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Adaptive algorithm for polyhedral approximation
of 3D solids

Gábor Fábián and Lajos Gergó

Abstract. In this paper we discuss theoretical foundations of developing general
methods for volume-based approximation of three-dimensional solids. We con-
struct an iterative method that can be used for approximation of regular subsets
of Rd (d ∈ N) in particular R3. We will define solid meshes and investigate the
connection between solid meshes, regular sets and polyhedra. First the general
description of the method will be given. The main idea of our algorithm is a
kind of space partitioning with increasing atomic σ-algebra sequences. In every
step one atom will be divided into two nonempty atoms. We define a volume-
based distance metric and we give sufficient conditions for the convergence and
monotonicity of the method. We show a possible application, a polyhedral ap-
proximation (or approximate convex decomposition) of triangular meshes.
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Keywords: Solid mesh, regular sets, space partitioning, orthogonal projection,
best approximation.

1. Introduction

Approximation of 2D or 3D subsets is useful many times. The main application
is mesh simplification, i.e. we would like to approximate a mesh having n triangles with
another mesh having n′ << n triangles. Mesh simplification algorithms sometimes use
volume-based error metric [1], but the most common metric is the Hausdorff-distance,
it can be found in many papers e.g. in [2]. A volume-based metric allows to approx-
imate meshes which can not be realized to generate meshes which have a geometric
realization. We investigated some topological properties of triangular meshes. There
are some common topological error, e.g. holes, dangling faces, isolated faces, etc, a
good summary of this topic can be read in [5]. Mesh repairing algorithms like [4] or
[2] deal with changing the topological properties of meshes. Result of our method is
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a common finite polyhedron, which always has an obvious geometric realization. The
discussed algorithm can be applied to recover topological properties, if we define prop-
erly the measure of an object having topological errors. Another intensively studied
related topic is the approximate convex decomposition, see e.g. [16]. It can be used
in physical simulation e.g. collision detection, fracture simulation [12] and obviously
finite element methods. Similar approaches exist for volume-like approximations, for
example spatial decomposition and mesh generation. Common spatial decomposition
algorithms like octree and k-d trees can be found in [9] and comparative analysis of
some algorithms in [22]. There are some useful information about mesh generation
in [19]. During our work we studied the above topics, and it became clear, that the
methods are very similar to each other, but there is no general theory published yet
that connects these subjects. This was our motivation to give a theoretical founda-
tion, which can describe most of the volume-based approximation methods. Reader
will notice, that our concept is similar to the construction of the measure and integral
theory, where it is needed we refer to the literature.

2. Solids

The subject of our study is the solid mesh. The solids can be triangular meshes,
polyhedra or solid geometries, e.g. a solid cube. The solid can be determined by its
vertices and faces, as we discussed in [13]. We will define the solid as a special subset
of R3. General theory of solids can be found in [10], [11],[20], including the concept
of regularity, which plays a central role, as we will see further. We draw up some
requirements before defining the solid. Let us consider an S ⊂ Rd set. If S is a solid,
it should meet the following expectations:

• S does not contain dangling faces, edges, isolated points or gaps
• S has volume and surface area
• S cannot be arbitrary large
• S cannot be decomposed into some parts satisfying the first 3 conditions.

As we will see, the requirements above can be translated as regularity, measur-
ability, boundedness and connectedness. The last two criterions are obvious. In the
followings, some properties of regularity will be detailed.

Let S be an arbitrary set. Denote Sc, S, intS, extS, ∂S the complement, closure,
interior, exterior and boundary of S, respectively. Let µ be the common Lebesgue-
measure in Rd, and denote Bd the d dimensional unit ball with respect to the Euclidean
norm denoted by ‖.‖, moreover let Br(x) be the ball with radius r centered at x.
Topological subjects concerned with the notions of this paper can be found in [15].

Definition 2.1. Let S be an arbitrary set. We define the regularized of S as

S∗ := intS.

Definition 2.2. S is said to be regular if S = S∗.

Corollary 2.3. If S ⊂ Rd and S = S∗ then

∂S = ∂intS = ∂intS.
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Therefore
S = S∗ = intS = intS ∪ ∂intS = intS ∪ ∂S.

Moreover Rd = intS ∪ ∂S ∪ extS = S ∪ extS, consequently

Sc = extS.

Lemma 2.4. If S = S∗ then x ∈ ∂S if and only if

∀r > 0 : (Br(x) \ {x}) ∩ intS 6= ∅ and (Br(x) \ {x}) ∩ extS 6= ∅.
Proof. Since x is a boundary point, then each Br(x) satisfies Br(x) ∩ S 6= ∅ and
Br(x) ∩ Sc 6= ∅. Notice, that intS does not contain isolated points and S∗ contains
all of its limit points. Therefore x ∈ ∂S if and only if

∀r > 0 : (Br(x) \ {x}) ∩ S 6= ∅ and (Br(x) \ {x}) ∩ Sc 6= ∅.
As a consequence of Corollary 2.3 Sc = extS, i.e.

