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On a subalgebra of L1
w(G)

İsmail Aydın

Abstract. Let G be a locally compact abelian group with Haar measure. We
define the spaces B1,w (p, q) = L1

w(G) ∩ (Lp, `q) (G) and discuss some properties
of these spaces. We show that B1,w (p, q) is an Sw(G) space. Furthermore we
investigate compact embeddings and the multipliers of B1,w (p, q).
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1. Introduction

Let G be a locally compact abelian group with Haar measure µ. An amalgam
space (Lp, `q) (G) (1 ≤ p, q ≤ ∞) is a Banach space of measurable (equivalence classes
of) functions on G which belong locally to Lp and globally to `q. Several authors have
introduced special cases of amalgams. Among others N. Wiener [28], [29], P. Szeptycki
[25], T. S. Liu, A. Van Rooij and J. K. Wang [19], H. E. Krogstad [17] and H. G.
Feichtinger [8]. For a historical background of amalgams see [11]. The first systematic
study of amalgams on the real line was undertaken by F. Holland [16]. In 1979 J.
Stewart [24] extended the definition of Holland to locally compact abelian groups
using the Structure Theorem for locally compact groups.

For 1 ≤ p < ∞, the spaces Bp(G) = L1(G) ∩ Lp(G) is a Banach algebra with
respect to the norm ‖.‖Bp(G) defined by ‖f‖Bp(G) = ‖f‖1+‖f‖p and usual convolution
product. The Banach algebras Bp(G) have been studied by C. R. Warner [27], L. Y.
H. Yap [30], and others. L. Y. H. Yap [31] extended some of the results on Bp(G) to
the Segal algebras

B (p, q) (G) = L1(G) ∩ L (p, q) (G),

where L (p, q) (G) is Lorentz spaces. The purpose of this paper is to discuss some
properties of the spaces B1,w (p, q) = L1

w(G) ∩ (Lp, `q) (G). Also we investigate the
spaces of all multipliers from L1

w(G) into B1,w (p, q) and (B1,w (p, q))∗ over L1
w(G).
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2. Preliminaries

The translation operator Ty is given by Tyf(x) = f(x− y) for x ∈ G. (B, ‖.‖B)
is called (strongly) translation invariant if one has Tyf ∈ B

(
and ‖Tyf‖B = ‖f‖B

)
for all f ∈ B and y ∈ G. A space (B, ‖.‖B) is called strongly character invariant
if one has Mtf(x) = 〈x, t〉f(x) ∈ B and ‖Mtf‖B = ‖f‖B for all f ∈ B, x ∈ G

and t ∈ Ĝ, where Ĝ is the dual group of G. A Banach function space (shortly BF-
space) on G is a Banach space (B, ‖.‖B) of measurable functions which is continuously
embedded into L1

loc (G), i.e. for any compact subset K ⊂ G there exists some constant
CK > 0 such that ‖fχK‖1 ≤ CK ‖f‖B for all f ∈ B. A BF-space is called solid if
g ∈ B, f ∈ L1

loc (G) and |f(x)| ≤ |g(x)| locally almost every where (shortly l.a.e)
implies f ∈ B and ‖f‖B ≤ ‖g‖B . It is easy to see that (B, ‖.‖B) is solid iff it is a
L∞−module. Cc(G) will denote the linear space of continuous functions on G, which
have compact support.
Definition 2.1. A strictly positive, continous function w satisfying w(x) ≥ 1 and
w(x+ y) ≤ w(x)w(y) for all x, y ∈ G will be called a weight function. Let 1 ≤ p <∞.
Then the weighted Lebesgue space Lp

w (G) = {f : fw ∈ Lp (G)} is a Banach space
with norm ‖f‖p,w = ‖fw‖p and its dual space Lpp

w−1 (G) , where 1
p + 1

pp = 1. Moreover,
if 1 < p < ∞, then Lp

w (G) is a reflexive Banach space. Particularly, for p = 1,
L1

w (G) is a Banach algebra under convolution, called a Beurling algebra. It is obvious
that ‖.‖1 ≤ ‖.‖1,w and L1

