Note on a property of the Banach spaces

Nuno C. Freire and Maria Fernanda Veiga

Abstract. We show that we may consider a partial ordering \leq in an infinite dimensional Banach space $(X, \|.\|)$, which we obtain through any normed Hamel base of the space, such that $(X, \|.\|, \leq)$ is a Banach lattice.

Mathematics Subject Classification (2010): 46B20, 46B30.

Keywords: Order, norm, lattice.

1. Introduction

Why trying to see, concerning a Banach space X, whether there exists or not a partial ordering in X that is compatible with the topology? The particular geometric properties of Banach lattices and, the contrast concerning the continuity properties of the coodinate linear functionals associated either to a Schauder basis or to a Hamel base in a Banach space ([2], Chapter 4 and [3]), we decided to consider these matters altogether. We prove in Theorem 3.1 that $(X, \|.\|)$ being an infinite dimensional real Banach space and the normed vectors x_{α} ($\alpha \in \mathcal{A}$) determining a Hamel base \mathcal{H} of X, we may consider a partial order $\leq_{\mathcal{H}}$ in X such that the triple $(X, \|.\|_{\mathcal{H}}, \leq_{\mathcal{H}})$ is a Banach lattice where $\|.\|_{\mathcal{H}}$ is an equivalent norm to $\|.\|$ in X. In the Preliminaries, paragraph 2., we briefly set the notations. We consider real Banach spaces X and we say that a linear isomorphism which is a homeomorphism between two topological vector spaces is a linear homeomorphism ([4], II.1, p. 53 in a definition). Also in [4], we can find the algebraic Hamel base of a vector space X not reducing to {0} namely (p. 42), $\mathcal{H} = \{x_{\alpha} : \alpha \in \mathcal{A}\}$ is Hamel base of X if \mathcal{H} is an infinite linearly independent set which spans X, as we consider in paragraph 2.

2. Preliminaries

In what follows we consider a real Banach space $(X, \|.\|)$. Recall that (X, \leq) is a Riesz space through a partial order \leq in X if and only if \leq is compatible with the linear stucture that is, $x + z \leq y + z$ whenever $x \leq y, x, y, z \in X$, we have that $\alpha x \geq 0$ for each $x \geq 0$, $\alpha \geq 0$ where $x \in X$ and α is a scalar and, further, there exist $x \lor y =$ sup $\{x, y\}, x \land y = \inf \{x, y\}$ for each $x, y \in X$. We write $(X, \|.\|, \leq)$ meaning that $(X, \|.\|)$ is a Banach space, (X, \leq) is a Riesz space and $\|x\| \leq \|y\|$ whenever $|x| \leq |y|$ so that $(X, \|.\|, \leq)$ (or just X) is a Banach lattice. Here, we put $|x| = x \lor (-x)$ We write $x^+ = x \lor 0, x^- = x \land 0$. We see easily that $x^- = (-x) \lor 0 = -(x \land 0)$. More generally, $x \land y = -((-x) \lor (-y))$. We have that $x = x^+ - x^-, |x| = x^+ + x^-$. Notice that $x \lor y = x + y - ((-x) \lor (-y)) = (x^+ - x^-) + (y^+ - y^-) - ((-x) \lor (-y)) + y - y = (x^+ + y^+ - x^- - y^-) - ((y - x) \lor 0) - y$ ([2], Theorem 1.1.1. i), ii), p. 3) hence for \leq a partial order compatible with the linear structure of X, X is a Riesz space provided that x^+ exists for each x in X.

Definition 2.1. (Following [4]) For \mathcal{A} a nonempty set of indices, we say that the family (λ_{α}) in $\mathbb{R}^{\mathcal{A}}$ is summable, $\sum_{\mathcal{A}} \lambda_{\alpha} = s$ if it holds that $\left|\sum_{\alpha \in \mathcal{A}} \lambda_{\alpha} - s\right| \leq \varepsilon$ for each finite superset \mathcal{A} of some set $\mathcal{A}_{\varepsilon} \in \mathcal{F}(\mathcal{A})$, the class of all nonempty finite subsets of $\mathcal{A}, \varepsilon > 0$ a priori given. The family (λ_{α}) is said to be absolutely summable if $(|\lambda_{\alpha}|)$ is a summable family.