(Br(x) \ {x}) ∩ Sc 6= ∅ ⇔ (Br(x) \ {x}) ∩ extS 6= ∅. (2.1)

On the other hand x ∈ ∂S = ∂intS, thus Br(x) ∩ intS 6= ∅ for all r > 0, and x ∈ ∂S
implies (Br(x) \ {x}) ∩ intS 6= 0, hence

x ∈ ∂S ⇒ (Br(x) \ {x}) ∩ intS 6= ∅. (2.2)

In the opposite direction (Br(x)\{x})∩ intS 6= 0 is sufficient to fulfill (Br(x)\{x})∩
S 6= 0, thus

(Br(x) \ {x}) ∩ intS 6= ∅ ⇒ (Br(x) \ {x}) ∩ S 6= ∅. (2.3)

(2.1),(2.2),(2.3) are sufficient to satisfy the statement. �

We need a measure such that the concept of volume can be interpreted. Most of
our theorems can be proved supposing that µ is an outer measure, for simplicity we
suppose that µ is the Lebesgue-measure.

Corollary 2.5. The closed (and opened) sets of Rd are Lebesgue-measurable.

It is known, that any open ball in Rd has a positive Lebesgue-measure, because
for all x ∈ Rd

µ(Br(x)) =
πd/2

Γ(d/2 + 1)
rd > 0 (2.4)

is the volume of the d-dimensional ball with radius r.

Corollary 2.6. An open set S ⊂ Rd is empty if and only if µ(S) = 0.

If S is regular and S 6= ∅ then intS 6= 0, since intS = ∅ implies S = S∗ = intS = ∅ = ∅.
Corollary 2.7. A regular set S ⊂ Rd is empty if and only if µ(S) = 0.

We deal with regular, connected and bounded sets. It is easy to see, that there
exists an isomorphism between every bounded subset of Rd and the subsets of the
unit ball, so it is enough to consider the subsets of Bd without loss of generality.

Definition 2.8. Let us define the following set:

Ωd := {S ⊂ Bd | S connected, regular, and µ(∂S) = 0}.
If S ∈ Ωd then we say S is a d-dimensional solid.
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A commonly convex polyhedron is defined to be the finite intersection of half-
spaces. Then a polyhedron can be defined as the finite union of convex polyhedra. By
definition we have two important corollary with respect to polyhedra, see e.g. [14],
[6], [3].

Corollary 2.9. If B is a polyhedron, then B is a solid.

Corollary 2.10. Let B be a convex polyhedron, and H be a half-space, such that B′ :=
B ∩ H, B′′ := B ∩ Hc with intB′ 6= ∅, intB′′ 6= ∅.Then B′ and B′′ are convex
polyhedra.

3. Distance, approximation problem

In this section we use some notes from integral theory. The connection between
measure and integral is studied in [8], [23]. The following concept of distance can be
found in [8].

Definition 3.1. Let us define the following function ρ : 2R
d × 2R

d → R+
0 which defines

the distance between subsets A and B of Rd

ρ(A,B) := µ(A4B) (A,B ⊂ Rd)
where A4B := (A \B) ∪ (B \A) denotes the symmetric difference.

We can see that if µ(A4B) = 0 then A and B may differ only on a set of
measure zero. Denote χS the indicator function of some set S. If A,B are measurable
and bounded then χA, χB are integrable. Therefore we can express the measure of set
operations by integrals.

µ(A ∩B) =

∫
Rd
χAχB dµ (3.1)

µ(Ac) = µ(Rd \A) =

∫
Rd

1− χA dµ (3.2)

µ(A ∪B) =

∫
Rd
χA + χB − χAχB dµ. (3.3)

The distance can be reformulated as

ρ(A,B) =

∫
Rd
χA + χB − 2χAχB dµ.

There are connections between measure and integral. The range of χ is {0, 1} then
χ ≡ χp for all 1 ≤ p < +∞, consequently

ρ(A,B) =

∫
Rd
χ2
A + χ2

B − 2χAχB dµ =

∫
Rd

(χA − χB)2 dµ

=

∫
Rd
|χA − χB | dµ =

∫
Rd
|χA − χB |p dµ =: ‖χA − χB‖pLpµ . (3.4)

As we see, ρ(A,B) equals to the p-th power of the common Lpµ-norm of the measurable
function χA − χB . This implies, that ρ is a pseudo-metric, since ρ is non-negative,
triangle inequality holds and ρ(A,A) = 0, but ρ(A,B) = 0 does not imply A = B,
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because A and B may differ on a set of measure zero. Now we show, that A and B
can not differ in the case ρ(A,B) = 0 if they are regular sets.

Theorem 3.2. Let A,B ⊂ Rd be regular sets. Then ρ(A,B) = 0 if and only if A = B.

Proof. If A = B then obviously A4B = ∅, thus ρ(A,B) = µ(A4B) = 0. To verify
the opposite direction, let us suppose ρ(A,B) = 0. Since A,B are regular sets, we can
express the symmetric difference this way:

A4B = (A \B) ∪ (B \A) = (A ∩Bc) ∪ (B ∩Ac)

= ((intA ∪ ∂A) ∩ extB) ∪ ((intB ∪ ∂B) ∩ extA)

(intA ∩ extB) ∪ (∂A ∩ extB) ∪ (intB ∩ extA) ∪ (∂B ∩ extA).

