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Solving nonlinear oscillators using a modified
homotopy analysis method

Mohammad Zurigat, Shaher Momani and Ahmad Alawneh

Abstract. In this paper, a new algorithm called the modified homotopy analy-
sis method (MHAM) is presented to solve a nonlinear oscillators. The proposed
scheme is based on the homotopy analysis method (HAM), Laplace transform
and Padé approximants. Several illustrative examples are given to demonstrate
the effectiveness of the present method. Results obtained using the scheme pre-
sented here agree well with those derived from the modified homotopy pertur-
bation method (MHPM). The results reveal that the MHAM is an effective and
convenient for solving nonlinear differential equations.
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1. Introduction

The study of nonlinear oscillators is of crucial importance in all areas of physics
and engineering, as well as in other disciplines. It is very difficult to solve nonlinear
problems and, in general, it is often more difficult to get an analytic approxima-
tion than a numerical one to a given nonlinear problem. Several methods have been
used to find approximate solutions to strongly nonlinear oscillators. Such methods
include variational iteration method [1, 2, 3, 4, 5, 6, 7], Adomian decomposition
method [8, 9], differential transform method [10], and harmonic balance based meth-
ods [11, 12, 13, 14, 15]. Surveys of the literature with multitudinous references and
useful bibliographies have been given in Refs. [16, 17]. Recently, Momani et al [18], pro-
posed a powerful analytic method, namely modified homotopy perturbation method.
This method is based on the homotopy perturbation method, the Laplace transfor-
mation and Padé approximants. The approximate solution of the MHPM displays the
periodic behavior which is characteristic of the oscillatory equations. The homotopy
analysis method (HAM) [19] yields rapidly convergent series solutions by using few
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iterations for both linear and nonlinear differential equations. The HAM was success-
fully applied to solve many nonlinear problems such as Riccati differential equation
of fractional order [20], fractional KdV-Burgers-Kuramoto equation [21], systems of
fractional algebraic-differential equations [22], and so on. In this paper, we developed
a symbolic algorithm to find the solution of nonlinear oscillators by a modified ho-
motopy analysis method (MHAM). The MHAM is based on the homotopy analysis
method (HAM), Laplace transform and Padé approximants. Finally, we make a nu-
merical comparison between our method and the MHPM. The structure of this paper
is as follows. In section 2 we describe the homotopy analysis method and briefly dis-
cuss Padé approximants. In Section 3 we present three examples to show the efficiency
and simplicity of the method.

2. Homotopy analysis method

The HAM has been extended by many authors to solve linear and nonlinear
fractional differential equations [19, 20, 21, 22]. In this section the basic ideas of the
homotopy analysis method are introduced. To show the basic idea, let us consider the
following nonlinear oscillator equation

y
′′

(t) + c1y(t) + c2y
2(t) + c3y

3(t) = ǫF (t, y(t), y
′

(t)), t ≥ 0, (2.1)

subject to the initial conditions

y(0) = a, y
′

(0) = b, (2.2)

where ci, i = 1, 2, 3, are positive real numbers and ǫ is a parameter (not necessarily

small). We assume that the function F (t, y(t), y
′

(t)) is an arbitrary nonlinear function
of its arguments. Now, we can construct the so-called zero-order deformation equations
of the equation (2.1) by

(1 − q)L[φ(t; q) − y0(t)] = q ~[
d2

dt2
φ(t; q) + c1φ(t; q) + c2φ

2(t; q)

+ c3φ
3(t; q) − ǫF (t, φ(t; q),

d

dt
φ(t; q))], (2.3)

where q ∈ [0, 1] is an embedding parameter, L is an auxiliary linear operator satisfy
L(0) = 0, y0(t) is an initial guess satisfies the initial condition (2.2), ~ 6= 0 is an
auxiliary parameter and φ(t; q) is an unknown function. Obviously, when q = 0 and
when q = 1, we have φ(t; 0) = y0(t) and φ(t; 1) = y(t).Thus as q increasing from 0 to
1, φ(t; q) varies from y0(t) to y(t). Expanding φ(t; q) in Taylor series with respect to
q, one has

φ(t; q) = y0(t) +
∞∑

m=1

ym(t)qm, (2.4)

where

ym(t) =
1

m!

