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Ćirić type fixed point theorems
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Abstract. The purpose of this paper is to review some fixed point and strict

fixed point results for Ćirić type operators. The data dependence of the fixed
point set, the well-posedness of the fixed point problem, the limit shadowing
property, as well as, the fractal operator theory associated with these operators
are also considered.
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1. Preliminaries

Fixed points and strict fixed points (also called end-points) are important tools
for the study of equilibrium problems in Mathematical Economics and Game The-
ory. Fixed points and the strict fixed points represent optimal preferences in some
economical models and respectively different Nash type equilibrium points for some
abstract games, see, for example, [1] and [23]. As a consequence, it is important aim
to obtain fixed and strict fixed point theorems for multivalued operators in different
contexts.

We shall begin by presenting some notions and notations that will be used
throughout the paper.

Let us consider the following families of subsets of a metric space (X, d):

P (X) := {Y ∈ P (X) |Y 6= ∅} ;Pb(X) := {Y ∈ P (X)| Y is bounded } ,

Pcl(X) := {Y ∈ P (X)| Y is closed} ;Pcp(X) := {Y ∈ P (X)| Y is compact}
Let us define the gap functional between the sets A and B in the metric space

(X, d) as:

D : P (X)× P (X)→ R+, D(A,B) = inf{d(a, b) | a ∈ A, b ∈ B}

and the (generalized) Pompeiu-Hausdorff functional as:

H : P (X)× P (X)→ R+ ∪ {+∞},
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H(A,B) = max{sup
a∈A

D(a,B), sup
b∈B

D(A, b)}.

The generalized diameter functional is denoted by δ : P (X)×P (X)→ R+∪{∞},
and defined by

δ(A,B) = sup{d(a, b) | a ∈ A, b ∈ B}.
Denote by diam(A) := δ(A,A) the diameter of the set A.

Let T : X → P (X) be a multivalued operator and

Graphic(T ) := {(x, y)|y ∈ T (x)}

the graphic of T . An element x ∈ X is called a fixed point for T if and only if x ∈ T (x)
and it is called a strict fixed point if and only if {x} = T (x).

The set Fix(T ) := {x ∈ X| x ∈ T (x)} is called the fixed point set of T , while
SFix(T ) = {x ∈ X| {x} = T (x)} is called the strict fixed point set of T . Notice that
SFix(T ) ⊆ Fix(T ).

We will also denote by

O(x0, n) := {x0, t(x0), t2(x0), · · · , tn(x0)}

the orbit of order n of the operator t corresponding to x0 ∈ X, while

O(x0) := {x0, t(x0), t2(x0), · · · , tn(x0), · · · }

is the orbit of f corresponding to x0 ∈ X.

In this paper we will survey some fixed point and strict fixed point theorems for
singlevalued and multivalued operators satisfying contractive conditions of Ćirić type.
We will also present some new results for general classes of Ćirić type operators.

2. A survey of known results

The basic metric fixed point theorems for singlevalued, respectively multivalued
operators are Banach’s contraction principle (1922), respectively Nadler’s contrac-
tion principle (1969). A lot of efforts were done to extend these results for so called
generalized contractions.

Let (X, d) be a metric space and f : X → X be a singlevalued operator. Then,
by definition (see I.A. Rus [22]), f is called a weakly Picard operator if:

(i) Ff 6= ∅;
(ii) for all x ∈ X, the sequence (fn(x))n∈N → x∗(x) ∈ Ff as n→∞.
In particular, if Ff = {x∗}, then f is called a Picard operator.
Moreover, if f is a weakly Picard operator and there exists c̃ > 0 such that

d(x, x∗(x)) ≤ c̃d(x, f(x)), for all x ∈ X,

then f is called a c̃-weakly Picard operator. Similarly, a Picard operator for which
there exists c̃ > 0 such that

d(x, x∗) ≤ c̃d(x, f(x)), for all x ∈ X,

is called a c̃-Picard operator.
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A nice extension of Banach’s contraction principle was given by Ćirić, Reich and
Rus (independently one to the others) in 1971-1972.