All four members of the last term are disjoint. Using properties of the measure we get

ρ(A,B) = µ(intA ∩ extB) + µ(intB ∩ extA)

+µ(∂A ∩ extB) + µ(∂B ∩ extA) = 0.

It can be seen ρ(A,B) = 0 if and only if every member has zero Lebesgue-measure.
Notice that intA and extB are open sets, therefore intA∩ extB is open, so they have
zero measure if and only if they are empty. Since extA ∩ intB is open, the followings
are necessarily true:

intA ∩ extB = ∅

extA ∩ intB = ∅.
Let us suppose, that ∂A ∩ extB 6= ∅. Then exists x ∈ Rd such for some r > 0
Br(x) ⊂ extB, moreover as a consequence of Lemma 2.4

(Br(x) \ {x}) ∩ intA 6= ∅.

Thus

(Br(x) \ {x}) ∩ intA ∩ extB 6= ∅,
i.e. intA ∩ extB 6= ∅, which is a contradiction. Consequently ∂A ∩ extB is empty,
similarly ∂B ∩ extA is empty, as well. To sum up, ρ(A,B) = 0 implies A4B = ∅,
which proves the statement. �

As a consequence of the preceding theorem ρ is a metric on the regular subsets
of Rd. As Ωd contains only regular sets, we get the following result.

Corollary 3.3. ρ is a metric on Ωd.

The abstract approximation problem is the following:

Given S ⊂ Rd a solid and ε > 0 a positive real. We are looking for a solid S̃ ⊂ Rd
which has ,,better properties” than S in some sense, and µ(S, S̃) < ε.

In the next sections we will discuss our construction to give a possible solution
for the problem above. Here ,,better properties” refers to e.g. topological correctness,
simplicity, convexity, etc. depending on the objective.
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4. Construction

Consider B ⊂ 2B
d

to be a finite atomic σ-algebra on Bd, i.e.

B := σ(Bi ⊂ Bd : i = 0, 1, . . . , n) (n ∈ N)

Bi ∩Bj = ∅ (i 6= j), ∪ni=0Bj = Bd.
(4.1)

Then the functions contained in Lµ(B) are integrable, and by definition they
are constant on an arbitrary Bi atom. Thus Lµ(B) ⊂ Lµ(Bd), moreover Lµ(B) is a
finite dimensional subspace in Lµ(Bd). Denote by χ(X) the set of indicator functions
defined on subsets of some set system X. Obviously χ(B) ⊂ Lµ(B). Moreover, if
S ⊂ Bd then χS ∈ χ(Bd), i.e. a bijection can be defined between the subsets of Bd
and the functions from χ(Bd).

Let us define the following functions:

φi :=
1√
µ(Bi)

χBi . (4.2)

It is easy to see, that {φi}ni=0 forms an orthonormed system under the common inner
product:

〈φi, φj〉 :=

∫
Bd
φiφjdµ =

1√
µ(Bi)µ(Bj)

∫
Bd
χBiχBjdµ.

If i 6= j then Bi ∩Bj = ∅ implies that the inner product is zero, and obviously

〈φi, φi〉 :=
1√

µ(Bi)2

∫
Bd
χ2
Bidµ =

1

µ(Bi)

∫
Bi

dµ = 1.

Consequently {φi}ni=0 is an orthonormed system on a finite dimensional subspace
of the Hilbert-space Lµ(Bd). By Riesz projection theorem the best approximation in
Lµ(B) of an arbitrary function f ∈ Lµ(Bd) can be expressed by the Fourier-series
with respect to B, see e.g. [7],[17]:

FBf :=

n∑
i=0

〈f, φi〉φi. (4.3)

Let be given S ⊂ Bd. Then we get the following formula for the i-th Fourier-
coefficient of χS :

〈χS , φi〉 =
1√
µ(Bi)

〈χS , χBi〉 =
1√
µ(Bi)

∫
Bd
χSχBi dµ

=
1√
µ(Bi)

∫
Bi∩S

dµ =
1√
µ(Bi)

µ(Bi ∩ S).

Thus the Fourier-series of χS is

FBχS :=

n∑
i=0

1√
µ(Bi)

µ(Bi ∩ S)φi =

n∑
i=0

µ(Bi ∩ S)

µ(Bi)
χBi =

n∑
i=0

biχBi (4.4)

where

bi :=
µ(Bi ∩ S)

µ(Bi)
. (4.5)
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FBχS is also the best approximation of χS on the subspace spanned by B. The main
problem is, that FBχS is generally not an element of χ(Bd), therefore we can not assign
a set from Bd to the resulting function. To solve this problem, we will introduce the
following operator.

Definition 4.1. Let f ∈ Lµ(Bd) be an arbitrary function and α ∈ (0, 1). Define the
operator Xα : Lµ(Bd)→ χ(Bd) as follows

Xαf(x) :=

{
0, f(x) ≤ α
1, f(x) > α.