w (G) ⊂ L1 (G). We say that w1 ≺ w2 if and only if there
exists a C > 0 such that w1(x) ≤ Cw2(x) for all x ∈ G. Two weight functions are
called equivalent and written w1 ≈ w2, if w1 ≺ w2 and w2 ≺ w1. It is known that
Lp

w2
(G) ⊂ Lp

w1
(G) iff w1 ≺ w2. A weight function w is said to satisfy the Beurling-

Domar (shortly BD) condition, if∑
n≥1

n−2 logw(nx) <∞

for all x ∈ G [6].
Definition 2.2. Let V and W be two Banach modules over a Banach algebra A. Then
a multiplier from V into W is a bounded linear operator T from V into W , which
commutes with module multiplication, i.e. T (av) = aT (v) for a ∈ A and v ∈ V . We
denote by HomA (V,W ) the space of all multipliers from V into W. Also we write
HomA (V, V ) = HomA (V ). It is known that

HomA (V,W ∗) ∼= (V ⊗A W )∗ ,

where W ∗ is dual of W and V ⊗A W is the A−module tensor product of V and W
[Corollary 2.13, 21].

We will denote by M (G) the space of bounded regular Borel measures on G.
We let

M (w) =

µ ∈M (G) :
∫
G

wd |µ| <∞

 .

It is known that the space of multipliers from L1
w (G) to from L1

w (G) is homeomorphic
to M (w) [12].
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A kind of generalization of Segal algebra was defined in [3], as follows:
Definition 2.3. Let Sw(G) = Sw be a subalgebra of L1

w(G) satisfying the following
conditions:
S1) Sw is dense in L1

w(G).
S2) Sw is a Banach algebra under some norm ‖.‖Sw

and invariant under translations.
S3) ‖Taf‖Sw

≤ w(a) ‖f‖Sw
for all a ∈ G and for each f ∈ Sw.

S4) If f ∈ Sw, then for every ε > 0 there exists a neighborhood U of the identity
element of G such that ‖Tyf − f‖Sw

< ε for all y ∈ U.
S5) ‖f‖1,w ≤ ‖f‖Sw

for all f ∈ Sw.

Definition 2.4. We denote by Lp
loc (G) (1 ≤ p ≤ ∞) the space of (equivalence classes

of) functions on G such that f restricted to any compact subset E of G belongs to
Lp (G). Let 1 ≤ p, q ≤ ∞. The amalgam of Lp and `q on the real line is the normed
space

(Lp, `q) =
{
f ∈ Lp

loc (R) : ‖f‖pq <∞
}
,

where

‖f‖pq =

 ∞∑
n=−∞

 n+1∫
n

|f(x)|p dx

q/p


1/q

. (2.1)

We make the appropriate changes for p, q infinite. The norm ‖.‖pq makes (Lp, `q) into
a Banach space [16].

The following definition of (Lp, `q) (G) is due to J. Stewart [24]. By the Structure
Theorem [Theorem 24.30, 15], G = Ra × G1, where a is a nonnegative integer and
G1 is a locally compact abelian group which contains an open compact subgroup
H. Let I = [0, 1)a × H and J = Za × T, where T is a transversal of H in G1, i.e.
G1 =

⋃
t∈T

(t+H) is a coset decomposition of G1. For α ∈ J we define Iα = α+ I, and

therefore G is equal to the disjoint union of relatively compact sets Iα. We normalize
µ so that µ(I) = µ(Iα) = 1 for all α. Let 1 ≤ p, q ≤ ∞. The amalgam space
(Lp, `q) (G) = (Lp, `q) is a Banach space{

f ∈ Lp
loc (G) : ‖f‖pq <∞

}
,

where

‖f‖pq =

[∑
α∈J

‖f‖q
Lp(Iα)

]1/q

if 1 ≤ p, q <∞, (2.2)

‖f‖∞q =

[∑
α∈J

sup
x∈Iα

|f(x)|q
]1/q

if p = ∞, 1 ≤ q <∞,

‖f‖p∞ = sup
α∈J

‖f‖Lp(Iα) if 1 ≤ p <∞, q = ∞.

