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Enclosing the solution set of overdetermined
systems of interval linear equations

Szilvia Huszárszky and Lajos Gergó

Abstract. We describe two methods to bound the solution set of full rank interval
linear equation systems Ax = b where A ∈ IR

m×n, m ≥ n is a full rank interval
matrix and b ∈ IR

m is an interval vector. The methods are based on the concept
of generalized solution of overdetermined systems of linear equations. We use
two type of preconditioning the m × n system: multiplying the system with the
generalized inverse of the midpoint matrix or with the transpose of the midpoint
matrix. It results an n × n system which we solve using Gaussian elimination
or the method provided by J. Rohn in [8]. We give some examples in which we
compare the efficiency of our methods and compare the results with the interval
Householder method [11].
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1. Introduction

An interval matrix, A, is a matrix whose elements are intervals, an interval
vector, b, is a vector whose components are intervals. Let A = [A,A] be an m × n

interval matrix and b = [b, b] an m-dimensional interval vector. We suppose that
m ≥ n and the interval matrix A has full rank, i.e., all real matrices A ∈ A have full
rank. Consider the set of linear equations

Ax = b. (1.1)

The set of solutions of such problem is given by

∑
(A,b) =

{
x̃ ∈ R

n | ∃A ∈ A, ∃b ∈ b : ‖Ax̃− b‖ = min
x∈Rn

‖Ax− b‖

}
,

i.e., the minimalization of ‖Ax− b‖ for any A ∈ A and any b ∈ b.
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In recent years, much attention has been paid to systems of interval linear equa-
tions (1.1) with square interval matrices (see, for example, [1], [3], [4] [5]). Lot of
works were performed to compute an enclosure interval vector of the set

∑
(A,b)

which becomes as follows,
∑

(A,b) = {x ∈ R
n | ∃A ∈ A, ∃b ∈ b : Ax = b} .

The solution set is generally of a complicated non-convex structure. In practical com-
putations, therefore, we look for an enclosure of it, i.e., for an interval vector x satis-
fying ∑

(A,b) ⊆ x.

If A is regular, then the intersection of all enclosures of
∑

(A,b) forms an interval
vector which is called the interval hull of

∑
(A,b). If A is singular, then

∑
(A,b) is

either empty, or unbounded and the interval hull is not defined in this case.
We note that it is especially interest if the matrix of the interval linear equation

system is non-squared. Several papers have been published in this topic. Further de-
tails can be found for example in [4], [11]. In the present paper, we propose additional
methods for the full rank case. The purpose of this work is to give an enclosure interval
vector of the solution set of the overdetermined systems of interval linear equations.
These methods are based on Hansen’s preconditioning and the concept of generalized
solution of full rank overdetermined systems of linear equations.

In the next section, we introduce some notation. In subsection 3.1 we describe
variations of the preconditioning. This preconditioning results an n×n interval linear
equation system. In subsection 3.2 we describe which methods have been used to
solve the square interval linear equation system. In section 4 we give some examples
in which we compare the efficiency of our methods and compare the results with
the preconditioning interval Householder method [11] and with the interval Cholesky
method [12] applied to the symmetric n× n interval linear system A

T
Ax = A

T
b.

2. Notations and operations

We denote the set of real compact intervals by IR whose elements are [a] =
[a, a] = {x ∈ R | a ≤ x ≤ a}, for a ≤ a and a, a ∈ R. The set of m× n matrices over
the real compact intervals is denoted by IR

m×n.

Let [a] = [a, a] and [b] = [b, b] are real compact intervals and let ∗ ∈ {+,−, ·, :}.
Then arithmetic operations on intervals are defined by [1]

[a] ∗ [b] = {x ∗ y | a ≤ x ≤ a, b ≤ y ≤ b}.

It is assumed that 0 /∈ [b] in the case of division. We note that [a]∗ [b] is a real compact
interval and

[a] ∗ [b] = [min{a ∗ b, a ∗ b, a ∗ b, a ∗ b}, max{a ∗ b, a ∗ b, a ∗ b, a ∗ b}].

For A,B ∈ IR
m×n, A ± B is the m × n interval matrix whose elements are

Aij ± Bij . If A ∈ IR
m×n and B ∈ IR

n×r than A · B is the m × r interval matrix
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whose elements are given by

(A ·B)ij =

n∑

k=1

Aik ·Bkj .

For A ∈ IR
m×n and b ∈ IR

n, A · b is an m-dimensional interval vector whose
components are defined by

(A · b)i =

n∑

k=1

Aik · bk.

If [a] ∈ IR and b ∈ IR
n, [a] · b is an interval vector whose components are given by

([a] · b)i = [a] · bi.