Xαf is an approximation of f by an indicator function, and the resulting function
depends on a real parameter α ∈ (0, 1). Later the importance of the value of α will
be explained.

Corollary 4.2. Let S ⊂ Bd be an arbitrary set, α ∈ (0, 1).

XαFBχS ∈ χ(B)

in other words

∃S̃ ⊂ Bd : χS̃ = XαFBχS
namely

S̃ := {XαFBχS = 1}.
In our approach the set S̃ is the approximation of S with respect to the system B and
α.

Our strategy is similar to Schipp’s construction in [21]. We would like to con-
struct a sequence of increasing σ-algebras to refine the approximation. Let us suppose,
we have a σ-algebra Bn and a set S to be approximated. Now we can draw up the
approximation with respect to Bn as Sn := {XαFBnχS = 1}. We need to check if
ρ(Sn, S) < ε. If not, then we have to construct a larger σ-algebra Bn+1, compute the
(n+ 1)-th approximation and its distance. Repeat this process while ρ(Sn, S) ≥ ε. It
seems to be easy, but we have to work out some conditions for refinement to ensure
the convergence. Denote [a..b] the interval of natural numbers between a and b, i.e.
[a..b] := [a, b] ∩ N.

Let us consider the following atomic decomposition sequence of the unit ball

Bn = σ(B0, B1, . . . , Bn)

Bi ∩Bj = ∅ (i 6= j),

n⋃
i=0

Bi = Bd.
(4.6)

By definition, the n-th σ-algebra is generated by exactly n + 1 subsets, then
Bn+1 can be obtained only by splitting a generator element of Bn, for details see [18]:

∃k ∈ [0..n] : Bn+1 = σ(B0, . . . , Bk−1, B
′
k, B

′′
k , Bk+1, . . . , Bn)

such that

B′k 6= ∅, B′′k 6= ∅, B′k ∪B′′k = Bk, B′k ∩B′′k = ∅.
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Then the indicator function of the n-th approximation can be defined by

χSn := XαFBnχS . (4.7)

Denote diam(A) the diameter of some set A ⊂ Bd, i.e.

diam(A) := supx,y∈A‖x− y‖. (4.8)

We give a sufficient condition for the convergence of Sn.

Theorem 4.3. Let (Bn) be an increasing sequence of σ-algebra, where

Bn = σ(B
(n)
0 , B

(n)
1 , . . . , B(n)

n )

and consider S ∈ Ωd to be a solid, an arbitrary α ∈ (0, 1) and let

Sn = {XαFBnχS = 1}.
If the diameter of all the generator atoms converge to zero, i.e.

lim
n→∞

max
k∈[0..n]

diam(B
(n)
k ) = 0

then

lim
n→∞

Sn = S.

Proof. Since S is solid, limn→∞ Sn = S if and only if limn→∞ ρ(Sn, S) = 0 as a
consequence of Theorem 3.2, and

ρ(Sn, S) =

∫
Bd
|χSn − χS | dµ

=

∫
intS

|χSn − χS | dµ+

∫
extS

|χSn − χS | dµ+

∫
∂S

|χSn − χS | dµ. (4.9)

Notice that any function in χ(Bd) can be dominated by χBd , which is integrable. Using
this fact the third integral equals to zero, because µ(∂S) = 0.

We know by Lebesgue’s density theorem, that for almost every x ∈ S

lim
r→0

µ(Br(x) ∩ S)

µ(Br(x))
= 1. (4.10)

This implies that

∀x ∈ intS : lim
r→0

µ(Br(x) ∩ S)

µ(Br(x))
= 1

∀x ∈ extS : lim
r→0

µ(Br(x) ∩ S)

µ(Br(x))
= 0.

If x ∈ intS then exists r > 0 such Br(x) ⊂ intS. On the other hand since Bn is atomic,

then for all n ∈ N exists a unique k such x ∈ B(n)
k . Since diam(B

(n)
k ) tends to zero,

we get B
(n)
k ⊂ Br(x) for sufficiently large n, i.e. pointwise convergence is true for any

x ∈ intS. Similarly, pointwise convergence can be proved in the case x ∈ extS. Now
using dominant convergence theorem we have

lim

∫
intS

|χSn − χS | dµ =

∫
intS

lim |χSn − χS | dµ = 0
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lim

∫
extS

|χSn − χS | dµ =

∫
extS

lim |χSn − χS | dµ = 0

to sum up, all the three integrals in (4.9) equals to 0 as n→∞, therefore ρ(Sn, S) = 0,
which proves the theorem. �

We should not require that the maximal diameter of the decomposition tends to
zero, it would be too expensive in applications. To avoid this problem and to simplify
the procedure, we have the following idea. If a Fourier-coefficient of an atom is exactly
0 or 1, it is unnecessary to split. Accurately, if every Fourier-coefficients tends to 0 or
1, then the preceding theorem is automatically satisfied.