If G = R, then we have J = Z, Iα = [α, α+ 1) and (2.2) becomes (2.1).
The amalgam spaces (Lp, `q) satisfy the following relations and inequalities [24]:

(Lp, `q1) ⊂ (Lp, `q2) q1 ≤ q2 (2.3)
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(Lp1 , `q) ⊂ (Lp2 , `q) p1 ≥ p2 (2.4)
(Lp, `p) = Lp (2.5)

(Lp, `q) ⊂ Lp ∩ Lq, p ≥ q (2.6)
Lp ∪ Lq ⊂ (Lp, `q) , p ≤ q (2.7)
‖f‖pq2

≤ ‖f‖pq1
, q1 ≤ q2 (2.8)

‖f‖p2q ≤ ‖f‖p1q , p1 ≥ p2. (2.9)

Note that Cc(G) is included in all amalgam spaces. If 1 ≤ p, q < ∞, then the dual
space of (Lp, `q) is isometrically isomorphic to

(
Lpp

, `q
p
)
, where 1/p + 1/pp = 1/q +

1/qp = 1.
Definition 2.5. Let A be a Banach algebra. A Banach space B is said to be a Banach
A−module if there exists a bilinear operation · : A×B → B such that

(i) (f · g) · h = f · (g · h) for all f, g ∈ A, h ∈ B.
(ii) For some constant C ≥ 1, ‖f · h‖B ≤ C ‖f‖A ‖h‖B for all f ∈ A, h ∈ B [7].

Theorem 2.6. If p, q, r, s are exponents such that 1/p + 1/r − 1 = 1/m ≤ 1 and
1/q + 1/s− 1 = 1/n ≤ 1, then

(Lp, `q) ∗ (Lr, `s) ⊂ (Lm, `n) .

Moreover, if f ∈ (Lp, `q) and g ∈ (Lr, `s), then

‖f ∗ g‖mn ≤ 2a ‖f‖pq ‖g‖rs if m 6= 1 (2.10)

‖f ∗ g‖1n ≤ 22a ‖f‖1q ‖g‖1s

([1], [2], [23]) .
Theorem 2.7. Let 1 ≤ p, q ≤ ∞. If for each a ∈ G and f ∈ (Lp, `q), then

‖Taf‖pq ≤ 2a ‖f‖pq ,

i.e. the amalgam space (Lp, `q) is translation invariant ([23]) .
Theorem 2.8. Let 1 ≤ p, q <∞. Then the mapping y → Ty is continuous from G into
(Lp, `q) ([23]) .

Now we use the fact that (Lp, `q) has an equivalent translation-invariant norm
‖.‖]

pq. The following theorem was first introduced in [1].
Theorem 2.9. A function f belongs to (Lp, `q), 1 ≤ p, q ≤ ∞, iff the function f ] on G
defined by

f ](x) = ‖f‖Lp(x+E)

belongs to Lq (G). If ‖f‖]
pq =

∥∥f ]
∥∥

q
, then

2−a ‖f‖pq ≤ ‖f‖]
pq ≤ 2a ‖f‖pq ,

where E is open precompact neighborhood of 0 and

‖f‖]
pq =

∫
G

‖f‖q
Lp(x+E) dx

1/q

([1], [23], [11]) .
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Definition 2.10. A net {eα} in a commutative, normed algebra A is an approximate
identity, abbreviated a.i., if for all a ∈ A, lim

α
eαa = a in A.

Proposition 2.11. Let 1 ≤ p, q < ∞. If {eα} is an a.i. in L1(G), then {eα} is also an
a.i. in (Lp, `q), i.e.

lim
α
‖eα ∗ f − f‖pq = 0

for all f ∈ (Lp, `q) ([23]) .
The proof the following Lemma is easy.

