for cach 5,
there is a % € X such that (%,, x) € R, for all n = N, s they

(iv) for all ne N, (x,¥) € R, implies (f(%), f()) € Royq

Then F, = {x*} and (f*(x(), x*) € R, for all xy€ X and ne N

Oue purpose in this note is to give some discrete fixed point theorems of Eil
berg type. Some applications in noniinear analysis are given. €.

Throughout this paper we follow terminologies and notations in [22).

2, General discrete fixed point prineiples. Let X be a set and R,C x X
ne N, a sequence of symmetric binary relations in X. Throughout this paper
we suppose that:

) XXX=R, DR D...DOR,D ...,
() () R,=A4(X),

(c) if {x,} is any sequence in X such that (%,, x»4+1) € R,, for allney
then there is a unique x* € X such that (x,, x*) € R, for all ne]
Let f: X— X be a mapping. We have

1a 1. 1 Il ne N, (x, € R,, (v, € R, impl
f(y))LEEMI\I%:H, th{n{o;ar‘(zi F;zs 11 (%, f(x)) (v, f(¥) imply (f(s

Proof. Let x* y* e F,. From (b) we have (x*, f(x*)) € R,, (y* f(y*)e
e*R,., for all » € N. These imply (x*, y*) € R,, for all » € N. This implis
x* = y*.

LEMMA 2. If for all n e N, (x, f(x)) € R, implies (f(x), f2(x)) € Ryz1,
(f*(x%0), x*) € Ry, Vne N = fih!, f(x%) R, \Vn « N, then F,+# @.

Proof. For all zye X, (%, f(x.)) € R, This implies (f(%o), fX(%)) €&
Thus we have (f*(x.), f**'(%)) € R,, for 2ll » € N. From (c) there is a unigx
’;*;X. sucll:.x ﬂz;‘,? a‘.’)ﬁ’(;o?_»l(x*))ER,, for all e N. On the other hand, (f*(%c), 1‘)\f

» 1Implies x%), "t x¢)) € Ry, e, " % f 1 nen
From (c) we have x* e Fc,) o e (Flx, f5¥)) € Ry, for 2

THEOREM 5. If for all me N, ((x, y) € R, implies ((f(2), f(¥)) € Rt
then lflj {;*}. and (f*(xc), x*) € R,, for all n e ]\Z’b and( 7{0 e X. .

roof. From Lemma 2 we have F,# @, and if x, = X, then thee’
1’:‘ €F, *SUCE that -(f(xg), x*) & R, for 9).’11 ne N. Now, *let x*, y* e Fr ¥
ave (z% y*) € R,. This implies (x*, y*) e R,, for all n e N, ie., #* =7

From Lemma 1 and 2 we have

THEOREM 6. If for all n e N,

M) ((x, f(*) € R, (5, f(3)) e :
U, 7o) <"y, [V < R imply

(i) (x, f(x)) R, implies (f (x), 12

(iii) (f*(x0), ¥) € R,, Vn e N _(i).)l < Rowi,
then F;= (2%} and (f(x,), ' = (fiy, f(%)) € Ryy,Vn €N,

o, € R, for all n e N.
From Lemma 133 in [22] and the Theorem 5 we have :
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rHEOREM 7. Let k€ N*. If for alln < N, x, R imbli
e Ryy1 then Fp= {x*}. (% y)= »””Phesr(f*(x), PO e

. Retraction method. Let X be a nonem :

. X3.-> Y is called a retraction of X outo Y ifpﬁyss ﬁleAYrrEp);i'pé fn_‘;PEHJ%
is retractible onto Y (see [5], [23] if there is a Tetraction p: X —ul}bsx_{ch that
if x<p(f(Y)—Y), then f(x) € (X — p3(x)) U {x}.

The following general result is essential in the fixe
self-mappings.

LEMMA 3 (see(S], [23]. Let X be a set, Y a nomepty subset of X. If a mab-
ping fiY— X s relractible onto 'Y by means of a retmction{::X —{ Y, thfn
F 1= F pof * .

We have

d point theory of non

THEOREM 8. Lel X be a set, Y a nonmepty subset of X, p: X —Y a retraction
and [:Y — X a mapping. We suppose that
(i) for all m e N, (%, y) € R, implies (p(x), o(y)) € R,,
(i) for all ne N, (%, y) € R, tmplies (f(%), f(¥)) € Rps:
(ii1) f ss retractidle onto Y by means of p.
Then I, = {x*}.

