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Abstract. In this paper, we review some basic facts about discrete Morse theory,
we introduce the Morse-Smale characteristic for a finite simplicial complex, and
we construct Z2-exact discrete Morse functions on the torus with two holes T2

and on the dunce hat DH.

Mathematics Subject Classification (2010): 57Q99, 57R70, 58E05.

Keywords: Finite simplicial complex, discrete Morse function, exact discrete
Morse function, discrete Morse-Smale characteristic, torus of genus 2, dunce hat.

Let K be a finite simplicial complex. A function f : K → R is a discrete Morse
function if for every simplex α(p) ∈ K we have simultaneously :

#{β(p+1) > α(p) | f(β) ≤ f(α)} ≤ 1, #{γ(p+1) < α(p) | f(γ) ≥ f(α)} ≤ 1,

where #A denotes the cardinality of the set A.
Note that a discrete Morse function is not a continuous function on the complex

K since we did not considered any topology on K. Rather, it is an assignment of a
single number to each simplex.

The other main ingredient in discrete Morse theory is the notion of a critical
simplex of discrete function. A p-dimensional simplex α(p) is critical if the following
relations hold simultaneously :

#{β(p+1) > α(p) | f(β) ≤ f(α)} = 0, #{γ(p+1) < α(p) | f(γ) ≥ f(α)} = 0.

The study of the discrete version of the Morse theory was initiated by R.Forman [9],
[10].

If K is a m-dimensional simplicial complex with a discrete Morse function, then
let µj = µj(f) denote the number of critical simplices of dimension j of the function
f . For any field F , let βj = dimHj(K,F ) be the j-th Betti number with respect to
F , j = 0, 1, . . . ,m.

Let K be a m-dimensional simplicial complex with a discrete Morse function f .
Then the following relations also hold in the discrete context.
(1) The weak discrete Morse’s inequalities.

(i) µj ≥ βj , j = 0, 1, . . . ,m;
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(ii) µ0 − µ1 + µ2 − · · ·+ (−1)mµm = β0 − β1 + β2 − · · ·+ (−1)mβm = χ(K).
The last relation is called Euler’ s relation.

(2) Also, the strong discrete Morse’s inequalities are valid in this context, that is for
each j = 0, 1, . . . ,m− 1, we have

µj − µj−1 + · · ·+ (−1)jµ0 ≥ βj − βj−i + · · ·+ (−1)jβ0.

Let K be a m-dimensional simplicial complex containing exactly cj simplices
of dimension j, for each j = 0, 1, . . . ,m. Let Cj(K,Z) denote the space Zcj . More
precisely, Cj(K,Z) denotes the free Abelian group generated by the j-simplices of
K, each endowed with an orientation. Then for each j, there are boundary maps
∂j : Cj(K,Z)→ Cj−1(K,Z), such that ∂j−1 ◦ ∂j = 0.

The resulting differential complex

0 −→ Cm(K,Z)
∂m−→ Cm−1(K,Z)

∂m−1−→ . . .
∂1−→ C0(K,Z) −→ 0

calculates the singular homology of K. That is, if we define the quotient space

Hj(C, ∂) = Ker(∂j)/Im(∂j+1),

then for each j we have the isomorphism

Hj(C, ∂) ∼= Hj(K,Z),

where Hj(K,Z) denotes the singular homology of K.
The discrete Morse theory is the main tool in studying some geometric properties

of finite simplicial complexes. In this respect we refer to the papers of D.Andrica and
I.C.Lazăr [3]-[6], K.Crowley [8], and I.C. Lazăr [11], [12].

1. The discrete Morse-Smale characteristic

Consider Km to be a m-dimensional finite simplicial complex.
The discrete Morse-Smale characteristic of K was considered in paper [13], and

it is a natural extension of the well-known Morse-Smale characteristic of a manifold
(see the monograph [2]).

Let Ω(K) be the set of all discrete Morse functions defined on K. It is clear
that Ω(K) is nonempty, because, for instance, the trivial example of discrete Morse
function defined by f(σ) = dimσ, σ ∈ K.

