Units in abelian group algebras over indecomposable rings

Peter Danchev

Abstract. Suppose R is a commutative indecomposable unitary ring of prime characteristic p and G is a multiplicative Abelian group such that G_0/G_p is finite. We describe up to isomorphism the unit group U(RG) of the group algebra RG. This extends an earlier result due to Mollov-Nachev (Commun. Algebra, 2006) removing the restriction that G splits.

Mathematics Subject Classification (2010): 16S34, 16U60, 20K21.

Keywords: groups, rings, group rings, indecomposable rings, units, direct decompositions, isomorphisms.

1. Introduction

Throughout the present paper, suppose R is a commutative unitary (i.e., with identity) ring of prime characteristic p and G is an Abelian group written multiplicatively as is customary when exploring group algebras. For such Rand G, denote by RG the group algebra of G over R with unit group U(RG)and its normed subgroup V(RG) of units with augmentation 1; note that the decomposition $U(RG) = V(RG) \times U(R)$ holds where U(R) is the unit group of R. As usual, G_0 is the torsion subgroup of G with p-primary component G_p , and $S(RG) = V_p(RG)$ is the p-component of V(RG). Moreover, for any natural number n, ζ_n denotes the primitive nth root of unity and $R[\zeta_n]$ is the free R-module, algebraically generated as a ring by ζ_n , with dimension $[R[\zeta_n] : R]$. As it is well-known, a ring is said to be *indecomposable* if it cannot be decomposed into a direct sum of two or more non-trivial ideals.

The structures of V(RG) and U(RG) have been very intensively studied in the past twenty years (see, e.g., [8]). Some isomorphism description results were obtained in [2] and [11]. The purpose of this work is to improve considerably one of the central results in the latter citation by giving a more direct and conceptual proof (note that some parts of the proof of the corresponding result in [11] are unnecessary complicated). Likewise, our method proposed below gives a new strategy for obtaining other results of this type since it reduces the general case to the p-mixed one.

2. Main results

As noted above, Mollov and Nachev established in ([11], Theorem 5.8) the following assertion.

Theorem (2006). Let R be a commutative indecomposable ring with identity of prime characteristic p and let G be a splitting Abelian group. Suppose that G_0/G_p is a finite group of exponent n and $n \in U(R)$. Then

$$U(RG) \cong \coprod_{d/n} \coprod_{\lambda(d)} U(R[\zeta_d]) \times \coprod_b G/G_0 \times \coprod_{d/n} \coprod_{\lambda(d)} S(R[\zeta_d](G_p \times G/G_0))$$

where $\lambda(d) = \frac{(G_0/G_p)(d)}{[R[\zeta_d]:R]}$, with $(G_0/G_p)(d)$ the number of elements of G_0/G_p of order d, and $b = \sum_{d/n} \lambda(d)$.

Notice that since char(R) = p is a prime integer, it is self-evident that $exp(G_0/G_p)$ inverts in R, so that the condition $n \in U(R)$ is always fulfilled and hence it is a superfluously stated in the theorem.

The aim that we will pursue is to drop the limitation that G is a splitting group. Specifically, we proceed by proving the following:

Main Theorem. Suppose R is an indecomposable ring of char(R) = p and G is a group for which G_0/G_p is finite. Then the following isomorphism is true:

$$U(RG) \cong \prod_{d/exp(G_0/G_p)} \prod_{a(d)} [U(R[\zeta_d]) \times [(G/\prod_{q \neq p} G_q)V_p(R[\zeta_d](G/\prod_{q \neq p} G_q))]]$$

$$(*)$$
where $a(d) = \frac{|\{g \in G_0/G_p; order(g) = d\}|}{[R[\zeta_d];R]}.$
In particular:
(1) if G is p-splitting, then
$$U(RG) \cong \prod_{d/exp(G_0/G_p)} \prod_{a(d)} [U(R[\zeta_d]) \times V_p(R[\zeta_d](G/\prod_{q \neq p} G_q))] \times$$

$$\times \prod_{\sum_{d/exp(G_0/G_p)} a(d)} G/G_0.$$
(2) if G_p is a direct sum of cyclic groups, then
$$U(RG) \cong \prod_{d/exp(G_0/G_p)} \prod_{a(d)} [U(R[\zeta_d]) \times (V_p(R[\zeta_d](G/\prod_{q \neq p} G_q))/(G/\prod_{q \neq p} G_q)_p)] \times$$

$$\times \prod_{\sum_{d/exp(G_0/G_p)} a(d)} G/[Q] G_q.$$

$$\times \prod_{\sum_{d/exp(G_0/G_p)} a(d)} G/[Q] G_q.$$

Moreover, the quotient $V_p(R[\zeta_d](G/\coprod_{q\neq p} G_q))/(G/\coprod_{q\neq p} G_q)_p)$ is a direct sum of cyclic groups and can be characterized via the Ulm-Kaplansky invariants calculated in [7].

Proof. First observe that $\coprod_{q\neq p} G_q$ is pure in G_0 as its direct factor and hence it is pure in G because G_0 is pure in G. Since $G_0/G_p \cong \coprod_{q\neq p} G_q$ is finite, it is well known that $\coprod_{q\neq p} G_q = F$ is a direct factor even of G, say $G = F \times M$ for some $M \leq G$. It is obvious that $M \cong G/\coprod_{q\neq p} G_q$ is *p*-mixed with $M_0 = M_p = G_p$.