Proof. Let (%, y) € R,. From (ii), (f(%), f(¥)) € Ra, and from (iii), (o(f (%)),
p((¥)) € Ra4y. Now the proof follows from the Theorem 5 and the Lemma 3.

4. Applications.

4.1. Metric spaces. From the Theorem 5 we have.

THEOREM 9 (see [22]). Let (X, d) be a bounded complete metric space and
[:X— X a (p, a)-contraction. Then F, = {x*} and for all x, = X, {f*(%,)} con-
verges to x*,

Proof. We take R,: = {(», y) € X|[d(%, y) < a~ 3(X)}.

From the Theorem 8 we have

THEOREM 10. Let X be a Hilbert space and f: B(0; R)— X, a strict (3, a)-
contraction. If x < B(0, R), f(x) = Mx) imply A <1, then Fy= {2*}. ‘

Proof. Iet o: X— B(0:; R) be the radial retraction. The mapping f is
r‘E'tr'c).c’cibl(e. onto pB(O; R) 'rgy mee)ms of p. The proof follows from the theorem 8.

i eparable .com-

4.2. Uniform spaces (sec [7]). Let (X, U) be a Hausdorff separab m-

Plete uniform sPacg wher(e U is a uniform base {R,}sen such that X x X =
=RyDR,D...OR,D ... From the Theorem 5 we have

171, [25]). Let f: X — X be a mapping
sucn a8 L1 (e 103 12 O0) T4 JoM @ Rorn, Thon = (%)
and fr(xe) o 2%, for all %< X.

5. Remarks. Remark 1. For other fixed point theorems in sets see: [1],
2], [9), [19], [22].
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2. For some fixed point theorems in order set see: [3] 14
), e By sl [18) — (20, (28, (24 Bl
Remark 3. For a categorical point of view in the fixed point theory ?
[19] — [21]. Y %
Remark 4 (see [14]). Let X be a set, RCXxXand f: XX, §
ping. By definition x € X is a R-fixed point of fif (x, f(x)) € R. It Wenti

w0

R, #n < N, such that N R, = RDA(X), we obtain a set-theoretic apy,,
0

for the R-fixed point theory.

6. Problem. The Eilenberg's theorem has applications in automata the,
Are the theorems 5, 6 and 8 applications in automata thcory? "
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A SHEPARD-TAYLOR APPROXIMATION FORMULA
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REZUMAT. — O formuli de aproximare Shepard—Taylor. in lucrere se con-
struieste o formulit de interpolare de tip Shepard de grad de exactitate m — 1,
m = N*. Pe un exemplu concret se ilustreazi comportarea functiei mterpola-

toare, pentru »: == 1, 2, in raport cu parametrul g, parametru ce apare in
construcfia acestcia.

Let P,, Py = (xx y), k=0, n, be distinct points in R? and D = [g, b]
X [c, 4] be a rectangle that contains all these points P,. Let, also, f be a real-
valued function dcfined on D and such that' there exist the derivatives
fUd (xy, ), B=0,n; ijeN, i+j <m with m > 1.

The goal of this paper is to study the following interpolation formula.

= ; Ak(Tmf) + Rmf (1)
2
k=0

where A, is the Shepard’s function:

At 3) = TT [ ) / (511 y)M

$<=07=0
l#k J#i

with 7,(x, y) the distance between the points (¥, ) and (x; y:), & <Ry
and T,f is the bivariate Taylor interpolation polynomial:

o ) o
(T ) 3) = 3 C5 Bt 700 o 0
The formula (1) is named a AShepard—Taylor approxhnation formula. The
corresponding interpolation operator is denoted by ST,, ie.

STaf= EAk (Twf)-
=0
. THEOREM 1. prL m then (STaf)" (xk yn) JED (2, M), k=0, 2,

* University of Cluj-Napoca, Faculty of Mathemtics and Physics, 3400 Cluj-Napoca, Romania.

