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Transversality and separation of zeroes
in second order differential equations

Anton S. Mureşan

Abstract. In this paper we consider some second order differential equa-
tions in a finite time interval. We give some conditions which ensure
that the non-trivial solutions of these differential equations have a finite
number of transverse zeroes.
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1. Introduction

The following second order non-autonomous and non-linear differential equa-
tion was considered in [1]:

(Lu)(t) := −(p(t)u′(t))′ + q(t)u(t) = f(t, u(t)), t ∈ (a, b). (1.1)

Here (a, b) ⊆ R, f is a non-linear continuous function, not necessarily Lips-
chitz continuous function in u, f(t, 0) ≡ 0, p, q ∈ C1[a, b] and p(t) > 0 for all
t ∈ [a, b].

Some sufficient conditions on the non-linearity of f were given which
ensure that non-trivial solutions of the second order differential equations of
the form (1.1) have a finite number of transverse zeroes (u(0) = u′(0) = 0)
in a given finite time interval (a, b).

The solution of the equation (1.1) isn’t unique when the function f is
non-Lipschitz. For example the differential equation

−u′′ = 24
√
|u|, t ∈ R, (1.2)
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has at least two solutions, u1 ≡ 0 and u2 given by

u2(t) =
{

0, t ≤ 0
−4t4, t > 0 . (1.3)

Hence there exist non-unique, non-zero solutions possessing a non-transverse
zero and, in particular, infinitely many zeroes on any open time interval
containing t = 0.

In fact, Zeidler in [5] proved that there exist ordinary differential equa-
tions which have uncountable many solutions satisfying the conditions of
transversality: u(0) = u′(0) = 0.

Laister and Beardmore in [1] give only locally conditions on function f ,
near u = 0, and independent of the sign of q which ensure that non-trivial
solutions of (1.1) have a finite number of transverse zeroes in a finite time
interval ([1], Theorem 2.1).

Let S a finite subset of [a, b]. and we denote by [a, b]S = [a, b] \ S.
For the case when the equation (1.1) is written in the form

(Lu)(t) := −p(t)u′′(t) + r(t)u′(t) + q(t)u(t) = f(t, u(t)), t ∈ (a, b), (1.4)

the condition p ∈ C1[a, b] can be replaced by p ∈ C1[a, b]S , and the situation
described above remains true.

For example, with S = {0}, the differential equation

−(sgn t + 3)u′′(t) = 144
√
|u(t)|, t ∈ RS , (1.5)

has at least two solutions, u1 ≡ 0 and u3 given by

u3(t) =

 −36(t + 2)4, t < −2
0, − 2 ≤ t < 0
−4t4, t > 0

. (1.6)

Hence there exist non-unique, non-zero solutions possessing a non-transverse
zero and, in particular, infinitely many zeroes on any open interval included
in (−2, 0).

2. Main results

We consider a second order differential equation of the form:

F (t, u, u′, u′′) = 0, t ∈ (a, b) ⊆ R. (2.1)
For the convenience of the reader, following I.A. Rus ([3]), we present

the proofs of the next two results:

Theorem 2.1. We suppose that the following conditions are satisfied:
1o the function F is homogeneous with respect to variables u, u′, u′′;
2o for all t0 ∈ (a, b), u′0, u

′′
0 ∈ R there exists a unique solution of the

equation (2.1) such that u′(t0) = u′0, u′′(t0) = u′′0 .
Then, if t1 and t2 are two successive zeroes of u′1, where u1 is a solution

of the equation (2.1), every other solution u2 of the equation (2.1), for which
u′2(t1) 6= 0, u′2(t2) 6= 0, has in (t1, t2) a unique zero.



Transversality and separation of zeroes 141

Proof. We suppose that u′2(t) 6= 0 for all t ∈ [t1, t2]. It is not a restriction to
assume that

u′1(t) > 0 for t ∈ (t1, t2) and
u′2(t) > 0 for t ∈ [t1, t2].

Then by Tonelli’s Lemma (see [2]) it results that there exist λ > 0 and
t0 ∈ (t1, t2) such that

u′2(t0) = λu′1(t0) and
u′′2(t0) = λu′′1(t0).

From the conditions 1o, 2o we get that u2(t) ≡ λu1(t), i.e. a contradic-
tion, which proves the theorem. �

Theorem 2.2. We suppose that:
1o the function F is homogeneous with respect to variables u, u′, u′′;
2o for all t0 ∈ (a, b), u0, u

′
0 ∈ R there exists a unique solution of the

equation (2.1) such that u(t0) = u0, u′(t0) = u′0;
3o the equation in t

F (t, γ2, γ, 1) = 0
hasn’t any solution in the interval (a, b), for all γ ∈ R∗.

Then for every solution u of the equation (2.1) the zeroes of u and u′

separate each other on the interval [a, b].

Proof. It is sufficient to prove that, if t1, t2 are two successive zeroes of u′,
then u has one zero in the interval (t1, t2).