Lemma 4.4. Let be
In := {i ∈ [0..n] | b(n)

i > α}
and

Jn := [0..n] \ In.
Then

Sn =
⋃
i∈In

B
(n)
i

moreover
ρ(S, Sn) =

∑
i∈Jn

µ(B
(n)
i )b

(n)
i +

∑
i∈In

µ(B
(n)
i )(1− b(n)

i ).

Proof. By definition

Sn = {XαFBnχS = 1} =

{
Xα

n∑
i=0

b
(n)
i χBi = 1

}

=

{∑
i∈In

χBi = 1

}
=
⋃
i∈In

B
(n)
i .

Using the formula above, we can write

ρ(S, Sn) = µ(S4Sn) = µ(S ∪ Sn)− µ(S ∩ Sn)

= µ(S ∪
⋃
i∈In

B
(n)
i )− µ(S ∩

⋃
i∈In

B
(n)
i )

= µ(S ∪
⋃
i∈In

(B
(n)
i ∩ Sc))− µ(

⋃
i∈In

(B
(n)
i ∩ S))

= µ(S)− µ(
⋃
i∈In

(B
(n)
i ∩ S) + µ(

⋃
i∈In

(B
(n)
i ∩ Sc))

= µ(
⋃
i∈Jn

(B
(n)
i ∩ S)) + µ(

⋃
i∈In

(B
(n)
i ∩ Sc))

=
∑
i∈Jn

µ(B
(n)
i ∩ S) +

∑
i∈In

µ(B
(n)
i )− µ(B

(n)
i ∩ S)

=
∑
i∈Jn

µ(B
(n)
i )b

(n)
i +

∑
i∈In

µ(B
(n)
i )(1− b(n)

i ). �

We can estimate the distance, if we define the relevant indices.
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Definition 4.5. Let be
∆n := {i ∈ [0..n] | b(n)

i ∈ (0, 1)}.
An i index and the B

(n)
i generator atom are said to be relevant if i ∈ ∆n.

∆n contains all the indices of atoms which have Fourier-coefficients not exactly

equal to 0 or 1. Notice, that if b
(n)
j = 0 then j ∈ Jn for all α ∈ (0, 1). Consequently

in the first sum there is a multiplication with b
(n)
j = 0, moreover In ∩ Jn = ∅ implies

j /∈ In therefore j can be left from both sums. Similarly, if b
(n)
i = 1 then we multiply

with (1 − b(n)
i ) = 0 in the second sum and i /∈ Jn, therefore i can be left, as well.

Because of this we have the following corollary.

Corollary 4.6.

ρ(S, Sn) =
∑

i∈Jn∩∆n

µ(B
(n)
i )b

(n)
i +

∑
i∈In∩∆n

µ(B
(n)
i )(1− b(n)

i )

≤
∑

i∈Jn∩∆n

µ(B
(n)
i ) +

∑
i∈In∩∆n

µ(B
(n)
i ) =

∑
i∈∆n

µ(B
(n)
i ).

We are ready to state a stronger convergence theorem.

Theorem 4.7. Let (Bn) be an increasing sequence of σ-algebra where

Bn = σ(B
(n)
0 , B

(n)
1 , . . . , B(n)

n )

and consider a solid S ∈ Ωd, an arbitrary α ∈ (0, 1) and let

Sn = {XαFBnχS = 1}.
If the diameter of all the relevant generator atoms converge to zero, i.e.

lim
n→∞

max
k∈∆n

diam(B
(n)
k ) = 0

then
lim
n→∞

Sn = S.

Proof. If b
(n)
i = 0 then µ(B

(n)
i ∩S) = µ(B

(n)
i ). Since atoms and S are regular sets, we

have B
(n)
i ∩ S = B

(n)
i , therefore χ

B
(n)
i

(x) = χS(x) for all x ∈ B(n)
i . The same result

is true if b
(n)
i = 1. Consequently,

ρ(Sn, S) =

∫
Bd
|χSn − χS | dµ =

n∑
i=0

∫
B

(n)
i

|χSn − χS | dµ

=
∑
i∈∆n

∫
B

(n)
i

|χSn − χS | dµ.

Using the same idea as in Theorem 4.3 we can prove that the remaining integrals tend
to zero as n→∞. �

We have convergence theorems, finally we would like to investigate the mono-
tonicity of the convergence. The following theorem gives a monotonicity condition of
the approximation method. We will show, that it is closely related to the value of α.
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Theorem 4.8. (Sn) is an improving approximation sequence, i.e.

ρ(Sn+1, S) ≤ ρ(Sn, S)

for all n ∈ N if and only if α = 1
2 .

Proof. Let us suppose, that B
(n)
k =: B ∈ Bn is divided into two disjoint non-empty

B′, B′′ ∈ Bn+1 sets. We have to show, that the sequence δn := ρ(S, Sn)− ρ(S, Sn+1)
is non-negative, i.e. δn ≥ 0 (n ∈ N). We have 6 possible outcomes with respect to the
relationship of the Fourier-coefficients b, b′, b′′ and α, viz. it depends on the Fourier-
coefficients if B is a subset of Sn and if B′ or B′′ or both B′, B′′ are subsets of
Sn+1.

