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About some links between the Dini-Hadamard-
like normal cone and the contingent one

Delia-Maria Nechita

Abstract. The primary goal of this paper is to furnish an alternative description
for the contingent normal cone, similar to the one that exists for the Fréchet one,
but by using a directional convergence in place of the usual one. In fact, we actu-
ally prove that the same description is available not only for the contingent normal
cone, but also for the Dini-Hadamard normal cone and the Dini-Hadamard-like
one. Furthermore, we show that although in the case of the Dini-Hadamard sub-
differential the geometric construction agrees with the analytical one, in the case
of the Dini-Hadamard-like one the analytical construction is only greater than
the geometrical one.
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1. Introduction

It is well known that nonsmooth functions, sets with nonsmooth boundaries and
set-valued mappings appear naturally and frequently in various areas of mathemat-
ics and applications, especially in those related to optimization, stability, variational
systems and control systems. Actually, the study of the local behavior of nondifferen-
tiable objects is accomplished in the framework of nonsmooth analysis whose origin
goes back in the early 1960’s, when control theorists and nonlinear programmers at-
tempted to deal with necessary optimality conditions for problems with nonsmooth
data or with nonsmooth functions (such as the pointwise maximum of several smooth
functions) that arise even in many problems with smooth data. Since then, nonsmooth
analysis has come to play an important role in functional analysis, optimization, me-
chanics and plasticity, differential equations (as in the theory of viscosity solutions),
control theory etc, becoming an active and fruitful area of mathematics.

One of the most important topics in nonsmooth analysis is the study of different
kinds of tangent cones and normal cones to arbitrary sets. It is also worth mentioning
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here that the most successfully construction used in this framework turns out to be
the so-called contingent cone, independently introduced in 1930 by Bouligand [5] and
by Severi [18] in the context of contingent equations and differential geometry. Later,
under the name of cone of variations admissible by equality constrints, the same cone
was rediscovered and used in optimization theory by Dubovitskii and Milyutin [7, 8]
(for more details about related tangential constructions we refer the reader to Aubin
and Frankowska [2]). On the other hand, it is interesting to observe that there is a close
relationship between the Dini-Hadamard directional derivative and the contingent
cone (see [1, 15]). Thus, exploring such well known results but also a variational
description available for the Dini-Hadamard subdifferential of calm functions (see
[12]), we are able to provide the main result of the paper, a nice characterization
of the contingent normal cone (the polar cone to the contingent one) via a sort of
directional limes superior. Moreover, we even show that this kind of description holds
also true for the Dini-Hadamard-like normal cone and for the Dini-Hadamard one.
Finally, we study the relationship between various kinds of geometrical and analytical
subdifferential constructions, pointing out the key role of a decoupled construction in
characterizing the Dini-Hadamard-like subdifferential.

2. Preliminary notions and results

Consider a Banach space X and its topological dual space X∗. We denote the
open ball with center x ∈ X and radius δ > 0 in X by B(x, δ), while BX and SX

stand for the closed unit ball and the unit sphere of X, respectively. Having a set
C ⊆ X, δC : X → R ∪ {+∞}, defined by δC(x) = 0 for x ∈ C and δC(x) = +∞,
otherwise, denotes its indicator function. Given a function f : X → R which is finite
at x, we usually denote by epif = {(x, α) ∈ X × R : f(x) ≤ α} the epigraph of f .

One of the most attractive constructions,

dDHf(x;h) := lim inf
u→h
t↓0

f(x + tu)− f(x)
t

(2.1)

which appeared in the 1970’s was called lower semiderivative by Penot [15], contin-
gent derivative/epiderivative by Aubin [1], lower Dini (or Dini-Hadamard) directional
derivative by Ioffe [9, 10] and subderivative by Rockafellar and Wets [17].

Since in the case of real functions, the Dini-Hadamard directional derivative goes
back to the classical derivative numbers by Dini [6], in general it can be described in
a geometrical way via the contingent cone as follows

dDHf(x;h) = inf{α ∈ R : (h, α) ∈ T ((x, f(x)); epif)}, (2.2)

where for a given set C ⊂ X with x ∈ C,

T (x;C) := Limsupt↓0
C − x

t

denotes the contingent (or the Bouligand) cone to C at x, equivalently described as
the collection of those v ∈ X such that there are sequences (xn) ⊂ C and (αn) ⊂ R+



Dini-Hadamard-like normal cone and the contingent one 543

with the property that (xn) → x and (αn(xn − x)) → v as n → ∞. Note also here
that the contingent cone can be viewed (see [1]) in the following way

T (x;C) =
⋂
ε>0
δ>0

⋃
t∈(0,δ)

(t−1(C − x) + εBX), (2.3)

i.e. the set of all vectors v so that one can find sequences tn ↓ 0, un → v with the
property that x + tnun ∈ C for all n ∈ N.