More precisely, if (X, d) is a complete metric space and f : X → X is an operator
for which there exist a, b, c ∈ R+ with a+ b+ c < 1 such that

d(f(x), f(y)) ≤ ad(x, y) + bd(x, f(x)) + cd(y, f(y)), for all x, y ∈ X,

then f is a c̃-Picard operator, with c̃ := 1
1−β , where β := min{a+b1−c ,

a+c
1−b} < 1.

An extension of this result was proved in a paper from 1973 by Hardy and
Rogers. The result, in Picard operators language, is as follows.

If (X, d) is a complete metric space and f : X → X is an operator for which
there exist a, b, c, e, f ∈ R+ with a+ b+ c+ e+ f < 1 such that

d(f(x), f(y)) ≤ ad(x, y) + bd(x, f(x)) + cd(y, f(y)) + ed(x, f(y)) + fd(y, f(x)),

for all x, y ∈ X, then f is a c̃-Picard operator, with c̃ := 1
1−β , where

β := min{a+ b+ e

1− c− e
,
a+ c+ f

1− b− f
} < 1.

The idea of the proof in the above results is to prove that f is a contraction on
the graphic of the operator. i.e.,

d(f(x), f2(x)) ≤ βd(x, f(x)), for all x ∈ X.

Then in 1974, Ćirić proved the following very general result.
If (X, d) is a complete metric space and if f : X → X is an operator for which

there exists q ∈ (0, 1) such that, for all x, y ∈ X, we have

d(f(x), f(y)) ≤ qmax{d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))}, (2.1)

then f is a c̃-Picard operator, with c̃ := 1
1−q .

In this last case, the proof is based on some arguments involving the orbit of
order n and the orbit of the operator f .

Remark 2.1. Notice that any Ćirić-Reich-Rus type operator is a Hardy-Rogers type
operator and any Hardy-Rogers type operator is a Ćirić type operator. The reverse
implications do not hold, as we can see from several examples given in [10], [21], [22].

There are also other generalizations of the above theorems. One of the most
general one, was proved by I.A. Rus in 1979.

If (X, d) is a complete metric space and f : X → X is an operator for which
there exists a generalized strict comparison function ϕ : R5

+ → R+ (which means that
ϕ is increasing in each variable and the function Φ : R+ → R+ defined by

Φ(t) := ϕ(t, t, t, t, t)

satisfy the conditions that Φn(t) → 0 as n → +∞, for all t > 0 and t − Φ(t) → +∞
as t→ +∞) such that

d(f(x), f(y))≤ ϕ(d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))), for all x, y∈X,
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then f is a Φ-Picard operator (i.e., f is a Picard operator and d(x, x∗) ≤ Φ(d(x, f(x)),
for all x ∈ X).

Notice that if, in particular

ϕ(t1, t2, t3, t4, t5) := at1 + bt2 + ct3 + et4 + ft5,

(with a, b, c, e, f ∈ R+ and a + b + c + e + f < 1), then we obtain the Hardy-Rogers
condition on f . Also, if we consider

ϕ(t1, t2, t3, t4, t5) := qmax{t1, t2, t3, t4, t5},

then we get the Ćirić type condition on f .

Finally, let us recall another nice generalization given, for the case of nonself
operators, by Ćirić in 2006.

More precisely, if (X, d) is a complete metric space and f : X → X is an
operator for which there exist five strict comparison functions ϕi : R+ → R+ (i.e., ϕi
is increasing, ϕni (t) → 0 as n → +∞, for all t > 0 and t − ϕi(t) → +∞ as t → +∞
for each i ∈ {1, 2, 3, 4, 5}) such that, for all x, y ∈ X one have that

d(f(x), f(y)) ≤
≤ max{ϕ1(d(x, y)), ϕ2(d(x, f(x))), ϕ3(d(y, f(y))), ϕ4(d(x, f(y))), ϕ5(d(y, f(x)))},

then f is a Picard operator.
Notice that, in particular if we define ϕi(t) := qt (where q < 1) for i ∈ {1, 2, 3, 4, 5},
then we obtain again the classical condition of Ćirić.

