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On saturated triples associated to some block
algebras of finite groups

Constantin-Cosmin Todea

Abstract. Saturated triples are recently defined in [3]. Block algebras of finite
groups give an important example of such saturated triples. In this short article
we prove that the principal block and the group algebra viewed as an algebra
acted by the group of automorphisms of the finite group provides a new example
of saturated triples.

Mathematics Subject Classification (2010): 20C20.

Keywords: Block algebra, finite group, permutation algebra.

1. Preliminaries

We follow [4] to recall definitions and basic properties of block algebras of finite
groups. Let G be a finite group and let k be an algebraically closed field of character-
istic p such that p divides the order of G. A block algebra of kG is an indecomposable
factor B of kG as an algebra. The block algebras are in bijection with the primitive
idempotents of the center Z(kG). We denote by Bl(kG) the finite set of block algebras
(i.e. primitive idempotents in Z(kG)). If B is a block algebra we have B = bkG, where
b is the corresponding primitive idempotent from Z(kG).

kG is a p-permutation G-algebra, where G acts by conjugation and then Bl(kG)
are actually the primitive idempotents of (kG)G = Z(kG). If G acts on a set X we
denote by OrbG(X) its orbits and if C ∈ OrbG(X) we denote by C+ the sum of all
elements in the orbit C. If we use a set of indices I for the orbits we usually mean an
arbitrary family of orbits, if not, it means that we consider all the orbits. We follow
[2, 2.1] for results and notations regarding permutation algebras. By [2, Lemma 2.2]
the set {C+ : C ∈ OrbG(G)} is a k-basis of (kG)G, where G acts by conjugation on
G. We denote by N the element

∑
g∈G g.

The augmentation map ε : kG → k is the surjective homomorphism of k-algebras
defined by ε(g) = 1k for any g ∈ G, that is, for an element

∑
x∈G αxx ∈ kG we have

ε(
∑
x∈G

αxx) =
∑
x∈G

αx.
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ker(ε) is a maximal ideal of kG, the augmentation ideal and is generated as a k-
vector space by {g − 1 : g ∈ G}. Let εG be the restriction of ε to (kG)G (as a map
εG : Z(kG) → k) and let {Ci}i∈I ⊆ OrbG(G). Then it is easy to see that

εG(
∑
i∈I

αiC
+
i ) =

∑
i∈I

| Ci | αi.

Proposition 1.1. With the above notations we have:
(1) εG is a surjective homomorphism.
(2) ker(εG) 6= 0 and ker(εG) is a maximal ideal of Z(kG).

Proof. (1) Obviously εG is a k-algebra homomorphism. We only prove that is surjec-
tive. Let α ∈ k. Then is easy to see that

a = (α + 1k)1G +
∑

C∈OrbG(G)\{1G}

C+ ∈ (kG)G.

We have that

εG(a) = (α + 1k)1k +
∑

C∈OrbG(G)\{1G}

| C | 1k = α + 1k+ | G | 1k − 1k = α.

(2) Since εG(N) =| G |= 0 then N ∈ ker(εG). �

2. The action of Aut(G) on kG

We consider in this section an action of Aut(G) on kG, which we describe in the
following lines. If f ∈ Aut(G) then there is f ∈ Autk(kG), where Autk(kG) represents
the group of all k-algebra automorphisms of kG. For

∑
x∈G αxx ∈ kG we have that

f is defined by
f(

∑
x∈G

αxx) =
∑
x∈G

αxf(x).

Now kG becomes an Aut(G)-algebra where f ∈ Aut(G) acts on a ∈ kG by
fa = f(a). By [2] we have that (kG)Aut(G) has as k-basis the set

{C+ | C ∈ OrbAut(G)G}.

As above, let εAut(G) be the restriction of ε to (kG)Aut(G), that is the map

εAut(G) : (kG)Aut(G) → k.

Proposition 2.1. With the above notations we have:
(1) εAut(G) is a surjective homomorphism.
(2) ker(εAut(G)) 6= 0 and ker(εAut(G)) is a maximal ideal of (kG)Aut(G).

