On *n*-weak amenability of a non-unital Banach algebra and its unitization

Mohammad Reza Yegan

Abstract. In [2] the authors asked if a non-unital Banach Algebra \mathfrak{A} is weakly amenable whenever its unitization \mathfrak{A}^{\sharp} is weakly amenable and whether \mathfrak{A}^{\sharp} is 2-weakly amenable. In this paper we give a partial solutions to these questions.

Mathematics Subject Classification (2010): 46B99, 16E40.

Keywords: n-weak amenability, self-induced, unitization.

1. Introduction

The notion of *n*-weak amenability for a Banach algebra was introduced by Dales, Ghahramani and Gronbæk in [2]. The Banach algebra \mathfrak{A} is called *n*-weakly amenable if $\mathcal{H}^1(\mathfrak{A}, \mathfrak{A}^{(n)}) = (0)$, where $\mathfrak{A}^{(n)}$ refers to the *n*-th dual of \mathfrak{A} . Also \mathfrak{A} is permanently weakly amenable if \mathfrak{A} is *n*-weakly amenable for each $n \in \mathbb{N}$. In [2] the authors proved the following(Proposition 1.4):

Let \mathfrak{A} be a non-unital Banach algebra, and $n \in \mathbb{N}$.

(i) Suppose \mathfrak{A}^{\sharp} is 2*n*-weakly amenable. Then \mathfrak{A} is 2*n*-weakly amenable.

(*ii*) Suppose that \mathfrak{A} is (2n-1)-weakly amenable. Then \mathfrak{A}^{\sharp} is (2n-1)-weakly amenable.

(*iii*) Suppose that \mathfrak{A} is commutative. Then \mathfrak{A}^{\sharp} is *n*-weakly amenable if and only if \mathfrak{A} is *n*-weakly amenable.

In this paper we consider the converses to (i) and (ii) and give partial solutions to them. Let us recall some definitions.

Definition 1.1. ([6]) A Banach \mathfrak{A} -module \mathbf{X} is called neo-unital if for each $x \in \mathbf{X}$ there are $a, a' \in \mathfrak{A}$ and $y, y' \in \mathbf{X}$ with x = ay = y'a'.

Definition 1.2. ([3]) A Banach algebra \mathfrak{A} is called self-induced if \mathfrak{A} and $\mathfrak{A} \hat{\otimes}_{\mathfrak{A}} \mathfrak{A}$ are naturally isomorphic.

Here $\mathfrak{A} \bigotimes_{\mathfrak{A}} \mathfrak{A} = \frac{\mathfrak{A} \bigotimes \mathfrak{A}}{\mathbf{K}}$ where **K** is the closed linear span of $\{ab \otimes c - a \otimes bc : a, b, c \in \mathfrak{A}\}.$

Now we proceed to state and prove our theorem.

Theorem 1.3. Let 𝔅 be a non-unital Banach algebra and suppose that 𝔅 is self-induced.
(i) If 𝔅[♯] is (2n − 1)-weakly amenable then 𝔅 is (2n − 1)-weakly amenable.
(ii) If 𝔅 is 2n-weakly amenable then 𝔅[♯] is 2n-weakly amenable.
(iii) ℋ²(𝔅, 𝔅⁽²ⁿ⁾) ≅ ℋ²(𝔅[♯], 𝔅^{♯⁽²ⁿ⁾})

Proof. Clearly \mathfrak{A} is a closed two-sided ideal in \mathfrak{A}^{\sharp} with codimension one. We consider the corresponding short exact sequence and its iterated duals. That is,

$$0 \longrightarrow \mathfrak{A} \xrightarrow{i} \mathfrak{A}^{\sharp} \xrightarrow{\varphi} \mathbb{C} \longrightarrow 0$$

where $i: \mathfrak{A} \longrightarrow \mathfrak{A}^{\sharp}$ defined by $a \mapsto (a, 0)$ and $\varphi : \mathfrak{A}^{\sharp} \longrightarrow \mathbb{C}$ defined by $(a, \lambda) \mapsto \lambda$.