∂mφ(t; q)

∂qm
|q=0. (2.5)
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If the auxiliary parameter h and the initial guess y0(t) are so properly chosen, then
the series (2.4) converges at q = 1, one has

y(t) = y0(t) +
∞∑

m=1

ym(t). (2.6)

Define the vector
−→y m(t) = {y0(t), y1(t), . . . , ym(t)}. (2.7)

Differentiating the zero-order deformation equation (2.3) m times with respective to
q, then setting q = 0 and finally dividing them by m!, we have the so-called mth-order
deformation equations

L[ym(t) − χmy(m−1)(t)] = ~ℜm(−→y m−1(t)), (2.8)

where

ℜm(−→y m−1(t)) = y
′′

m−1(t) + c1ym−1(t) + c2

m−1∑

i=0

yi(t)ym−i−1(t)

+c3

m−1∑

i=0

ym−i−1(t)

i∑

j=0

yj(t)yi−j(t) (2.9)

−
ǫ

(m − 1)!

∂m−1

∂qm−1
[F (t, φ(t; q),

d

dt
φ(t; q))]|q=0,

and

χm =

{
0, m ≤ 1

1, m > 1.
. (2.10)

The mth-order approximation of y(t) is given by y(t) =

m∑

i=0

yi(t). This power series

can be transformed into Padé series easily. Padé series is defined in the following

a0 + a1x + a2x
2 + ... =

p0 + p1x + ... + pMxM

1 + q1x + ... + qLxL
. (2.11)

Multiply both sides of (2.11) by the denominator of right-hand side in (2.11). We have

al +

M∑

k=l

al−kqk = pl, (l = 0, 1, . . . , M),

al +

L∑

k=l

al−kqk = 0, (l = M + 1, . . . , M + L). (2.12)

Solving the linear equation in (2.12), we have qk (k = 1, . . . , L), and substituting into
(2.11), we have pk (l = 1, . . . , L) [23]. We use Mathematica to obtain diagonal Padé
approximants of various orders, such as [2/2] or [4/4].
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3. Numerical results

To demonstrate the effectiveness of the method we consider the following three
examples of nonlinear oscillator equation.

3.1. Example 1

Consider the following Helmholtz equation

y
′′

(t) + 2y(t) + y2(t) = 0, t > 0, (3.1)

subject to the initial conditions

y(0) = 0.1, y
′

(0) = 0. (3.2)

We start with initial approximation

y0(t) = 0.1. (3.3)

In view of the algorithm presented in the previous section, if we select the auxiliary
linear operator as

L =
d2

dt2
(3.4)

we can construct the homotopy as

ym(t) = χmy(m−1)(t) + ~

∫ t

0

(t − τ)ℜm(−→y m−1(t))dτ, (3.5)

where

ℜm(−→y m−1(t)) = y
′′

m−1(t) + 2ym−1(t) +

m−1∑

i=0

yi(t)ym−i−1(t). (3.6)

Using formula (3.5), the fifth-term approximate solution for equation (3.1) is
given by

y(t) = 0.1 + 0.42~t2 + 0.63~
2t2 + 0.42~

3t2 + 0.105~
4t2 + 0.1155~

2t4

+0.154~
3t4 + 0.05775~

4t4 + 0.00711667~
3t6 + 0.0053375~

4t6 (3.7)

+0.000142083~
4t8.