1. b > α, b′ > α, b′′ > α
Then

δn = µ(B ∩ S)− (µ(B′ ∩ S) + µ(B′′ ∩ S)) = 0.

2. b ≤ α, b′ ≤ α, b′′ ≤ α
Similarly,

δn = µ(B ∩ Sc)− (µ(B′ ∩ Sc) + µ(B′′ ∩ Sc)) = 0.

3. b > α, b′ ≤ α, b′′ ≤ α
This implies µ(B′ ∩ S) ≤ αµ(B′) s µ(B′′ ∩ S) ≤ αµ(B′′), therefore

µ(B ∩ S) = µ(B′ ∩ S) + µ(B′′ ∩ S) ≤ α(µ(B′) + µ(B′′)) = αµ(B)

consequently b ≤ α, and it is a contradiction. This case cannot be realized.
4. b ≤ α, b′ > α, b′′ > α

Similarly to the preceding case, this case is also impossible.
5. b > α, b′ > α, b′′ ≤ α

Under the assumptions

δn = µ(B ∩ Sc)− (µ(B′ ∩ Sc) + µ(B′′ ∩ S))

= (µ(B ∩ Sc)− µ(B′ ∩ Sc))− µ(B′′ ∩ S)

= µ(B′′ ∩ Sc)− µ(B′′ ∩ S)

= µ(B′′)− 2µ(B′′ ∩ S) ≥ 0,

if and only if

µ(B′′) ≥ 2µ(B′′ ∩ S)

1

2
≥ b′′.

This holds for arbitrary B′′ only if α ≤ 1
2 .

6. b ≤ α, b′ ≤ α, b′′ > α
In this case, similarly to the preceding we get

δn = µ(B′′)− 2µ(B′′ ∩ Sc)) ≥ 0,

if and only if

µ(B′′) ≥ 2µ(B′′ ∩ Sc)
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1

2
≥ µ(B′′ ∩ Sc)

µ(B′′)
=
µ(B′′)− µ(B′′ ∩ S)

µ(B′′)
= 1− b′′

b′′ ≥ 1

2
.

It is true in general case only if α ≥ 1
2 .

In summary, 3. and 4. are impossible, 1. and 2. implies δn = 0, in the cases 5. and 6.
δn ≥ 0 is satisfied only if α ≤ 1

2 and α ≥ 1
2 , respectively. Consequently δn ≥ 0 for all

possible outcomes if and only if α = 1
2 . �

To guarantee the monotonicity of the convergence let us redefine the n-th ap-
proximation for α = 1

2

Sn := {X 1
2
FBnχS = 1}. (4.11)

Applying the above idea, we can give a general schema to develop volume-based
approximation methods:

1. Let be given a solid S ∈ Ωd, moreover let B
(0)
0 ⊇ Bd be an arbitrary superset of

the unit ball, which is the unique generator set of the B0 σ-algebra.

2. Choose an index k, where 0 < b
(n)
k < 1, and divide the set B

(n)
k into two non-

empty disjoint sets. In this way we obtain the algebra Bn+1.
3. Compute the new Fourier-coefficients b′k, b

′′
k as well as ρ(Sn, S). While ρ(Sn, S) ≥

ε for some given ε > 0 tolerance, go back to step 2.
4. If ρ(Sn, S) < ε we are done, we could define ∂S if it is needed.

It can be seen, there are two important questions unanswered, namely: how

could we choose the k index and how could we divide the B
(n)
k atom such that the

assumptions of our convergence theorems are satisfied. Let us define the following
functions.

Definition 4.9. The C : 22Bd → N type function is said to be a choosing function if

∀n ∈ N ∃!k ∈ [0..n] : C(Bn) = k.

Moreover D : 2B
d → 2B

d × 2B
d

is said to be a dividing function if

∀B ∈ 2B
d

∃!B′, B′′ ∈ 2B
d

: B′ 6= ∅, B′′ 6= ∅

D(B) = (B′, B′′), B′ ∩B′′ = ∅, B′ ∪B′′ = B.

With our new notations we can draw up the approximation schema more precisely.
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VolumeBasedApproximation(S,B
(0)
0 , ε, C,D)

1. n := 0

2. Bn := σ(B
(n)
0 , . . . , B(n)

n )

3. k := C(Bn)

4. Sn := {X 1
2
FBnχS = 1}

5. if ρ(Sn, S) ≥ ε then

6. Bn+1 := σ(B
(n)
0 , . . . , B

(n)
k−1,D(B

(n)
k ), B

(n)
k+1, . . . , B

(n)
n )

7. n := n+ 1

8. goto 3.

9. else stop

(4.12)

To develop a volume-based approximation algorithm we need only to define

exactly the choosing function and the dividing function. As we can see C,D, B(0)
0 , ε

are free parameters, the result can be affected by all of them. In the next section we
give a simple example for an approximation algorithm.

