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Restricting the Clifford extensions of a pointed
group

Tiberiu Coconeţ

Abstract. In this note we give a restriction of the isomorphism constructed in
the main result of [1], which states that the Clifford extensions of two Brauer
correspondent points are isomorphic, by using a defect pointed group instead of an
ordinary defect group and by replacing the Brauer quotient with the multiplicity
algebra of the mentioned pointed group.
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1. Introduction

Let p be a prime and O a discrete valuation ring such that k is the residue field
of O. We also consider a finite group G and a normal subgroup N of G.

An N -interior G-algebra is an O-algebra A endowed with two group homomor-
phisms

N → A∗ and G→ AutO(A).

We denote by A∗ the group of invertible elements of A. Then

N 3 y 7→ y · 1 = 1 · y ∈ A∗

and
G 3 x 7→ ϕ(x) ∈ AutO(A);

i.e. any x determines an O-algebra automorphism of A. We use standard notation
impling conjugation on the right:

ϕ(x)(a) =: ax and ay := y−1 · a · y,
for any x ∈ G, y ∈ N and a ∈ A.
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Let H by any subgroup of G. A point α of H on A, denoted Hα, is a (AH)∗-
conjugacy class of a primitive idempotent i ∈ AH . Throughout we use notations
as: H{α}-denoting the stabilizer of α, provided that H acts on the subalgebra of A
that contains the point α; Hi-denoting the stabilizer of some idempotent i and also
NH(Kα)-the subgroup of H that normalizes the group K and stabilizes the point α.

We use [5, Theorem 8.20] to characterize fusions on an N -interior G-algebra A.
Let α be a point of AH and let j ∈ α. Any element x ∈ NG(H) acts by conjugation

on H and determines an automorphism. If this automorphism satisfies y−1yx
−1 ∈ N

for any y ∈ H, then it determines an A-fusion from the pointed group Hα to itself if
and only if there exists a ∈ A∗ such that for any y ∈ H we have

aj = ja, ay · y−1yx
−1

= a.

We have already introduced in [1] the so-called Clifford extensions of points.
Constructing such an extension implies working with an N -interior G-algebra A, a
point β of N on A, and with P, a defect group of β that is contained in N. Let β̄
denote the correspondent point of β determined by the Brauer morphism. The main
result of [1] states that the extension corresponding to β is isomorphic to the extension
corresponding to β̄. This result generalizes the main result of [2, Section 12].

In this paper we construct an analogous isomorphism of extensions by using
a defect pointed group Pγ of β and by replacing the Brauer quotient of AP with
the multiplicity algebra of Pγ . The first replacement forces a new computation of
the groups that appear in original construction of the Clifford extension of β. The
second replacement, that is the replacement made with regard to the Brauer quotient,
generates a slightly more complicated situation with respect to the gradings. It seems
that the grading of the new quotient, that contains the multiplicity algebra as the
identity component, depends on the units of a source algebra of the pointed group
Nβ .

We use standard notations and we refer the reader to [4] and [6] for details
regarding the theory of G-algebras and pointed groups.

2. Existing constructions and results

2.1. Let us recall the notations and quote the existing results. For more details re-
garding the proofs of the following statements we refer to [1]. Let A be an N -interior
G-algebra, P be a p-subgroup of N, and let β ∈ P(AN |Pγ), that is a point of N on
A with defect pointed group Pγ . We denote by Ḡ the quotient group G/N. Following
[1, Proposition 3.5] we see that the action of G on AN gives rise to the normalizer
NG(Nβ) which satisfies

NG(Nβ) = NG(P ){β}N.

2.2. Consider the algebra

Â = A⊗N G =
⊕
x

A⊗ x,
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where x runs through a set of representatives of the classes of Ḡ. The product in Â
is given by

(a⊗ x)(b⊗ y) = abx
−1

⊗ xy.
Then Â is clearly a G-interior algebra via the following morphism of groups

G→ A∗, where g 7→ 1⊗ g.

2.3. If j ∈ β, due to the action of NG(Nβ) on AN , for any x ∈ NG(Nβ) we have
jx = aja−1, for some a ∈ (AN )∗. This allows the construction of the following two

groups (since the group A∗ ⊗G < Â∗ acts by conjugation on Â):

N̂ := (AN )∗j ⊗N
and

N̂G(Nβ) := ((AN )∗ ⊗NG(Nβ))j .

