
Stud. Univ. Babeş-Bolyai Math. 60(2015), No. 3, 431–436

On a functional differential inclusion

Aurelian Cernea

Abstract. We consider a Cauchy problem associated to a nonconvex functional
differential inclusion and we prove a Filippov type existence result. This result
allows to obtain a relaxation theorem for the problem considered.
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1. Introduction

In this note we study functional differential inclusions of the form

x′(t) ∈ F (t, x(t), x(λt)), x(0) = x0, (1.1)

where F (., ., .) : [0, T ] ×R ×R → P(R) is a set-valued map with non-empty values,
λ ∈ (0, 1) and x0 ∈ R. The present note is motivated by a recent paper [5], where
it was studied problem (1.1) with F single valued and several results were obtained
using fixed point techniques: existence, uniqueness and differentiability with respect
with the delay of the solutions. The study in [5] contains, as a particular case, the
problem

x′(t) = −ax(t) + aλx(λt), x(0) = x0,

which appears in the radioactive propagation theory ([2]).
The aim of this note is to consider the multivalued framework and to show

that Filippov’s ideas ([3]) can be suitably adapted in order to obtain the existence
of solutions of problem (1.1). We recall that for a differential inclusion defined by a
lipschitzian set-valued map with nonconvex values Filippov’s theorem ([3]) consists in
proving the existence of a solution starting from a given ”quasi” solution. Moreover,
the result provides an estimate between the starting ”quasi” solution and the solution
of the differential inclusion.

As an application of our main result we obtain a relaxation theorem for the
problem considered. Namely, we prove that the solution set of the problem (1.1) is
dense in the set of the relaxed solutions; i.e. the set of solutions of the differential
inclusion whose right hand side is the convex hull of the original set-valued map.
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The paper is organized as follows: in Section 2 we briefly recall some preliminary
results that we will use in the sequel and in Section 3 we prove the main results of
the paper.

2. Preliminaries

In this section we sum up some basic facts that we are going to use later.
Let (X, d) be a metric space. The Pompeiu-Hausdorff distance of the closed

subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},
where d(x,B) = inf{d(x, y); y ∈ B}. Let T > 0, I := [0, T ] and denote by L(I) the
σ-algebra of all Lebesgue measurable subsets of I. Denote by P(R) the family of all
nonempty subsets of R and by B(R) the family of all Borel subsets of R. For any
subset A ⊂ R we denote by clA the closure of A and by co(A) the closed convex hull
of A.

As usual, we denote by C(I,R) the Banach space of all continuous functions
x(.) : I → R endowed with the norm

|x|C = sup
t∈I
|x(t)|

and by L1(I,R) the Banach space of all integrable functions x(.) : I → R endowed
with the norm

|x|1 =

∫ T

0

|x(t)|dt.

The Banach space of all absolutely continuous functions x(.) : I → R will be denoted
by AC(I,R). We recall that for a set-valued map U : I → P(R) the Aumann integral

of U, denoted by

∫
I

U(t)dt, is the set∫
I

U(t)dt =

{∫
I

u(t)dt; u(.) ∈ L1(I,R), u(t) ∈ U(t) a.e. (I)

}
.

We recall two results that we are going to use in the next section. The first one
is a selection result (e.g., [1]) which is a version of the celebrated Kuratowski and
Ryll-Nardzewski selection theorem. The proof of the second one may be found in [4].

Lemma 2.1. Consider X a separable Banach space, B is the closed unit ball in X,
H : I → P(X) is a set-valued map with nonempty closed values and g : I → X,L :
I → R+ are measurable functions. If

H(t) ∩ (g(t) + L(t)B) 6= ∅ a.e.(I),

then the set-valued map t→ H(t) ∩ (g(t) + L(t)B) has a measurable selection.

Lemma 2.2. Let U : I → P(R) be a measurable set-valued map with closed nonempty
images and having at least one integrable selection. Then

cl

(∫ T

0

coU(t)dt

)
= cl

(∫ T

0

U(t)dt

)
.
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3. The main results

In what follows we assume the following hypotheses.