5. Application

We applied our method successfully to give approximation of three-dimensional

triangular meshes. Let d := 3, B
(0)
0 ⊃ B3 is the cube of side 2 centered at the origin,

ε > 0 be an arbitrary real. Denote

C0(Bn) :=

{
k ∈ ∆n | µ(B

(n)
k ) = max

j∈∆n

µ(B
(n)
j )

}
. (5.1)

Let be a, b ∈ B3 and

Ha,b :=
{
x ∈ R3 | 〈x− a+b

2 , b− a〉 ≤ 0
}

(5.2)

is a half-space, the points below the plane determined by the midpoint of a and b and
the normal vector in the direction of b− a. Then we can define the following function

D0(B) := {(B′, B′′) | B′ = B ∩Ha,b, B
′′ = B \B′

‖a− b‖ = diam(B)}.
(5.3)

It is obvious, that |C0| ≥ 1 and |D0| ≥ 1, therefore C0 and D0 are not functions
in generally. It can be thought, that we can give some extra conditions to obtain
functions, e.g. let k be the minimal index which satisfies (5.1), and let a have the
smallest x, y, z coordinate value satisfying (5.3). Let us denote the functions describing
these additional conditions with C1 and D1 respectively. For instance, we chose the
maximal indices for k and for a using that a finite convex polyhedron’s diameter
can be spanned by only two of its vertices, and vertices can be indexed. Here we
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used Corollary 2.10 i.e. a convex polyhedron divided a by plane results two convex
polyhedra. As a consequence of the definition of C1 and D1, it is easy to see that

C := C1 ◦ C0 (5.4)

is a choosing function,

D := D1 ◦ D0 (5.5)

is a dividing function.

Theorem 5.1. Let B
(0)
0 ⊃ B3, S ⊂ Ω3 and ε > 0, and let C,D be defined by (5.4),

(5.5), (5.1), (5.3). Then the algorithm defined by (4.12) is convergent.

Proof. In terms of Theorem 4.7 it is enough to prove, that the definitions of C and D
ensure that

lim
n→∞

max
k∈∆n

diam(B
(n)
k ) = 0.

Let us suppose, that in the n-th step of the iteration the k-th atom has maximal diam-

eter, i.e. r := maxk∈∆n
diam(B

(n)
k ), furthermore let us suppose C(Bn) = k. Corollary

2.10 implies that B
(n)
k is a convex polyhedron for all n ∈ N, k ∈ ∆n determined by

a finite number of vertices. Because of this there are finite number of vertex pairs
(a0, b0), . . . , (an1

, bn1
) which satisfy ‖ai − bi‖ ≥ r

2 . Let us suppose, that we apply a D
function to B

(n)
k . By definition we choose a vertex pair (ai, bi), and after the dividing

operation there are no atoms with diameter determined by (ai, bi), since the ai and
bi vertices are assigned to different ones. Moreover, it is impossible, that after the
operation new vertex pairs were formed, whose distance is greater than r

2 . Therefore

the new atoms generated from B
(n)
k can have at least one less vertex pairs, which

satisfy ‖ai − bi‖ ≥ r
2 . Consequently, after a finite number of iterations all the atoms

obtained from B
(n)
k will have the diameter strictly less than r

2 , i.e.

∃N1 ∈ N ∀k1 ∈ ∆N1
: B

(n)
k ∩B(N1)

k1
6= ∅ ⇒ diam(B

(N1)
k1

) <
r

2
.

On the other hand, we have finite number of atoms, n + 1 in the n-th iteration, so
there are only a finite number of atoms B0, . . . , Bn2

, which satisfy diam(Bi) ≥ r
2 .

By definition of C, if n2 > 0 and n > N1 we need to choose an atom for which

Bi ∩B(n)
k = ∅, since diam(Bi) ≥ r

2 > diam(B
(N1)
k1

) for all k1 ∈ ∆N1
. Due to the above

explanation, after finitely many iterations all the atoms obtained from B0, . . . , Bn2

will have the diameter strictly less than r
2 , therefore all the atoms will have this

property, as well. In other words

∃N2 ∈ N : max
k2∈∆N2

diam(B
(N2)
k2

) <
r

2
.

The above idea can be applied arbitrary many times. Using the fact that r ≤ 1, we
find

(
r
2

)n → 0 as n→∞. �
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6. Results, Future Work

Figure 1. Test models were Cube, Sphere, Torus and Bunny.
From left to right we can see the test model, and the resulting approximation,

Sn after n = 1000, 2000, 3000, 4000 iterations, respectively.

Table 1. Results for our 4 test models. After the model name the
number of vertices and faces are shown. The table contains the d∗(Sn)
maximal diameter and the ρ∗(Sn, S) error estimation for iteration
number n.

