Transversality and separation of zeroes in second order differential equations

Anton S. Mureşan

Abstract. In this paper we consider some second order differential equations in a finite time interval. We give some conditions which ensure that the non-trivial solutions of these differential equations have a finite number of transverse zeroes.

Mathematics Subject Classification (2010): Primary 34C10, Secondary 34A12, 34A34.

Keywords: Non-linear differential equation, non-autonomous differential equations, transverse zeroes of the solution, separation of zeroes of the solution.

1. Introduction

The following second order non-autonomous and non-linear differential equation was considered in [1]:

$$(Lu)(t) := -(p(t)u'(t))' + q(t)u(t) = f(t, u(t)), \quad t \in (a, b).$$

$$(1.1)$$

Here $(a,b) \subseteq \mathbb{R}$, f is a non-linear continuous function, not necessarily Lipschitz continuous function in u, $f(t,0) \equiv 0$, $p,q \in C^1[a,b]$ and p(t) > 0 for all $t \in [a,b]$.

Some sufficient conditions on the non-linearity of f were given which ensure that non-trivial solutions of the second order differential equations of the form (1.1) have a finite number of transverse zeroes (u(0) = u'(0) = 0)in a given finite time interval (a, b).

The solution of the equation (1.1) isn't unique when the function f is non-Lipschitz. For example the differential equation

$$-u'' = 24\sqrt{|u|}, \ t \in \mathbb{R}, \tag{1.2}$$

This paper was presented at the International Conference on Nonlinear Operators,

Differential Equations and Applications, July 5-8, 2011, Cluj-Napoca, Romania.

has at least two solutions, $u_1 \equiv 0$ and u_2 given by

$$u_2(t) = \begin{cases} 0, & t \le 0\\ -4t^4, & t > 0 \end{cases}$$
(1.3)

Hence there exist non-unique, non-zero solutions possessing a non-transverse zero and, in particular, infinitely many zeroes on any open time interval containing t = 0.

In fact, Zeidler in [5] proved that there exist ordinary differential equations which have uncountable many solutions satisfying the conditions of transversality: u(0) = u'(0) = 0.

Laister and Beardmore in [1] give only locally conditions on function f, near u = 0, and independent of the sign of q which ensure that non-trivial solutions of (1.1) have a finite number of transverse zeroes in a finite time interval ([1], Theorem 2.1).

Let S a finite subset of [a, b]. and we denote by $[a, b]_S = [a, b] \setminus S$.

For the case when the equation (1.1) is written in the form

$$(Lu)(t) := -p(t)u''(t) + r(t)u'(t) + q(t)u(t) = f(t, u(t)), \quad t \in (a, b), \quad (1.4)$$

the condition $p \in C^1[a, b]$ can be replaced by $p \in C^1[a, b]_S$, and the situation described above remains true.

For example, with $S = \{0\}$, the differential equation

$$-(sgn \ t+3)u''(t) = 144\sqrt{|u(t)|}, \ t \in \mathbb{R}_S,$$
(1.5)

has at least two solutions, $u_1 \equiv 0$ and u_3 given by

$$u_3(t) = \begin{cases} -36(t+2)^4, & t < -2\\ 0, & -2 \le t < 0\\ -4t^4, & t > 0 \end{cases}$$
(1.6)

Hence there exist non-unique, non-zero solutions possessing a non-transverse zero and, in particular, infinitely many zeroes on any open interval included in (-2, 0).

2. Main results

We consider a second order differential equation of the form:

$$F(t, u, u', u'') = 0, \quad t \in (a, b) \subseteq \mathbb{R}.$$
(2.1)

For the convenience of the reader, following I.A. Rus ([3]), we present the proofs of the next two results:

Theorem 2.1. We suppose that the following conditions are satisfied:

 1° the function F is homogeneous with respect to variables u, u', u'';

2° for all $t_0 \in (a,b)$, $u'_0, u''_0 \in \mathbb{R}$ there exists a unique solution of the equation (2.1) such that $u'(t_0) = u'_0$, $u''(t_0) = u''_0$.

Then, if t_1 and t_2 are two successive zeroes of u'_1 , where u_1 is a solution of the equation (2.1), every other solution u_2 of the equation (2.1), for which $u'_2(t_1) \neq 0$, $u'_2(t_2) \neq 0$, has in (t_1, t_2) a unique zero.