The exact sequence

1→ N̂ → N̂G(Nβ)→ N̄G(Nβ)→ 1 (i)

induces the isomorphism

N̂G(Nβ)/N̂ ' N̄G(Nβ) = NG(Nβ)/N.

Now Aβ := jAj is an N̂ -interior N̂G(Nβ)-algebra, it is actually N -interior. Next we
see that

Âβ := Aβ ⊗N̂ N̂G(Nβ)

is an N -interior algebra, thus we consider the set

Ḡ[β] = {x̄ ∈ N̄G(Nβ) | (Aβ ⊗ x̂)N · (Aβ ⊗ x̂−1)N = (Aβ)N},
where x̂ is a lifting of x̄ via (i). This set turns out to be a normal subgroup of N̄G(Nβ),
see [1, Proposition 2.7].

2.4. Let NA
G (Nβ) denote the group consisting of elements x ∈ NG(Nβ) such that the

conjugation action of x on N induces an A-fusion from Nβ to itself. We have

Ḡ[β] ' N̄A
G (Nβ).

Set N̂A
G (Nβ), the inverse image of Ḡ[β] in N̂G(Nβ), and set

Â[β] := Aβ ⊗N̂ N̂A
G (Nβ).

The algebra

Â[β]N :=
⊕
x

(Aβ ⊗ x̂)N ,

where x runs through a set of representatives for the classes in Ḡ[β], is a crossed

product and it is also an N̂G(Nβ)-algebra, since N and N̂A
G (Nβ) are two normal

subgroups of N̂G(Nβ). The quotient

ˆ̄A[β]N := Â[β]N/Jgr(Â[β]N )
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is the twisted group algebra of k̂ := Aβ(Nβ) = ANβ /J(ANβ ) with Ḡ[β], actually a

crossed product of k̂ with Ḡ[β], and it corresponds uniquely to the Clifford extension
of β

1→ k̂∗ → ¯̂NA
G (Nβ)→ Ḡ[β]→ 1. (1)

We denoted by Jgr the graded Jacobson radical. The qoutient k̂ is a skew field

whose center is an extension of k and ¯̂NA
G (Nβ) denotes the group of homogeneous

units of ˆ̄A[β]N .

3. The Clifford extension of the multiplicity algebra

3.1. Consider β ⊆ AN as above, having defect pointed group Pγ . Since γ is a point of
AP , it corresponds uniquely to the NG(Pγ)-invariant maximal ideal mγ of AP such
that γ * mγ . Consider the multiplicity algebra of Pγ :

A(Pγ) := AP /mγ .

The map

sγ : AP → A(Pγ)

is an epimorphism of NG(Pγ)-algebras. The restriction

sγ : ANP → A(Pγ)
NN (Pγ)
P

is still an epimorphism of NG(Pγ)-algebras and β̄ := sγ(β) ⊆ A(Pγ)NN (Pγ) is the
unique correspondent point of β having P as a defect group, see [5, Theorem 6.14].
Set j̄ := sγ(j).

3.2. Denote by NA
G (Pγ) the subgroup of NG(Pγ) consisting of elements that determine

A-fusions from Pγ to itself. Then

Ḡ[β]{γ} := Ḡ[β] ∩ N̄A
G (Pγ)

is the subgroup of N̄G(Nβ) such that any representative of any class determines A-
fusions for both Nβ and Pγ .

Denote by N̂A
G (Nβ){γ} the inverse image of Ḡ[β]{γ} via (i). In this case the

algebra Âγβ := Aβ ⊗N̂ N̂A
G (Nβ){γ} is N -invariant, hence

(Âγβ)P := (Aβ ⊗N̂ N̂A
G (Nβ){γ})

P =
⊕
x̂

(Aβ ⊗ x̂)P ,

where x̂ lifts a set of representatives of the classes in Ḡ[β]{γ}, is strongly Ḡ[β]{γ}-
graded, it is actually a crossed-product.

Proposition 3.3. With the above notations

m̂γ := mγ · (Âγβ)P = (Âγβ)P ·mγ

is a two-sided ideal of (Âγβ)P .
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Proof. It suffices to prove the equality

mγ · (Aβ ⊗ x̂)P = (Aβ ⊗ x̂)P ·mγ , (*)

for any lifting x̂.
The inclusion Pγ ≤ Nβ provides an idempotent i ∈ γ such that ji = i = ji.

