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Fully developed mixed convection through
a vertical porous channel with an anisotropic
permeability: case of heat flux

Diana Andrada Filip, Radu T. Tr̂ımbiţaş and Ioan Pop

Abstract. The effect of anisotropy on the steady fully developed mixed convec-
tion flow in a vertical porous channel is analytically studied. The side walls of
the channel are prescribed by a constant heat flux and the flow at the entrance
is upward, so that natural convection aids the forced flow. It is shown that the
anisotropy parameter has a significant effect of the flow and heat transfer char-
acteristics. We extend the study in [9] with the case of opposing flow by using
Computer Algebra software.
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1. Introduction

This work is an extension of the paper [9], which considers all the cases of
assisting and oposing flow.

Convective heat transfer in a saturated porous medium has attracted consider-
able interest in recent years, due to its frequent occurrence in industrial and tech-
nological applications. Examples of these applications include geothermal reservoirs,
thermal insulation, enhanced oil recovery, drying of porous solids, packed-bed catalytic
reactors, volcanic eruption, electronic circuits, and many others, see, for example the
books [13], [10], [15], [18, 19], [12], [11], and [17].

The aim of this paper is to study the effects of anisotropy on the fully developed
mixed convection flow through a vertical channel filled with a porous medium. Such
studies were performed by [16], [14], [8], [7], [4], [5], [6], [20], etc. It was found by these
authors that the effect of the anisotropy ratio parameter on the flow characteristics
was significant.

This paper was presented at the third edition of the International Conference on Numerical Analysis
and Approximation Theory (NAAT 2014), Cluj-Napoca, Romania, September 17-20, 2014.
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We have followed here also the papers by [2], and [3].

2. The basic equations

We consider the problem of steady fully developed flow in a vertical porous
channel bounded by two parallel walls at a distance L, which are maintained at
uniform and equal wall heat fluxes qw (Figure 1). The channel has a rectangular
cross-section infinitely long in the z-direction. The porous medium is assumed to be
anisotropic in permeability with its principal axes of the porous matrix denoted by
K1 and K2.

Figure 1. The geometry of the problem

The anisotropy of the porous medium is then characterized by the anisotropy
ratioK∗ = K1

K2

and the orientation angle φ, defined as the angle between the horizontal
and K2. It is also assumed that the flow is uniform with the characteristic velocity at
the entrance of the channel denoted by u0.

Under these assumptions, along with the Boussinesq approximation, the basic
equations governing the steady conservation of mass, momentum (Brinkman-Darcy’s
law) and energy can be written as follows ([6])

∇ · v = 0 (2.1)

v =
K

µ

(

−∇p− µ∇2
v + ρ [1− β (T − T0)]g

)

(2.2)

∇ (vT ) = αm∇
2T (2.3)

Here K is the symmetrical second-order permeability tensor, which is defined as

K =

[

K1 cos
2 φ+K2 sin

2 φ (K1 −K2) sinφ cosφ
(K1 −K2) sinφ cosφ K1 cos

2 φ+K2 sin
2 φ

]

(2.4)

Equation (2.1) can be also written in the form:

∂u

∂x
+

∂v

∂y
= 0 (2.5)
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Assuming that the flow is fully developed it results in that v = 0 and u = u(y).
Thus, the governing equations (2.2) and (2.3) can be written in reduced form as follow

µ
d2u

dy2
−

aµ

K1

u+ ρgβ (T − T0) =
∂p

∂x
(2.6)

∂p

∂x
= 0 (2.7)

u
∂T

∂x
= αm

∂2T

∂y2
, (2.8)

where the constant a is given by

a = cos2 φ+K∗ sin2 φ. (2.9)

The boundary conditions for Eqs. (2.6) and (2.8) are

u(0) = u(L) = 0,
∂T

∂y

∣

∣

∣

∣

y=0

=
q

k
,

∂T

∂y

∣

∣

∣

∣

y=L

= −
q

k
(2.10)

along with the mass flux ([2]) and thermal ([3]) conditions
∫ L

0

ud y = Q0, T0 =
1

L

∫ L

0

Td y, (2.11)

where Q0 is the mass flux across the channel and T0 is the mean temperature in the
horizontal direction of the channel, and is chosen as the reference temperature.