For f ∈ Ω(K), let µj(f) be the number of j-dimensional critical simplices of f ,
j = 0, 1, . . . ,m.

Let µ(f) be the number defined as follows:

µ(f) =

m∑
j=0

µj(f),

i.e. µ(f) is the total number of critical simplices of f . The number

γ(K) = min{µ(f) : f ∈ Ω(K)}
is called the discrete Morse Smale characteristic of the simplicial complex K. So,
the discrete Morse-Smale characteristic represents the minimal number of critical
simplices for all discrete Morse functions defined on K.
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In analogous way, one can define the numbers γj(K), j = 0, 1, . . . ,m, by

γj(K) = min{µj(f) : f ∈ Ω(K)},
that is the minimal numbers of critical of j-dimensional simplices, for all discrete
Morse functions defined on K.

The effective computation of these numbers associated to a finite simplicial com-
plex is an extremely complicated problem in combinatorial topology. A finite algo-
rithm for the determination of these numbers for any simplicial complex is not yet
known.

2. Exact discrete Morse functions and F -perfect Morse functions

Consider the finite m-dimensional simplicial complex K. For j = 0, 1, . . . ,m, let
Hj(K,F ) be the singular homology groups with the coefficients in the field F , and let
βj(K,F ) = rankHj(K,F ) = dimF Hj(K,F ) be the Betti numbers with respect to F .

For every f ∈ Ω(K), we have the discrete weak Morse inequalities :

µj(f) ≥ βj(K,F ), j = 0, 1, . . . ,m.

The discrete Morse function f ∈ Ω(K) is called exact (or minimal) if µj(f) = γj(K),
for all j = 0, 1, . . . ,m. So, an exact discrete Morse function has a minimal number of
critical simplices in each dimension.

The discrete Morse function f ∈ Ω(K) is called F -perfect if µj(f) =
βj(K,F ), j = 0, 1, . . . ,m.

Using the discrete weak Morse inequalities and the definition of the discrete
Morse-Smale characteristic, we obtain the inequalities:

µj(f) ≥ min{µj(f) : f ∈ Ω(K)} = γj(K) ≥ βj(K,F ).

Theorem. The simplicial complex K has F -perfect discrete Morse functions if and
only if γ(K) = β(K,F ), where

β(K,F ) =

m∑
j=0

βj(K,F )

is the total Betti number of K with respect to the field F .
Proof. To prove the direct implication, let f ∈ Ω(K) be a fixed F -perfect discrete
Morse function. Using the weak Morse inequalities, it follows:

µ(f) =

m∑
j=0

µj(f) ≥
m∑
j=0

βj(K,F ) = β(K,F ),

hence µ(f) ≥ β(K,F ). Using the definition of the discrete Morse-Smale characteristic
of K, we get

γ(K) = min{µ(f) : f ∈ Ω(K)} ≥ β(K,F ).

Because f is a discrete F -perfect Morse function on K, we have µ(f) = β(K,F ). On
the other hand, clearly we have the inequality

γ(K) = min{µ(g) : g ∈ Ω(K)} ≤ β(K,F ).
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Therefore, we get γ(K) ≤ β(K,F ) and the desired relation follows.
For the converse implication, let f ∈ Ω(K) be a discrete Morse function. From

the relations

µ(f) =

m∑
j=0

µj(f) and β(K,F ) =

m∑
j=0

βj(K,F ),

using the hypothesis γ(K) = β(K,F ), it follows
m∑
j=0

[µj(f)− βj(K,F )] = 0.

From the discrete weak Morse inequalities, we get µj(f) − βj(K,F ) ≥ 0, j =
0, 1, . . . ,m. All in all, the following relations hold µj(f) = βj(K,F ), j = 0, 1, . . . ,m.
Therefore, f is a discrete F -perfect Morse function. �

If K is a simplicial complex of dimension m, one knows that Cj(K,Z), j =
0, 1, . . . ,m, is a finitely generated free Abelian group generated by the j-simplices
in K. Since subgroups and quotient groups of finitely generated groups are again
finitely generated, it follows that the homology group Hj(K,Z) is finitely generated.
Therefore, by the fundamental theorem about such groups, we can write Hj(K,Z) '
Aj ⊕Bj , where Aj is a free group and Bj is the torsion subgroup of Hj(K,Z).