Thus the inclusion Aγ ⊆ Aβ gives the following homomorphism of groups

φ : A∗γ → A∗β , where Aγ 3 a 7→ a′ := a+ j − i ∈ Aβ .

Then, if x ∈ NG(Nβ){γ} determines an A-fusion from Pγ to itself we get

yx
−1

= ya,

for some a ∈ A∗γ and for any y ∈ P. Clearly a′a−1 = i ∈ AP , then we get

a′a−1 · y = y · a′a−1,

or equivalently ya = ya
′
, for any y ∈ P. We obtain (a′)y · y−1xyx−1 = a′ and for a

lifting x̂ of x̄ this is equivalent to

(a′ ⊗ x̂)y = a′ ⊗ x̂,

for any y ∈ P, as a homogeneous unit of (Âγβ)P . Using all the above we can view

(Âγβ)P =
⊕
x̂

(a′ ⊗ x̂) ·APβ ,

where x̂ lifts via extension (i) a set of representatives of the classes of Ḡ[β]{γ}. All

homogeneous units a′ ⊗ x̂ of (Âγβ)P satisfy a′ ∈ NA∗(P ) and a′i = ia′. Hence for

proving (∗) it suffices to prove

(a′ ⊗ x̂)−1 ·mγ · (a′ ⊗ x̂) = mγ .

Since x̂ lifts an element of N̄G(Pγ) the last equality is equivalent to

(a′)−1 ·mγ · a′ = mγ .

The maximal ideal (a′)−1 ·mγ · a′ of AP can not contain γ, because otherwise

γa
′

= γ ⊆ mγ ,

which is a contradiction. �

The next proposition follows from the proof of the above proposition.

Proposition 3.4. The group Ḡ[β]{γ} is isomorphic to the subgroup of N̄A
G (Nβ) that

consists of elements x̄ such that for any lifting x̂ the module (Aβ ⊗ x̂)P contains a
homogeneous unit a′ ⊗ x̂ satisfying a′ ∈ φ(A∗γ).

Proof. Indeed, any element x ∈ NG(Pγ){β} that determines A-fusions for both Pγ
and Nβ lifts to x̂ which gives, for any y ∈ P,

yx̂
−1

= ya = ya
′
,

for some a ∈ A∗γ and a′ = a+ j − i. �
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3.5. In what follows it is more convenient to replace N̂ with (AN )∗j ⊗ NN (Pγ) and

N̂G(Nβ) with ((AN )∗ ⊗ NG(Pγ){β})j , since the two pairs give isomorphic quotients.
We further denote

N̂G(Nβ){γ} := ((AN )∗ ⊗NG(Pγ){β})j,i,

the subgroup of ((AN )∗ ⊗ NG(Pγ){β})j whose elements also fix i. With this setting
we have:

Lemma 3.6. The group N̂A
G (Nβ){γ} is N̂G(Nβ){γ}-invariant.

Proof. Let x̂ ∈ N̂A
G (Nβ){γ}, ẑ ∈ N̂G(Nβ){γ} and a′ ∈ φ(A∗γ) such that

(a′ ⊗ x̂)y = a′ ⊗ x̂,

for any y ∈ P. Then (a′ ⊗ x̂)ẑ = (a′)ẑ ⊗ x̂ẑ is also a homogeneous unit of (Aβ ⊗ x̂ẑ)P

verifying x̂ẑ ∈ N̂A
G (Nβ) and (a′)ẑ ∈ φ(A∗γ). �

3.7. Using the N -invariance of Âγβ we obtain

( ˆ̄Aγβ)N : = (Âγβ)N/Jgr((Â
γ
β)N )

=
⊕
x̂

(
(Aβ ⊗ x̂)N/J(ANβ )(Aβ ⊗ x̂)N

)
,

the crossed product of k̂ = Aβ(Nβ) with Ḡ[β]{γ}, and simultaneously the twisted

group algebra of k̂ with Ḡ[β]{γ} corresponding to the Clifford extension

1→ k̂∗ → ¯̂NA
G (Nβ){γ} → Ḡ[β]{γ} → 1. (1’)

Clearly (1’) is a subextension of (1).