Passing to the multivalued case, let (X, d) be a metric space and let T : X → Pb(X)
be a multivalued operator with nonempty and bounded values. We will be interested
in the study of strict fixed points of multivalued operators satisfying some contractive
type conditions with respect to the functional δ.

In 1972, S. Reich proved the following very interesting strict fixed point theorem
for multivalued operators.

If (X, d) is a complete metric space and if T : X → Pb(X) is a multivalued
operator for which there exist a, b, c ∈ R+ with a+ b+ c < 1 such that

δ(T (x), T (y)) ≤ ad(x, y) + bδ(x, T (x)) + cδ(y, T (y)), for all x, y ∈ X,
then the following conclusions hold:

(i) FT = (SF )T = {x∗};
(ii) for each x0 ∈ X there exists a sequence of successive approximations for T

starting from x0 (which means that xn+1 ∈ T (xn), for each n ∈ N) convergent to x∗;

(iii) d(xn, x
∗) ≤ βn

1−βd(x0, x1), for n ∈ N∗ (where β := min{a+b1−c ,
a+c
1−b} < 1).

An important extension of the above result is the following theorem of Ćirić,
given in 1972.

Let (X, d) be a complete metric space and let T : X → Pb(X) be a multivalued
operator for which there exists q ∈ R+ with q < 1 such that, for all x, y ∈ X the
following condition holds

δ(T (x), T (y)) ≤ qmax{d(x, y), δ(x, T (x)), δ(y, T (y)), D(x, T (y)), D(y, T (x))}.
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Then the following conclusions hold:

(i) FT = (SF )T = {x∗};
(ii) for each x0 ∈ X there exists a sequence of successive approximations for T

starting from x0 convergent to x∗;

(iii) d(xn, x
∗) ≤ q(1−a)n

1−q1−a d(x0, x1), for n ∈ N∗ (where a ∈ (0, 1) is an arbitrary

real number).

In the above two results, the approach is based on the construction of a selection
t : X → X of T which satisfies the corresponding fixed point theorem (given by Reich

and respectively by Ćirić) for singlevalued operators.

A relevant generalization of the above theorems was given by I.A. Rus in 1982,
as follows.

Let (X, d) be a complete metric space and let T : X → Pb(X) be a multivalued
operator. Suppose that there exists an increasing function ϕ : R5

+ → R+ for which
there exists p > 1 such that the function ψ : R5

+ → R+ defined by

ψ(t1, t2, t3, t4, t5) := ϕ(t1, pt2, pt3, t4, t5)

is a generalized strict comparison function. If, for all x, y ∈ X the following assumption
takes place:

δ(T (x), T (y)) ≤ ϕ(d(x, y), δ(x, T (x)), δ(y, T (y)), D(x, T (y)), D(y, T (x))),

then the following conclusions hold:

(i) FT = (SF )T = {x∗};
(ii) for each x0 ∈ X there exists a sequence of successive approximations for T

starting from x0 convergent to x∗.

Remark 2.2. In none of the above cases, we cannot obtain (without additional as-
sumptions) the conclusion that T is a multivalued Picard operator. Recall that, by
definition, T : X → P (X) is called a multivalued Picard operator (see [15]) if and
only if:

(i) (SF )T = FT = {x∗};
(ii) Tn(x)

Hd→ {x∗} as n→∞, for each x ∈ X.

For example, if, in the case of Reich’ strict fixed point theorem, we additionally
impose the condition that

min

{
a+ b

1− b
,
a+ c

1− c

}
< 1,

then we can prove that T is a multivalued Picard operator, see [14].

Remark 2.3. It is an open question if we can get similar results if we replace, in Ćirić’
result (or more generally in Rus’ theorem) the values D(x, T (y)) and D(y, T (x)) with
δ(x, T (y)) and, respectively δ(y, T (x)).
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3. Strict fixed point theorems in metric spaces endowed with a graph

A new research direction in fixed point theory was recently considered by J.
Jachymski (see [11]) in the context of a metric space endowed with a graph.