For an interval matrix A = [A,A] we define

Ac :=
1

2
(A+A)

the midpoint matrix whose each element (Ac)ij corresponds to the midpoint of the
element Aij of A. Let

∆ :=
1

2
(A−A)

denote the radius matrix whose each element ∆ij corresponds to the radius of the

element Aij of A. Then A = Ac − ∆ and A = Ac + ∆, so that we also can write

A = [Ac −∆, Ac +∆]. Similarly, for an interval vector b = [b, b]

bc :=
1

2
(b+ b)

the midpoint vector and

δ :=
1

2
(b− b)

the radius vector thus b = [bc − δ, bc + δ].

3. Solving overdetermined linear interval systems

3.1. Preconditioning

We now describe two ways to obtain the preconditioning matrix. As we have
seen in the square case, when solving the system Ax = b of linear equations using
interval version of methods such as Gaussian elimination, it is generally advisable
to precondition the system. The most commonly used method of preconditioning is
to multiply by an approximate inverse of Ac. The products A−1

c A and A−1
c b are

computed using interval arithmetic. The solution set of the preconditioned equation

A−1
c Ax = A−1

c b

contains the solution set of the original equation (see [1]).
When the interval elements of A and b are narrow, preconditioning increases

the size of the solution set only slightly. When the intervals are wide, preconditioning
can substantially increase the size of the solution set. If preconditioning is not used,
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interval widths generally grow so fast during the solution process that the final results
are of little use. This preconditioning was introduced by E.R. Hansen in [2].

In our case, when the matrix of the interval linear equation is not square, m > n,
two way due to the preconditioning. Our first method of preconditioning is to multiply
by the generalized inverse of the midpoint matrix of A. Since the system we consider
is overdetermined and all A ∈ A has full rank, the generalized inverse of Ac is given
by

A+
c = (AT

c Ac)
−1AT

c .

The products Ã1 := A+
c A and b̃1 := A+

c b are computed using interval arithmetic.
After the preconditioning, we get the following n× n interval linear equation system

Ã1x = b̃1 (3.1)

which we can solve by one of the several existing method.
The second way of preconditioning is comes from the idea of the point (non-

interval) case. Our second method of preconditioning is to multiply by the transpose

of Ac. Just like in the previous case, the products Ã2 := AT
c A and b̃2 := AT

c b are
computed using interval arithmetic. After the preconditioning we get the following
n× n interval linear equation system

Ã2x = b̃2 (3.2)

which we can solve by one of the several existing method.
As we will see in section 4, the bounds on the solution set of (3.1) is usually nar-

rower then the bounds on the solution set of (3.2). On the other hand, the calculation
of the transpose of the midpoint matrix requires fewer arithmetic operations than the
calculation of the generalized inverse of Ac.

3.2. Bounding the solution of interval linear equations

Preconditioning described above results an n×n interval linear equation system.
Several methods were developed to compute an enclosure interval vector of the set∑

(Ã, b̃). For detailed we refer to [6], [7], [8].
First algorithm was used to bound the solution set of (3.1) and (3.2) was the

method provided by J. Rohn in [8]. This algorithm either computes the interval hull of

the solution set of the system of interval linear equations Ãx = b̃, or finds a singular

matrix S ∈ Ã. It has been proved the algorithm terminates in finite number of steps

for each n×n interval matrix Ã and for each n-dimensional interval vector b̃. In this
algorithm we have to solve an equation of the form

Ax+B|x| = b (3.3)

where A,B ∈ R
n×n and b ∈ R

n, which is called an absolute value equation. A very
efficient algorithm for the solution of equation (3.3) was described by J. Rohn in [9],
[10].

Since the interval matrix Ãi (i ∈ {1, 2}) is non-singular, Gaussian elimination
also can be used to bound the solution set of (3.1) and (3.2). The direct generalization
of the Gaussian algorithmwas described in [1]. As we will see in example 4.1 sometimes
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Gaussian elimination gives the same result as Rohn’s algorithm. Generally Rohn’s
method provide better enclosure of the solution set.

4. Numerical examples

Let A ∈ IR
m×n be a full rank interval matrix where m > n and b ∈ IR

m.
Let Ac = Q · R be the QR factorization of Ac. The n × n triangular real matrix R1

is obtained by dropping from R the last m − n rows. Let B := (QT
A) · R−1

1 and
c := QT

b. The subvector of cc obtained by dropping the last m − n components is
denoted by x0. Let the interval vector d is given by dc is the subvector of cc obtained
by replacing the first n components by zeros and δd := ∆B · |x0|+ δc. Let the interval
vector h is given by hc := dc and δh := ∆B · x0. The following results was showed by
A.H. Bentbib in [11].