Hypothesis. i) F (., ., .) : I × R × R → P(R) has nonempty closed values and is
L(I)⊗ B(R×R) measurable.

ii) There exist l1(.), l2(.) ∈ L1(I,R+) such that, for almost all t ∈ I,

dH(F (t, x1, y1), F (t, x2, y2)) ≤ l1(t)|x1 − x2|+ l2(t)|y1 − y2| ∀x1, x2, y1, y2 ∈ R.

Theorem 3.1. Assume that Hypothesis is satisfied and |l1|1 + |l2|1 < 1.
Let y(.) ∈ AC(I,R) be such that there exists p(.) ∈ L1(I,R+) verifying

d(y(t), F (t, y(t), y(λt))) ≤ p(t) a.e. (I).

Then there exists x(.) a solution of problem (1.1) satisfying for all t ∈ I

|x− y|C ≤
1

1− (|l1|1 + |l2|1)
(|x0 − y(0)|+ |p|1). (3.1)

Proof. We set x0(.) = y(.), f0(.) = y′(.). It follows from Lemma 2.1 and Hypothesis
that there exists a measurable function f1(.) such that f1(t) ∈ F (t, x0(t), x0(λt)) a.e.
(I) and, for almost all t ∈ I, |f1(t)− y′(t)| ≤ p(t). Define

x1(t) = x0 +

∫ t

0

f1(s)ds

and one has

|x1(t)− y(t)| ≤ |x0 − y(0)|+
∫ t

0

p(s)ds ≤ |x0 − y(0)|+ |p|1.

Thus |x1 − y|C ≤ |x0 − y(0)|+ |p|1.
From Lemma 2.1 and Hypothesis we deduce the existence of a measurable func-

tion f2(.) such that f2(t) ∈ F (t, x1(t), x1(λt)) a.e. (I) and for almost all t ∈ I

|f1(t)− f2(t)| ≤ d(f1(t), F (t, x1(t), x1(λt))) ≤ dH(F (t, x0(t), x0(λt)),

F (t, x1(t), x1(λt))) ≤ l1(t)|x1(t)− x2(t)|+ l2(t)|x1(λt)− x2(λt)|.
Define

x2(t) = x0 +

∫ t

0

f2(s)ds

and one has

|x1(t)− x2(t)| ≤
∫ t

0

|f1(s)− f2(s)|ds

≤
∫ t

0

[l1(s)|x1(s)− x2(s)|+ l2(s)|x1(λs)− x2(λs)|]ds

≤ (|l1|1 + |l2|1)|x1 − x2|C ≤ (|l1|1 + |l2|1)(|x0 − y(0)|+ |p|1).

Assume that for some p ≥ 1 we have constructed (xi)
p
i=1 with xp satisfying

|xp − xp−1|C ≤ (|l1|1 + |l2|1)p(|x0 − y(0)|+ |p|1).
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Using Lemma 2.1 and Hypothesis we deduce the existence of a measurable function
fp+1(.) such that fp+1(t) ∈ F (t, xp(t), xp(λt)) a.e. (I) and for almost all t ∈ I

|fp+1(t)− fp(t)| ≤ d(fp+1(t), F (t, xp−1(t), xp−1(λt)))

≤ dH(F (t, xp(t), xp(λt)), F (t, xp−1(t), xp−1(λt)))

≤ l1(t)|xp(t)− xp−1(t)|+ l2(t)|xp(λt)− xp−1(λt)|.
Define

xp+1(t) = x0 +

∫ t

0

fp+1(s)ds. (3.2)

We have

|xp+1(t)− xp(t)| ≤
∫ t

0

|fp+1(s)− fp(s)|ds

≤
∫ t

0

[l1(s)|xp(s)− xp−1(s)|+ l2(s)|xp(λs)− xp−1(λs)|]ds

≤ (|l1|1 + |l2|1)|xp − xp−1|C ≤ (|l1|1 + |l2|1)p(|x0 − y(0)|+ |p|1).