Therefore, the singular homology groups Hj(K,Z), j = 0, 1, . . . ,m, are finitely
generated. For every j = 0, 1, . . . ,m, we can write

Hj(K,Z) ' (Z⊕ · · · ⊕ Z)⊕ (Znj1
⊕ · · · ⊕ Znjβ(j)

),

where Z is taken βj times in the free group, j = 0, 1, . . . ,m. Here βj represents the
Betti numbers of K with respect to the group (Z,+), that is we have βj(K,Z) =
rankHj(K,Z), j = 0, 1, . . . ,m.

3. A Z2-exact Morse function on the two holes torus T2

The torus with two holes T2 is the connected sum of two copies of torus T2,
that is T2 = T2#T2. In this section we consider the triangulation of T2 represented
in Figure 1. The singular homology of the torus with two holes T2 is given by

H0(T2) = Z, H1(T2) = Z⊕ Z⊕ Z⊕ Z, H2(T2) = Z.
Then, using the universal coefficients formula, we easily obtain

H0(T2,Z2) ' Z2, H1(T2,Z2) ' Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2, H2(T2,Z2) ' Z2.

This implies that the Z2-Betti numbers of T2 are given by

β0(T2,Z2) = 1, β1(T2,Z2) = 4, β2(T2,Z2) = 1,

hence the Z2- total Betti number of T2 is

β(T2,Z2) =

2∑
j=0

βj(T2,Z2) = 1 + 4 + 1 = 6.

We obtain γ(T2) = β(T2,Z2) = 6, and this relation implies that we can define on the
simplicial complex given by the triangulation of torus with two holes T2 in Figure 1,
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a discrete Morse function with exactly six critical simplices. This function is Z2-exact
and is defined in Figure 1, where the critical simplices are encircled.

Figure 1.
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4. A Z2-exact Morse function on the dunce hat DH

In topology, the dunce hat DH is a compact topological space formed by taking
a solid triangle and gluing all three sides together, with the orientation of one side
reversed. Simply gluing two sides oriented in the same direction would yield a cone
much like the layman’s dunce cap, but the gluing of the third side results in identifying
the base of the cap with a line joining the base to the point.

The space DH is contractible, but not collapsible. Contractibility can be easily
seen by noting that the dunce hat embeds in the 3-ball and the 3-ball deformation
retracts onto the dunce hat. Alternatively, note that the dunce hat is the CW-complex
obtained by gluing the boundary of a 2-cell onto the circle. The gluing map is homo-
topic to the identity map on the circle and so the complex is homotopy equivalent to
the disc. By contrast, it is not collapsible because it does not have a free face.

Figure 2.
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The name is due to E. C. Zeeman [15], who observed that any contractible 2-
complex (such as the dunce hat) after taking the Cartesian product with the closed
unit interval seemed to be collapsible. This observation became known as the Zeeman
conjecture and was shown by Zeeman to imply the Poincaré conjecture.

We consider the triangulation of the dunce hat DH which is shown in Figure 2.
The singular homology of the dunce hat DH is

H0(DH) = Z, H1(DH) = Z, H2(DH) = Z.

Then, using again the universal coefficients formula, we obtain

H0(DH,Z2) ' Z2, H1(DH,Z2) ' Z2, H2(DH,Z2) ' Z2.

This implies that the Z2-Betti numbers of DH are given by

β0(DH,Z2) = 1, β1(DH,Z2) = 1, β2(DH,Z2) = 1,

and the total Betti number is

β(DH,Z2) =

2∑
j=0

βj(DH,Z2) = 1 + 1 + 1 = 3.

We obtain γ(DH) = β(DH,Z2) = 3, and this property implies that we can define on
the simplicial complex given by the triangulation of DH in Figure 2 a discrete Morse
function with exactly three critical simplices. This function is Z2-exact and is defined
in Figure 2, the critical simplices are encircled.
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