Lemma 2.12. Let 1 ≤ p, q <∞. Let {fn} be a sequence in (Lp, `q) and ‖fn − f‖pq → 0,
where f ∈ (Lp, `q). Then {fn} has a subsequence which converges pointwise almost
everywhere to f .

3. The space B1,w (p, q)

Let 1 ≤ p, q <∞. We define the vector space B1,w (p, q) = L1
w(G) ∩ (Lp, `q) (G)

and equip this space with the sum norm

‖f‖1,w
pq = ‖f‖1,w + ‖f‖pq

where f ∈ B1,w (p, q). In this section we will discuss some properties of this space.

Theorem 3.1. The space
(
B1,w (p, q) , ‖.‖1,w

pq

)
is a Banach algebra with respect to

convolution.

Proof. Let {fn} be a Cauchy sequence in B1,w (p, q). Clearly {fn} is a Cauchy se-
quence in L1

w(G) and (Lp, `q) . Since L1
w(G) and (Lp, `q) are Banach spaces, then

there exist f ∈ L1
w(G) and g ∈ (Lp, `q) such that ‖fn − f‖1,w → 0, ‖fn − g‖pq → 0.

Hence there exists a subsequence {fnk
} of {fn} which convergence pointwise to f

almost everywhere. Also we obtain ‖fnk
− g‖pq → 0 and there exists a subsequence{

fnkl

}
of {fnk

} which convergence pointwise to g almost everywhere by Lemma 2.12.

Therefore f = g almost everywhere, ‖fn − f‖1,w
pq → 0 and f ∈ B1,w (p, q). That means

B1,w (p, q) is a Banach space.
Let f, g ∈ B1,w (p, q) be given. Since L1

w(G) is a Banach algebra under convolu-
tion, then f ∗ g ∈ L1

w(G) and

‖f ∗ g‖1,w ≤ ‖f‖1,w ‖g‖1,w . (3.1)

Since the amalgam space (Lp, `q) is a Banach L1(G)−module by [23], then we write

‖f ∗ g‖pq ≤ C ‖f‖1 ‖g‖pq , (3.2)

where C ≥ 1. By using (3.1), (3.2) and the definition of ‖.‖1,w
pq we have

‖f ∗ g‖1,w
pq = ‖f ∗ g‖1,w + ‖f ∗ g‖pq

≤ ‖f‖1,w ‖g‖1,w + C ‖f‖1 ‖g‖pq

= C ‖f‖1,w

(
‖g‖1,w + ‖g‖pq

)
≤ C ‖f‖1,w

pq ‖g‖1,w
pq . �
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Proposition 3.2. The space
(
B1,w (p, q) , ‖.‖1,w

pq

)
is a solid BF-space on G.

Proof. Let K ⊂ G be given a compact subset and f ∈ B1,w (p, q). Then we have∫
K

|f(x)| dx ≤ ‖f‖1 ≤ ‖f‖1,w
pq .

Let f ∈ B1,w (p, q) and g ∈ L∞(G). Since L1
w(G) and (Lp, `q) are solid BF-space [9],

then

‖fg‖1,w
pq = ‖fg‖1,w + ‖fg‖pq

≤ ‖f‖1,w ‖g‖∞ + ‖f‖pq ‖g‖∞ = ‖f‖1,w
pq ‖g‖∞ .

This completes the proof. �

Proposition 3.3. (i) The space B1,w (p, q) is translation invariant and for every f ∈
B1,w (p, q) the inequality ‖Taf‖1,w

pq ≤ w(a) ‖f‖1,w
pq holds.

(ii) The mapping y → Tyf is continuous from G into B1,w (p, q) for every f ∈
B1,w (p, q) .

Proof. (i) Let f ∈ B1,w (p, q). Then it is easy to show that Taf ∈ L1
w(G) and

‖Taf‖1,w ≤ w(a) ‖f‖1,w for all a ∈ G. By Theorem 2.9, we write

(Tyf)] (x) = ‖Tyf‖Lp(x+E) = ‖f‖Lp(x+y+E) = f ](x+ y) = T−yf
](x).

