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Some remarks on restriction maps between
cohomology of fusion systems

Constantin-Cosmin Todea

Abstract. We define a restriction map between two cohomology algebras of some
saturated fusion systems which are chosen in a particular situation. We find
conditions for this map to induce an injective map between the varieties which
can be associated to these finitely generated graded commutative cohomology
algebras. Some minimal examples for which we can apply our results are also
given.
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1. Preliminaries

Saturated fusion systems on finite p-groups are intensively studied in the last
years by mathematicians from different areas such as: modular representation theory,
algebraic topology and finite groups. A saturated fusion system F on a finite p-group
P is a category whose objects are the subgroups of P and whose morphisms satisfy
certain axioms mimicking the behavior of a finite group G having P as a Sylow
subgroup. The axioms of saturated fusion systems were invented by Puig in early
1990’s. See [1] for a detailed exposition of results and definitions involving fusion
systems.

The cohomology algebra of a p-local finite group with coefficients in Fp is intro-
duced in [3, §5] and is equal with cohomology algebra of a saturated fusion system.
Let k be an algebraically closed field of characteristic p. We denote by H∗(G, k) the
cohomology algebra of the group G with trivial coefficients. As in [6] we will use the
language of homotopy classes of chain maps (see [6, 2.8]). We denote by H∗(F) the
algebra of stable elements of F , i.e. the cohomology algebra of the saturated fusion
system F , which is the subalgebra of H∗(P, k) consisting of elements [ζ] ∈ H∗(P, k)
such that

resP
Q([ζ]) = resϕ([ζ]),
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for any ϕ ∈ HomF (Q,P ) and any subgroup Q of P . This is the main object of study in
this paper. Moreover Broto, Levi and Oliver showed that any saturated fusion system
F has a non-unique P−P -biset X with certain properties formulated by Linckelmann
and Webb (see [3, Proposition 5.5]). Such a P − P -biset X is called a characteristic
biset. Using this biset, S. Park noticed in [8] a result which says that a saturated fusion
system can be realized by a finite group. This finite group is G = Aut(XP ), that is
the group of bijections of the characteristic biset X, preserving the right P -action.
So, by [8, Theorem 3], we identify F with FP (G) which is the fusion system on P
such that for every Q,R ≤ P we have

HomFP (G)(Q,R) = {ϕ : Q → R | ∃x ∈ G s.t. ϕ(u) = xux−1,∀u ∈ Q}.

Using this identification we will define a restriction map from the cohomology algebra
of the group G with coefficients in the field k to the cohomology algebra of the fusion
system, H∗(F). We denote this map by ρF,G, and we have the following proposition.

Proposition 1.1. Let F be a saturated fusion system on P and let X be a character-
istic P − P -biset. Let G = Aut(XP ) and then we identify F with FP (G). We have
resG

P (H∗(G, k)) ⊆ H∗(F), hence there is a homomorphism of algebras

ρF,G : H∗(G, k) → H∗(F),

given by ρF,G([ζ]) = resG
P ([ζ]), for any [ζ] ∈ H∗(G, k).

Next we will define the main restriction map of this article, between the co-
homology algebras of two saturated fusion systems. This is done by considering the
following situation:
Situation (∗). Let Q be a finite p-subgroup of a finite p-group P . Let G be a finite group
which realizes a saturated fusion system G on P (i.e. G = FP (G)) and F a fusion
subsystem (i.e subcategory and fusion system) of G on Q. We assume that there is H
which realizes F and Q ≤ H ≤ G.

The next example assure us that there are cases of saturated fusion systems in
Situation (∗).

Example 1.2. Let H be a finite subgroup of a finite group G with P a Sylow p-
subgroup of G such that P ∩ H 6= {1}. Then F = FP∩H(H) and G = FP (G) are in
Situation (∗).

It is easy to verify that in Situation (∗) the restriction map resP
Q induces a

well-defined homomorphism of algebras

resG,F : H∗(G) → H∗(F),

given by resG,F ([ζ]) = resP
Q([ζ]) for any [ζ] ∈ H∗(G).

Now we set some notations, which are known to appear in the Quillen stratifi-
cation of VG ([4, Definition 8.4.4, Theorem 8.5.2]) of group cohomology ring. Let E
be a p-subgroup of G. The restriction map resG

E : H∗(G, k) → H∗(E, k) induces a map
on varieties, which we denote

r∗G,E : VE → VG.
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As usual we define the subvariety of VE

V +
E = VE \

⋃
F<E

(resE
F )∗(VF ),

and denote the subvarieties of VE

VG,E = r∗G,E(VE), V +
G,E = r∗G,E(V +

E ).

Finally we set WG(E) = NG(E)/CG(E), the Weyl group. Similarly to the group
cohomology ring case, since H∗(F) is a graded commutative finitely generated k-
algebra we can associate the spectrum of maximal ideals, i.e. the variety denoted VF .
Varieties for cohomology algebras of particular cases of saturated fusion systems were
studied in [7], for fusion systems associated to block algebras of finite groups. See also
[2, Chapter 5] for more results regarding varieties.

Theorem 1.3. We assume that we are in Situation (∗).
(i) The following diagram is commutative

H∗(G, k)
ρG,G //

resG
H

��

H∗(G)

resG,F

��
H∗(H, k)

ρF,H // H∗(F)

(ii) If Ker(resG,F ) has a nilpotent ideal then resG,F induces a finite surjective map

res∗G,F : VF → VG .