Setting ~ = −1 in Eq (3.7), then we have

y(t) = 0.1 − 0.105t2 + 0.0925t4 − 0.00177917t6 + 0.000142083t8. (3.8)

In order to improve the accuracy of the homotopy analysis solution of the
Helmholtz equation we need to implement the following technique. First applying
the Laplace transformation to the previous series solution, then we get

ỹm(s) =
0.1

s
−

0.21

s3
+

0.462

s5
−

1.281

s7
+

5.7288

s9
. (3.9)

Now, let s = 1
t

in (3.9), then we have

ỹm(t) = 0.1t − 0.21t3 + 0.462t5 − 1.281t7 + 5.7288t9.

The [4/4] Padé approximation gives
[
4

4

]
=

0.1t + 1.27t3

1 + 14.8t2 + 26.46t4
.
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Recalling t = 1/s, we obtain [4/4] in terms of s

[
4

4

]
=

1.27s + 0.1s3

26.46 + 14.8s2 + s4
.

By using the inverse Laplace transformation to the [4/4] Padé approximation, we
obtain the same solution obtained in Momani et al. [18] using the modified homotopy
perturbation method

y(t) = 0.0998141 cos(1.4423t) + 0.000185858 cos(3.56648t). (3.10)

Figure 1 shows the series solution (3.10) exhibit the periodic behavior which is char-
acteristic of the oscillatory Helmholtz equation (3.1) and (3.2).

20 40 60 80 100
t

-0.2

-0.1

0.1

0.2

yHtL

Figure 1. Plots of Eq. (3.10)

3.2. Example 2

Consider the following nonlinear equation

y
′′

(t) + y(t) = −0.1y2(t)y′(t), t > 0, (3.11)

subject to the initial conditions

y(0) = 1, y
′

(0) = 0. (3.12)

Select the initial guess as

y0(t) = 1, (3.13)

and the auxiliary linear operator (3.4), then we have the homotopy (3.5) where

ℜm(−→y m−1(t)) = y
′′

m−1(t) + ym−1(t) + 0.1

m−1∑

i=0

y
′

m−i−1(t)

i∑

j=0

yj(t)yi−j(t). (3.14)
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Using formula (3.5), the fifth-term approximate solution for equation (3.11) is
given by

y(t) = 1 + 2~t2 + 3~
2t2 + 2~

3t2 + 0.5~
4t2 + 0.1~

2t3 + 0.133~
3t3

+0.05~
4t3 + 0.25~

2t4 + 0.34~
3t4 + 0.126~

4t4 + 0.027~
3t5 (3.15)

+0.020008~
4t5 + 0.00555556~

3t6 + 0.0045694~
4t6

+0.001369~
4t7 + 0.0000248~

4t8.

Setting ~ = −1 in Eq (3.15), then we have

y(t) = 1 − 0.5t2 + 0.01667t3 + 0.0413t4 − 0.00666t5

−0.00098611t6 + 0.0013691t7 + 0.0000248t8. (3.16)

Applying the Laplace transformation to the previous series solution, then we get

ỹm(s) =
1

s
−

1

s3
+

0.1

s4
+

0.99

s5
−

0.799

s6
−

0.71

s7
+

6.9

s8
+

1

s9
. (3.17)

Let s = 1
t

in (3.17), then we have

ỹm(t) = t − t3 + 0.1t4 + 0.99t5 − 0.799t6 − 0.71t7 + 6.9t8 + t9.

The [4/4] Padé approximation gives

[
4

4

]
=

t + 0.3335t2 + 9.16122t3 + 0.313787t4

1 + 0.3335t + 10.1612t2 + 0.547287t3 + 9.13787t4
.

Recalling t = 1/s, we obtain [4/4] in terms of s

[
4

4

]
=

0.313787 + 9.16122s + 0.3335s2 + s3

9.13787 + 0.547287s + 10.1612s2 + 0.3335s3 + s4
.