This implies that

‖Tyf‖]
pq =

∥∥∥(Tyf)]
∥∥∥

q
=

∥∥T−yf
]
∥∥

q
=

∥∥f ]
∥∥

q
= ‖f‖]

pq .

Hence we have

‖Taf‖1,w
pq ≤ w(a) ‖f‖1,w

pq + ‖f‖]
pq ≤ w(a) ‖f‖1,w

pq .

(ii) Let f ∈ B1,w (p, q). Then f ∈ L1
w(G) and f ∈ (Lp, `q). It is well known that the

translation operator is continuous from G into L1
w(G) ([10], [20]). Thus for any ε > 0,

there exists a neighbourhood U1 of unit element of G such that

‖Tyf − f‖1,w <
ε

2
(3.3)

for all y ∈ U1. Also by using Theorem 2.8, there exists a neighbourhood U2 of unit
element of G such that

‖Tyf − f‖pq <
ε

2
(3.4)

for all y ∈ U2. Let U = U1 ∩ U2. By using (3.3) and (3.4), then we obtain

‖Tyf − f‖1,w
pq = ‖Tyf − f‖1,w + ‖Tyf − f‖pq

<
ε

2
+
ε

2
= ε

for all y ∈ U. This completes the proof. �

Theorem 3.4. The space B1,w (p, q) is a Sw algebra.
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Proof. We have already proved the some conditions in Theorem 3.1 and Proposition
3.3 for Sw algebra. We now prove that B1,w (p, q) is dense in L1

w(G). Since Cc(G) ⊂
B1,w (p, q) and Cc(G) is dense in L1

w(G), then B1,w (p, q) is dense in L1
w(G). �

Proposition 3.5. The space
(
B1,w (p, q) , ‖.‖1,w

pq

)
is strongly character invariant and

the map t→Mtf is continuous from Ĝ into B1,w (p, q) for all f ∈ B1,w (p, q).

Proof. The spaces L1
w(G) and (Lp, `q) are strongly character invariant and the map

t → Mtf is continuous from Ĝ into this spaces ([10], [22]). Hence the proof is com-
pleted. �

Proposition 3.6. B1,w (p, q) is a essential Banach L1
w(G)−module.

Proof. Let f ∈ B1,w (p, q) and g ∈ L1
w(G). Since (Lp, `q) is an essential Banach

L1(G)−module, then we have

‖f ∗ g‖1,w
pq = ‖f ∗ g‖1,w + ‖f ∗ g‖pq

≤ ‖f‖1,w ‖g‖1,w + ‖f‖pq ‖g‖1

= ‖f‖1,w
pq ‖g‖1,w .

Also, by using Proposition 2.11, then ‖eα ∗ f − f‖1,w
pq → 0. Hence L1

w(G)∗B1,w (p, q) =
B1,w (p, q) by Module Factorization Theorem [26]. This completes the proof. �

Consider the mapping Φ from B1,w (p, q) into L1
w(G)×(Lp, `q) defined by Φ(f) =

(f, f). This is a linear isometry of B1,w (p, q) into L1
w(G)× (Lp, `q) with the norm

‖|(f, f)|‖ = ‖f‖1,w + ‖f‖pq , (f ∈ B1,w (p, q)) .

Hence it is easy to see that B1,w (p, q) is a closed subspace of the Banach space
L1

w(G)× (Lp, `q). Let
H = {(f, f) : f ∈ B1,w (p, q)}

and

K =

 (ϕ,ψ) : (ϕ,ψ) ∈ L∞w−1(G)×
(
Lpp

, `q
p
)
,∫

G

f(x)ϕ(x)dx+
∫
G

f(y)ψ(y)dy = 0, for all (f, f) ∈ H

 ,

where 1/p+ 1/pp = 1 and 1/q + 1/qp = 1.
The following Proposition is easily proved by Duality Theorem 1.7 in [18].