∑
(A,b) ⊆ R−1

1 ·
∑

(B, c) ⊆ R−1

1 ·
(
x0 +

∑
(B,d)

)

and ∑
(A,b) ⊆ R−1

1 ·
(∑

(B, cc) +
∑

(B, c̃)
)
⊆

⊆ R−1

1 ·
(
x0 +

∑
(B,h) +

∑
(B, c̃)

)

where c̃ denote the interval vector whose component c̃i corresponds to the centered
interval [−(δc)i, (δc)i].

Let the interval vector given by the Householder method applied to the
overdetermined full rank interval linear equation system Ax = b is denoted
by xH(A,b). We denote by xCh(A,b) the interval vector given by the interval
Cholesky method [12] applied to symmetric n × n interval linear equation sys-
tem A

T
Ax = A

T
b. A.H. Bentbib compared the interval vectors v1 = xH(A,b),

v2 = R−1

1 xH(B, c), v3 = R−1

1 (x0 + xH(B,d)), v4 = R−1

1 (xH(B, cc) + xH(B, c̃))
and v5 = R−1

1 (x0 + xH(B,h) + xH(B, c̃)) which all contains
∑

(A,b).
Let us denote by x1 the interval vector given by J. Rohn’s method [8] applied

to the square interval linear equation system A+
c Ax = A+

c b, by x2 the interval vec-
tor given by J. Rohn’s method applied to the square interval linear equation system
AT

c Ax = AT
c b. Let x3 denote the enclosure interval vector of the solution set of

the square interval linear equation system A+
c Ax = A+

c b and x4 denote the enclo-
sure interval vector of the solution set of the square interval linear equation system
AT

c Ax = AT
c b by using Gaussian elimination.

Example 4.1. Let us consider the following interval linear system


[0.1, 0.3] [0.9, 1.1]
[8.9, 9.1] [0.4, 0.6]
[0.9, 1.1] [6.9, 7.1]


 · x =




[0.8, 1.2]
[−0.2, 0.2]
[1.8, 2.2]


 .

The following results was published by A.H. Bentbib:

xCh =

(
[−0.0642, 0.0285]
[0.2408, 0.3692]

)
, v1 =

(
[−0.0761, 0.0362]
[0.2199, 0.4024]

)
,
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v2 =

(
[−0.0616, 0.0294]
[0.2579, 0.3485]

)
, v3 =

(
[−0.0558, 0.0232]
[0.2560, 0.3486]

)
,

v4 =

(
[−0.0620, 0.0296]
[0.2564, 0.3485]

)
, v5 =

(
[−0.0558, 0.0232]
[0.2560, 0.3486]

)
.

We have the following results:

x1 =

(
[−0.0451, 0.0121]
[0.2614, 0.3447]

)
, x2 =

(
[−0.0532, 0.0186]
[0.2557, 0.3516]

)
,

x3 =

(
[−0.0451, 0.0121]
[0.2614, 0.3447]

)
, x4 =

(
[−0.0532, 0.0188]
[0.2544, 0.3517]

)
.

Let e denote the real vector whose all components are equal to 1 and by E we
denote the real m×n matrix whose elements are all equal to 1. We illustrate the real
vectors x and x according to the index of component i which is varying from 1 to n.

Example 4.2. (See Figures 1-4.) Let A ∈ IR
m×n is given by

Ac = rand(m,n) + 4E − 2I, ∆ = ε1 ·E.

The interval vector b ∈ IR
m is given by

bc = Ac · e, δ = ε2 · e.

Example 4.3. (See Figures 5-7.) Let A ∈ IR
m×n is given by

Ac = rand(m,n) + 3I, ∆ = ε1 · E.

The interval vector b ∈ IR
m is given by

bc = Ac · e, δ = ε2 · e.
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Figure 1. For m = 10, n = 6, ε1 = 10−3, ε2 = 10−3.
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Figure 2. For m = 10, n = 6, ε1 = 10−3, ε2 = 10−3.
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Figure 3. For m = 10, n = 6, ε1 = 10−3, ε2 = 10−3.
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Figure 4. For m = 10, n = 6, ε1 = 10−3, ε2 = 10−1.
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Figure 5. For m = 10, n = 6, ε1 = 10−3, ε2 = 10−1.
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Figure 6. For m = 20, n = 10, ε1 = 10−3, ε2 = 10−2.
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Figure 7. For m = 20, n = 10, ε1 = 10−3, ε2 = 10−2.
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Figure 8. For m = 20, n = 10, ε1 = 10−3, ε2 = 10−2.

We note that in our experiments (see Example 4.2, 4.3) we got the same results
for x1 and x3 using two different methods to solve equation (3.1). Namely, we applied
Rohn’s method and Gaussian elimination. It would be a very interesting question how
we can characterize those systems where the equality holds.
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