Cube (602, 1200) Sphere (482, 960)
n d∗(Sn) ρ∗(Sn, S) n d∗(Sn) ρ∗(Sn, S)

1000 0,39 1,98 1000 0,43 3,16
2000 0,27 1,35 2000 0,31 2,31
3000 0,22 1,07 3000 0,26 1,90
4000 0,19 0,90 4000 0,22 1,63

Torus (576, 1152) Bunny (2503, 4968)
n d∗(Sn) ρ∗(Sn, S) n d∗(Sn) ρ∗(Sn, S)

1000 0,31 1,14 1000 0,30 0,97
2000 0,22 0,84 2000 0,27 0,71
3000 0,18 0,69 3000 0,17 0,58
4000 0,16 0,60 4000 0,15 0,50

The algorithm obtained from our approximation schema was implemented by
choosing and dividing functions defined in the last section. Some tests were performed
on triangular meshes as we can see on Figure 1. We show 4 models: cube, sphere,
torus, and the Stanford Bunny (see [24]) from top to bottom, respectively. From left
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to right we can see 5 level of approximation, the test model and the resulting Sn after
n = 0, 1000, 2000, 3000, 4000 iterations, respectively. The most important properties
of the approximations were indicated in Table 6. These tables contain the maximal
diameters

d∗(Sn) := max
k∈∆n

diam(B
(n)
k ) (6.1)

and the estimation of the error, defined as

ρ∗(Sn, S) :=
∑
i∈∆n

µ(B
(n)
i ) (6.2)

where ρ∗(Sn, S) ≥ ρ(Sn, S) according to Corollary 4.6.
Our future plans are to work out some new choosing and dividing functions, to

show that our method contains in particular most of the space partitioning methods
as Octree, spatial decomposition, approximate or exact convex decomposition, etc. We
are working on some strategies for choosing and dividing, that can have a dramatic
effect on rate of convergence. We are designing an effective data structure for the
decomposition, in addition we try to increase the efficiency of the implementation.
The source code of the preparing software package will be publicly available in the
future.

References

[1] Alliez, P., Schmitt, F., Mesh Approximation Using a Volume-Based Metric, Proceedings
of 7th Pacific Conference on Computer Graphics and Applications, 1999, 292-301.

[2] Andujar, C., Brunet, P., Ayala, D., Topology-Reducing Surface Simplification Using a
Discrete Solid Representation, ACM Transactions on Graphics, 21(2002), no. 2, 88-105.

[3] Bernstein, G., Fussel, D., Fast, Exact, Linear Booleans, Proceedings of the Symposium
on Geometry Processing, 2009, 1269-1278.

[4] Bernstein, G., Wojtan, C., Putting Holes in Holey Geometry: Topology Change for Ar-
bitrary Surfaces, ACM Transactions on Graphics, 32(2013), no. 4.

[5] Campen, M., Attene, M., Kobbelt, L., A Practical Guide to Polygon Mesh Repairing,
ACM Transactions on Graphics, 21(2002), no. 2, 88-105.

[6] Chazelle, B., Dobkin, D.P., Intersection of Convex Objects in Two and Three Dimen-
sions, Journal of the ACM, 34(1987), no. 1, 1-27.

[7] Cheney, E.W., Introduction to Approximation Theory, AMS Chelsea Pub., 1982.

[8] Doob, J.L., Measure Theory (Graduate Text in Mathematics), Springer, 1994.

[9] Ericson, C., Real-Time Collision Detection, Elsevier, 2005.

[10] Foley, J.D. et al., Computer Graphics: Principles and Practice (Second Edition in C),
Addison-Wesley, 1995.

[11] Ghali, S., Introduction to Geometric Computing, Springer, 2008.

[12] Ghosh, M. et al., Fast approximate convex decomposition using relative concavity,
Computer-Aided Design, 45(2013), no. 2, 494-504.

[13] Fabian, G., Gergo, L., Fast Algorithm to Split and Reconstruct Triangular Meshes, Stu-
dia Univ. Babes-Bolyai, Informatica, Special Issue 1(2014), 90-102.



Adaptive algorithm for polyhedral approximation of 3D solids 293

[14] Goodman, J.E., O’Rourke, J., Handbook of Discrete and Computational Geometry,
Chapman & Hall/CRC, 2004.

[15] Lee, J.M., Introduction to Topological Manifolds, Springer, 2011.

[16] Muller, M., Chentanez, N., Kim, T., Real Time Dynamic Fracture with Volumetric Ap-
proximate Convex Decompositions, ACM Transactions on Graphics, 32(2013), no. 4, Art.
no. 115.

[17] Natanson, I.P., Constructive Function Theory (Vol. I. Uniform Approximation), Fred-
erick Ungar Publishing Co., 1964.

[18] Neveu, J., Discrete Parameter Martingales, Elsevier, 1975.

[19] Owen, S.J., A Survey of Unstructured Mesh Generation Technology, International Mesh-
ing Roundtable, 1998, 239-267.

[20] Requicha, A.A.G., Representations for Rigid Solids: Theory, Methods and Systems, ACM
Computing Surveys - CSUR , 12(1980), no. 4, 437-464.

[21] Schipp, F., On Adapted Orthonormed Systems, East Journal on Approximation, 6(2000),
no. 2, 157-188.

[22] Tate, S.R., Xu, K., Chapman & Hall/CRC, 2004.

[23] Taylor,, M.E., Measure Theory and Integration, Graduate Studies in Mathematics,
76(2006).

[24] https://graphics.stanford.edu/software/scanview/models/bunny.html, 2014.
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Eötvös Loránd University, Faculty of Informatics
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