Let (X, d) be a metric space and ∆ be the diagonal of X×X. Let G be a directed
graph such that the set V (G) of its vertices coincides with X and ∆ ⊆ E(G), E(G)
being the set of the edges of the graph. Assuming that G has no parallel edges, we
will suppose that G can be identified with the pair (V (G), E(G)).

If x and y are vertices of G, then a path in G from x to y of length k ∈ N is a finite
sequence (xn)n∈{0,1,2,··· ,k} of vertices such that x0 = x, xk = y and (xi−1, xi) ∈ E(G),
for i ∈ {1, 2, · · · , k}.

Let us denote by G̃ the undirected graph obtained from G by ignoring the
direction of edges. Notice that a graph G is connected if there is a path between any
two vertices and it is weakly connected if G̃ is connected.

We will write that E(G) ∈ I(T × T ) if and only if x, y ∈ X with (x, y) ∈ E(G)
implies T (x)× T (y) ⊂ E(G).

For the particular case of a singlevalued operator t : X → X the above notations
should be considered accordingly. In particular, the condition E(G) ∈ I(t× t) means
that the operator t is edge preserving (in the sense of the Jachymski’s definition of a
Banach contraction, see [11]), i.e., for each x, y ∈ X with (x, y) ∈ E(G) we have that
(t(x), t(y)) ∈ E(G).

One of the main result of the paper [2] is a fixed point theorem for a singlevalued

operator of Ćirić type in metric spaces endowed with a graph. An extended version
of that theorem is the following.

Theorem 3.1. Let (X, d) be a complete metric space and G be a directed graph such
that the triple (X, d,G) satisfies the following property:
(P) for any sequence (xn)n∈N ⊂ X xn → x as n→∞, there exists a subsequence

(xkn)n∈N of (xn)n∈N such that (xkn , x) ∈ E(G).
Let t : X → X be a singlevalued operator. Suppose the following assertions hold:

(i) there exists a ∈ [0, 1[ such that

d(t(x), t(y)) ≤ a ·max{d(x, y), d(x, t(x)), d(y, t(y)), d(x, t(y)), d(y, t(x)},
for all (x, y) ∈ E(G).

(ii) there exists x0 ∈ X such that (x0, t(x0)) ∈ E(G);
(iii) E(G) ∈ I(t× t);
(iv) if (x, y) ∈ E(G) and (y, z) ∈ E(G), then (x, z) ∈ E(G).

In these conditions we have:

(a) (existence) Fix(t) 6= ∅.
(b) (uniqueness) If, in addition, the following implication holds

x∗, y∗ ∈ Fix(t) ⇒ (x∗, y∗) ∈ E(G),

then Fix(t) = {x∗}.
Moreover, the sequence (tn(x0))n∈N converges to x∗ in (X, d)

Recall now two important stability concepts for the case of fixed point inclusions.
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Definition 3.2. Let (X, d) be a metric space and T : X → Pcl(X) be a multivalued
operator. By definition, the fixed point problem is well-posed for T with respect to H
if:

(i) SFixT = {x∗};
(ii) If (xn)n∈N is a sequence in X such that H(xn, T (xn)) → 0, as n → ∞, then

xn
d→ x∗, as n→∞.

Definition 3.3. Let (X, d) be a metric space and T : X → P (X) be a multivalued
operator. By definition T has the limit shadowing property if for any sequence (yn)n∈N
from X such that D (yn+1, T (yn)) → 0, as n → ∞, there exists (xn)n∈N a sequence
of successive approximation of T, such that d (xn, yn)→ 0, as n→∞.

Another main result in [2] concerns with the case of multivalued operators sat-

isfying a Ćirić type condition with respect to the functional δ. An extended version
of that result is the following theorem.