3.8. Constructions similar to that of 2.3, making use of the action of NG(Pγ) on

A(Pγ)NN (Pγ), determine the exact sequence

1→ (A(Pγ)NN (Pγ))∗j̄ ⊗NN (Pγ)→ (ii)

→ ((A(Pγ)NN (Pγ))∗ ⊗NG(Pγ){β̄})j̄ → N̄G(Pγ){β̄} → 1.

We set

N̂N (Pγ) := ((A(Pγ)NN (Pγ))∗j̄ ⊗NN (Pγ))ī and

N̂G(Pγ){β̄} := ((A(Pγ)NN (Pγ))∗ ⊗NG(Pγ){β̄})j̄,̄i,

where ī = sγ(i). One easily checks that N̂N (Pγ) is a normal subgroup in N̂G(Pγ){β̄}.

Lemma 3.9. The following statements hold.

a) The groups NG(Pγ){β} and NG(Pγ){β̄} coincide.

b) The groups NG(Pγ)i and NG(Pγ)ī coincide, hence NN (Pγ)i = NN (Pγ)ī is a

normal subgroup of N̂G(Pγ){β̄} and of N̂G(Nβ){γ} contained in N̂A
G (Nβ){γ}.
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Proof. The equality from assertion a) follows by using the epimorphism

sγ : ANP → A(Pγ)
NN (Pγ)
P

of NG(Pγ)-algebras and [5, Proposition 3.23], since β̄ corresponds uniquely to β. For
the proof of b), we note that the proof of the first equality of the statement is similar
to that of a). The second equality is a consequence of the first equality. Next, for any
t ∈ NN (Pγ)i we have

APβ = (Aβ ⊗ t)P .
This implies that any element a′ ∈ φ((A∗γ)P ) ⊆ (APβ )∗ verifies

a′ = a′1 ⊗ t ∈ (APβ )∗,

where a′1 is a unit in Aβ . Then, for a suitable a ∈ A∗γ , we have

a′1 = a′t−1 = at−1 + j − i ∈ φ(A∗γ).

By our choices of a, a′ and a′1 we obtain yt
−1

= ya
′
1 = yat

−1

, for all y ∈ P. Propo-

sition 3.4 implies that NN (Pγ)i is contained in N̂A
G (Nβ){γ}, since any element of N

determines an A-fusion of Nβ . We also have

NN (Pγ)i = NN (Pγ) ∩ N̂G(Nβ){γ} = NN (Pγ) ∩ N̂G(Pγ){β̄}.

Since NN (Pγ) is normal in N̂G(Nβ) and in ((A(Pγ)NN (Pγ))∗⊗NG(Pγ){β̄})j̄ , the state-
ment follows. �

3.10. We denote by Ḡ[β̄]{γ} the normal subgroup of N̄G(Pγ){β̄} that is isomorphic to

Ḡ[β]{γ} and by
̂

N
A(Pγ)
G (Pγ){β̄} the inverse image of Ḡ[β̄]{γ} in the infinite group of

(ii), i.e. ((A(Pγ)NN (Pγ))∗ ⊗NG(Pγ){β̄})j̄ .

Remark 3.11. If x̂ lifts an element of Ḡ[β̄]{γ} then, considering in the proof of Propo-

sition 3.3 A in place of Aβ , we obtain (A ⊗ x̂)P · mγ = mγ · (A ⊗ x̂)P . Then we
set

Â(Pγ) :=
⊕
x̂

(
(A⊗ x̂)P /(mγ · (A⊗ x̂)P )

)
,

where x̂ lifts a set of representatives of Ḡ[β̄]{γ}. We denote

(A⊗ x̂)P := (A⊗ x̂)P /(mγ · (A⊗ x̂)P ),

for any lifting x̂, and, using Lemma 3.9 and Proposition 3.3, we determine the strongly
Ḡ[β̄]{γ}-graded NN (Pγ)-algebra

Â(Pγ)β̄ := j̄Â(Pγ)j̄ = (Âγβ)P /m̂γ =
⊕
x̂

(Aβ ⊗ x̂)P .