By using the inverse Laplace transformation to the [4/4] Padé approximation, we
obtain the same solution obtained in Momani et al. [18] using the modified homotopy
perturbation method

y(t) = e(−0.013−0.999i)t((0.5 + 0.0111i) + (0.5 − 0.0111i)e−1.99it)

+e(−0.15−3.02i)t((0.0003 − 0.002i) + (0.0003 + 0.002i)e−6it). (3.18)

The equation (3.11) called the “unplugged” van der Pol, and all its solutions are
expected to oscillate with decreasing to zero. Figure 2 shows the series solution (3.18)
of the oscillatory nonlinear equation (3.11) and (3.12).
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Figure 2. Plots of Eq. (3.18)

3.3. Example 3

Consider the following nonlinear equation

y
′′

(t) + y(t) + 0.45y2(t) = y(t)y′(t), t > 0, (3.19)

subject to the initial conditions

y(0) = 0.1, y
′

(0) = 0. (3.20)

Take

y0(t) = 0.1, (3.21)

and the auxiliary linear operator (3.4), then we have the homotopy (3.5) where

ℜm(−→y m−1(t)) = y
′′

m−1(t) + ym−1(t) + 0.45

m−1∑

i=0

yi(t)ym−i−1(t)

−

m−1∑

i=0

y
′

i(t)ym−i−1(t). (3.22)

The fifth-term approximate solution for equation (3.19) is given by

y(t) = 0.1 + 0.21~t2 + 0.31~
2t2 + 0.21~

3t2 + 0.05~
4t2

−0.01~
2t3 − 0.0139~

3t3 − 0.005~
4t3 + 0.0285~

2t4

+0.038~
3t4 + 0.014~

4t4 − 0.0019~
3t5 − 0.0014~

4t5 (3.23)

+0.0008536~
3t6 + 0.000665~

4t6 − 0.0000524~
4t7

+8.1389× 10−6
~

4t8.

Setting ~ = −1 in Eq (3.23), then we have

y(t) = 0.1 − 0.05t2 − 0.00174t3 + 0.0047t4 + 0.00046t5

−0.0001889t6 − 0.0000524t7 + 8.1 × 10−6t8. (3.24)
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Applying the Laplace transformation to the previous series solution, then we get

ỹm(s) =
0.1

s
−

0.1045

s3
−

0.01045

s4
+

0.11286

s5
+

0.0554373

s6

−
0.136028

s7
−

0.264279

s8
+

0.32816

s9
. (3.25)

Let s = 1
t

in (3.25), then we have

ỹm(t) = 0.1t− 0.104t3 − 0.01045t4 + 0.11286t5 + 0.0554372t6

−0.136028t7 − 0.264279t8 + 0.32816t9.

The [4/4] Padé approximation gives

[
4

4

]
=

0.1t + 0.0643181t2 + 90.570534t3 − 0.0226522t4

1 + 0.643181t + 6.75034t2 + 0.550102t3 + 5.99272t4
.

Recalling t = 1/s, we obtain [4/4] in terms of s

[
4

4

]
=

−0.0226522 + 0.570534s + 0.0643181s2 + 0.1s3

5.99272 + 0.550102s + 6.75034s2 + 0.643181s3 + s4
.

By using the inverse Laplace transformation to the [4/4] Padé approximation, we
obtain

y(t) = e(−0.3−2.4i)t((0.0001 + 0.0003i)− (0.0001− 0.0003i)e−4.7it)

+e(−1.02i)t((0.05 − 0.001i)e0.01t + (0.05 + 0.001i)e(0.01+2.1i)t). (3.26)

The above results are in excellent agreement with the results obtained by Momani et
al. [18] using the modified homotopy perturbation method. Figure 3 shows the series
solution (3.26) of the oscillatory nonlinear equation (3.19) and (3.20).
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Figure 3. Plots of Eq. (3.26)
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4. Conclusions

In this work, we proposed an efficient modification of the HAM which introduces
an efficient tool for solving nonlinear oscillatory equations. The modified algorithm
has been successfully implemented to find approximate solutions for many problems.
The comparison of the result obtained by MHAM with that obtained by MHPM
confirms our belief of the efficiency of our techniques. The basic idea described in
this paper is expected to be further employed to find periodic solutions to nonlinear
fractional oscillatory equations.
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