Theorem 3.4. Let (X, d) be a complete metric space and G be a directed graph such
that the triple (X, d,G) satisfies the following property:

(P) for any sequence (xn)n∈N ⊂ X xn → x as n→∞, there exists a subsequence

(xkn)n∈N of (xn)n∈N such that (xkn , x) ∈ E(G).

Let T : X → Pb(X) be a multivalued operator. Suppose the following assertions hold:

(i) there exists a ∈ [0, 1[ such that

δ(T (x), T (y)) ≤ a ·max{d(x, y), δ(x, T (x)), δ(y, T (y)), D(x, T (y)), D(y, T (x))},

for all (x, y) ∈ E(G).
(ii) there exists x0 ∈ X such that, for all y ∈ T (x0) we have (x0, y) ∈ E(G);
(iii) E(G) ∈ I(T × T );
(iv) if (x, y) ∈ E(G) and (y, z) ∈ E(G), then (x, z) ∈ E(G).

In these conditions we have:

(a) Fix(T ) = SFix(T ) 6= ∅.
(b) If, in addition, the following implication holds

x∗, y∗ ∈ Fix(T ) ⇒ (x∗, y∗) ∈ E(G),

then Fix(T ) = SFix(T ) = {x∗}. Moreover, there exists a selection t : X → X
of T satisfying the condition (2.1) on E(G), such that the sequence x∗ is a fixed
point for t and (tn(x0))n∈N converges to x∗ as n→ +∞.

(c) If T has closed graphic and if, for any sequence (xn)n∈N in X for which

H(xn, T (xn))→ 0 as n→∞,

we have that

(xn, x
∗) ∈ E(G) for all n ∈ N,

then the fixed point problem is well-posed for T with respect to H.
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(d) If a < 1
3 and if, for all sequences (yn)n∈N in X for which

D (yn+1, T (yn))→ 0 as n→∞,
it follows that

(yn, x
∗) ∈ E(G) for all n ∈ N,

then T has the limit shadowing property.

A data dependence result for the fixed point of a multivalued operator satisfying
a Ćirić type condition with respect to the functional δ is the following.

Theorem 3.5. Let (X, d) be a complete metric space and G be a directed graph such
that the triple (X, d,G) satisfies the following property:
(P) for any sequence (xn)n∈N ⊂ X with xn → x as n→∞, there exists a subsequence

(xkn)n∈N of (xn)n∈N such that (xkn , x) ∈ E(G).
Let T, S : X → Pb(X) be two multivalued operators. Suppose the following assertions
hold:

(i) there exists a ∈ [0, 1[ such that

δ(T (x), T (y)) ≤ a ·max{d(x, y), δ(x, T (x)), δ(y, T (y)), D(x, T (y)), D(y, T (x))},
for all (x, y) ∈ E(G).

(ii) there exists x0 ∈ X such that, for all y ∈ T (x0) we have (x0, y) ∈ E(G);
(iii) E(G) ∈ I(T × T );
(iv) if (x, y) ∈ E(G) and (y, z) ∈ E(G), then (x, z) ∈ E(G).
(v) if x∗, y∗ ∈ Fix(T ) then (x∗, y∗) ∈ E(G).

(vi) Fix(S) 6= ∅.
(vii) if x∗ ∈ Fix(T ), then (x∗, y) ∈ E(G), for each y ∈ Fix(S).
(viii) there exists η > 0 such that δ(T (x), S(x)) ≤ η, for all x ∈ X.

Then

δ(x∗, F ix(S)) ≤ η

1− a
,

where x∗ is the unique fixed point of T .

Proof. By Theorem 3.4 the operator T has a unique fixed point, i.e.,

Fix(T ) = SFix(T ) = {x∗}.
Let y ∈ Fix(S) be arbitrary. Denote by t the selection of T which exists as in the
text of Theorem 3.4. Then, we have

d(x∗, y) ≤ d(x∗, t(y)) + d(t(y), y)) ≤ d(t(x∗), t(y)) + δ(T (y), S(y))

≤ a ·max{d(x∗, y), d(x∗, t(x∗)), d(y, t(y)), d(x∗, t(y)), d(y, t(x∗))}+ η

= a ·max{d(x∗, y), d(y, t(y)), d(x∗, t(y))}+ η

≤ a ·max{d(x∗, y), δ(S(y), T (y)), d(x∗, t(y))}+η ≤ a ·max{d(x∗, y), η, d(x∗, t(y))}+η.