We suppose that u(t) 6= 0, for all t ∈ [t1, t2]. By Tonelli’s Lemma there
exist λ ∈ R∗ and t0 ∈ (t1, t2) such that

u(t0) = λu′(t0) and u′(t0) = λu′′(t0).

We obtain that

u′(t0) =
1
λ

u(t0) and u′′(t0) =
1
λ2

u(t0).

Then, from the equation (2.1), we have that

F (t0, u(t0), u′(t0), u′′(t0)) = 0

or
F (t0, u(t0),

1
λ

u(t0),
1
λ2

u(t0)) = 0.

Because u(t0) 6= 0 and λ 6= 0, by using the condition 1o, we obtain that

F (t0, λ2, λ, 1) = 0

i.e. a contradiction with the condition 3o, which proves the theorem. �

Corollary 2.3. We suppose that the conditions of Theorem 2.1. are satisfied.
If t1 and t2 are two successive transverse zeroes of u1, where u1 is a solution
of the equation (2.1), then every other solution u2 of the equation (2.1), for
which u′2(t1) 6= 0, u′2(t2) 6= 0, has in (t1, t2) a unique zero.
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Remark 2.4. In the equation (1.1) we suppose that
1o the function f is homogeneous in u
2o for all t0 ∈ (a, b), u′0, u

′′
0 ∈ R there exists a unique solution of the

equation (1.1) such that u′(t0) = u′0, u′′(t0) = u′′0 .
Then, if t1 and t2 are two successive zeroes of u1, where u1 is a solution

of the equation (1.1), every other solution u2 of the equation (1.1), for which
u′2(t1) 6= 0, u′2(t2) 6= 0, has in (t1, t2) a unique zero.

Remark 2.5. In the equation (1.1) we suppose that
1o f is homogeneous in u;
2o for all t0 ∈ (a, b), u0, u

′
0 ∈ R there exists a unique solution of the

equation (1.1) such that u(t0) = u0, u′(t0) = u′0;
3o the equation in t

p(t) + p′(t)γ − q(t)γ2 + f(t, γ2) = 0

hasn’t any solution in the interval (a, b), for all γ ∈ R∗.
Then for every solution u of the equation (1.1) the zeroes of u and u′

separate each other on the interval [a, b].

Theorem 2.6. We suppose that:
1o the function F is homogeneous with respect to variables u, u′, u′′;
2o there exists a solution of the equation (2.1) that has a transverse zero

in (a, b),
3o the equation in t

F (t, γ2, γ, 1) = 0
hasn’t any solution in the interval (a, b), for all γ ∈ R∗.

Then for every solution u of the equation (2.1) the non-transverse zeroes
of u and u′ separate each other on the interval [a, b].

Proof. Let u be the solution of the equation (2.1) that has a transverse zero
t∗ ∈ (a, b), i.e. u(t∗) = u′(t∗) = 0. It is sufficient to prove that if t1, t2 are two
successive zeroes of u′, which aren’t transverse zeroes for u, then u has one
zero in the interval (t1, t2).

We suppose that u(t) 6= 0, for all t ∈ [t1, t2]. By Tonelli’s Lemma there
exist λ ∈ R∗ and t0 ∈ (t1, t2) such that

u(t0) = λu′(t0) and u′(t0) = λu′′(t0).

We obtain that

u′(t0) =
1
λ

u(t0) and u′′(t0) =
1
λ2

u(t0).

Then, from the equation (2.1), we have that

F (t0, u(t0), u′(t0), u′′(t0)) = 0

or
F (t0, u(t0),

1
λ

u(t0),
1
λ2

u(t0)) = 0.

Because u(t0) 6= 0 and λ 6= 0, by using the condition 1o, we obtain that

F (t0, λ2, λ, 1) = 0
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i.e. a contradiction with the condition 3o, which proves the theorem. �

Let us consider the following second order non-autonomous differential
equation

(Lu)(t) := −(p(t)u′(t))′ + q(t)u(t) = 0, t ∈ (a, b), (2.2)
where the p and q are such that

p, q ∈ C1[a, b], p(t) > 0, t ∈ [a, b]. (2.3)

It is well know the following result:

Theorem 2.7. We suppose that the condition (2.3) holds. If u is any solution
of (2.2) satisfying u(t0) = u′(t0) = 0, for some t0 ∈ [a, b], then u ≡ 0 on
[a, b].

Corollary 2.8. Let the hypotheses of Theorem 2.7 hold. If u is any non-trivial
solution of (2.2), then u has a finite number of zeroes in [a, b].

Proof. Suppose that u has an infinite number of zeroes tn ∈ [a, b], n ∈ N.
Then by Bolzano-Weierstrass theorem and the continuity of u the exists a
subsequence tnj

such that tnj
→ t0 as j → ∞ and u(t0) = 0 for some

t0 ∈ [a, b]. By applying Rolle’s theorem to u on [t0, tnj ] (or [tnj , t0]) and
letting j →∞ shows that u′(t0) = 0. Hence u ≡ 0 on [a, b] by Theorem 2.7,
as required. �

Remark 2.9. In the conditions of Theorem 2.7 any non-trivial solution of the
equation (2.2) hasn’t multiple zeroes.