Notation 2.2. We let $l_{\mathcal{F}}(\mathcal{A}) = \{(\lambda_{\alpha}) \in \mathbf{R}^{\mathcal{A}} : \lambda_{\alpha} = 0 \text{ for all } \alpha \notin A \text{ and some } A \in \mathcal{F}(\mathcal{A})\}.$

Notation 2.3. We write $l_1(\mathcal{A})$ for the Banach space determined by the absolutely summable families (λ_{α}) equipped with the norm $\|(\lambda_{\alpha})\|_1 = \sum_{\mathcal{A}} |\lambda_{\alpha}|$.

Remark 2.4. The space $l_1(\mathcal{A})$ is a Banach lattice when equipped with the partial ordering $(\lambda_{\alpha}) \leq (\mu_{\alpha})$ if and only if $\lambda_{\alpha} \leq \mu_{\alpha}$ ($\alpha \in \mathcal{A}$). $l_1(\mathcal{A})$ is the completion of $((l_F(\mathcal{A}).\|.\|_1))$.

Proof. This follows from [4]. The partial ordering is extended the obvious way. \Box

Letting $\{x_{\alpha} : \alpha \in \mathcal{A}\}$ be a normed Hamel base of X, $||x_{\alpha}|| = 1$, $\alpha \in \mathcal{A}$, putting $\sum_{A} s_{\alpha} x_{\alpha} \prec_{\mathcal{H}} \sum_{A} t_{\alpha} x_{\alpha}$ if and only if $s_{\alpha} \leq t_{\alpha}$ ($\alpha \in \mathcal{A}$, the finite sms are understood)), we have that $(X, \prec_{\mathcal{H}})$ is a Riesz space. Notice that the linear operator $T(\lambda_{\alpha}) = \sum \lambda_{\alpha} x_{\alpha}$ on $l_{\mathcal{F}}(\mathcal{A})$ to $(X, ||.||, \prec_{\mathcal{H}})$ is injective, continuous of norm 1. We may consider the linear homeomorphism $(\widetilde{T}/K) : (l_1(\mathcal{A})/K, ||.: l_1(\mathcal{A})/K||) \to (X, ||.||), \widetilde{T}$ for the linear extension to $l_1(\mathcal{A})$ of T, where $K = Ker(\widetilde{T})$.

3. The results

Following [1], $(X, \|.\|, \leq)$ being a Banach lattice we say that a subspace Y of X has the solid property if $x \in Y$ whenever $|x| \leq |y|$ and $y \in Y$. Y being closed, we then may consider the partial ordering $[x] \preceq [y]$ in the quotient X/Y if and only if $y - x \in P$ where $P = \bigcup \{\pi(x) : x \geq 0\}, \pi(x) = [x], \pi$ for the canonical map. Clearly that \preceq is compatible with the linear structure Also $[x]^+ = [x^+], (X/Y, \preceq)$ is a Riesz space such that $[x] \lor [y] = [x \lor y], [x] \land [y] = [x \land y]$ and $[|x|] = |[x] \mid ([1], 14G, p. 13)$. We have that $[0] \preceq [x]$ if and only if for each $v \in [x]$ there is some $w \in [0], w \leq x$ hence also $[x] \preceq [y]$ if and only if for each $v \in [y]$, there is some $w \in [x]$, such that $w \leq v$. It follows that $|[x] \mid \preceq |[y] \mid$ imples that for each $v \in [y]$ there exists $w \in [x], |w| \leq |v|$ hence $\|[x] : X/Y\| \leq \|[y] : X/Y\|$ and $(Y/X, \preceq)$ is a Banach lattice. We see easily that $K = Ker(\tilde{T})$ as above in the Preliminaries is a closed subspace of $l_1(A)$ having the solid property, hence $(l_1(A)/K, \leq)$ is a Banach lattice where we keep denoting the ordering in the quotient by the same symbol \leq .