§~ Mathematica 3/1988
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Proof. First, we observe that AfN(x, ») =0 for v=T07 VHE
5,j7eN 1 < i+ j <m. To this end, one considers Ay(%, y) = g,(, Ik (
v;'here

alxy) =TI &N h(x, y)= 2-3011:10 [7: (%, ¥)]
s#£R J#
By a straightforward computation one observes that. |
g,(;"f)(xv, ») =0 v=0 nv#Ek and g7 (zn, 1) = 20z, 3) for L)
i+ji<mifp2m Hence,
A(H)(x,,,y,)-——o v=0__ # k and 7, ]eV 1 <i+j5<m. So,
(STp f)-2(x,, 34) =; (A - Tpf)0i) (7, p,) =

-0

= 3> Ay, ) (Taf Y0z, 3) = FOD(,, 3,),

k=0

for all v=0,7 and 5,j€N, i+ <m.

THEOREM 2. ST,f=f for all f & P;_, (the set of all bivariate pip
mials of the total degree at most m — 1).

Proof. Let P e P’_, be given. Then T, P = P and, taking into e
that Z”: Az, y) =1, ‘

A0

(STaF)r.3) = Bl T PY(s ) = Plsy) 3 s ) = Pk

o Next, one considers the interpolation formula generated by the ope
.

f=ST.f+ RT,f.
THEOREM 3. If fe B, (q, ¢)[2] with p + g = m, then
]
(RTﬂf)(x: J’) :nggKm —j,j(x, y ’ 3) f(m-i,f) (S, C)ds +

d a

+2

<p SKi';"(x' Y t)fem=a(q, t)dt + SS Kooz, y; s, t) feos, ;)dsdf.
D

where

Bnji(2,y;8) = 0=cf

(’"‘Hl)ul[(" Spis '“"EA o, ) [(x — 93
+ (2}, - s)+ ﬂm-,_ll

~3

» 1<gq
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Km0 = 5 {‘y — T = S A ) = D3~ +

+on =l i <p

1

- Dig— 1! {(x == 9F -5 A 5)

A=0

Kpoz, 758 8)=

=)t (x— )+ (2 — )P s =)Ly — ) + (7w — ‘)+ﬂ"'}-

More than that, if f»=id( c) € C[a, b], for j < gq; fém-9(0,) e C[c, d}, for
i<p, fe¥ € C(D) and ||-|| is the uniform norm, then

(RTwf)(z, 3)] < L Hae sl D) 11/ ec) || +

+ 3 Homeslz, D) 1F6m=00a,) || + Hpalr, 3) 117091

where
Hp_y4(x, y)— 8 M2z, ¥)(x — x,)»3, for m — j even and
Hoyi(z, y)= 22 ,(m 2 Ap(z, {1 — 2(m — %) 2 U(x — =)™~ +

+ 2[(“» %) 2z — x) + (2 — %) ™7}
it m—jis odd,
Hymi(%,y) = Hp-ii(y, %), for c=a
and

Hyalz, 5) = - {(x — a)tly — o)t — 3 Au(x, ) [gla)hle) — 2e(x)A0) u}.

hk=0

for  and g even numbers,

Hyolx, y) = '_{(x —apfty —c)f — é Ax(z, ¥) [gla)h(c) —2g(a)h 1Y) +2g(x)h(y)]}
»=0

for 4 even and ¢ odd,

ot )= S laap 1y~ ot =5 Auts ) el 26t +2g(40)))

/
)
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for p odd and g even, respectively.

Hy %, 9)= ——l—-l[(x—a)’ y — o)1= 3> Ay, y [é,’(“)h()-*Qg(a)h(y)

plyg =}
— 2g(x)hle) + 2g(x)htc‘)1}'

if both p and ¢ are odd, with
gla) = (x — a)® — (x — =)?
_ gx) = [(ar — ) 2(x — %) + (. — %) 2 — (x — 2p)?
hm—o—m—w ) |
B = [on =92 =) + 0r — 2 1 — 7 — )"

Proof. From theorem 2 it follows that RZ7,f =0 for all feP:_
for fe Byy(a - ¢), we can apply the Peano’s theorem (2], and the mt :
representation (2): follows. From (2), one obtains ¥

b

(:_ ' .
(RTwf)(% 3] }3 V|| fimetin(2) || Sle~;.f(x:S)ld$+

(x—a) im—1
1 Dl Pl GO S:cm. )16+ 11091 ({1, 535, 0 si
b D .

1

where

G'""'";(x;s)="‘—‘_‘l—_ (x— )T — Eﬂ Ay, y) [(xh —5) 8 (x —m) +

(m —j—= 11 -

+ (2 — ), 17 ’f*‘]
and Gim-i(yt) =G ,-.-'(y £).