3. The dimensionless equations

Introducing the dimensionless variables defined as

X =
αmx

u0L2
, Y =

y

L
, U(Y ) =

u

u0

θ(X,Y ) =
T − T0

qwL

K

, P (X) =
αmp

µu2

0
L
,

(3.1)

equations (2.6) and (2.7) become

d2 U

d y2
− ζ2U + λθ + γ = 0 (3.2)

U
∂θ

∂X
=

∂2θ

∂Y 2
(3.3)

Here ζ is the anisotropic parameter, γ is the constant pressure gradient parameter and
λ is the mixed convection parameter, which are defined as

ζ2 =

√

a

Da
, γ = −

∂P

∂X
= −

∂P

∂x
, λ =

Gr

Re
(3.4)

where Da = K1/L is the Darcy number, Gr = gβ(qw
L
k
)L

3

v2 is the Grashof number
based on the heat flux qw and Re = u0L/w is the Reynolds number.
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The boundary conditions (2.10) become

U(0) = U(1) = 0,
∂θ

∂Y

∣

∣

∣

∣

Y=0

= −1,
∂θ

∂Y

∣

∣

∣

∣

Y=1

= 1 (3.5)

and the mass flux and thermal conditions (2.11) reduces to

∫

1

0

UdY = 1,

∫

1

0

θdY = 0 (3.6)

where we took Q0 = u0L.

By integrating Eq. (3.3) over the channel cross-section, and making use the
boundary conditions (3.5) for θ, it can be shown that

∂θ

∂X
= 2 (3.7)

Thus, Eq. (3.3) becomes

∂2θ

∂Y 2
= 2U (3.8)

Note that Al-Hadrhrami et al. [1] have considered

θ(y) = θ(y) + 2x

Thus, it results that

∂2θ

∂Y 2
= 2U (3.9)

If we integrate this equation twice, we get

θ̄(Y ) = 2

∫
(
∫

U(Y )d y + C5

)

d y + C6

where C5 and C6 are constants of integration. Thus, we can obtain θ from U .

The physical quantities of interest are the wall skin friction or wall shear stress

coefficient Cf and the Nusselt number Nu, which are defined as

Cf =
τw
ρu2

0

, Nu =
qL

k(Tw − T0)
(3.10)

where

τw = µ
∂u

∂y

∣

∣

∣

∣

y=0,L

Using (2.11) and (3.8) we get

ReCf =
∂U

∂Y

∣

∣

∣

∣

Y=0,1

, Nu =
1

θ

∣

∣

∣

∣

Y =0,1

.
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4. Analysis and modeling

In order to obtain U , we consider Eq. (3.2) and differentiate it twice, by taking
into account Eq. (3.8). We obtain the following equations

d4U

dY 4
− ζ2

d2U

dY 2
+ 2λU = 0 (4.1)

d2θ

dY 2
= 2U(Y ) (4.2)

with boundary conditions
U(0) = 0, U(1) = 0

θ′(0) = −1, θ′(1) = 1
∫

1

0

θ(Y )dY = 0.

(4.3)

The form of the solutions of (4.1)+(4.2)+(4.3) depends on the roots of the char-
acteristic equations

r4 − ζ2r2 + 2λ = 0.

Formally, these roots are

±
1

2

√

2 ζ2 ± 2
√

ζ4 − 8λ.

Let

∆ = ζ4 − 8λ.

According to the sign of ∆ and λ, there will be several cases to be considered.

1. λ > 0 (assisting flow)
(a) ∆ < 0, four complex roots

(b) ∆ = 0, two double real roots, ±
√
2

2
ζ

(c) ∆ > 0, four real roots
2. λ = 0, the roots are 0, 0, ζ,−ζ
3. λ < 0, (opposing flow) two real and two complex roots

For the solution of (4.1)+(4.2)+(4.3) and solutions plot we used the computer
algebra system Maple.