In Situation (∗) if Q = P then the restriction resG,F becomes the inclusion
map, hence Ker(resF,G) is a nilpotent ideal. Therefore exist cases for which Theorem
1.3, (ii) is true. The next definitions allow us to find conditions for which res∗G,F is
injective.

Definition 1.4. Let G,F be two saturated fusion systems in Situation (∗). We say that
the pair (F ,H) is weakly elementary embedded in (G, G) if:
(1) Whenever E is an elementary abelian p-subgroup of H then WG(E) ∼= WH(E);
(2) If two elementary abelian p-subgroups of H are G-conjugate then they are also

H-conjugate.

The main result of this article is the following theorem.

Theorem 1.5. In Situation (∗) we assume that ρ∗F,H is injective. If (F ,H) is weakly
elementary embedded in (G, G) then res∗G,F is injective.

Using Theorem 1.3, (ii) and Theorem 1.5 it is easy to check the following corol-
lary. The proof is left for the reader.

Corollary 1.6. We assume that we are under the hypothesis of Theorem 1.5 such that
Q = P . Then res∗G,F is a bijective map.

We notice from Example 1.2 that there are some minimal examples for which
the above theorem and corollary can be applied.
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2. Proofs of the results

Proof of Proposition 1.1. Let Q be a subgroup of P , ϕ ∈ HomF (Q,P ) and let [ζ] ∈
H∗(G, k). We have to prove that

resP
Q(resG

P ([ζ])) = resϕ(resG
P ([ζ])).

We denote by ϕ = i1 ◦ ϕ, where i1 : P → G is the inclusion. Then we will prove that

resG
Q([ζ]) = resϕ([ζ]).

We consider S a Sylow p-subgroup of G such that P ≤ S. Then FP (G) is a full
subcategory of FS(G), hence ϕ ∈ HomFS(G)(Q, P ). If we take ϕ′ = i2 ◦ ϕ, where
i2 : P → S is the inclusion, then ϕ′ ∈ HomFS(G)(Q,S). By Cartan-Eilenberg stable
elements theorem ([5, XII, Theorem 10.1]) we have that

resS
Q(resG

S ([ζ])) = resϕ′(resG
S ([ζ])).

Since ϕ = i3 ◦ ϕ′, where i3 : S → G is the inclusion, we get the above, desired
condition.
Proof of Theorem 1.3. (i) is easy to check since we have compositions of restric-
tions. For (ii) we have that H∗(F) is a ρF,H(H∗(H, k))-submodule of H∗(Q, k).
Since H∗(Q, k) is noetherian as resH

Q (H∗(H, k))-module it follows that H∗(F) is
a finitely generated ρF,H(H∗(H, k))-module. Now H∗(H, k) is a finitely generated
resG

H(H∗(G, k))-module. Then we obtain that H∗(F) is finitely generated as (ρF,H ◦
resG

H)(H∗(G, k))-module, hence by (i) we get that H∗(F) is finitely generated as
(resG,F ◦ ρG,G)(H∗(G, k))-module. Since (resG,F ◦ ρG,G)(H∗(G, k)) is a subalgebra of
resG,F (H∗(G)) we obtain that H∗(F) is finitely generated as resG,F (H∗(G))-module,
thus resG,F is a finite map. Now resG,F is also a dominant map (see [2, Section 5.4]),
because Ker(resG,F ) is a nilpotent ideal. We conclude that it is surjective, see [2,
Theorem 5.4.7].
Proof of Theorem 1.5. Let m1,m2 ∈ VF such that res∗G,F (m1) = res∗G,F (m2). By
Theorem 1.3, (i) we have that

ρ∗G,G ◦ res∗G,F = (resG
H)∗ ◦ ρ∗F,H ;

From [4, Theorem 8.5.2] (Quillen stratification) applied to VH there is E1 ≤ H an
elementary abelian p-subgroup and γ1 ∈ V +

E1
such that ρ∗F,H(m1) = r∗H,E1

(γ1). Sim-
ilarly there is E2 ≤ H an elementary abelian p-subgroup and γ2 ∈ V +

E2
such that

ρ∗F,H(m2) = r∗H,E2
(γ2), hence

((resG
H)∗ ◦ ρ∗F,H)(m1) = ((resG

H)∗ ◦ r∗H,E1
)(γ1),

((resG
H)∗ ◦ ρ∗F,H)(m2) = ((resG

H)∗ ◦ r∗H,E2
)(γ2).

From the above relations it follows that

((resG
H)∗ ◦ r∗H,E1

)(γ1) = ((resG
H)∗ ◦ r∗H,E2

)(γ2),

that is
r∗G,E1

(γ1) = r∗G,E2
(γ2) ∈ V +

G,E1
∩ V +

G,E2
,

thus E1, E2 are G-conjugate, and by Definition 1.4, (2) we get that they are H-
conjugate. From this we can choose now E1 = E2 = E and r∗G,E(γ1) = r∗G,E(γ2) ∈
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V +
G,E . By the Quillen stratification for H∗(G, k) we have V +

G,E
∼= V +

E /WG(E) and this
inseparable isogeny is given by rG,E . We obtain that γ1, γ2 are in the same orbit of
the action of WG(E) on V +

E . By Definition 1.4, (1) it follows that γ1, γ2 are in the
same orbit of the action of WH(E) on V +

E , then r∗H,E(γ1) = r∗H,E(γ2). We conclude
that ρ∗F,H(m1) = ρ∗F,H(m2), hence m1 = m2 since ρ∗F,H is injective.
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