.
h—1 X us, i G_(x) G tion !
th 7 = m—j;( )l x ¥ (the restrlC
e functm'n- G,.. i, to the interval [x,_n. x,]) ther[l we]observe that

x = s)m—i-1 )
Gm—ji(x:s) = \’] g“ik(’i y) for s <%
(m—j— 11 ..
Sl l( 1)'"—:(3_x) =it An('c }’) Afor. s>x

Y
=r,

.He;nce' G‘ g 0 £ ‘ :
4 -4 Z or —_ 4
i s> for]m D m ‘oj even and G,_;; > () if s g x and Gm—ll’

e

a,,

SIG:;-m“(x S) ds =
' (,”_:’-).]LA I)) .—x)ln—'}!. :_a_i
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for M — j even, respectively

Sme—j.j (x35) | ds = —

a

S Au(x, I — 200 — 02 Yx — z)m i +

(m—g)! k=0

+ 2[(2’& - x)-(*)-(x i x.) -I— (xk — x)+ ]m—-y}

for m — j odd, and the expressidn of the function H,_;; follows. In an ana-

Jovous way, one obtains the function H;, —;. In order to determine the function
Hp,q )

Hpo(x, y) = ((Kpq (%, 355, Hdsdt, (4)

, B .

we must study the sign of the function K,, on D. To do this, we introduce
the notations: D, = [a, x] x(x, ¥], D.y = [a, x]X [y, d], Dy = [, b]1X [c, ¥],
Di == [x, b1X [y, d]. Now, one considers the grid defined by the lines that
passed through the points (x, 4), k = 0, n, and are parallel to the coordinate
axcs. In the hypothesis that the points (x;, ¥:) are such that x_; < %,
k=T, n, one denotes by D, the element (%, %1 ]X [9, 3] with 2 {1, ..., n}
of this grid and by K (x, v;..) the restriction of the function K,,(x, ¥;.,.)
to D,. We have

(x — s)P=1(y — )1=1 37 Axlx, ), (s, &) = Dy,
Kpi(x, vy, 1) = ety
_(x - 5)’"'()’ _t)q-lkEJ Ak(x' J’), (3: t)e D — nyr

Where [, = {w (%, ) € Doa, pef{y,...,n}} and J,={0, ...,n} —1I,. It
follows that : 1) if p and ¢ are even numbers then Kp, > 0 on D — Dy and
Ki; <0on D,; 2) if pis even and ¢ is odd then K,; > 0 on D — D4 and
Kyy €0 on D,y; 3) if p is odd and ¢ is even then K,, > 0 on D — D,, and
Kpe <0 on Dy, ; 4) if both p and ¢ are odd numbers then K,, > 0 on D,,
f‘"d Ky <0 on D — D,,. Taking into account the sign of the function K,
n the relation (4), the proof follows by a straightforward computation.

) Next, we illustrate the behaviour of the approximation function S7,f
With to the number i for m = 1, 2 and for the function f given by f(x, y) =
= — (¥ 4 *) on the domain D = [—1,1]x[—1,1], with the interpolating
ToWs: Py (=1, —1); Py=(—1L1); Py= (L —1); Py = (L1); Py = (=1/2,
g Br= (=172, 1/2) 0 Pr= (12, —1/2); Py={(1/2, 1]2); Py= (00).
velv e following figures there are given the graph of the function f respecti-
A Y the graphs of the approximations ST,f and ST,f for p =1, 2, 4.
q> 't can be sen the remark from the paper [4] is comfirmed; i.. for

Se<1S T,f has cusps at the data pounts (x, y;) and for p >1 it has flat
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spots at these points. If p is relatively large, then the surface z = (ST

tends to become very flat near the data points. S, 3
The functions ST,f has the same behavior but with a diminigy;

and flat vicinity. 18 cug
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REZUMAT. — O caracterlzare a elementelor de eea mal buni aproximare in
spajil linlare normate reale. Tn lucrare se dii o caracterizare a elementelor de
cea mai buni aproximare in spatii liniare normate reale folosind functionale

liniare i continue.