Proof. (1) We have the same proof as in Proposition 1.1, using the element

a′ = (α + 1k)1G +
∑

C∈OrbAut(G)(G)\{1G}

C+ ∈ (kG)Aut(G).

(2) Similarly we have that N ∈ ker(εAut(G)). �
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We denote by b0 ∈ Bl(kG) the unique block such that b0N = N , equivalently b0

is the unique block such that ε(b0) 6= 0. We call b0 the principal block of kG, see [4,
Section 40].

Proposition 2.2. Let f ∈ Aut(G). If b ∈ Bl(kG) then f(b) ∈ Bl(kG). Moreover for the
principal block we have f(b0) = b0.

Proof. It is easy to verify that f(b) is an idempotent. To prove that it is central let
g ∈ G. Then

f(b)g = f(b)f(f−1(g)) = f(bf−1(g)) = f(f−1(g)b) = gf(b).

It is easy to check, by contradiction, that f(b) is primitive in Z(kG).
For the second part, since N ∈ (kG)Aut(G) we have that

f(b0)N = f(b0)f(N) = f(b0N) = f(N) = N.

�

3. Saturated triples

From [2] we know that (A, b,G) is a saturated triple if b is a central idempotent,
primitive in AG such that for any (A, b,G)-Brauer pair (Q, e) we have that e is prim-
itive in A(Q)CG(Q,e), where A is a p-permutation algebra. See [2, IV, Section 2] for
more details.

Theorem 3.1. With the above notation we have that the triple (kG, Aut(G), b0) is a
saturated triple.

Proof. We have that (kG)G = (kG)Inn(G) , where Inn(G) is the normal subgroup in
Aut(G) of inner automorphisms. Then (kG)Aut(G) ⊆ (kG)G. By Proposition 2.2 we
have that b0 remains primitive in (kG)Aut(G).

Let Q be a p-subgroup of Aut(G) and e a primitive idempotent of Z(kG(Q)).
Since Aut(G) acts on G (the action given in Section 2), by [1, 2.5] we have that
kG(Q) ∼= kCG(Q), where

CG(Q) = {g ∈ G | f(g) = g,∀f ∈ Q}.
We prove next that e remains primitive in kCG(Q)CAut(G)(Q,e), where

CAut(G)(Q, e) = {f | f ∈ Aut(G), f(e) = e, f ◦ q = q ◦ f,∀q ∈ Q}.
We consider InnCG(Q)(G) as the following subset of Aut(G), given by

InnCG(Q)(G) = {cx | x ∈ CG(Q), cx : G → G, cx(g) = xgx−1,∀g ∈ G}.
It is easy to check that InnCG(Q)(G) is a subgroup of Aut(G). If we restrict an element
cx ∈ InnCG(Q)(G) to CG(Q) we have that Im(cx |CG(Q)) = CG(Q), then it follows that

kCG(Q)CG(Q) = kCG(Q)InnCG(Q)(G) (3.1)

Next we prove that InnCG(Q)(G) is a subset of CAut(G)(Q, e) (in particular it is
a subgroup). Let cx ∈ InnCG(Q)(G), q ∈ Q, g ∈ G. We have that

cx(e) = xex−1 = e,
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since e ∈ kCG(Q)CG(Q). The following statements holds

(cx ◦ q)(g) = xq(g)x−1;

(q ◦ cx)(g) = q(xgx−1) = q(x)q(g)q(x)−1 = xq(g)x−1,

since q ∈ Q and x ∈ CG(Q).
We now obtain that InnCG(Q)(G) ≤ CAut(G)(Q, e), hence e remains primitive in

kCG(Q)CAut(G)(Q,e) ⊆ kCG(Q)InnCG(Q)(G) = Z(kCG(Q)),

where the last equality is proved in (3.1). �

Remark 3.2. Theorem 3.1 remains valid if we replace b0 with any block b such that
b ∈ (kG)Aut(G), which remains primitive in this smaller algebra (kG)Aut(G).
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