Theorem 2.10. Consider the following problem

(Lu)(t) := −(p(t)u′(t))′ + q(t)u(t) = f(t, u(t)), t ∈ (a, b) (2.4)

u(t0) = u′(t0) = 0. (2.5)
If there exists Lf > 0 such that

|f(t, u)− f(t, v)| ≤ Lf |u− v|, t ∈ [a, b], and u, v ∈ R, (2.6)

then there exists a unique solution of the problem (2.4)+(2.5).

Proof. The equation (2.4) with the conditions (2.5), u(t0) = u′(t0) = 0, is
equivalent with the following fixed point equation:

u = A(u), (2.7)

where u ∈ C2[a, b] and the operator A : (C2[a, b], ||.||τ ) → (C2[a, b], ||.||τ ) is
defined by

(A(u))(t) =
∫ t

t0

1
p(r)

(∫ r

t0

[q(s)u(s)− f(s, u(s))] ds

)
dr. (2.8)

Here
||u||τ = max

t∈[a,b]
|u(t)|e−τ |t−a|, τ > 0.

We have
|(A(u))(t)− (A(v))(t)| =
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=
∣∣∣∣∫ t

t0

1
p(r)

(∫ r

t0

[q(s)(u(s)− v(s))− f(s, u(s)) + f(s, v(s))] ds

)
dr

∣∣∣∣ ≤
≤

∣∣∣∣∫ t

t0

1
p(r)

∣∣∣∣(∫ r

t0

|q(s)| |u(s)− v(s)|e−τ |s−t0|eτ |s−t0|ds

)∣∣∣∣ dr

∣∣∣∣ ≤
≤

∣∣∣∣∫ t

t0

1
p(r)

∣∣∣∣(∫ r

t0

Lf |u(s)− v(s)|e−τ |s−t0|eτ |s−t0|ds

)∣∣∣∣ dr

∣∣∣∣ ≤
≤ Mp(Mq + Lf )||u− v||τ

∣∣∣∣∫ t

t0

∣∣∣∣∫ r

t0

eτ |s−t0|ds

∣∣∣∣ dr

∣∣∣∣ ,

where Mp = maxt∈[a,b]
1

p(t) and Mq = maxt∈[a,b] |q(t)|.
But ∣∣∣∣∫ r

t0

eτ |s−t0|ds

∣∣∣∣ ≤ 1
τ

eτ |r−t0|,

and so, ∣∣∣∣∫ t

t0

∣∣∣∣∫ r

t0

eτ |s−t0|ds

∣∣∣∣ dr

∣∣∣∣ ≤ ∣∣∣∣∫ r

t0

1
τ

eτ |r−t0|dr

∣∣∣∣ ≤ 1
τ2

eτ |t−t0|.

If follows that

|(A(u))(t)− (A(v))(t)|e−τ |t−t0| ≤ Mp(Mq + Lf )
τ2

||u− v||τ , for all t ∈ [a, b].

Consequently

||A(u)−A(v)||τ ≤
Mp(Mq + Lf )

τ2
||u− v||τ for all u, v ∈ C2[a, b].

By choosing τ large enough we have that the operator A is a contraction. By
using Contraction mapping principle we obtain that the equation (2.4) has,
in C2[a, b], a unique solution satisfying the conditions u(t0) = u′(t0) = 0. �

Corollary 2.11. In the conditions of Theorem 2.10, if f(t, 0) = 0 for all
t ∈ [a, b] then any non-trivial solution u ∈ C2[a, b] of the equation (2.4)
hasn’t transverse zeroes.

Proof. Suppose that u is a non-trivial solution of the equation (2.4) that
have a transverse zero t0 ∈ [a, b], i.e. u(t0) = u′(t0) = 0. From Theorem
2.10 the equation (2.4) with the conditions (2.5) has a unique solution. But,
because f(t, 0) = 0, the function u(t) = 0, t ∈ [a, b], is a solution of the
problem (2.4)+(2.5). This is a contradiction with the fact that u is a non-
trivial solution of the equation (2.4). �

Remark 2.12. There exist equations of the form (2.4), with f(t, 0) 6= 0, that
have solutions with transverse zeroes and with zeroes with a degree of mul-
tiplicity greater than 2. See Example 2.13.
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Example 2.13. Let us consider the equation (1.1) where

p(t) = t2 + 1, q(t) = 20, f(t, u) = 11t2 +
√
|u|, t ∈ R.

We have that all the conditions: f is a non-linear continuous function, not
necessarily Lipschitz continuous function in u,p, q ∈ C1[a, b] and p(t) > 0 for
all t ∈ [a, b] are satisfied, except the condition f(t, 0) ≡ 0. A solution u of this
equation given by u(t) = −t4 has a transverse zero t0 = 0, which has degree
of multiplicity equal to 4.
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