Consequently, the Dini-Hadamard subdifferential of f at x, that is

∂DHf(x) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ dDHf(x;h) for all h ∈ X}, (2.4)

can also be expressed by means of the polar cone to the contingent one, i.e.

∂DHf(x) = {x∗ ∈ X∗ : (x∗,−1) ∈ T ◦((x, f(x)); epif)}, (2.5)

where given a subcone K ⊆ X, its polar cone K◦ is defined by

K◦ := {x∗ ∈ X∗ : sup
x∈K

〈x∗, x〉 ≤ 0}.

It is worth emphasizing here that, accordingly to [1, 15], if f is the indicator
function of C ⊆ X and x ∈ C, then dDHf(x;h) (viewed as a function in the second
variable) is the indicator function of the contingent cone T (x;C) and hence

∂DHδC(x) = T ◦(x;C). (2.6)

Let us also remark that dDHf(x; ·) is in general not convex (as it is actually
typical concave in some particular instances, see Bessis and Clarke [3]), but lower
semicontinuous. However, the Dini-Hadamard subdifferential of f at x is always a
convex set.

Similarly, following the two steps procedure of constructing the Dini-Hadamard
subdifferential, but employing a directional convergence in place of the usual one, we
can define (see [12]) the Dini-Hadamard-like subdifferential of f at x, i.e. the following
set

∂̃f(x) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ D̃df(x;h) ∀h ∈ X ∀d ∈ X \ {0}}, (2.7)

where

D̃df(x;h) := sup
δ>0

inf
u∈B(h,δ)∩(h+[0,δ]·B(d,δ))

t∈(0,δ)

f(x + tu)− f(x)
t

, (2.8)

labeled as the Dini-Hadamard-like directional derivative of f at x in the direction h ∈
X through d ∈ X \ {0}, extend somehow the Dini-Hadamard directional derivative,
while the essential idea was inspired by the fruitful relationship between sponges and
directionally convergent sequences (we refer the reader to [16, Lemma 2.1]). As usual,
in case |f(x)| = ∞, we set ∂DHf(x) = ∂̃f(x) = ∅.

Actually, introduced by Treiman [19], the sponge turns out to be very useful for
characterizing the Dini-Hadamard subdifferential. Actually, the idea behind this con-
cept was the fact that a neighborhood is in general not broad enough to characterize
this kind of subdifferential constructions.
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Definition 2.1. A set S ⊆ X is said to be a sponge around x ∈ X if for all h ∈ X \{0}
there exist λ > 0 and δ > 0 such that x + [0, λ] ·B(h, δ) ⊆ S.

In fact, as one can easily observe from the definition above, the singular point 0
is ignored. Furthermore, every neighborhood of a point x ∈ X is also a sponge around
x, but the converse is not true (see for instance [4, Example 2.2]). However, in case S
is a convex set or X is a finite dimensional space (here one can make use of the fact
that the unit sphere is compact), then S is also a neighborhood of x.

As regards the links between the two subdifferentials above, one can easily ob-
serve that the following inclusion

∂DHf(x) ⊆ ∂̃f(x) (2.9)

holds always true, but it can be even strict (see the discussion after [12, Theorem
3.1]). However, in case X is finite dimensional or the function f is calm at x, i.e. there
exists c ≥ 0 and δ > 0 such that f(x) − f(x) ≥ −c‖x − x‖ for all x ∈ B(x, δ), in
particular if f is locally Lipschitz at x, then the Dini-Hadamard subdifferential agrees
with the Dini-Hadamard-like one.

Although the Dini-Hadamard-like subdifferential as well as the Dini-hadamard
one (if additionally a calmness assumption is fulfilled, too) of a given function f :
X → R at a point x with |f(x)| < +∞ can be described via the following variational
description (see [12, Theorem 3.1])

∂̃f(x) := {x∗ ∈ X∗ : ∀ε > 0 ∃S a sponge around x such that ∀x ∈ S

f(x)− f(x) ≥ 〈x∗, x− x〉 − ε‖x− x‖}, (2.10)

or, in other words,

x∗ ∈ ∂̃f(x) ⇔ ∀ε > 0 ∀u ∈ SX ∃δ > 0 such that
∀s ∈ (0, δ) ∀v ∈ B(u, δ) for x := x + sv one has (2.11)

f(x)− f(x) ≥ 〈x∗, x− x〉 − ε‖x− x‖.

it seems that the following decoupled construction, introduced in [13], was de-
signed not only to derive exact subdifferential formulae for Dini-Hadamard and Dini-
Hadamard-like subgradients (see for instance [14]), as it was especially introduced
from the necessity to deal with appropriate derivative-like constructions on product
spaces. The reason is that, due to the very special structure of the spongious sets, the
cartesian product of two sponges is, in general, not a sponge.