$$0 \longrightarrow \mathbb{C} \longrightarrow \mathfrak{A}^{\sharp^{(2n-1)}} \longrightarrow \mathfrak{A}^{(2n-1)} \longrightarrow 0 \tag{1.1}$$

$$0 \longrightarrow \mathfrak{A}^{(2n)} \longrightarrow \mathfrak{A}^{\sharp^{(2n)}} \longrightarrow \mathbb{C} \longrightarrow 0$$
 (1.2)

It is easy to see that *i* is an isometric isomorphism and φ is a character on \mathfrak{A}^{\sharp} with ker $\varphi = \mathfrak{A}$. Then we make \mathbb{C} a module over \mathfrak{A}^{\sharp} . Indeed,

$$z \cdot (a, \lambda) = (a, \lambda) \cdot z = \varphi(a, \lambda)z = \lambda z$$

where $(a, \lambda) \epsilon \mathfrak{A}^{\sharp}$ and $z \epsilon \mathbb{C}$.

Now consider the long exact sequence of cohomology groups concerning to (1.1). That is,

$$\dots \longrightarrow \mathcal{H}^{m}(\mathfrak{A}^{\sharp}, \mathbb{C}) \longrightarrow \mathcal{H}^{m}(\mathfrak{A}^{\sharp}, \mathfrak{A}^{\sharp^{(2n-1)}})$$
$$\longrightarrow \mathcal{H}^{m}(\mathfrak{A}^{\sharp}, \mathfrak{A}^{(2n-1)}) \longrightarrow \mathcal{H}^{(m+1)}(\mathfrak{A}^{\sharp}, \mathbb{C}) \longrightarrow \dots$$
(1.3)

Obviously $\mathfrak{A}, \mathfrak{A}^{(n)}$ and \mathbb{C} are unital Banach \mathfrak{A}^{\sharp} -bimodules. So by [4, Theorem 2.3] we have,

$$\mathcal{H}^{m}(\mathfrak{A}^{\sharp},\mathbb{C})\cong\mathcal{H}^{m}(\mathfrak{A},\mathbb{C}) \quad and \quad \mathcal{H}^{m}(\mathfrak{A}^{\sharp},\mathfrak{A}^{(2n-1)})\cong\mathcal{H}^{m}(\mathfrak{A},\mathfrak{A}^{2n-1}).$$
(1.4)

Therefore by substituting (1.4) in (1.3) we get,

$$\dots \longrightarrow \mathcal{H}^{m}(\mathfrak{A}, \mathbb{C}) \longrightarrow \mathcal{H}^{m}(\mathfrak{A}^{\sharp}, \mathfrak{A}^{\sharp^{(2n-1)}})$$
$$\longrightarrow \mathcal{H}^{m}(\mathfrak{A}, \mathfrak{A}^{(2n-1)}) \longrightarrow \mathcal{H}^{(m+1)}(\mathfrak{A}, \mathbb{C}) \longrightarrow \dots$$
(1.5)

Since \mathfrak{A} is self-induced then $\mathcal{H}^1(\mathfrak{A}, \mathbb{C}) = \mathcal{H}^2(\mathfrak{A}, \mathbb{C}) = (0)$ [4,Lemma 2.5](note that \mathbb{C} is an annihilator \mathfrak{A} -bimodule). Hence by sequence (1.5) we obtain,

$$\mathcal{H}^{1}(\mathfrak{A}^{\sharp},\mathfrak{A}^{\sharp}^{(2n-1)})\cong\mathcal{H}^{1}(\mathfrak{A},\mathfrak{A}^{(2n-1)}).$$

406

Obviously (i) holds.