1. Introduetion. Let (X, || |[) be a real normed linear space and the
mappings {, D>, { Ds: X X X - R given by :
(x yy = lim W Py g e x (
110 2t /
<x' y): = lim Ny + txl* = |yl , %,y € X (2)

tio 2

i
i

(see [3] p- 35). !
For details concerning the properties of these mappings we send to (3!

p.- 38 and [1] p. 389. :
Another functional in connection with ¢, ), and (), is the following: f
‘I.'(x, y) _ lilI? ||x+fylt| — lixl , % ye X, [4] p. 82. (3
t i

It is easy to see that ||x||t(x, y) = (y, 2D, = — (—y, zD;, v,y X. '
1.1. DEFINITION. The element x € X is called orthogonal in Birkhoff st
over y € X iff ||z +¢y[] > [|x]], for all £« R. We note that z LY
In paper [2] R. C. James proves the following result :

1.2, THEOREM. Lot (X, ||-||) be a real normed linear space. Then the fob
lowing assertions are equivalent '
4
5 1 (ax +3) )
=z, —y) < «f|z]] < (x, y).
It is easy to see that the relation (5) is equivalent with g
O, 2 < allz][F < <y, 2D,
what means that x | y iff (7}1

%) €0 < ¢y, 2,

® Secondary Schosl, Biile Herculane, 1600 Biile Herculane, Carag-Ssvarin County, Rsmama.




BEST APPROXIMATION IN LINEAR SPACES 75

Now let G be a proper linear subspace not dense in X and %g(x): =
= {yoll1y0 — %l = in(fl ly — x|} C G the set of elements of best approximation
yd

reffering to x* € X -6
1.3. DEFINITION. The proper linear subspace E (T X is called proximinal

in X iff for every x € X the set Z(x) is non-void.

Finally, we present the well-known result which give a caracterisation of
elements of best approximation in terms ef Birkhoff orthogonality [4] p. 85:

1.4. LEMMA. Let (X, ||-]|]) be a normed linear space, G a lincar subspace
inX x€X —G and g G. Then ge 8(x) iff x — g L G.

For details concerning the theory of elements of best approximation in
pnormed linear spaces we send to excelent monography of Ivan Singer
(4.

2. The Characterization of Elements of Best Approximation.

The main purposes of this section are to give a characterization of ele-
ments of best approximation in real normed linear spaces in terms of con-
tinuous linear functionals and to apply this result in theory of continuous linear
functionals representation on smooth andj/or reflexive normed linear spaces.

2.1. THEOREM. Let (X, [|-|]|) be a real normed linear space f = X*, f# 0,
g € Ker(f) and x, € X — Ker(f). Then the following sentences are equivalent

(l) 8o € gKer(/)(xo) ;
(ii) for every x € X we have

f(x0)(%0 — £0) S(x0)(%o — £o)
x, —=2r"° °9 < < x, 20070 o0 1
< llxo — &oll* ¢ f(x) < Il %o — &0 li? s ( )
and
1f(x0) |
“f“ Il %0 — &oll ( )

Proof. “(i) = (il)”. If go € Zxerp(%,), then by Lemma 1.4. we have z, —
—&0 L Ker(f). Putting w: = x, — g, and since f(x)w — f(w)x € Ker(f) for
every x € X, we obtain w | (f(x)w — f(w)x) what implies

Sf(x)w— f(w)x, wd, < 0 < {f(x)w — f(w)x, w),, x € X.
Using the properties of (,>;, <. [3] pp- 38, we obtain
S(x)w — flw)z, wd, = f(x) | [w] |2 + {—f(@)%, w),, x=X, p=s or p =1

b) ﬂii)n;e 01'0 1 Ker(f), w # 0, we have f(w) # 0 what implies a) f(w) > O or

a). If f(w) > 0, we obtain
0> fx)) @2+ (—f(w)x, w), = f(x) ] |w]| | — %, f(w)w), from where results

f(w) -
f(®) < <x T w>', zeX. 3)
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Similarly, we have . :
0 sf(l.:)“nz i b (= (w)w, wy, = fx) {2 =< S(@)0)s from where
’ oS w re X |
f(x) > <’" I wi® >i “

b). Firstly, we ramark that for every ¥y, % € X we have

o 230 = — (s 23y ==y, =2, and (=== =D = gy

If 7 () < 0, applying the properties of (Dis we obtain 0 > f(x)jiy;,
4+ (—f(@)x, wd, = f(*) Hwll? — <%, f(w)w),, from where results it