Thus, given a function f : X × Y → R defined on a product of two Banach
spaces X and Y , the following subdifferential construction

∂̃.f(x, y) := {(x∗, y∗) ∈ X∗ × Y ∗ : ∀ε > 0 ∃S1 a sponge around x,

∃S2 a sponge around y such that ∀(x, y) ∈ S1 × S2

f(x, y)− f(x, y) ≥ 〈(x∗, y∗), (x− x, y − y)〉 − ε‖(x− x, y − y)‖}, (2.12)

denotes the decoupled Dini-Hadamard-like (lower) subdifferential of f at (x, y), where
X × Y is a Banach space with respect to the sum norm

‖(x, y)‖ := ‖x‖+ ‖y‖
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imposed on X × Y unless otherwise stated. It is interesting to observe that the last
notion is actually quite different than the Dini-Hadamard-like one, since, at first sight,
neither ∂̃f(x, y) * ∂̃.f(x, y) nor the opposite inclusion ∂̃.f(x, y) * ∂̃f(x, y) is valid.

3. Relationships between subgradients and normal cones

Let us begin our exposure with a few remarks. First of all, following relation
(2.6) above, one can easily observe that the Dini-Hadamard normal cone to a set
C ⊆ X at x ∈ C, naturally introduced via the Dini-Hadamard subdifferential to the
indicator function, can also be expressed via the polar cone to the contingent one, in
fact the contingent normal cone, i.e.

NDH(x;C) := ∂DHδC(x) = T ◦(x;C) := N(x;C). (3.1)

On the other hand, relations (2.5) and (3.1) clearly yield

∂DHf(x) = {x∗ ∈ X∗ : (x∗,−1) ∈ NDH((x, f(x)); epif))}. (3.2)

In fact, the latter actually says that the analytic Dini-Hadamard subdifferential
∂DH

a , as introduced in (2.4), always agrees with the geometrical one, ∂DH
g , as defined

in (3.2). However, this is no longer the case for the Dini-Hadamard-like subdifferential.
The reason is that, for this particular construction, one can state a similar result like
in (3.2) only by making use of the corresponding decoupled one.

Proposition 3.1. Let f : X → R be a given function finite at x. Then

∂̃f(x) = {x∗ ∈ X∗ : (x∗,−1) ∈ Ñ.((x, f(x)); epif)}, (3.3)

where Ñ.((x, y);C) := ∂̃.δ((x, y);C) stands for the decoupled Dini-Hadamard-like nor-
mal cone to C ⊂ X × Y at (x, y).

Proof. To justify the inclusion ” ⊆ ”, we have to show that

(x∗,−1) ∈ ∂̃.δ((x, f(x)); epif),

whenever x∗ ∈ ∂̃f(x). To proceed, pick any ε > 0 and observe that there exists a
sponge S1 around x such that for all x ∈ S1

f(x)− f(x) ≥ 〈x∗, x− x〉 − ε‖x− x‖. (3.4)

Further, for any (x, y) ∈ (S1 × R) \ epif the following estimate

δepif (x, y) ≥ 〈(x∗,−1), (x− x, y − f(x))〉 − ε(‖x− x‖+ ‖y − f(x)‖)
holds true. Thus, it remains us to show the latter inequality for an arbitrary (x, y) ∈
epif .

Indeed, relation (3.4) above leads to

〈x∗, x− x〉 − ε(‖x− x‖+ ‖y − f(x)‖) ≤ 〈x∗, x− x〉 − ε‖x− x‖
≤ f(x)− f(x) ≤ y − f(x),

and consequently (x∗,−1) ∈ Ñ.((x, f(x)); epif)}, which ends the proof of the first
inclusion.
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For the reverse one, take an arbitrary element on the right-hand side of (3.3)
and assume on the contrary that x∗ 6∈ ∂̃f(x). Then there exists γ > 0 such that for
any natural number k one can find xk ∈ S1 ∩B(x, 1

k ) with the following property

f(xk)− f(x)− 〈x∗, xk − x〉+ γ‖x− x‖ < 0,

where (obviously) xk 6= x. Hence, taking ak := f(x) + 〈x∗, xk − x〉 − γ‖xk − x‖ one
clearly gets (xk, ak) ∈ epif for all k ∈ N and additionally (ak)k → f(x).

Further
〈x∗, xk − x〉 − (ak − f(x))
‖(xk, ak)− (x, f(x))‖

=
γ‖xk − x‖

‖(xk − x, 〈x∗, xk − x〉 − γ‖xk − x‖)‖

≥ γ

1 + ‖x∗‖+ γ
> 0.

