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On n-weak amenability of a non-unital Banach
algebra and its unitization

Mohammad Reza Yegan

Abstract. In [2] the authors asked if a non-unital Banach Algebra A is weakly
amenable whenever its unitization A] is weakly amenable and whether A] is 2-
weakly amenable whenever A is 2-weakly amenable. In this paper we give a partial
solutions to these questions.
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1. Introduction

The notion of n-weak amenability for a Banach algebra was introduced by Dales,
Ghahramani and Gronbæk in [2]. The Banach algebra A is called n-weakly amenable
if H1(A,A(n)) = (0), where A(n) refers to the n-th dual of A . Also A is permanently
weakly amenable if A is n-weakly amenable for each nεN. In [2] the authors proved
the following(Proposition 1.4):
Let A be a non-unital Banach algebra, and nεN.

(i) Suppose A] is 2n-weakly amenable. Then A is 2n-weakly amenable.
(ii) Suppose that A is (2n − 1)-weakly amenable. Then A] is (2n − 1)-weakly

amenable.
(iii) Suppose that A is commutative. Then A] is n-weakly amenable if and only

if A is n-weakly amenable.
In this paper we consider the converses to (i) and (ii) and give partial solutions to
them. Let us recall some definitions.

Definition 1.1. ([6]) A Banach A-module X is called neo-unital if for each xεX there
are a, a′εA and y, y′εX with x = ay = y′a′.

Definition 1.2. ([3]) A Banach algebra A is called self-induced if A and A
⊗̂

AA are
naturally isomorphic.
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Here ˆA
⊗

A A =
ˆA

⊗
A

K where K is the closed linear span of {ab ⊗ c − a ⊗ bc :
a, b, c εA}.
Now we proceed to state and prove our theorem.

Theorem 1.3. Let A be a non-unital Banach algebra and suppose that A is self-induced.
(i) If A] is (2n− 1)-weakly amenable then A is (2n− 1)-weakly amenable.
(ii) If A is 2n-weakly amenable then A] is 2n-weakly amenable.
(iii) H2(A,A(2n)) ∼= H2(A],A](2n))

Proof. Clearly A is a closed two-sided ideal in A] with codimension one. We consider
the corresponding short exact sequence and its iterated duals. That is,

0 −→ A
i−→ A] ϕ−→ C −→ 0

where i : A −→ A] defined by a 7→ (a, 0) and ϕ : A] −→ C defined by (a, λ) 7→ λ.

0 −→ C −→ A](2n−1) −→ A(2n−1) −→ 0 (1.1)

0 −→ A(2n) −→ A](2n) −→ C −→ 0 (1.2)

It is easy to see that i is an isometric isomorphism and ϕ is a character on A]

with kerϕ = A. Then we make C a module over A]. Indeed,

z · (a, λ) = (a, λ) · z = ϕ(a, λ)z = λz

where (a, λ)εA] and zεC.
Now consider the long exact sequence of cohomology groups concerning to (1.1). That
is,

. . . −→ Hm(A], C) −→ Hm(A],A](2n−1)
)

−→ Hm(A],A(2n−1)) −→ H(m+1)(A], C) −→ . . . . (1.3)

Obviously A, A(n) and C are unital Banach A]-bimodules. So by [4, Theorem 2.3] we
have,

Hm(A], C) ∼= Hm(A, C) and Hm(A],A(2n−1)) ∼= Hm(A,A2n−1). (1.4)

Therefore by substituting (1.4) in (1.3) we get,

. . . −→ Hm(A, C) −→ Hm(A],A](2n−1)
)

−→ Hm(A,A(2n−1)) −→ H(m+1)(A, C) −→ . . . . (1.5)

Since A is self-induced then H1(A, C) = H2(A, C) = (0) [4,Lemma 2.5](note that C
is an annihilator A-bimodule). Hence by sequence (1.5) we obtain,

H1(A],A](2n−1)
) ∼= H1(A,A(2n−1)).
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Obviously (i) holds.
For (ii) consider the long exact sequence of cohomology groups corresponding to the
short exact sequence (1.2). That is,

. . . −→ Hm(A],A(2n)) −→ Hm(A],A](2n)
)

−→ Hm(A], C) −→ Hm+1(A],A(2n)) −→ . . . . (1.6)

Like before we have,

Hm(A], C) ∼= Hm(A, C) and Hm(A],A(2n)) ∼= Hm(A,A(2n)). (1.7)

By substituting (1.7) in (1.6) we get,

. . . −→ Hm(A,A(2n)) −→ Hm(A],A](2n)) −→ Hm(A, C) −→

Hm+1(A,A(2n)) −→ Hm+1(A],A](2n)
) −→ Hm+1(A, C) −→ . . . . (1.8)

Now if A is 2n-weakly amenable then self-inducement of A and (1.8) imply

H1(A],A](2n)
) = (0).

So (ii) holds.
For (iii) self-inducement of A and (1.8) imply

H2(A,A(2n)) ∼= H2(A],A](2n)
)

�

A special case occurs when the Banach algebra A has a left(right) bounded
approximate identity. In this case we have the following result.

Proposition 1.4. If the Banach algebra A has a left(right) bounded approximate iden-
tity then the theorem holds.

Proof. By [5, Proposition II.3.13] A
⊗

A A → A2 given by a⊗ b 7→ ab is a topological
isomorphism. By [1,§11,corollary 11] A2 = A. So A

⊗
A A ∼= A. That is A is self-

induced. Hence the theorem holds. �
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