Therefore (xp(.))p≥0 is a Cauchy sequence in the Banach space C(I,R), so it converges
to x(.) ∈ C(I,R). Since, for almost all t ∈ I, we have

|fp+1(t)− fp(t)| ≤ l1(t)|xp(t)− xp−1(t)|+ l2(t)|xp(λt)− xp−1(λt)|

≤ [l1(t) + l2(t)]|xp − xp−1|C ,
{fp(.)} is a Cauchy sequence in the Banach space L1(I,R) and thus it converges
to f(.) ∈ L1(I,R). Passing to the limit in (3.2) and using Lebesgue’s dominated

convergence theorem we get x(t) = x0 +
∫ t

0
f(s)ds, which shows, in particular, that

x(.) is absolutely continuous.
Moreover, since the values of F (., ., .) are closed and fp+1(t) ∈ F (t, xp(t), xp(λt))

passing to the limit we obtain f(t) ∈ F (t, x(t), x(λt)) a.e. (I).
It remains to prove the estimate (3.2). One has

|xp − x0|C ≤ |xp − xp−1|C + ...+ |x2 − x1|C + |x1 − x0|C

≤ (|l1|1+|l2|1)p(|x0−y(0)|+|p|1)+...+(|l1|1+|l2|1)(|x0−y(0)|+|p|1)+(|x0−y(0)|+|p|1)

≤ 1

1− (|l1|1 + |l2|1)
(|x0 − y(0)|+ |p|1).

Passage to the limit in the last inequality completes the proof. �

Remark 3.2. a) If we consider the space C(I,R) endowed with a Bielecki type norm of
the form |x|B = supt∈I e

−at|x(t)| with an appropriate choice of a ∈ R, the condition
|l1|1 + |l2|1 < 1 can be removed from the assumptions of Theorem 3.1.

b) The statement in Theorem 3.1 remains valid for the more general problem

x′(t) ∈ F (t, x(t), x(g(t))), x(0) = x0,

with g(.) : I → I a continuous function.
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As we already pointed out, Theorem 3.1 allows to obtain a relaxation theorem for
problem (1.1). In what follows, we are concerned also with the convexified (relaxed)
problem

x′(t) ∈ coF (t, x(t), x(λt)), x(0) = x0. (3.3)

Note that if F (., ., .) satisfies Hypothesis, then so does the set-valued map

(t, x, y)→ coF (t, x, y).

Theorem 3.3. We assume that Hypothesis is satisfied and |l1|1 + |l2|1 < 1. Let x(.) :
I → R be a solution to the relaxed inclusion (3.3) such that the set-valued map
t→ F (t, x(t), x(λt)) has at least one integrable selection.

Then for every ε > 0 there exists x(.) a solution of problem (1.1) such that

|x− x|C < ε.

Proof. Since x(.) is a solution of the relaxed inclusion (3.3), there exists f(.) ∈
L1(I,R), f(t) ∈ coF (t, x(t), x(λt)) a.e. (I) such that

x(t) = x0 +

∫ t

0

f(s)ds.

From Lemma 2.2, for δ > 0, there exists f̃(t) ∈ F (t, x(t), x(λt)) a.e. (I) such that

sup
t∈I

∣∣∣∣∫ t

0

(f̃(s)− f(s))ds

∣∣∣∣ ≤ δ.
Define

x̃(t) = x0 +

∫ t

0

f̃(s)ds.

Therefore, |x̃− x|C ≤ δ.
We apply, now, Theorem 3.1 for the ”quasi” solution x̃(.) of (1.1). One has

p(t) = d(f̃(t), F (t, x̃(t), x̃(λt))) ≤ dH(F (t, x(t), x(λt)),

F (t, x̃(t), x̃(λt))) ≤ l1(t)|x(t)− x̃(t)|+ l2(t)|x(λt)− x̃(λt)|

≤ l1(t)|x̃− x|C + l2(t)|x̃− x|C ≤ (l1(t) + l2(t))δ,

which shows that p(.) ∈ L1(I,R).

From Theorem 3.1 there exists x(.) a solution of (1.1) such that

|x− x̃|C ≤
1

1− (|l1|1 + |l2|1)
|p|1 ≤

|l1|1 + |l2|1
1− (|l1|1 + |l2|1)

δ.

It remains to take δ = [1− (|l1|1 + |l2|1)]ε and to deduce that

|x− x|C ≤ |x− x̃|C + |x̃− x|C ≤ ε. �
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