On the other hand, taking into account the fact that

(x∗,−1) ∈ Ñ.((x, f(x)); epif),

for a fixed γ′ ∈ (0, γ
1+‖x∗‖+γ ) there exist two sponges S1 around x and S2 around f(x)

(which is in fact a neighborhood) such that for any (x, y) ∈ S1 × S2 one has

δepif (x, y) ≥ 〈(x∗,−1), (x− x, y − f(x))〉 − γ′‖(x− x, y − f(x))‖.
Consequently, for all large enough k ∈ N, (xk, ak) ∈ S1 × S2 ∩ epif , and hence

γ′ ≥ 〈x∗, xk − x〉 − (ak − f(x))
‖(xk, ak)− (x, f(x))‖

,

which is a contradiction. Finally, x∗ ∈ ∂̃f(x) and the proof is complete. �

A valuable characterization of the contingent normal cone, similar to the one
that exist for the Fréchet normal cone (see for instance [11, Definition 1.1]), but by
replacing the usual convergence with a directional one, will be provided in the sequel.
In fact, one can say more.

Theorem 3.2. Let C be a nonempty subset of X and x ∈ C. Then

N(x;C) = NDH(x;C) = Ñ(x;C)

= {x∗ ∈ X∗ : inf
δ∈(0,1)

sup
x∈(x+(0,δ)·B(u,δ))∩C

〈x∗, x− x〉
‖x− x‖

≤ 0 ∀u ∈ SX},(3.5)

where Ñ(x;C) := ∂̃δC(x).

Proof. First, it is sufficient to take into account relation (3.1) above and also to observe
that the indicator function δC(x) is calm at x, in order to justify the equalities

N(x;C) = NDH(x;C) = Ñ(x;C).

Thus, it remains us to show only that

Ñ(x;C) = {x∗ ∈ X∗ : inf
δ∈(0,1)

sup
x∈(x+(0,δ)·B(u,δ))∩C

〈x∗, x− x〉
‖x− x‖

≤ 0 ∀u ∈ SX}.

So, let us justify only the inclusion ” ⊆ ”, since the reverse one can be done similarly,
but by reversing the steps ordering. Take x∗ ∈ Ñ(x;C) and consider arbitrary ε > 0
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and u ∈ SX . Then, if we take also into account the variational description (2.11), one
gets δ ∈ (0, 1) such that for all x ∈ (x + (0, δ) ·B(u, δ)) ∩ C

0 ≥ 〈x∗, x− x〉 − ε‖x− x‖.

Thus,

sup
x∈(x+(0,δ)·B(u,δ))∩C

〈x∗, x− x〉
‖x− x‖

≤ ε

and consequently

inf
δ∈(0,1)

sup
x∈(x+(0,δ)·B(u,δ))∩C

〈x∗, x− x〉
‖x− x‖

≤ ε.

Finally, this gives, by passing to the limit as ε ↓ 0, that x∗ satisfies the inequality in
the right-hand side of (3.6) and the proof of the theorem is complete. �

Finally, we illustrate the relationship between the analytic Dini-Hadamard-like
subdifferential and the geometrical one, concluding that this kind of construction
doesn’t follows at all the behavior of the Fréchet subdifferential (see, for instance, the
results in [11, Section 1.3]).

Corollary 3.3. Let f : X → R be an arbitrary function and x ∈ X. Then

∂̃gf(x) ( ∂̃af(x), (3.6)

where ∂̃gf(x) := {x∗ ∈ X∗ : (x∗,−1) ∈ Ñ((x, f(x)); epif)} stands for the geomet-
ric Dini-Hadamard-like subdifferential of f at x, while ∂̃af(x) := ∂̃f(x) denotes the
analytical one.

Proof. It is easy to check that

∂DHf(x) = {x∗ ∈ X∗ : (x∗,−1) ∈ Ñ((x, f(x)); epif)}

if we take into account relation (3.2) and Theorem 3.2 above. Hence, in view of
Proposition 3.1 the following inclusion

Ñ((x, f(x)); epif)} ⊆ Ñ.((x, f(x)); epif)},

holds true, but it can be even strict, since ∂DHf(x) ( ∂̃f(x). Consequently, ∂̃gf(x) =
∂DHf(x) ( ∂̃af(x) and the proof of the corollary is complete. �

Finally, let us illustrate the relationships between various subgradients studied
above, which are in fact direct consequences of the discussions made in this subsection.

Corollary 3.4. Let f : X → R be an arbitrary function and x ∈ X. Then

∂DH
a f(x) = ∂DH

g f(x) = ∂̃gf(x) ( ∂̃af(x), (3.7)

while the equalities hold true in case f is calm at x.
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