5. Results and discussion

We present several graphs which illustrate the influence of λ and ζ on the velocity
and temperature profile.

It can be seen from Figs. 2(a), 3(a) and 4(a) that the effect of an increasing
anisotropic parameter ζ leads to a decrease of the dimensionless fluid velocity next to
left wall of the channel and to an increase of the dimensionless velocity profiles near
the right wall of the channel, for all three cases considered ∆ < 0, ∆ = 0 and ∆ < 0.
This is true for opposing flow for small values of λ (see Figures 6 and 7).

However, Figs. 2(b) and 4(b) shows that in these cases of ∆ the dimensionless
temperature increases with the increase of the anisotropic parameter ζ.
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It should also be mentioned that the dimensionless velocity and temperature
profiles illustrated in Figs. 2(a) to 5(b) resemble the same shapes as in the paper [3].

(a) Velocity (b) Temperature

Figure 2. Velocity (left) and temperature profile for λ = 64 and
various values of ζ when ∆ < 0

(a) Velocity (b) Temperature

Figure 3. Velocity (left) and temperature profile for ∆ = 0 and
various values of ζ
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(a) Velocity (b) Temperature

Figure 4. Velocity (left) and temperature profile for ζ = 5 and
various values of λ when ∆ < 0

(a) Velocity (b) Temperature

Figure 5. Velocity (left) and temperature profile for ζ = 10 and
various values of λ when ∆ > 0

6. Conclusions

The paper presents an analytical study of the fully developed assisting mixed
convection flow through a porous channel with an anisotropic permeability when the
walls of the channels are kept at constant heat fluxes. The Brinkman-Darcy model
has been used.
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(a) Velocity (b) Temperature

Figure 6. Velocity (left) and temperature profile for ζ = 2 and
various values of λ < 0 (opposing flow)

(a) Velocity (b) Temperature

Figure 7. Velocity (left) and temperature profile for λ = −2 and
various values of ζ (opposing flow)

The following conclusions can be drawn:

1. The effect of anisotropy on the dimensionless velocity profiles is substantial,
especially for large values of the mixed convection parameter λ;

2. The effect of anisotropy is less important for the dimensionless temperature
profiles when the mixed convection parameter λ increases.



Fully developed mixed convection through a vertical porous channel 349

References

[1] Al-Hadrami, A.K., Elliott, L., Ingham, D.B., Combined free and forced convection in

vertical channels of porous media, Transport Porous Media, 49(2002), 265-289.

[2] Aung, W., Worku, G., Theory of fully developed mixed convection between parallel ver-

tical plates, ASME J. Heat Transfer, 108(1986), 485-488.

[3] Barletta, A., Heat transfer by fully developed flow and viscous heating in a vertical

channel with prescribed wall heat fluxes, Int. J. Heat Mass Transfer, 42(1999), 3873-
3885.

[4] Degan, G., Beji, H., Vasseur, P., Robillard, L., Effect of anisotropy on the development

of convective boundary layer flow in porous media, Int. Comm. Heat Mass Transfer,
25(1998), 1159-1168.

[5] Degan, G., Vasseur, P., Natural convection in a vertical slot filled with an anisotropic

porous medium with oblique principal axes, Numer. Heat Transfer, 38(1996), 397-412.

[6] Degan, G., Vasseur, P., Aiding mixed convection through a vertical anisotropic porous

channel with oblique principal axes, Int. J. Engng. Sci., 40(2002), 193-209.

[7] Degan, G., Vasseur, P., Bilgen, E., Convective heat transfer in a vertical anisotropic

porous layer, Int. J. Heat Mass Transfer, 38(1995), 1975-1987.

[8] Degan, G., Zohoun, S., Vasseur, P., Forced convection in horizontal porous channels with

hydrodynamic anisotropy, Int. J. Heat Mass Transfer, 45(2002), 3181-3188.
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