Proposition 3.7. The dual space (B1,w (p, q))∗ of B1,w (p, q) is isomorphic to

L∞w−1(G)×
(
Lpp

, `q
p
)
/K.

Proposition 3.8. If p, q, r, s are exponents such that 1/p + 1/r − 1 = 1/m ≤ 1 and
1/q + 1/s− 1 = 1/n ≤ 1, then

B1,w (p, q) ∗B1,w (r, s) ⊂ B1,w (m,n) .

Moreover, if f ∈ B1,w (p, q) and g ∈ B1,w (r, s), then there exists a C ≥ 1 such that

‖f ∗ g‖1,w
mn ≤ C ‖f‖1,w

pq ‖g‖1,w
rs .
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Proof. Let f ∈ B1,w (p, q) and g ∈ B1,w (r, s). By Theorem 2.6 we have

‖f ∗ g‖1,w
mn = ‖f ∗ g‖1,w + ‖f ∗ g‖mn

≤ ‖f‖1,w ‖g‖1,w + C ‖f‖pq ‖g‖rs

≤ C ‖f‖1,w ‖g‖
1,w
rs + C ‖f‖pq ‖g‖

1,w
rs

= C ‖f‖1,w
pq ‖g‖1,w

rs .

Hence B1
p,q(G) ∗B1

r,s(G) ⊂ B1
m,n(G). �

4. Inclusions of the spaces B1,w (p, q)

Proposition 4.1. (i) If q1 ≤ q2 and w2 ≺ w1, then B1,w1 (p, q1) ⊂ B1,w2 (p, q2) .
(ii) If p1 ≥ p2 and w2 ≺ w1, then B1,w1 (p1, q) ⊂ B1,w2 (p2, q) .

Proof. By using (2.8) and (2.9), then the proof is completed. �

Lemma 4.2. For any f ∈ B1,w (p, q) and z ∈ G there exist constants C1(f), C2(f) > 0
such that

C1(f)w(z) ≤ ‖Tzf‖1,w
pq ≤ C2(f)w(z).

Proof. Let f ∈ B1,w (p, q). Then by Lemma 2.2 in [10], there exists a constant C1(f) >
0 such that

C1(f)w(z) ≤ ‖Tzf‖1,w . (4.1)

By using (4.1), we have

C1(f)w(z) ≤ ‖Tzf‖1,w + ‖Tzf‖pq = ‖Tzf‖1,w
pq ≤ w(z) ‖f‖1,w

pq . (4.2)

If we combine (4.1) and (4.2), we obtain the inequality

C1(f)w(z) ≤ ‖Tzf‖1,w
pq ≤ C2(f)w(z),

with C2(f) = ‖f‖1,w
pq . �

The following lemma is easily proved by using the closed graph theorem.
Lemma 4.3. Let w1 and w2 be two weights. Then B1,w1 (p, q) ⊂ B1,w2 (p, q) if and only
if there exists a constant C > 0 such that ‖f‖1,w2

pq ≤ C ‖f‖1,w1
pq for all f ∈ B1,w1 (p, q).

Proposition 4.4. Let w1 and w2 be two weights. Then B1,w1 (p, q) ⊂ B1,w2 (p, q) if and
only if w2 ≺ w1.

Proof. The sufficiency of condition is obvious. Suppose that B1,w1 (p, q) ⊂ B1,w2 (p, q).
By Lemma 4.2, there exist C1, C2, C3 and C4 > 0 such that

C1w1(z) ≤ ‖Tzf‖1,w1
pq ≤ C2w1(z) (4.3)

and
C3w2(z) ≤ ‖Tzf‖1,w2

pq ≤ C4w2(z) (4.4)

for z ∈ G. Since Tzf ∈ B1,w1 (p, q) for all f ∈ B1,w1 (p, q) , then there exists a constant
C > 0 such that

‖Tzf‖1,w2
pq ≤ C ‖Tzf‖1,w1

pq (4.5)
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by Lemma 4.3. If one using (4.3), (4.4) and (4.5),we obtain

C3w2(z) ≤ ‖Tzf‖1,w2
pq ≤ C ‖Tzf‖1,w1

pq ≤ CC2w1(z).