Lemma 3.12. The map

ŝγ : (Âγβ)P → Â(Pγ)β̄ ,

sending a ⊗ x̂ to a⊗ x̂ := a ⊗ x̂ + mγ · (Aβ ⊗ x̂)P , is an epimorphism of Ḡ[β̄]{γ} '
Ḡ[β]{γ}-strongly graded NN (Pγ)-algebras.
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Remark 3.13. We obtain the following characterization of Ḡ[β̄]{γ}. Explicitly, it con-

sists of elements x̄ ∈ N̄G(Pγ)β̄ such that x determines A-fusion of Pγ and for any
lifting x̂ we obtain

((Aβ ⊗ x̂)P )NN (Pγ) · ((Aβ ⊗ x̂−1)P )NN (Pγ) = A(Pγ)
NN (Pγ)

β̄
.

Further we construct a morphism of groups between N̂G(Nβ){γ} and N̂G(Pγ){β̄}.

Explicitly, if n̂ := n ⊗ z ∈ N̂G(Nβ){γ}, where z ∈ NG(Pγ){β}, then the image of n̂

is ŝγ(n) := sγ(n) ⊗ z ∈ N̂G(Pγ){β̄}. So that we obtain a well-defined morphism of
groups:

θ : N̂G(Nβ){γ}/NN (Pγ)i → N̂G(Pγ){β̄}/NN (Pγ)ī.

3.14. By [5, Lemma 6.15], 3.13 and 3.12 and the above remark, the restriction

ŝγ : (Âγβ)N → Â(Pγ)
NN (Pγ)

β̄

is an epimorphism of N̂G(Nβ){γ}/NN (Pγ)i-algebras, via the restriction determined

by θ. By the definition of the action on (Aβ ⊗ x̂)P , this morphism verifies

ŝγ((a⊗ x̂)
¯̂n) = (ŝγ(a⊗ x̂))θ(

¯̂n) := (n⊗ z)−1(a⊗ x̂)(n⊗ z),

for any ¯̂n in N̂G(Nβ){γ}/NN (Pγ)i.

Corollary 3.15. The group Ḡ[β̄]{γ} is invariant under the conjugation action deter-
mined by the elements belonging to the image of θ.

Proof. For any x̂ that lifts an element of Ḡ[β̄]γ we have

ŝγ((Aβ ⊗ x̂)N ) = ((Aβ ⊗ x̂)P )NN (Pγ).

Using Lemma 3.6, Remark 3.13 and 3.13 the result follows. �

3.16. Denote

k̂1 := A(Pγ)β̄(NN (Pγ)β̄) = A(Pγ)
NN (Pγ)

β̄
/J(A(Pγ)

NN (Pγ)

β̄
).

The twisted group algebra

ˆ̄A(Pγ)
NN (Pγ)

β̄
:= Â(Pγ)

NN (Pγ)

β̄
/Jgr(Â(Pγ)

NN (Pγ)

β̄
),

of k̂1 with Ḡ[β̄]{γ}, corresponds uniquely to the extension

1→ k̂∗1 →
̂

N̄
A(Pγ)
G (Pγ){β̄} → Ḡ[β̄]{γ} → 1. (2)

We call this the Clifford extension of the multiplicity algebra of γ. Note that k̂1 is
a skew field having the center a finite extension of k. Moreover, we observe that
ˆ̄A(Pγ)

NN (Pγ)

β̄
is actually a crossed product of k̂1 with Ḡ[β̄]{γ}, implying that it is a

strongly Ḡ[β̄]{γ}-graded algebra.
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4. The restricted isomorphism of Clifford extensions

We summarize all of the above in the main result of the paper and we refer to
[1, Theorem 4.1] for more details regarding the proof.

Theorem 4.1. The following statements hold.

(i) The extensions (1′) and (2) are isomorphic.

(ii) The crossed products they correspond to are isomorphic as N̂G(Nβ){γ}/NN (Pγ)i-

algebras.

Proof. The epimorphism ŝγ of Ḡ[β]{γ} ' Ḡ[β̄]{γ}-strongly graded algebras determines
the epimorphism ̂̄sγ : ( ˆ̄Aγβ)N → ˆ̄A(Pγ)

NN (Pγ)

β̄
,

since ŝγ(J((Aγβ)N )) ⊆ J(A(Pγ)
NN (Pγ)

β̄
). The map ̂̄sγ is also a morphism of Ḡ[β]{γ}-

strongly graded algebras. [5, Proposition 3.23] gives k̂ ' k̂1, and the first assertion
follows from [3, Proposition 2.12]. As for the second assertion we use Lemma 3.12,
Remark 3.13 and Corollary 3.15. �
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