For (ii) consider the long exact sequence of cohomology groups corresponding to the short exact sequence (1.2). That is,

$$\dots \longrightarrow \mathcal{H}^{m}(\mathfrak{A}^{\sharp}, \mathfrak{A}^{(2n)}) \longrightarrow \mathcal{H}^{m}(\mathfrak{A}^{\sharp}, \mathfrak{A}^{\sharp^{(2n)}})$$
$$\longrightarrow \mathcal{H}^{m}(\mathfrak{A}^{\sharp}, \mathbb{C}) \longrightarrow \mathcal{H}^{m+1}(\mathfrak{A}^{\sharp}, \mathfrak{A}^{(2n)}) \longrightarrow \dots$$
(1.6)

Like before we have,

$$\mathcal{H}^{m}(\mathfrak{A}^{\sharp},\mathbb{C}) \cong \mathcal{H}^{m}(\mathfrak{A},\mathbb{C}) \quad and \quad \mathcal{H}^{m}(\mathfrak{A}^{\sharp},\mathfrak{A}^{(2n)}) \cong \mathcal{H}^{m}(\mathfrak{A},\mathfrak{A}^{(2n)}).$$
(1.7)

By substituting (1.7) in (1.6) we get,

$$\dots \longrightarrow \mathcal{H}^{m}(\mathfrak{A}, \mathfrak{A}^{(2n)}) \longrightarrow \mathcal{H}^{m}(\mathfrak{A}^{\sharp}, \mathfrak{A}^{\sharp^{(2n)}}) \longrightarrow \mathcal{H}^{m}(\mathfrak{A}, \mathbb{C}) \longrightarrow$$
$$\mathcal{H}^{m+1}(\mathfrak{A}, \mathfrak{A}^{(2n)}) \longrightarrow \mathcal{H}^{m+1}(\mathfrak{A}^{\sharp}, \mathfrak{A}^{\sharp^{(2n)}}) \longrightarrow \mathcal{H}^{m+1}(\mathfrak{A}, \mathbb{C}) \longrightarrow \dots$$
(1.8)

Now if \mathfrak{A} is 2*n*-weakly amenable then self-inducement of \mathfrak{A} and (1.8) imply

$$\mathcal{H}^1(\mathfrak{A}^\sharp,\mathfrak{A}^{\sharp^{(2n)}}) = (0)$$

So (ii) holds.

For (iii) self-inducement of \mathfrak{A} and (1.8) imply

$$\mathcal{H}^2(\mathfrak{A},\mathfrak{A}^{(2n)})\cong\mathcal{H}^2(\mathfrak{A}^{\sharp},\mathfrak{A}^{\sharp^{(2n)}})$$

A special case occurs when the Banach algebra \mathfrak{A} has a left(right) bounded approximate identity. In this case we have the following result.

Proposition 1.4. If the Banach algebra \mathfrak{A} has a left(right) bounded approximate identity then the theorem holds.

Proof. By [5, Proposition II.3.13] $\mathfrak{A} \bigotimes_{\mathfrak{A}} \mathfrak{A} \to \mathfrak{A}^2$ given by $a \otimes b \mapsto ab$ is a topological isomorphism. By [1,§11,corollary 11] $\mathfrak{A}^2 = \mathfrak{A}$. So $\mathfrak{A} \bigotimes_{\mathfrak{A}} \mathfrak{A} \cong \mathfrak{A}$. That is \mathfrak{A} is self-induced. Hence the theorem holds.

References

- [1] Bonsall, F.F., Duncan, J., Complete normed algebras, Springer-Verlag, New York 1973.
- [2] Dales, H.G., Ghahramani, F., Gronbæk, N., Derivations into iterated duals of Banach algbras, Studia Mathematica, 128(1998), no. 1.
- [3] Gronbæk, N., Morita equivalence for self-induced Banach algebras, Houston J. Math., 22(1996), 109-140.
- [4] Gronbæk, N., Lau, A.T.M., On Hochschild cohomology of the augmentation ideal of a locally compact group, Math. Proc. Camb. Phil. Soc., 1999, 126-139.
- [5] Helemsky, A.Ya., The Homology of Banach and Topological algebras, Translated from the Russian, Kluwer Academic Publishers, 1989.
- [6] Johnson, B.B., Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127(1973).

 \square

Mohammad Reza Yegan Mohammad Reza Yegan, Department of Mathematics Faculty of Management and Accounting, Qazvin Branch Islamic Azad University, Qazvin, Iran e-mail: mryegan@yahoo.com

408