That means w2 ≺ w1. �

Corollary 4.5. Let w1 and w2 be two weights. Then B1,w1 (p, q) = B1,w2 (p, q) if and
only if w1 ≈ w2.

Now by using the techniques in [14], we investigate compact embeddings of the
spaces B1,w (p, q). Also we will take G = Rd with Lebesgue measure dx for compact
embedding.
Lemma 4.6. Let {fn}n∈N be a sequence in B1,w (p, q). If {fn} converges to zero in
B1,w (p, q), then {fn} converges to zero in the vague topology (which means that∫

Rd

fn(x)k(x)dx→ 0

for n→∞ for all k ∈ Cc(Rd), see [4]).

Proof. Let k ∈ Cc(Rd). We write∣∣∣∣∣∣
∫
Rd

fn(x)k(x)dx

∣∣∣∣∣∣ ≤ ‖k‖∞ ‖fn‖1 ≤ ‖k‖∞ ‖fn‖1,w
pq . (4.6)

Hence by (4.6) the sequence {fn}n∈N converges to zero in vague topology. �

Theorem 4.7. Let w, ν be two weights on Rd. If ν ≺ w and ν(x)
w(x) doesn’t tend to zero

in Rd as x → ∞, then the embedding of the space B1,w (p, q) into L1
ν(Rd) is never

compact.

Proof. Firstly we assume that w(x) → ∞ as x → ∞. Since ν ≺ w, there exists
C1 > 0 such that ν(x) ≤ C1w(x). This implies B1,w (p, q) ⊂ L1

ν(Rd). Let (tn)n∈N be
a sequence with tn →∞ in Rd. Also since ν(x)

w(x) doesn’t tend to zero as x→∞ then

there exists δ > 0 such that ν(x)
w(x) ≥ δ > 0 for x → ∞. For the proof the embedding

of the space B1,w (p, q) into L1
ν(Rd) is never compact, take any fixed f ∈ B1,w (p, q)

and define a sequence of functions {fn}n∈N, where fn = w(tn)−1Ttn
f . This sequence

is bounded in B1,w (p, q). Indeed we write

‖fn‖1,w
pq =

∥∥w(tn)−1Ttn
f
∥∥1,w

pq
= w(tn)−1 ‖Ttn

f‖1,w
pq . (4.7)

By Lemma 4.2, we know ‖Tyf‖1,w
pq ≈ w(y). Hence there exists M > 0 such that

‖Tyf‖1,w
pq ≤Mw(y). By using (4.7), we write

‖fn‖1,w
pq = w(tn)−1 ‖Ttn

f‖1,w
pq ≤Mw(tn)−1w(tn) = M .

Now we will prove that there wouldn’t exists norm convergence of subsequence of
{fn}n∈N in L1

ν(Rd). The sequence obtained above certainly converges to zero in the
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vague topology. Indeed for all k ∈ Cc(Rd) we write∣∣∣∣∣∣
∫
Rd

fn(x)k(x)dx

∣∣∣∣∣∣ ≤ 1
w(tn)

∫
Rd

|Ttn
f(x)| |k(x)| dx (4.8)

=
1

w(tn)
‖k‖∞ ‖Ttnf‖1 =

1
w(tn)

‖k‖∞ ‖f‖1 .

Since right hand side of (4.8) tends zero for n→∞, then we have∫
Rd

fn(x)k(x)dx→ 0.