f{x) < <x, ”m,wu K rE AL i
Similar, we have
f(w) , '
16> (o ), o X “

Since f(w) = f(;) by the relations (3), (1), (5), (6) we obtain (1),

Now, let be u: = Lf‘i"l(’“_;.lii), Then we have f(x)<<{x, u), <[}
Xo — £o
xe X and f(2) > (% wd= —(—xu), > —|lx]| {ln]}, x € X, from vhe
results [|f]] < |lu]].
On the other hand || /|| > S Qi l2]1 what implies the &
el et ‘ ‘

tion (2).
“(ii) = (i)”. By the relation (1) it results |
i
f(fo)(xo — go) / o) (Vo — ;
<x' b Al L <0 < <_11’ &Mo?_> , X E Kef(/)

X0 — £ol? o -
[x0 — gol. ‘ 2o — gol2 H

ince f(x.) # 0 we have x, — & 1 Ker(f) what implies go € Bt
2.2. COROLARY. Let (X,11.11) p . '
. . b TR e a real ; 3 ) aleas
;'.l’l[lfefe'ntz.able norm, fe X ’f#l 3, & € ;gér’(i;’))m:;fdlmag }s(/).fce](z?([}t)a]%mf‘
ovowing scnteices are cquivalent : To SV

(1) 8o = Brep(%y) ;
(ii) for every x e X we haye
f(x) = x, ".’.(f?)_(_x"_:!’,_?)_> xe X . : F

I
[ JP— e

ite = Loi : SRR
d N i

A — i
. 'y“.“’p‘—:go“ B
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CONSEQUENCES. ‘ hen for every f € X*,
p flexive Banach space. en -
1. Let (X, 1l ;)(H_)__bée?(})ea}c}f:re exists go = Ker(f) such that the relations

: ; ive Banach
f# 0 an<21) :roeiatisfied- In addition, if (X, |} - || ) is a smpoth reflexive
(1) ?:du(l . the relations (7) and (8) are satisfied.
Spa »

Let (X, (,)) be a real Hilbert space. Then for every fe X*, f#0 and
EZX _f Keer)’ there exists g, € Ker(f) such that
X0 .

— If(xa) ] 9)
f(%o) (¥0 — 80) X — . (
/) =(x li %0 — &l ) 2o X W= n .
0.3, THEOREM. Let (X, || -]|) be a real normed linear space, G a closed

lincar subspace in X, g€ X — G and g € G. Then the following sentences are
tn , ‘ :

‘equivalent :
(i) &€ 26(xo) ; _ .
(ii) for every fe (G @ [x,])* such that G = Ker(f) we have
<x' f(xo)(x0 — &0) < f(x) < <x' f(xe)(%6 — go) > (10)

Il %0 — &olJ? ¢ ”"’o—‘go”’

for every x € G @ [x,], and

=l 11)
“f” I %0 — &0l '
The proof is evident by Theqrem 2.1.. '
2.4. COROLARY. Let (X, || -||) be a smooth normed linear space, G a closed

linear subspace in X, %€ X — G and g, € G. Then the following sentences are
equivalent ;

1) &= 2(x,); -
Vi) for every fe (G @ [xo])* such -that G = Ker'f) we have

f) = LR8N | e G g [x,] 2)

" Hxe— goll* /s
and

e (x|
”f” "‘o'—é’o“

3. The Characterization of Proximinal Linear Subspaces.

Ses of thj : . L.
ing rthlls section are to give two characterizations of pProximina
€al normed linear s

n
{_uous linear functional
€ar spaces. . .

(13)

The main purpo-

1 linear subspaces
pace and to apply these results in theory of conti-

Tepresentation on smooth and/or reflexive normed
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31 THEOREM. Let (X,|[-1I) be @ real mormed Limear space qpg fey

f+#0. Then the following seniences are equivalent :