We have the following cases:
1) If the above maximum is d(x∗, y), then we obtain that

d(x∗, y) ≤ η

1− a
.
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2) If the above maximum is η, then we obtain that

d(x∗, y) ≤ η(1 + a).

3) If the above maximum is d(x∗, t(y)), then

d(x∗, y) ≤ ad(x∗, t(y)) + η = ad(t(x∗), t(y)) + η ≤ ad(x∗, y) + η.

Hence

d(x∗, y) ≤ η

1− a
.

As a conclusion, from the above cases we get that

δ(x∗, F ix(S)) ≤ η

1− a
. �

For other results in the context of metric spaces endowed with a graph or the
case of ordered metric spaces we refer to [2], [3], [8], [9], [13], [12], [16], [19], etc.

4. A fractal operator theory for Ćirić-type operators

We will present now an existence and uniqueness result for the multivalued
fractal operator generated by a multivalued operator of Ćirić type.

Let (X, d) be a metric space and F : X → P (X) be a multivalued operator.

The multi-fractal operator generated by F is denoted by F̂ : Pcp (X)→ Pcp (X) and
is defined by Y 7→ F (Y )

F (Y ) :=
⋃
x∈Y

F (x) , for each Y ∈ Pcp (X)

A fixed point for F̂ is a fixed set for F , i.e., a nonempty compact set A∗ with
the property F̂ (A∗) = A∗.

Concerning the above problem, we have the following result.

Theorem 4.1. Let (X, d) be a complete metric space and let F : X → Pcl(X) be an
upper semicontinuous multivalued operator. Suppose that there exists a continuous
and increasing (in each variable) function ϕ : R3

+ → R+ such that the function
Ψ : R+ → R+ defined by

Ψ(t) := ϕ(t, t, t)

satisisfies the following properties:
(i) Ψn(t)→ 0 as n→ +∞, for all t > 0;
(ii) t−Ψ(t)→ +∞ as t→ +∞.
Suppose also that

H(F (x), F (y)) ≤ ϕ(d(x, y), D(x, F (y)), D(y, F (x))), for all x, y ∈ X.

Then the multi-fractal F̂ : Pcp (X)→ Pcp (X) generated by F has a unique fixed point,
i.e., there exists a unique A∗ ∈ Pcp(X) such that

F̂ (A∗) = A∗.
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Proof. We will prove that F̂ satisfies the assumptions of Rus’ Theorem for singlevalued
operators, i.e.,

H(F̂ (A), F̂ (B)) ≤ ϕ(H(A,B), H(A,F (B)), H(B,F (A))), for all A,B ∈ Pcp (X) .

Indeed we have:

ρ(F (A), F (B)) = sup
a∈A

ρ(F (a), F (B)) = sup
a∈A

( inf
b∈B

ρ(F (a), F (b))) ≤

≤ sup
a∈A

( inf
b∈B

H(F (a), F (b))) ≤ sup
a∈A

( inf
b∈B

(ϕ(d(a, b), D(a, F (b)), D(b, F (a)))))

≤ sup
a∈A

ϕ( inf
b∈B

d(a, b), inf
b∈B

D(a, F (b)), inf
b∈B

D(b, F (a)))

= sup
a∈A

ϕ(D(a,B), D(a, F (B)), D(F (a), B))

= ϕ(sup
a∈A

D(a,B), sup
a∈A

D(a, F (B)), sup
a∈A

D(F (a), B))

= ϕ(ρ(A,B), ρ(A,F (B)), ρ(F (A), B)) ≤ ϕ(H(A,B), H(A,F (B)), H(B,F (A))).