Next, write RG = (RM)F. Since R is indecomposable, it follows from [9] that RM is also indecomposable because there is no prime q which inverts in R such that $M_q \neq 1$. Clearly $exp(F) \in U(R) \subseteq U(RM)$ because char(R) = char(RM) = p and therefore we can apply Theorem 4.4 and Remark 4.5 from [11] to get that $RG \cong \sum_{d/exp(F)} \sum_{a(d)} (RM)[\zeta_d]$, whence $U(RG) \cong \prod_{d/exp(F)} \prod_{a(d)} U((RM)[\zeta_d])$. It is straightforward to see that $(RM)[\zeta_d] \cong R[\zeta_d]M$, so that $U((RM)[\zeta_d]) \cong U(R[\zeta_d]M) = V(R[\zeta_d]M) \times U(R[\zeta_d])$. On the other hand, according to [4], [5] or [6], $V(R[\zeta_d]M) = MV_p(R[\zeta_d]M)$ using the fact from [11] that $R[\zeta_d]$ is indecomposable of prime characteristic p as well. This establishes formula (*).

(1) If now G is p-splitting, it is readily seen that it is splitting. Consequently, so is M as its direct factor. Furthermore, it is easily checked that $M \cong G/\coprod_{q\neq p} G_q \cong (G_0 \times G/G_0)/\coprod_{q\neq p} G_q \cong (G_0/\coprod_{q\neq p} G_q) \times (G/G_0) \cong G_p \times (G/G_0)$. Moreover, $M = M_p \times M/M_p \cong G_p \times G/G_0$ because $M/M_p \cong G/\coprod_{q\neq p} G_q/(G/\coprod_{q\neq p} G_q)_0 = G/\coprod_{q\neq p} G_q/G_0/\coprod_{q\neq p} G_q \cong G/G_0$. That is why $MV_p(R[\zeta_d]M) \cong (M/M_p) \times V_p(R[\zeta_d]M) \cong (G/G_0) \times V_p(R[\zeta_d](G/\coprod_{q\neq p} G_q))$ and we are done.

(2) Appealing to [1], $G_p = M_p$ being a direct sum of cyclic groups implies that $V_p(R[\zeta_d]M) = M_p \times T$ for some subgroup T which is a direct sum of cyclic groups. Therefore, $MV_p(R[\zeta_d]M) = M(M_p \times T) = M \times T \cong$ $(G/\coprod_{q \neq p} G_q) \times V_p(R[\zeta_d](G/\coprod_{q \neq p} G_q))/(G/\coprod_{q \neq p} G_q)_p$ since it is easy to see that $M \cap T = M_p \cap T = 1$ because $T = T_p$. This completes the proof. \Box

Note. In virtue of our lemma from [4], [5] or [6], our result can be generalized to the direct sum (= direct product) of m indecomposable rings, i.e., when the set id(R) of all idempotents of R is finite and contains 2^m elements, that is, $|id(R)| = 2^m$.

That is why, utilizing this approach, the number m in Theorem 5 of [11] can be explicitly computed, namely it is equal exactly to $log_2|id(R)|$.

Remark. The proof of Theorem 2.7 in [10] contains a gap and so it is incomplete. In fact, the authors claimed that they will assume that the splitting group is *p*-mixed. The reason is that the *K*-algebras isomorphism $KG \cong KH$ yields that $K(G/\coprod_{q\neq p} G_q) \cong K(H/\coprod_{q\neq p} H_q)$ whenever *K* is a field of char(K) = p. But they need to show that *G* being splitting ensures that so is $G/\coprod_{q\neq p} G_q$. However, this was already done in [3].

References

- Danchev, P.V., Commutative group algebras of σ-summable abelian groups, Proc. Amer. Math. Soc., 125(1997), no. 9, 2559-2564.
- [2] Danchev, P.V., Normed units in abelian group rings, Glasgow Math. J., 43(2001), no. 3, 365-373.
- [3] Danchev, P.V., Notes on the isomorphism and splitting problems for commutative modular group algebras, Cubo Math. J., 9(2007), no. 1, 39-45.
- [4] Danchev, P.V., Warfield invariants in commutative group rings, J. Algebra Appl., 8(2009), no. 6, 829-836.
- [5] Danchev, P.V., Maximal divisible subgroups in p-mixed modular abelian group rings, Commun. Algebra, 39(2011), no. 6, 2210-2215.
- [6] Danchev, P.V., Maximal divisible subgroups in modular group rings of p-mixed abelian groups, Bull. Braz. Math. Soc., 41(2010), no. 1, 63-72.
- [7] Danchev, P.V., Ulm-Kaplansky invariants in commutative modular group rings, J. Algebra Number Theory Academia, 1(2011), no. 2, 127-134.
- [8] Karpilovsky, G., Units of commutative group algebras, Expo. Math., 8(1990), 247-287.
- [9] May, W.L., Group algebras over finitely generated rings, J. Algebra, 39(1976), 483-511.
- [10] May, W.L., Mollov, T.Zh., Nachev, N.A., Isomorphism of modular group algebras of p-mixed abelian groups, Commun. Algebra, 38(2010), 1988-1999.
- [11] Mollov, T.Zh., Nachev, N.A., Unit groups of commutative group rings, Commun. Algebra, 34(2006), 3835-3857.

Peter Danchev 13, General Kutuzov Str. bl. 7, fl. 2, ap. 4 4003 Plovdiv, Bulgaria e-mail: pvdanchev@yahoo.com