(i) Ker(f) s proximinal in X, |
(ii) there exists # € X, uw# 0 sush that |

o s < fl) < (o wd xS X and |IfIL = [ “!
We use the following lemma : {

. real normed line |

30 LEMA. ([4] pp. 87). Let (X, |l -|I) be a rea med linear spqg, )

H a hiperplan ('En] Xp such that 0 € H. Then H ts proximinal iff they, ,:,-:
ze X — {0} such that z | H. Rerlf) e :
Theorem's proof. “(i) = (ii)”. If Ker is proximinal, then there ey
we X © {0} suﬁh tj;lat w | Ker(f). Consequently (see Theorem 2.1.) for ¢
x< X we have :

f(w) < f() e X and _ ey,
2w < f)) < (o m o), 11 =72 o

JJwi? lwl® It
Putting #: =L(w—)—w, one gets (1). ;
Il wii* |
“(ii) = (i)”. It is evident. :
3.3. COROLLARY Let (X, ||-||) be a smooth normed linear space, fel

f# 0. Then the following sentences are equivalent
(i) XKer(f) ts proximinal, ;
(ii) there exists u s X, u # 0 such that ;
fm) = (xowy, x € X and |If|| = ||u]]. §
CONSEQUENCES. ‘ 5

1. Let (X, ||-]|) be a real normed linear space, f e X*, f# 0 such ty
Sy: = {x < Ker(f), ||z]| <1} is strictly SeQuentigl corr{pact in f;r(X, X+). &
there exists # € X, u # 0 such that the relation (1) is satisfied. In addit®
SRS N DS a smooth space, then the relation (2) is satisfied. 5
a1 The proof is evident by Klee's theorem ([4] pp. 91) and by Theorﬂz

0. ¥

2. Let (X,]|-]|) be a real normed linear space and f e X*, f# s

for every E ini i : . ; .
that b4 a finite dimensional linear space in X there exists # €

(%, u); < flx) (%, 4),, x€ X and Iflle = || %]l -

In addition, if X i . ists #€
such that X is a smooth normed linear space then there exists ;

J

{

A2)=<x, 4y, xeE and [|f]lg = ||#]l.
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g =
‘ | reflexive Banach space. Then for cvery f
3 Lef (X}; rl!' .c-:I:!{)istts)euaer}e{at u # 0 such that the relation (1) is satlséle)%.
e J((;? flr o i(; a smooth reflexive Banach space, then there exists # s
if (& I

I L Te e i
s satisfied.

such that the relation (2) 1 . o

“#(I)I’EMARK- The second part of comsequence 3. represents the implication

i f.
. I ia’s theorem ([1 p. 400) with an qther proo L
“(i) ’; (rlgleIOwaals);gﬁ gii‘e a t(h[eo}relx?n of characterization for the proximinal
u 3

linear subspaces in a real normed linear space in terms of orthogonality.
B 3.4, THEOREM. Let (X, || -|]) be a real normed linear space and G a closed
h’near' s.ubspace in X. Then the following sentences are equivalent

(@) G is proximinal in X;

kii) for every x & X, there exists x' € G and x'' € GL such that

x=2x2 + x". )

The proof results by Lemma 1.4. by simple computation. We omit the
details.
CONSEQUENCES.

1. Let (X, ||-|l) be a real normed linear space and G a closed linear
subspace in X such that Sg: = {g<= G, [|g|| < 1} is strictly sequential com-
pact in o(X, X*). Then for every x € X there exists 2’ € G and x’’ € GL such
that the relation (5) is satisfied.

2. Let (X, ||-|]) be a real normed linear space and G a finite dimensional
linear subspace in X. Then for every x € X there exists 2’ € G and z” G
such that the relation (5) is satisfied.

3. Let (X, || -|]) be a real reflexive Banach space and G a closed linear
subspace in X. Then for every x € X there exists 2’ € G and x” € GL such
that the relation (3) is satisfied.

Finally, we shall point out a theorem of characterization for the proximinal

3.5. THEOREM. Let (X, || -||) be a normed space and G '
: i losed | -
sbace in X. Then the Jollowing sentences are eq;zi'valent : # closed Bmear sub
i) G s droximinal in X ;
(ii) Jor every xy € X — G and fes
exists u € G @ [x,] such that:
. df;..u),- S/R) <<% wh,, G @ [%,] and ||f|| = 121 (6)
. tf mo:.z, S (X, |1-11) is a smooth normed linear space then th 4
Q) 9s equivalent with the following .

(i) for eyer
/. yxeX—Gandfe(G@[x * such th
HsSls 4 <G @ [x,] with the properiy oIV such that Ker(f) = G, there

f(x) = <x: u)u x € G @ [xo] and “f”

(G & [%,1)* such that Ker(f) = G there

relation

= llu]. )
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