Clearly that $\theta : (E, \|.: E\|, \leq_E) \to (F, \|.: F\|)$ being a linear homeomorphism between Banach spaces such that E is a Banach lattice, putting $\theta(a) \leq_{\theta} \theta(b)$ if and only if $a \leq_E b$ in E we obtain that (F, \leq_{θ}) is a Riesz space. We have that $\theta(a \lor b) = \theta(a) \lor \theta(b)$ and, more generally, θ preserves the lattice operations. Further, if we put $\|\theta(a)\|_{\theta} = \|a: E\|$ for $\theta(a) \in F$ we have that $(F, \|.\|_{\theta})$ is a Banach space and it follows from the open mapping theorem that the norms $\|.: F\|, \|.\|_{\theta}$ are equivalent in F. Also for $|\theta(a)|_{\leq_{\theta}}|\theta(b)|$ we find that $|a|_{\leq_E}|b|$ hence $||a: E|| \leq ||b: E||$, $||\theta(a)||_{\theta} \leq ||\theta(b)||_{\theta}$, we obtain that $(F, \|.\|_{\theta}, \leq_{\theta})$ is a Banach lattice.

Denoting $\theta = \widetilde{T}/K : (l_1(\mathcal{A})/K, \|.: l_1(\mathcal{A})/K\|) \to (X, \|.\|)$ in the above sense (we have that each $x \in X$ is a unique image $\theta [(\lambda_\alpha(x))], (\lambda_\alpha(x)) \in l_1(\mathcal{A}))$ we have

Theorem 3.1. The elements $\theta[(\lambda_{\alpha}(x))] = x$ determine the Banach space $(X, \|.\|_{\theta})$ where the norm $\|.\|_{\theta}$ is equivalent to the original norm of X.

Proof. This follows from above.

Corollary 3.2. Given an infinite dimensional real Banach space $(X, \|.\|)$ and a normed Hamel base $\mathcal{H} = \{x_{\alpha} : \alpha \in A\}$ of X, there exist an equivalent norm $\|.\|_{\mathcal{H}}$ in X and a partial ordering $\leq_{\mathcal{H}}$ in X associated to \mathcal{H} such that the triple $(X, \|.\|_{\mathcal{H}}, \leq_{\mathcal{H}})$ is a Banach lattice.

Proof. This follows from above theorem where we denote $\|.\|_{\mathcal{H}} = \|.\|_{\theta}, \leq_{\mathcal{H}} \leq_{\theta}$ following the above definition.

Acknowledgement This work was developped in CIMA-UE with finantial support form FCT (Programa TOCTI-FEDER)

References

- Fremlin, D.H., Topological Riesz Spaces and Measure Theory, Cambridge University Press, 1974.
- [2] Megginson, R.E., An Introduction to Banach Space, Theory Graduate Texts in Mathematics 183, 1998.
- [3] Meyer-Niegerg, P., Banach Lattices, Springer-Verlag, 1991.
- [4] Pietsch, A., *Eigenvalues and s-numbers*, Cambridge Studies in Advanced Mathematics 13, Cambridge University Press, 1987.
- [5] Taylor, A.E., Lay, D.C., Introduction to functional analysis, John Wiley & Sons, 1979.

Nuno C. Freire DMat, CIMA-UE Universidade de Évora Col. Verney, R. Romão Ramalho, 59 7000 Évora, Portugal AND Mailing Address Apartado 288 EC Estoril 276-904 Estoril, Portugal e-mail: freirenuno2003@iol.pt

Maria Fernanda Veiga Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa Quinta da Torre, 2829-516 Monte de Caparica, Portugal

110