By the above inequality and the similar one for ρ(F (A), F (B)), we obtain that

H(F (A), F (B)) ≤ ϕ(H(A,B), H(A,F (B)), H(B,F (A))).

As a consequence, by Rus’ theorem applied for F̂ , we get that F̂ has a unique fixed
point in Pcp(X), i.e., there exists a unique A∗ ∈ Pcp(X) such that F̂ (A∗) = A∗. �

Moreover, if (X, d) is a metric space and F1, ..., Fm : X → P (X) are multivalued
operators, then the system F = (F1, ..., Fm) is called an iterated multifunction system
(IMS).

If the system F = (F1, ..., Fm) is such that, for each i ∈ {1, 2, · · ·m}, the mul-
tivalued operators Fi : X → Pcp (X) are upper semicontinuos, then the operator TF
defined as

TF (Y ) =

m⋃
i=1

Fi (Y ) , for each Y ∈ Pcp (X)

has the property that TF : Pcp (X) → Pcp (X) and it is called the multi-fractal
operator generated by the IMS F = (F1, ..., Fm) .

A nonempty compact subset A∗ ⊂ X is said to be a multivalued fractals with
respect to the iterated multifunction system F = (F1, ..., Fm) if and only if it is a
fixed point for the associated multifractal operator, i.e., TF (A∗) = A∗.

In particular, if Fi are singlevalued continuous operators from X to X, then
f = (f1, ..., fm) is called an iterated function system (briefly IFS) and the operator
Tf : Pcp (X)→ Pcp (X) given by

Tf (Y ) =

m⋃
i=1

fi (Y ) , for each Y ∈ Pcp (X)

is called the fractal operator generated by the IFS f . A fixed point of Tf is called a
fractal generated by the IFS f .

An existence and uniqueness result for the multivalued fractal is the following.
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Theorem 4.2. Let (X, d) be a complete metric space and let Fi : X → Pcl(X)
(i ∈ {1, 2, · · · ,m}) be upper semicontinuous multivalued operators. Suppose that
there exists continuous and increasing (in each variable) functions ϕi : R3

+ → R+

(i ∈ {1, 2, · · · ,m}) such that the functions Ψi : R+ → R+ defined by

Ψi(t) := ϕi(t, t, t), (i ∈ {1, 2, · · · ,m})
satisfy, for each i ∈ {1, 2, · · · ,m}, the following properties:

(i) Ψn
i (t)→ 0 as n→ +∞, for all t > 0;

(ii) t−Ψi(t)→ +∞ as t→ +∞.
Suppose also that, for each i ∈ {1, 2, · · · ,m}, we have that

H(Fi(x), Fi(y)) ≤ ϕi(d(x, y), D(x, F (y)), D(y, F (x))), for all x, y ∈ X.
Then the multi-fractal TF : Pcp (X)→ Pcp (X) generated by IMS F := (F1, ..., Fm) has
a unique fixed point, i.e., there exists a unique A∗ ∈ Pcp(X) such that TF (A∗) = A∗.

Proof. For A,B ∈ Pcp(X) and using the proof of the previous theorem, we have

H(TF (A), TF (B)) = H(

m⋃
i=1

Fi (A) ,

m⋃
i=1

Fi (B)) ≤ max
i∈{1,2,··· ,m}

H(Fi(A), Fi(B))

≤ max
i∈{1,2,··· ,m}

ϕi(H(A,B), H(A,Fi(B)), H(B,Fi(A)))

≤ max
i∈{1,2,··· ,m}

ϕi(H(A,B), H(TF (B), A), H(TF (A), B))

= ϕ̄(H(A,B), H(TF (B), A), H(TF (A), B)),

where ϕ̄(t1, t2, t3) := max
i∈{1,2,··· ,m}

ϕi(t1, t2, t3). The conclusion follows again by Rus’s

Theorem applied for TF . �

It is an open question to prove a similar result to Theorem 4.1 or Theorem 4.2
for the multifractal operator TF generated by an IMS F = (F1, ..., Fm) of multivalued

operators of Ćirić type.
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