Proof. We suppose that $u'_2(t) \neq 0$ for all $t \in [t_1, t_2]$. It is not a restriction to assume that

$$u'_1(t) > 0 \text{ for } t \in (t_1, t_2) \text{ and} u'_2(t) > 0 \text{ for } t \in [t_1, t_2].$$

Then by Tonelli's Lemma (see [2]) it results that there exist $\lambda > 0$ and $t_0 \in (t_1, t_2)$ such that

$$u'_{2}(t_{0}) = \lambda u'_{1}(t_{0})$$
 and
 $u''_{2}(t_{0}) = \lambda u''_{1}(t_{0}).$

From the conditions $1^{\circ}, 2^{\circ}$ we get that $u_2(t) \equiv \lambda u_1(t)$, i.e. a contradiction, which proves the theorem.

Theorem 2.2. We suppose that:

 1° the function F is homogeneous with respect to variables u, u', u'';

2° for all $t_0 \in (a,b)$, $u_0, u'_0 \in \mathbb{R}$ there exists a unique solution of the equation (2.1) such that $u(t_0) = u_0$, $u'(t_0) = u'_0$;

 3^{o} the equation in t

$$F(t,\gamma^2,\gamma,1) = 0$$

hasn't any solution in the interval (a, b), for all $\gamma \in \mathbb{R}^*$.

Then for every solution u of the equation (2.1) the zeroes of u and u' separate each other on the interval [a, b].

Proof. It is sufficient to prove that, if t_1, t_2 are two successive zeroes of u', then u has one zero in the interval (t_1, t_2) .

We suppose that $u(t) \neq 0$, for all $t \in [t_1, t_2]$. By Tonelli's Lemma there exist $\lambda \in \mathbb{R}^*$ and $t_0 \in (t_1, t_2)$ such that

$$u(t_0) = \lambda u'(t_0)$$
 and $u'(t_0) = \lambda u''(t_0)$.

We obtain that

$$u'(t_0) = \frac{1}{\lambda}u(t_0)$$
 and $u''(t_0) = \frac{1}{\lambda^2}u(t_0).$

Then, from the equation (2.1), we have that

$$F(t_0, u(t_0), u'(t_0), u''(t_0)) = 0$$

or

$$F(t_0, u(t_0), \frac{1}{\lambda}u(t_0), \frac{1}{\lambda^2}u(t_0)) = 0.$$

Because $u(t_0) \neq 0$ and $\lambda \neq 0$, by using the condition 1^o , we obtain that

$$F(t_0, \lambda^2, \lambda, 1) = 0$$

i.e. a contradiction with the condition 3° , which proves the theorem.

Corollary 2.3. We suppose that the conditions of Theorem 2.1. are satisfied. If t_1 and t_2 are two successive transverse zeroes of u_1 , where u_1 is a solution of the equation (2.1), then every other solution u_2 of the equation (2.1), for which $u'_2(t_1) \neq 0$, $u'_2(t_2) \neq 0$, has in (t_1, t_2) a unique zero.

Remark 2.4. In the equation (1.1) we suppose that

 1^o the function f is homogeneous in u

2° for all $t_0 \in (a, b)$, $u'_0, u''_0 \in \mathbb{R}$ there exists a unique solution of the equation (1.1) such that $u'(t_0) = u'_0, u''(t_0) = u''_0$.

Then, if t_1 and t_2 are two successive zeroes of u_1 , where u_1 is a solution of the equation (1.1), every other solution u_2 of the equation (1.1), for which $u'_2(t_1) \neq 0, u'_2(t_2) \neq 0$, has in (t_1, t_2) a unique zero.

Remark 2.5. In the equation (1.1) we suppose that

 $1^{\circ} f$ is homogeneous in u;

 2^{o} for all $t_{0} \in (a, b)$, $u_{0}, u'_{0} \in \mathbb{R}$ there exists a unique solution of the equation (1.1) such that $u(t_{0}) = u_{0}, u'(t_{0}) = u'_{0}$;

 3^o the equation in t

$$p(t) + p'(t)\gamma - q(t)\gamma^2 + f(t,\gamma^2) = 0$$

hasn't any solution in the interval (a, b), for all $\gamma \in \mathbb{R}^*$.

Then for every solution u of the equation (1.1) the zeroes of u and u' separate each other on the interval [a, b].

Theorem 2.6. We suppose that:

 1° the function F is homogeneous with respect to variables u, u', u'';

 2° there exists a solution of the equation (2.1) that has a transverse zero in (a, b),

 3^{o} the equation in t

$$F(t,\gamma^2,\gamma,1) = 0$$

hasn't any solution in the interval (a, b), for all $\gamma \in \mathbb{R}^*$.

Then for every solution u of the equation (2.1) the non-transverse zeroes of u and u' separate each other on the interval [a, b].