Finally by Lemma 4.6, the only possible limit of {fn}n∈N in L1
ν(Rd) is zero. It is

known by Lemma 2.2 in [10] that ‖Tyf‖1,ν ≈ ν(y). Hence there exists C2 > 0 and
C3 > 0 such that

C2ν(y) ≤ ‖Tyf‖1,ν ≤ C3ν(y). (4.9)

From (4.9) and the equality

‖fn‖1,ν =
∥∥w(tn)−1Ttn

f
∥∥

1,ν
= w(tn)−1 ‖Ttn

f‖1,ν

we obtain

‖fn‖1,ν = w(tn)−1 ‖Ttnf‖1,ν ≥ C2w(tn)−1ν(tn). (4.10)

Since ν(tn)
w(tn) ≥ δ > 0 for all tn, by using (4.10) we write

‖fn‖1,ν ≥ C2w(tn)−1ν(tn) ≥ C2δ.

It means that there would not be possible to find norm convergent subsequence of
{fn}n∈N in L1

ν(Rd).
Now we assume that w is a constant or bounded weight function. Since ν ≺ w,

then ν(x)
w(x) is also constant or bounded and doesn’t tend to zero as x → ∞. We take

a function f ∈ B1,w (p, q) with compactly support and define the sequence {fn}n∈N
as in (4.7). Thus {fn}n∈N ⊂ B1,w (p, q). It is easy to show that {fn}n∈N is bounded
in B1,w (p, q) and converges to zero in the vague topology. Then there would not
possible to find norm convergent subsequence of {fn}n∈N in L1

ν(Rd). This completes
the proof. �

Proposition 4.8. Let w1, w2 be Beurling weight functions on Rd. If w2 ≺ w1 and w2(x)
w1(x)

doesn’t tend to zero in Rd then the embedding i : B1,w1 (p, q) ↪→ B1,w2 (p, q) is never
compact.

Proof. The proof can be obtained by means of Proposition 4.4, Proposition 4.3 and
Theorem 4.7. �
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5. Multipliers of B1,w (p, q)

Now we discuss multipliers of the spaces B1,w (p, q). We define the space

MB1,w(p,q) = {µ ∈M(w) : ‖µ‖M ≤ C(µ)}
where

‖µ‖M = sup

{
‖µ ∗ f‖1,w

pq

‖f‖1,w

: f ∈ L1
w(G), f 6= 0, f̂ ∈ Cc(Ĝ)

}
.

By the Proposition 2.1 in [13], we have MB1,w(p,q) 6= {0} .
Proposition 5.1. If w satisfies (BD), then for a linear operator T : L1

w(G) → B1,w (p, q)
the following are equivalent:

(i) T ∈ HomL1
w(G)

(
L1

w(G), B1,w (p, q)
)
.

(ii) There exists a unique µ ∈ M
B1,w(p,q) such that Tf = µ ∗ f for every

f ∈ L1
w(G). Moreover the correspondence between T and µ defines an isomorphism

between HomL1
w(G)

(
L1

w(G), B1,w (p, q)
)

and MB1,w(p,q).

Proof. It is known that B1,w (p, q) is a Sw space by Theorem 3.4. Thus, the proof is
completed by Proposition 2.4 in [13]. �

Theorem 5.2. If w satisfies (BD) and T ∈ HomL1
w(G) (B1,w (p, q)), then there exists

a unique pseudo measure σ ∈
(
A(Ĝ)

)∗
(see [20]), such that Tf = σ ∗ f for all

f ∈ B1,w (p, q).

Proof. It is known that B1,w (p, q) is a Sw space by Theorem 3.4 and an essential
Banach module over L1

w(G) by Proposition 3.6. Thus, the proof is completed by
Theorem 5 in [5]. �

Proposition 5.3. The multiplier space HomL1
w(G)

(
L1

w(G), (B1,w (p, q))∗
)

is isomorphic

to L∞w−1(G)×
(
Lpp

, `q
p
)
/K.

Proof. By Proposition 3.6, we write L1
w(G)∗B1,w (p, q) = B1,w (p, q). Hence by Corol-

lary 2.13 in [21] and Proposition 3.7, we have

HomL1
w(G)

(
L1

w(G), (B1,w (p, q))∗
)

=
(
L1

w(G) ∗B1,w (p, q)
)∗

= (B1,w (p, q))∗

= L∞w−1(G)×
(
Lpp

, `q
p
)
/K. �
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