Proof. Let u be the solution of the equation (2.1) that has a transverse zero $t_* \in (a, b)$, i.e. $u(t_*) = u'(t_*) = 0$. It is sufficient to prove that if t_1, t_2 are two successive zeroes of u', which aren't transverse zeroes for u, then u has one zero in the interval (t_1, t_2) .

We suppose that $u(t) \neq 0$, for all $t \in [t_1, t_2]$. By Tonelli's Lemma there exist $\lambda \in \mathbb{R}^*$ and $t_0 \in (t_1, t_2)$ such that

$$u(t_0) = \lambda u'(t_0)$$
 and $u'(t_0) = \lambda u''(t_0).$

We obtain that

$$u'(t_0) = \frac{1}{\lambda}u(t_0)$$
 and $u''(t_0) = \frac{1}{\lambda^2}u(t_0)$.

Then, from the equation (2.1), we have that

$$F(t_0, u(t_0), u'(t_0), u''(t_0)) = 0$$

or

$$F(t_0, u(t_0), \frac{1}{\lambda}u(t_0), \frac{1}{\lambda^2}u(t_0)) = 0.$$

Because $u(t_0) \neq 0$ and $\lambda \neq 0$, by using the condition 1°, we obtain that

$$F(t_0, \lambda^2, \lambda, 1) = 0$$

i.e. a contradiction with the condition 3° , which proves the theorem.

Let us consider the following second order non-autonomous differential equation

$$(Lu)(t) := -(p(t)u'(t))' + q(t)u(t) = 0, t \in (a, b),$$
(2.2)

where the p and q are such that

$$p, q \in C^{1}[a, b], p(t) > 0, t \in [a, b].$$
 (2.3)

It is well know the following result:

Theorem 2.7. We suppose that the condition (2.3) holds. If u is any solution of (2.2) satisfying $u(t_0) = u'(t_0) = 0$, for some $t_0 \in [a, b]$, then $u \equiv 0$ on [a, b].

Corollary 2.8. Let the hypotheses of Theorem 2.7 hold. If u is any non-trivial solution of (2.2), then u has a finite number of zeroes in [a, b].

Proof. Suppose that u has an infinite number of zeroes $t_n \in [a, b], n \in \mathbb{N}$. Then by Bolzano-Weierstrass theorem and the continuity of u the exists a subsequence t_{n_j} such that $t_{n_j} \to t_0$ as $j \to \infty$ and $u(t_0) = 0$ for some $t_0 \in [a, b]$. By applying Rolle's theorem to u on $[t_0, t_{n_j}]$ (or $[t_{n_j}, t_0]$) and letting $j \to \infty$ shows that $u'(t_0) = 0$. Hence $u \equiv 0$ on [a, b] by Theorem 2.7, as required.

Remark 2.9. In the conditions of Theorem 2.7 any non-trivial solution of the equation (2.2) hasn't multiple zeroes.

Theorem 2.10. Consider the following problem

$$(Lu)(t) := -(p(t)u'(t))' + q(t)u(t) = f(t, u(t)), \quad t \in (a, b)$$
(2.4)

$$u(t_0) = u'(t_0) = 0. (2.5)$$

If there exists $L_f > 0$ such that

$$|f(t,u) - f(t,v)| \le L_f |u-v|, t \in [a,b], and u, v \in \mathbb{R},$$
 (2.6)

then there exists a unique solution of the problem (2.4)+(2.5).

Proof. The equation (2.4) with the conditions (2.5), $u(t_0) = u'(t_0) = 0$, is equivalent with the following fixed point equation:

$$u = A(u), \tag{2.7}$$

where $u \in C^2[a, b]$ and the operator $A : (C^2[a, b], ||.||_{\tau}) \to (C^2[a, b], ||.||_{\tau})$ is defined by

$$(A(u))(t) = \int_{t_0}^t \frac{1}{p(r)} \left(\int_{t_0}^r \left[q(s)u(s) - f(s,u(s)) \right] ds \right) dr.$$
(2.8)

Here

$$||u||_{\tau} = \max_{t \in [a,b]} |u(t)|e^{-\tau|t-a|}, \ \tau > 0.$$

We have

$$|(A(u))(t) - (A(v))(t)| =$$

$$= \left| \int_{t_0}^t \frac{1}{p(r)} \left(\int_{t_0}^r [q(s)(u(s) - v(s)) - f(s, u(s)) + f(s, v(s))] \, ds \right) dr \right| \le$$

$$\le \left| \int_{t_0}^t \frac{1}{p(r)} \left| \left(\int_{t_0}^r |q(s)| \, |u(s) - v(s)| e^{-\tau |s - t_0|} e^{\tau |s - t_0|} ds \right) \right| dr \right| \le$$

$$\le \left| \int_{t_0}^t \frac{1}{p(r)} \left| \left(\int_{t_0}^r L_f |u(s) - v(s)| e^{-\tau |s - t_0|} e^{\tau |s - t_0|} ds \right) \right| dr \right| \le$$

$$\le M_p(M_q + L_f) ||u - v||_{\tau} \left| \int_{t_0}^t \left| \int_{t_0}^r e^{\tau |s - t_0|} ds \right| dr \right|,$$

where $M_p = \max_{t \in [a,b]} \frac{1}{p(t)}$ and $M_q = \max_{t \in [a,b]} |q(t)|$.

 But

$$\left|\int_{t_0}^r e^{\tau|s-t_0|} ds\right| \le \frac{1}{\tau} e^{\tau|r-t_0|},$$

and so,

$$\left| \int_{t_0}^t \left| \int_{t_0}^r e^{\tau |s - t_0|} ds \right| dr \right| \le \left| \int_{t_0}^r \frac{1}{\tau} e^{\tau |r - t_0|} dr \right| \le \frac{1}{\tau^2} e^{\tau |t - t_0|}.$$

If follows that

$$|(A(u))(t) - (A(v))(t)|e^{-\tau|t-t_0|} \le \frac{M_p(M_q + L_f)}{\tau^2} ||u - v||_{\tau}, \text{ for all } t \in [a, b].$$

Consequently

$$||A(u) - A(v)||_{\tau} \le \frac{M_p(M_q + L_f)}{\tau^2} ||u - v||_{\tau} \text{ for all } u, v \in C^2[a, b].$$

By choosing τ large enough we have that the operator A is a contraction. By using Contraction mapping principle we obtain that the equation (2.4) has, in $C^2[a, b]$, a unique solution satisfying the conditions $u(t_0) = u'(t_0) = 0$. \Box

Corollary 2.11. In the conditions of Theorem 2.10, if f(t,0) = 0 for all $t \in [a,b]$ then any non-trivial solution $u \in C^2[a,b]$ of the equation (2.4) hasn't transverse zeroes.

Proof. Suppose that u is a non-trivial solution of the equation (2.4) that have a transverse zero $t_0 \in [a, b]$, i.e. $u(t_0) = u'(t_0) = 0$. From Theorem 2.10 the equation (2.4) with the conditions (2.5) has a unique solution. But, because f(t, 0) = 0, the function u(t) = 0, $t \in [a, b]$, is a solution of the problem (2.4)+(2.5). This is a contradiction with the fact that u is a nontrivial solution of the equation (2.4).

Remark 2.12. There exist equations of the form (2.4), with $f(t, 0) \neq 0$, that have solutions with transverse zeroes and with zeroes with a degree of multiplicity greater than 2. See Example 2.13.

Example 2.13. Let us consider the equation (1.1) where

$$p(t) = t^2 + 1, \quad q(t) = 20, \quad f(t, u) = 11t^2 + \sqrt{|u|}, \quad t \in \mathbb{R}.$$

We have that all the conditions: f is a non-linear continuous function, not necessarily Lipschitz continuous function in $u, p, q \in C^1[a, b]$ and p(t) > 0 for all $t \in [a, b]$ are satisfied, except the condition $f(t, 0) \equiv 0$. A solution u of this equation given by $u(t) = -t^4$ has a transverse zero $t_0 = 0$, which has degree of multiplicity equal to 4.

References

- Laister, R., Beadmore, R.E., Transversality and separation of zeroes in second order differential equations, Proc. Amer. Math. Soc., 131(2002), no. 1, 209-218.
- [2] Mureşan, A.S., The Tonelli's Lemma and applications, Carpathian J. Math., (to appear).
- [3] Rus, I.A., The properties of zeroes of solutions of the second order nonlinear differential equations, Studia Univ. Babeş-Bolyai, Ser. Mathematica-Physica, 1965, 47-50 (In Romanian).
- [4] Rus, I.A., Petruşel, A., Petruşel, G., Fixed Point Theory, Cluj University Press, 2008.
- [5] Zeidler, E., Non-linear functional analysis and its applications: Fixed point theorems, Vol. 1, Springer Verlag, 1986.

Anton S. Mureşan Faculty of Economics and Business Administration Babeş-Bolyai University 58-60 Teodor Mihali Street 400591 Cluj-Napoca, Romania e-mail: anton.muresan@econ.ubbcluj.ro